
Embedding Modal Logic in PVS

John Rushby

Computer Science Laboratory

SRI International

Menlo Park, CA

John Rushby Modal Logic in PVS: 1

Background for Modal Logic

• The idea is to reason about different modes of truth

◦ What it means for something to be possibly true

◦ Or to know that something is true

◦ As opposed to merely believing it

• The modal qualifiers 2 and 3 introduce expressions to be

interpreted modally

◦ 3 = ¬2¬, and dually

• All modal logics share basic structure but use different axioms

◦ And make other adjustments

According to the mode attributed to the qualifiers

• For example

◦ If 2 is knowledge, we want: 2P ⊃ P
◦ If 2 is belief, instead want: 2P ⊃ 3P

John Rushby Modal Logic in PVS: 2

Simple Example

Uses Alethic modal logic

Where 2 means necessarily true, 3 means possibly true

Notation: g is a propositional variable (i.e., a constant),

P is a metavariable.

Premise H1: 3g

i.e., g is possible

Premise H2: P ⊃ 2P

i.e., that which is true is necessarily true (Becker’s Postulate)

Conclusion HC: g

i.e., g is true in the classical sense

This is actually Hartshorne’s rendition of St. Anselm’s Modal

Ontological Argument for the existence of God (Proslogion

Chapter III, 1078). It is valid; we’ll look at soundness later

John Rushby Modal Logic in PVS: 3

History

• Modal reasoning has been studied since Aristotle

• Modern modal logics date to C. I. Lewis, around 1910

◦ Propositional modal logic (PML), adds modal qualifiers

to classical propositional logic

• Similarly, quantified modal logic (QML) adds qualifiers to

first- or higher-order logic

◦ Barcan, around 1946

• Semantics in terms of possible worlds due to Kripke, 1959

◦ When he was 19 years old

John Rushby Modal Logic in PVS: 4

Elementary** Possible Worlds Semantics for PML

• Classical PL is evaluated in some interpretation

◦ Assignment of truth values to prop’l variables (i.e., constants)

Valid sentences (tautologies) are true in all interpretations

• For PML there are multiple worlds (interpretations)

• We lift everything up to become a function [worlds -> bool]

• Lifted form of P is l(P), defined recursively on syntax

◦ Constants x are lifted by a valuation function V

? V (x)(w) is value of x in world w

◦ Negation: negate the lifted term, l(¬P)(w) is ¬l(P)(w)
◦ Conjunction: similarly, l(P ∧ Q)(w) is l(P)(w) ∧ l(Q)(w)

? Other binary connectives are lifted in the same way

◦ l(2P) is ∀v : l(P)(v)**, where v is a fresh variable

◦ l(3P) is ∃v : l(P)(v)**, where v is a fresh variable

Modal sentence P is valid if true in all worlds, ∀w : l(P)(w)

John Rushby Modal Logic in PVS: 5

Direct Translation of Our Simple Example

Each sentence is translated as the validity of its lifted form

H1: 3g ∀w : ∃v : V (g)(v)

H2: P ⊃ 2P ∀w : P (w) ⊃ (∀v : P (v))

HC: g ∀w : V (g)(w)

John Rushby Modal Logic in PVS: 6

Direct Elementary Translation of Simple Example in PVS

direct_hart: THEORY

BEGIN

worlds: TYPE+

pmlformulas: TYPE = [worlds -> bool]

pvars: TYPE+

v, w: VAR worlds

x: VAR pvars

val(x)(w): bool

g: pvars

P: VAR pmlformulas

% Remember, PVS universally closes formulas with free variables

H1: AXIOM EXISTS v: val(g)(v)

H2: AXIOM P(w) IMPLIES FORALL v: P(v)

HC: THEOREM val(g)(w)

% Proved by (grind-with-lemmas :polarity? t :lemmas ("H1" "H2"))

END direct_hart

John Rushby Modal Logic in PVS: 7

Automated Shallow Embedding

• This kind of transformation from one logic or language to

another is referred to as a shallow embedding

• It is a syntactic transformation

• So looks like automation needs a syntax-to-syntax translator

• However, capabilities of PVS allow us to do it in PVS itself

• Feasible because the source language, PML, is a logic and

has much of its syntax in common with PVS

• Less effective if source were, say, a programming language

• Idea is to define new “modal” operators directly in lifted form

◦ e.g., modal conjunction operator mand defined as

mand(P, Q)(w) = P(w) AND Q(w)

• PVS allows names to be overloaded (types used to resolve

correct instance) so do not need new mand just overload &

• Which can be used infix (built-in defn is Boolean AND)

John Rushby Modal Logic in PVS: 8

Elementary PVS Shallow Embedding

elem_shallow_pml: THEORY

BEGIN

% Initial declarations same as xxx

val(x)(w): bool

∼(P)(w): bool = NOT P(w) ;

&(P, Q)(w): bool = P(w) AND Q(w) ;

=>(P, Q)(w): bool = P(w) IMPLIES Q(w) ;

% Can define other unary and binary connectives similarly

2(P)(w): bool = FORALL v: P(v) ;

<>(P)(w): bool = EXISTS v: P(v) ;

% Or <>(P): pmlformulas = ∼ 2 ∼ P

|=(w, P): bool = P(w)

valid(P): bool = FORALL w: w |= P

END elem_shallow_pml

John Rushby Modal Logic in PVS: 9

Elementary Shallow Embedding of Example in PVS

• PVS has repertoire of unary operators (e.g., ∼, 2, and 3)

• And infix binary operators (e.g., &, =>, and |=)

• But definitions must use standard prefix f(x, y) form

Can now import the embedding and use fairly natural syntax

hartshorne1: THEORY

BEGIN IMPORTING elem_shallow_pml

g: pvars

P: var pmlformulas

H1: AXIOM valid(<> val(g))

H2: AXIOM valid(P => 2 P)

HC: THEOREM valid(val(g))

END hartshorne1

But what about those ugly appearances of valid and val?
John Rushby Modal Logic in PVS: 10

Neater Shallow Embedding of Example in PVS

• PVS allows functions to be designated as CONVERSIONs

• Applied automatically to subexpressions that would otherwise

be type-incorrect

• valid and val as CONVERSIONs fix H1 and H2, but HC needs two

conversions

• Define a function validval to do that

Now it looks the way we want it

% These should go in the embedding threory

validval(x: pvars): bool = valid(val(x))

CONVERSION valid, val, validval

H1: AXIOM <> g

H2: AXIOM P => 2 P

HC: THEOREM g

John Rushby Modal Logic in PVS: 11

Proof, and Notation Note

• Proof is same as for direct translation, because it expands

out to be the same

• After (lemma "H2") (lemma "H1")

Rule? (grind :if-match nil)

Trying repeated skolemization, instantiation, and if-lifting,

this simplifies to:

HC :

{-1} FORALL w: NOT (FORALL v: NOT val(g)(v))

{-2} FORALL (P: pmlformulas): FORALL w: P(w) IMPLIES (FORALL v: P(v))

|-------

{1} val(g)(w!1)

Observe: this is using the alternative definition of 3 in {-1}
◦ Not recommended, because harder to interpret

• Note, can use ASCII <>, but [] is preempted in recent PVS

• But those versions allow Unicode, so use hexadecimal 25A1

• LATEX then needs \usepackage[utf8]{inputenc}
\DeclareUnicodeCharacter{25A1}{\ensuremath\Box}

John Rushby Modal Logic in PVS: 12

Benefit of the Mechanisms in PVS

Without overloading infix and prefix operators, and conversions

It would look like this

mneg(P)(w): bool = NOT P(w)

mand(P, Q)(w): bool = P(w) AND Q(w)

mimp(P, Q)(w): bool = P(w) IMPLIES Q(w)

mbox(P)(w): bool = FORALL v: P(v)

mdia(P): pmlformulas = mneg(mbox(mneg(P)))

H1: AXIOM valid(mdia(val(g)))

H2: AXIOM valid(mimp(P, mbox(P)))

HC: THEOREM valid(val(g))

I think the improvement is obvious

John Rushby Modal Logic in PVS: 13

Nonelementary Shallow Embedding

• Suppose we want 2 to mean believes (Doxastic logic)

• Then we want 2P ⊃ 3P , but not 2P ⊃ P

• But 2P ⊃ P is a theorem of our embedding

• We’ve inadvertently built too much in

• Our problem is that all worlds are equally accessible

• So 2P means all worlds, whereas it should mean all worlds

accessible from my (current) world

• In the embedding, add a relation access and adjust the

qualifier rules

access: pred[[worlds, worlds]]

2(P)(w): bool = FORALL v: access(w, v) IMPLIES P(v) ;

<>(P)(w): bool = EXISTS v: access(w, v) AND P(v) ;

• Now 2P ⊃ P is proveable only if access is reflexive (and v-v)

John Rushby Modal Logic in PVS: 14

Accessibility Properties and Standard Axioms

Properties of access relation correspond to standard axioms

T, reflexive: 2p ⊃ p

4, transitive: 2p ⊃ 22p

B, symmetric: p ⊃ 23p

D, serial (∀w : ∃v : R(w, v)): 2p ⊃ 3p

5, Euclidean (∀u, v, w : R(u, v) ∧R(u,w) ⊃ R(v, w)): 3p ⊃ 23p

Symmetric plus Euclidean is also transitive; reflexive plus

Euclidean is also symmetric, hence transitive, hence equivalence

In addition, following are theorems of all modal logics

K: 2(p ⊃ q) ⊃ (2p ⊃ 2q)

N, necessitation: if p is a theorem, so is 2p

John Rushby Modal Logic in PVS: 15

Modal Axioms in PVS

• Easy to prove K and N

• It is trivial to prove each of the standard modal axioms

follows from its corresponding property of the access relation

• Reverse is much harder

• Generally need to exhibit a counterexample valuation

function val

• Which means val needs to be a variable

• Need right parameterization

• See later

John Rushby Modal Logic in PVS: 16

Standard Axioms and Modes

Logics for standard modes are obtained by combining the

standard axioms, whose concatenation becomes their name

Alethic, necessity: KT45 (aka S5)

2 is necessarily and 3 is possibly

• The access relation for S5 is an equivalence relation

• S5 has same valid sentences as the elementary treatment

(S5 may have several equiv. classes vs. implicitly, one)

Epistemic, knowledge: KT45 (aka S5)

2 is know and 3 is. . . no standard term

Doxastic, belief: KD45

2 is believe and 3 is. . . no standard term

Deontic, duty: KD

2 is obligated and 3 is permited

Temporal, time: KT4 (aka S4)

usually add more structure; LTL and CTL have lots more

John Rushby Modal Logic in PVS: 17

Back to the Example

hartshorne4: THEORY

BEGIN

worlds, pvars: TYPE+

access: pred[[worlds, worlds]]

val(x:pvars)(w:worlds): bool

IMPORTING full_shallow_pml[worlds, access, pvars, val]

% Also provides more_relations, modal_axioms,...

g: pvars

P: var pmlformulas

H1: AXIOM <> g

H2: AXIOM P => 2 P

HC: THEOREM symmetric?(access) => g

% Could alternatively cite Modal Axiom B or T5 as premises

END hartshorne4
John Rushby Modal Logic in PVS: 18

Deep Embedding

• Shallow embedding uses surface syntax

• Deep embedding uses abstract syntax, has structure

• First define a datatype to provide that structure

modalformula[pvars: TYPE+]: DATATYPE

BEGIN

pvar(arg: pvars): var?

∼(arg: modalformula): not?

&(arg1: modalformula, arg2: modalformula): and?

=>(arg1: modalformula, arg2: modalformula): imp?

2(arg: modalformula): box?

END modalformula

• Then define validity by recursion and case analysis on this

John Rushby Modal Logic in PVS: 19

Validity in Deep Embedding
deep_pml: THEORY

BEGIN

worlds, pvars: TYPE+

IMPORTING modalformula[pvars]

w, v: VAR worlds x, y: VAR pvars P, Q: VAR modalformula

val(x)(w): bool

access(w,v): bool

|=(w, P): RECURSIVE bool =

CASES P OF

pvar(x): val(x)(w),

∼(R): NOT (w |= R),

&(R, S): (w |= R) AND (w |= S),

=>(R, S): (w |= R) IMPLIES (w |= S),

2(R): FORALL v: access(w, v) IMPLIES (v |= R)

ENDCASES

MEASURE P by <<

<>(P): modalformula = ∼ 2 ∼ P

valid(P): bool = FORALL w: w |= P

END deep_pml

John Rushby Modal Logic in PVS: 20

Deep vs. Shallow Embeddings

• Deep embeddings have advantages when source is a prog. lang.

• Here, shallow embedding is just fine

• But parameterization in deep embedding covenient for proofs

that the modal axioms imply properties of the access relation

• Nothing fundamental, just the way I did it

• Recall: need to exhibit counterexample valuation function val

• Which means val needs to be a variable

John Rushby Modal Logic in PVS: 21

Proving Modal Axiom T Entails Reflexivity

more_modal_props: THEORY

BEGIN

worlds, pvars: TYPE+

val: VAR [pvars -> [worlds -> bool]]

access: pred[[worlds,worlds]]

IMPORTING deep_pml

IMPORTING more_relations[worlds]

P: VAR modalformula[pvars]

refl_T: LEMMA (FORALL P, val:

full_deep_pml[worlds,access,pvars,val].valid(2P => P))

IMPLIES reflexive?(access)

END more_modal_props

John Rushby Modal Logic in PVS: 22

Proof That Modal Axiom T Entails Reflexivity

(ground)

(expand "reflexive?")

(skosimp)

(lemma "pvars_nonempty")

(skosimp)

(inst - "pvar(x!2)"

"LAMBDA (x:pvars): LAMBDA (w:worlds): NOT (x=x!2 AND w=x!1)")

(grind)

Other axioms are left as exercises

John Rushby Modal Logic in PVS: 23

What Does It All Mean?

• Is Hartshorne’s argument convincing?

• Much discussion of reasonableness of Modal B in this context

• But, hey, whole thing makes sense only in Alethic logic, KT45

• What about H2? Justified by similarity to N

• But expand them out

• H2: P!1(w!1) AND access(w!1, v!1) IMPLIES P!1(v!1)

• N: (FORALL (w: worlds): P!1(w)) AND access(w!1, v!1)

IMPLIES P!1(v!1)

• Related to fact that deduction theorem (derives H2 from N)

◦ (valid(P) IMPLIES valid(Q)) IMPLIES valid(P => Q)

Is not valid in Modal Logic; other direction is OK

• Also, with symmetric access relation, H2 becomes 3P ⊃ P
• So the argument is trivial

• Lesson: modal logic is trickier than you might think

John Rushby Modal Logic in PVS: 24

Aside: Strict Implication

• P strictly implies Q

◦ P J Q

If it is not possible for P to be true and Q false

• i.e., in an Alethic modal logic P J Q
def
= ¬3(P ∧ ¬Q)

• It is a theorem that strict implication is the same as

necessary material implication:

P J Q = 2(P ⊃ Q)

• This equality is a theorem of all modal logics (i.e., it requires

no axioms) but it carries the intended interpretation only in

Alethic logics

• But in an Alethic logic, we have axiom T, so

P J Q ⊃ P ⊃ Q

• But not the converse

John Rushby Modal Logic in PVS: 25

Quantified Modal Logic

• Add modal qualifiers to first- or higher-order logic

• Standard step in Anselm’s Proslogion II argument is to

consider “some thing x than which there is nothing greater”

• Modal formulation ¬∃y : 3(y > x)

◦ “there is no y greater than x in any (accessible) world”

• Plausible alternative is ¬3∃y : (y > x)

◦ “in no (accessible) world is there a y greater than x”

• Q: Are these the same?

• A: Sometimes they are, and sometimes they are not

• Lesson: quantified modal logic is much trickier than you

might think

John Rushby Modal Logic in PVS: 26

Elementary Embedding of QML in PVS

• We take the shallow embedding of PML

• Rename pmlformulas to qmlformulas, and add the following

QT: TYPE % this is the "domain" of quantification

qmlpreds: TYPE = [QT -> qmlformulas]

PP: VAR qmlpreds

CFORALL(PP)(w): bool = FORALL (x:QT): PP(x)(w)

CEXISTS(PP)(w): bool = EXISTS (x:QT): PP(x)(w)

• Now let’s try to fomulate the Barcan formula in PVS

◦ ∀x : 2φ(x) ⊃ 2∀x : φ(x)

• Not correct: CFORALL(2 PP) => 2 CFORALL(PP)

• Correct but ugly:

CFORALL (LAMBDA (s:QT): 2 PP(s)) => 2 CFORALL(PP)

• Apply K conversion (should be called K combinator) as a

CONVERSION and the first version becomes the second

John Rushby Modal Logic in PVS: 27

Continuing. . .

• PVS allows higher-order predicates to be used as binders

• Add ! to name, then CFORALL! is a binder, and can write

(CFORALL! (s:QT): 2 PP(s)) => 2 CFORALL! (s:QT): PP(s)

• Cool, huh? I think this is the way to go

• Now, what is the Barcan formula saying? Look at its

contrapositive: 3∃x : φ(x) ⊃ ∃x : 3φ(x)

◦ Suppose it’s possible that a cow jumped over the moon,

then there exists a specific cow that possibly did that

• It says all things that exist in a possible world, also exist in

this one

• Considered ontologically offensive (converse, not so)

• But it is a theorem of our embedding

• We’ve inadvertently built too much in

• “Barcan up the wrong tree,” according to Peter
John Rushby Modal Logic in PVS: 28

Variable Domains

• We need to allow that not all members of the domain of

quantification exist in all worlds

• Introduce higher-order predicate vind(w) (values in domain)

that identifies the members of QT that are defined in world w

• Then restrict the quantifiers to just the defined values

vind(w)(a): bool

VFORALL(PP)(w): bool = FORALL (x: (vind(w))): PP(x)(w)

VEXISTS(PP)(w): bool = EXISTS (x: (vind(w))): PP(x)(w)

• Note, we are exploiting predicate subtypes here

Textbooks get into free logics and other complications

John Rushby Modal Logic in PVS: 29

Variable Domains and Barcan Formulas

First, characterize how domains may change across access relation

fixed: AXIOM vind(w)(a)

nondecreasing: AXIOM vind(w)(a) AND access(w,v) => vind(v)(a)

nonincreasing: AXIOM vind(w)(a) AND access(v,w) => vind(v)(a)

Easy to prove relationships between these and the Barcan

formula and its converse

% Requires fixed; would like to say "fixed IMPLIES..."

vBarcan_eq: LEMMA VFORALL(2 PP) = 2 VFORALL(PP)

% Requires nonincreasing

vBarcan: LEMMA VFORALL (2 PP) => 2 VFORALL (PP)

% Requires nondecreasing

vCBarcan: LEMMA 2 VFORALL (PP) => VFORALL (2 PP)

John Rushby Modal Logic in PVS: 30

Variable Domains and Barcan Formulas (ctd.)

• Other direction, more difficult both to state and to prove

◦ Would like to say Barcan IMPLIES nondecreasing

• But must state the formulas rather than simply cite their names

• Then, be explicit about scope of quantification of PP

vBarcanx: LEMMA

(FORALL PP: (VFORALL (2 PP) => 2 VFORALL (PP))) IMPLIES

(FORALL v,a: (EXISTS w: vind(w)(a) and access(v,w)) => vind(v)(a))

• Proof
(grind :if-match nil)

(inst - "LAMBDA (z:QT): LAMBDA (w:worlds): NOT(z=a!1 AND w=w!1)")

(inst -1 "v!1")

(ground)

(inst -1 "w!1")

(grind)

John Rushby Modal Logic in PVS: 31

Variable Domains and Barcan Formulas (ctd. 2)

• Given these results, we can prove that the Barcan and

Converse Barcan are either both valid or both false when the

accessibility relation is symmetric

bothB: LEMMA symmetric?(access) IMPLIES

((FORALL PP: VFORALL (2 PP) => 2 VFORALL (PP)) IFF

(FORALL PP: 2 VFORALL (PP) => VFORALL (2 PP)))

• Possible further complication: a value may exist in different

worlds, but denote different objects

◦ Adds complexity but little expressive value and I omit it

◦ If c denotes a in some worlds and b in others, we can

replace it by ca and cb; the former always denotes a and

exists in worlds where c exists and denotes a, and mutatis

mutandis for cb

John Rushby Modal Logic in PVS: 32

Pragmatics

• Russell:

I have heard a touchy owner of a yacht to whom a

guest, on first seeing it, remarked: ‘I thought your

yacht was larger than it is’; and the owner replied,

‘No, my yacht is not larger than it is’

• Guest compares size of yacht in world of his imagination

against its size in real world; owner is rooted in real world

• How do we formulate these kinds of comparisons?

• Concrete example

◦ Earlier,saw ¬∃y : 3(y > x) as formulation for “some thing

x than which there is nothing greater”

◦ Problem is there may be a y greater than x in some

worlds, but its greatness in those worlds is exceeded by

greatness of x in the actual world

John Rushby Modal Logic in PVS: 33

Pragmatics (ctd. 1)

• Eder and Ramharter propose following definition for the

predicate G that recognizes maximally great things

• Def M-God 3: Gx :↔ ∃z (z = g(x) ∧ ¬3∃y (g(y) � z))
Here g(x) is the greatness of x and � is an ordering (actually

an uninterpreted predicate) on greatness.

• The quantified variable z is used to capture the greatness of

x in this world, so that it can be compared to that of some y

in another possible world

• How to write this in PVS? Quantification on y is modal

(VEXISTS) whereas that on z seems to be classical (EXISTS)

• First, note that greatness is a flexible function: its value

depends on the world, so is really g(x)(w)

• Whereas � is a fixed or rigid predicate: it does not depend

on the world

John Rushby Modal Logic in PVS: 34

First Attempt at E&R Example

modal_eandr: THEORY

BEGIN

things: TYPE+ x, y: VAR things

IMPORTING full_shallow_qml[things]

w, v: VAR worlds

greatness: TYPE+ a, b, z: VAR greatness

g(x)(w): greatness % flexible function

>(a, b): bool % rigid predicate

MGod3(x): qmlformulas =

EXISTS z: (z=g(x) & ∼ <> VEXISTS! y: (g(y) > z))

Pretty direct transliteration of ∃z (z = g(x) ∧ ¬3∃y (g(y) � z))

But not type-correct (inner not a bool, outer not a qmlformulas)

John Rushby Modal Logic in PVS: 35

Corrected E&R Example

• Both issues fixed by dropping down from qmlformulas to bool

MGod3(x)(w): bool =

EXISTS z: (z = g(x) & ∼ <> VEXISTS! y: (g(y) > z))(w)

But notice the comparisons z = g(x) and g(y) > z are not

type-correct; they are silently made so by K conversion

• If we do M-x PPE, we get the real thing

MGod3(x)(w): bool = EXISTS z:

((LAMBDA (x1: worlds[U_beings]): z = g(x)(x1)) &

∼<>VEXISTS! y:(LAMBDA (s: worlds[U_beings]): g(y)(s) > z))(w)

• If we break with E&R, can use simpler alternative

MGod3_alt(x)(w): bool =

(∼ <> VEXISTS! y: LAMBDA (s: worlds): (g(y)(s) > g(x)(w)))(w)

But note the difficult LAMBDA

John Rushby Modal Logic in PVS: 36

Lesson: Quantified Modal Logic is Trickier Than It Looks

• More From E&R Example

Greater 5: ∀x∀y(¬re(x) ∧3re(y)→ ∃z (z = g(x) ∧3(g(y) � z)))

• Exercise: do this in PVS (re is flexible)

• “Philosophy abounds in troublesome modal arguments—endlessly

debated, perennially plausible, perennially suspect. The standards of

validity for modal reasoning have long been unclear; they become clear

only when we provide a semantic analysis of modal logic by reference to

possible worlds and to possible things therein. Thus insofar as we

understand modal reasoning at all, we understand it as disguised

reasoning about possible beings” D. Lewis

• He presents formalizations directly in terms of possible worlds

• Goes too far: there is value in modal concepts & notation

• However, PVS reveals unsuspected subtleties & complexities

• Compromise: M-x PPE and check possible worlds interp’n

John Rushby Modal Logic in PVS: 37

Documentation

• Draft Tech Report available

• Feedback welcome

• I plan to make it and the examples publically available soon

John Rushby Modal Logic in PVS: 38

