
Marktoberdorf NATO Summer School 2016, Lecture 3

Proofs and Assurance
The Case of The Ontological Argument

John Rushby

Computer Science Laboratory

SRI International

Menlo Park, California, USA

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 1

Overview

• We’ve seen model checking, synthesis, automated verification

◦ Let’s take a look at interactive theorem proving

• Formal methods establish that one string of symbols entails

another string of symbols

◦ We attach an interpretation to those strings and draw

real-world conclusions

◦ But how confident can we be in that connection?

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 2

Movie “The Martian” at 58 Minutes

• Much speculation online what language is in the code snippet

• It’s actually part of a PVS proof script for the theorem

∀(n : nat, x : posreal) : 1 + n× x ≤ (1 + x)n

by David Lester of Manchester U

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 3

Movie “The Martian” at 1h:39m:03s and 1h48m53s

This is part of a

PVS specification

for a data structure

representing

multivariate

polynomials,

written by Anthony

Narkawicz and

César Muñoz of

NASA

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 4

There’s A Web Page About It

Written by César Muñoz of NASA

+ Contact NASA

+ ABOUT NASA + NEWS + MISSIONS + MULTIMEDIA + CONNECT + ABOUT NASA

+ HOME + WELCOME + QUICK PAGE + PHILOSOPHY + TEAM + RESEARCH

+ LINKS

NASA PVS LIBRARY FEATURED IN THE MOVIE “THE MARTIAN”

Since the release of the science fiction film The Martian in 2015, movie fans have been speculating in internet forums about the source code that is

displayed in computer screens in some scenes of the movie . Some fans have jokingly guessed “alien technology”, others claimed to be “gibberish”,

and the most informed have noticed similarities with programming languages such as as Lisp, Prolog, and, even, Pascal.

Closest to the truth, the Internet Movie Database (IMDb) explains :

Whenever Mark boots up a computer (ie. when finding the MAV) a sequence of source code is seen appearing on a screen. The code
is written in PVS (Prototype Verification System), an experimental macro language which NASA actually uses and it's very plausible to
appear on a future spacecraft. This particular chunk of code is from the already existing NASA PVS Library, and actually you can find
that very piece of code as open source if you type a part of it into Google.

Indeed, the source code seen in the movie The Martian is written in PVS , a verification system developed by SRI International . It is also true that

this particular code is part of the NASA PVS Library, a collection of formal theories developed and maintained by the Formal Methods Group of the

Safety-Critical Avionics Systems Branch at NASA Langley Research Center. However, PVS is neither a programming language, nor a “macro

language”. PVS is a proof assistant . It consists of a specification language, i.e., a formal notation for defining mathematical objects and their

properties, and an interactive theorem prover for verifying these properties using deductive rules. Both PVS specifications and proofs are displayed in

the movie.

Code from the NASA PVS Library appears three times in the movie. In every instance, the code is unrelated to the movie's implied functionality. At 58

minutes, the following snippet of code from the file power/exponentiation_aux.prf is shown in a computer screen in the Hermes

spacecraft.

 ("" (induct "n")
 (("1" (expand "expt") (("1" (propax) nil nil)) nil)
 ("2" (skosimp*)
 (("2" (expand "expt" 1)
 (("2" (inst - "px!1")
 (("2"
 (lemma "both_sides_times_pos_le1"
 ("pz" "px!1" "x" "1" "y" "expt(1+px!1,j!1)"))
 (("2" (rewrite "expt_gt1_bound1" -1)
 (("2" (assert) nil nil)) nil))
 nil))
 nil))
 nil))
 nil))
 nil)

It is implied in the movie that this text encodes video data. In reality, this text is the PVS internal representation of a proof of the the mathematical

statement , where is a natural number and is a positive real number. Internally, PVS uses

s-expressions to represent proofs. PVS is implemented in Lisp and s-expressions are often used in Lisp programs to represent data. These

s-expressions are constructed by PVS from proof commands entered by the user such as (induct "n"), (expand "expt"), etc. This

s-expressions reflects the fact that the proof, which was written by Prof. David Lester (U. of Manchester, UK), proceeds by induction on .

The second and third appearances of the NASA PVS Library occur at times 1h:39m:03s and 1h48m53s, respectively, when the following code from

Langley Formal Methods Program • César Muñoz... http://shemesh.larc.nasa.gov/people/cam/TheMar...

1 of 2 07/18/2016 11:02 AM

Bernstein/MPoly.pvs is displayed in a computer screen .

 mpoly : VAR MultiPolynomial
 mdeg : VAR DegreeMono
 mcoeff : VAR Coeff
 nvars,terms : VAR posnat
 rel : VAR RealOrder
 Avars,Bvars : VAR Vars
 boundedpts,
 intendpts : VAR IntervalEndpoints

 MPoly : TYPE = [#
 mpoly : MultiPolynomial,
 mdeg : DegreeMono,
 terms : posnat,
 mcoeff : Coeff
 #]

 mk_mpoly(mpoly,mdeg,terms,mcoeff) : MACRO MPoly = (#
 mpoly := mpoly,
 mdeg := mdeg,
 terms := terms,
 mcoeff := mcoeff
 #)

The movie implies that this code is somehow related to the shutdown and startup scripts of the Mars Habitat (Hab) and the Mars Ascending Vehicle

(MAV), respectively. Indeed, this code is a PVS specification of a data structure for representing multivariate polynomials. The code, which was written

by Anthony Narkawicz (NASA) and César Muñoz (NASA), is part of a PVS formalization of a method for approximating the minimum and maximum

values of a multivariate polynomial using Bernstein polynomial basis.

What about the claim by the Internet Movie Database (IMDb) that PVS code will appear in future spacecraft? Unlikely. As explained here, PVS is not a

programming language but a proof assistant. Unless astronauts would like to kill the tedium in a long interstellar voyage by proving theorems, PVS

won't be installed in future spacecraft computers. However, it is possible that computer programs, whose safety-critical algorithms have been formally

verified in PVS, would appear in future aerospace systems. That is the case of separation assurance systems for air traffic management such as

ACCoRD and detect and avoid systems for unmanned aircraft systems such as DAIDALUS.

The tag identifies links that are outside the NASA domain

+ Freedom of Information Act
+ NASA Web Privacy Policy and Important Notices
+ USA.gov

NASA Official: César Muñoz
+ Contact NASA Langley
+ Contact NASA
Last Updated: January 14, 2013

Langley Formal Methods Program • César Muñoz... http://shemesh.larc.nasa.gov/people/cam/TheMar...

2 of 2 07/18/2016 11:02 AM

So what is PVS?

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 5

Verification Systems/Proof Assistants

• There are several of these

• Unquantified First Order

◦ ACL2 (USA)

• Higher Order

◦ Coq (France)

◦ HOL (UK)

◦ Isabelle (Germany)

◦ PVS (USA)

• Only PVS will get you home from Mars!

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 6

PVS

• I’m going to use PVS from SRI

• First released 1993

• Classical Higher-Order Logic with predicate subtypes

• One of the first provers with powerful decision procedures

◦ Modern SMT solvers (ICS) evolved from these

◦ But its quantifier reasoning is weak

• Winner of CAV Award 2015

• 3,000 citations

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 7

Next, PVS Proves The Existence Of God!

• The Ontological Argument is an 11th Century proof of the

existence of God due to St. Anselm, Archbishop of Canterbury

• Can it really be true? Is it convincing?

• Almost everyone finds this topic interesting

• Believers and unbelievers alike

◦ This is not about atheism: many of those who studied

and criticized the Argument were devout believers

◦ Can something as ineffable as the existence of God be

subject to a mere logical demonstration?

• The proof raises quite deep issues in logic

◦ Is the proof logically correct?

• And in the interpretation of logical proofs

◦ What does this actually mean? What does it really prove?

• Just like formal methods in support of Assurance Cases

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 8

Classical Arguments for Existence of God

Teleological: argument from design

This is an empirical or a posteriori argument: it builds on

empirical observations about the world

Hence is vulnerable to better understanding of empiricism,

better observations, better explanations

• Hume, Darwin etc.

Cosmological: there must be a first (uncaused) cause

Or why is there something rather than nothing?

Also empirical, but less reliant on specifics

But depends on notion of cause

• Leibniz, Hume, Kant; current popularization: Holt

Ontological: next slide

This is a rational or a priori (i.e., armchair) argument: it

doesn’t depend on observation

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 9

The Ontological Argument (Literal Translation)

Thu‘ even the fool is convinced that something than which

nothing greater can be conceived is in the understanding, since

when he hears this, he understands it; and whatever is

understood is in the understanding.

And certainly that than which a greater cannot be conceived

cannot be in the understanding alone.

For if it is even in the understanding alone, it can be conceived

to exist in reality also, which is greater.

Thu‘ if that than which a greater cannot be conceived is in the

understanding alone, then that than which a greater cannot be

conceived is itself that than which a greater can be conceived.

But surely this cannot be.

Thu‘ without doubt something than which a greater cannot be

conceived exists, both in the understanding and in reality.

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 10

Fairly Neutral Modern Translation

• We can conceive of something/that than which there is no

greater

• If that thing does not exist in reality, then we can conceive of

a greater thing—namely, something (just like it) that does

exist in reality

• Therefore either the greatest thing exists in reality or it is

not the greatest thing

• Therefore the greatest thing (necessarily) exists in reality

• That’s God

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 11

Anselm’s Ontological Argument

• Formulated by St. Anselm (1033–1109)

◦ Archbishop of Canterbury, though originally from Italy

◦ Aimed to show Christian doctrine compatible with reason

◦ Cf. Avicenna’s earlier proof of The Necessary Existent

• Appears in his Proslogion

◦ Written in Latin

◦ With variations and developments

◦ So scholars debate exact interpretation

• Disputed by his contemporary Gaunilo

◦ Existence of a perfect island

• Widely studied and disputed thereafter

◦ Descartes, Leibniz, Hume, Kant (who named it), Gödel

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 12

Analyses of Anselm’s Ontological Argument

• Reconstruction

◦ What did Anselm actually say?

◦ Can we accurately formulate that in modern logic?

◦ How do various formulations actually differ?

• Analysis

◦ Is the argument sound?

◦ Russell, on his way to the tobacconist: “Great God in

Boots!—the ontological argument is sound!”

• Interpretation

◦ Is it persuasive?

◦ The later Russell: “The argument does not, to a modern

mind, seem very convincing, but it is easier to feel

convinced that it must be fallacious than it is to find out

precisely where the fallacy lies”

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 13

Günter Eder and Esther Ramharter’s Reconstruction

• Appears in Synthese vol. 192, October 2015

• Three stages: first-order, higher-order, modal logic

• I will cover just the first two

• Later look at a variant due to Richard Campbell

• And versions due to Paul Oppenheimer and Ed Zalta

• My goal is to illustrate formal methods using theorem provers

◦ Better than model checkers for some types of problem

• And the difference between proof and assurance

• Let’s get started

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 14

First-Order: Understandable Objects, Gods

• Something is a God if there is nothing greater

Def C-God: Gx :↔ ¬∃y(y > x)

Here, x and y range over the “understandable objects,”

which is the implicit range of first-order quantification

• PVS is higher-order, so we need to be explicit about types

PVS fragment
U_beings: TYPE

x, y: VAR U_beings

>(x, y): bool

God?(x): bool = NOT EXISTS y: y > x

The VAR declaration saves us having to specify each

appearance; overloaded infix operators like > use prefix form

in declarations; the ? in God? is just a naming convention for

predicates; the = indicates this is a definition

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 15

First-Order: Conceive Of, Real Existence

• The Argument says we can conceive of something than which

there is no greater (i.e., a God); interpret this as a premise

• ExUnd: ∃xGx

• In PVS we render it as follows.

PVS fragment
ExUnd: AXIOM EXISTS x: God?(x)

• Real existence is not the ∃ of logic, but a predicate

◦ E&R write it as E!, I use re?

• Our goal is to prove that a God exists in reality

• God!: ∃x(Gx ∧ E!x)

• We write this in PVS as follows
PVS fragment

re?(x): bool

God_re: THEOREM EXISTS x: God?(x) AND re?(x)

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 16

First-Order: Additional Premises

• Cannot prove this without additional premise to connect >, E!

• Note, nothing so far says > is an ordering relation

• First attempt

Greater 1: ∀x(¬E!x→ ∃y(y > x))

If x does not exists in reality, then there is a greater thing

• In PVS, we write this as follows.

PVS fragment

Greater1: AXIOM FORALL x: (NOT re?(x) => EXISTS y: y > x)

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 17

First-Order: Complete PVS Specification

ontological_arg: THEORY

BEGIN

U_beings: TYPE

x, y: VAR U_beings

>(x, y): bool

God?(x): bool = NOT EXISTS y: y > x

re?(x): bool

ExUnd: AXIOM EXISTS x: God?(x)

Greater1: AXIOM FORALL x: (NOT re?(x) => EXISTS y: y > x)

God_re: THEOREM EXISTS x: God?(x) AND re?(x)

END ontological_arg

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 18

First-Order: PVS Proof

• PVS can prove the theorem given the following commands

PVS proof
(use "ExUnd") (use "Greater1") (grind)

• First two instruct PVS to use named formulas as premises

• Third instructs it to use general-purpose proof strategy

• PVS reports that the theorem is proved

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 19

The Sequent (final step)

God_re :

{-1} FORALL (x): (NOT re?(x) => (EXISTS y: y > x))

[-2] EXISTS x: God?(x)

|-------

[1] EXISTS x: God?(x) AND re?(x)

Rule? (grind)

God? rewrites God?(x)

to NOT (EXISTS y: y > x OR NOT x > y)

God? rewrites God?(x)

to NOT (EXISTS y: y > x OR NOT x > y)

Trying repeated skolemization, instantiation, and if-lifting,

Q.E.D.

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 20

First-Order: Proofchain Analysis

• Proof is a local concept

• Proofchain analysis checks that all proofs are complete, and

also those of any lemmas they cite, plus any incidental proof

obligations

• It provides the following report

PVS proofchain
ontological_arg.God_re has been PROVED.

The proof chain for God_re is COMPLETE.

God_re depends on the following axioms:

ontological_arg.ExUnd

ontological_arg.Greater1

God_re depends on the following definitions:

ontological_arg.God?

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 21

First-Order: Second Attempt

• E&R observe Greater 1 is not a faithful reconstruction

◦ Not analytic: no a priori reason to believe it

◦ Argument does not follow Anselm’s structure

• Eder and Ramharter next propose the following premises

Greater 2: ∀x∀y(E!x ∧ ¬E!y → x > y), and

E!: ∃xE!x

An object that exists in reality is > than one that does not,

and there is some object that does exist in reality.

• In PVS, these are written as follows and replace Greater1

PVS fragment

Greater2: AXIOM FORALL x, y: (re?(x) AND NOT re?(y)) => x > y

Ex_re: AXIOM EXISTS x: re?(x)

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 22

First-Order: Second Attempt (ctd. 1)

• Same PVS proof strategy as before proves the theorem

• E&R consider this version unfaithful also

• Hence the higher-order treatment

• Higher-order:

◦ Functions can take functions as arguments

◦ And return them as values

◦ Can quantify over functions

◦ Need types to keep things consistent

◦ Predicates are just functions with range type Boolean

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 23

Higher-Order

• Anselm attributes properties to objects and some of these,

notably E!, contribute to evaluation of >

• Hypothesize some class P of “greater-making” properties on

objects; define one object to be greater than another exactly

when it has all the properties of the second, and more besides

Greater 3: x > y :↔ ∀PF (Fy → Fx) ∧ ∃PF (Fx ∧ ¬Fy)
where ∀PF indicates that the quantified higher-order variable

F ranges over the properties in P, and likewise for ∃PF

• In PVS we do this using predicate subtypes

PVS fragment
P: setof[pred[U_beings]]

re?: pred[U_beings]

F: VAR (P)

>(x, y): bool =

(FORALL F: F(y) => F(x)) AND (EXISTS F: F(x) AND NOT F(y))

Continued. . .
Marktoberdorf 2016, Lecture 3 John Rushby, SRI 24

Higher-Order (ctd.)

• In PVS we do this using predicate subtypes

PVS fragment
P: setof[pred[U_beings]]

re?: pred[U_beings]

F: VAR (P)

>(x, y): bool =

(FORALL F: F(y) => F(x)) AND (EXISTS F: F(x) AND NOT F(y))

• We let P be some set of predicates over U beings

• Previously, we specified re? by re?(x): bool, but here we

specify it to be a constant of type pred[U beings]

• These are syntactic variants for the same type; we use the

latter form here for symmetry with the specification of P, so

that is clear that re? is potentially a member of P

• P is a set, equivalent to a predicate in HO logic; in PVS,

predicate in parentheses denotes corr. predicate subtype

• So F is a variable ranging over the members of P

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 25

Higher-Order: Realization

• Anselm starts with something than which there is no greater

• If that something does not exist in reality, consider same

thing augmented with the property of existence in reality

• Problem is, that may not be an understandable object

• E&R use additional premise realization to ensure that it is

• Realization: ∀PF∃x∀PF (F(F)↔ Fx)

This says that for any set F of properties in P, there is some

understandable object x that has exactly the properties in F

• Eder and Ramharter use the locution ∀PF to indicate a

third-order quantifier over all sets of properties in P

• In PVS, we make the types explicit and the corresponding

specification is as follows.

PVS fragment
Realization: AXIOM

FORALL (FF: setof[(P)]): EXISTS x: FORALL F: FF(F) = F(x)

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 26

Higher-Order Formulation in PVS

HO_ontological_arg: THEORY

BEGIN

U_beings: TYPE

x, y: VAR U_beings

re?: pred[U_beings]

P: set[pred[U_beings]]

F: VAR (P)

>(x, y): bool =

(FORALL F: F(y) => F(x)) & (EXISTS F: F(x) AND NOT F(y))

God?(x): bool = NOT EXISTS y: y > x

ExUnd: AXIOM EXISTS x: God?(x)

Realization: AXIOM

FORALL (FF:setof[(P)]): EXISTS x: FORALL F: FF(F) = F(x)

God_re: THEOREM member(re?, P) => EXISTS x: God?(x) AND re?(x)

END HO_ontological_arg

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 27

Higher-Order Proof in PVS (ugh)

(ground)

(expand "member")

(lemma "ExUnd")

(skosimp)

(case "re?(x!1)")

(("1" (grind))

("2"

(lemma "Realization")

(inst - "{ G: (P) | G(x!1) OR G=re? }")

(skosimp)

(inst + "x!2")

(ground)

(("1"

(expand "God?")

(inst + "x!2")

(expand ">")

(ground)

(("1" (lazy-grind)) ("2" (grind))))

("2" (grind)))))

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 28

Higher-Order: Quasi-id

• The heart of Anselm’s Argument

◦ If ExUnd does not exist in reality

◦ Then compare it with the itself, conceived as existing

A reconstruction must preserve this

• Eder and Ramharter define two objects to be quasi-identical,

written ≡D, if they have the same greater-making properties

apart from those in some subset D ⊆ P:

Quasi-id: x ≡D y :↔ ∀PF (¬D(F)→ (Fx↔ Fy))

• Eder and Ramharter prove that the Skolem constants a

(from Realization) and g (from ExUnd) appearing in their

formalization of the argument are quasi-identical: a ≡{E!} g

• In PVS, we define quasi-identity as follows

PVS fragment
quasi_id(x, y: U_beings, D: setof[(P)]): bool =

FORALL (F: (P)): NOT D(F) => F(x) = F(y)

And reproduce the same proof
Marktoberdorf 2016, Lecture 3 John Rushby, SRI 29

Interim Summary

• The rich logics of verification systems such as PVS can

express abstract logical/mathematical models very naturally

• And can prove the theorems

• But all that these really establish is that one string of

symbols entails another

• Need to ask whether these strings are consistent with

◦ Ideally, compel

The intended real-world interpretation

• And whether the premises are true in that interpretation

• Doubts are obvious here

◦ That’s why I chose this example

But arise just the same in models of faults, time, causality

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 30

Models of Faults, Time, Causality

• A Note on Inconsistent Axioms in Rushby’s “Systematic

Formal Verification for Fault-Tolerant Time-Triggered

Algorithms,” by Lee Pike. IEEE TSE 32(5), May 2006, pp.

347–348

• Note: we often should use axioms in formalizing assumptions

◦ Our task is to describe the environment, not implement it

• Other examples of Ontological Argument raise more concerns

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 31

Oppenheimer and Zalta’s Treatments

• I previously mechanized a version of O&Z’s reconstruction

• It is identical to the first-order version of E&R with Greater 2

• But that may not be obvious due to different types and

representations

• O&Z version
PVS fragment

greatest: setof[U_beings] =

{ x | NOT EXISTS y: y > x }

P1: AXIOM nonempty?(greatest)

• E&R version
PVS fragment

God?(x): bool = NOT EXISTS y: y > x

ExUnd: AXIOM EXISTS x: God?(x)

• Sets and predicates are the same in higher-order logic, and

the set comprehension notation in PVS is equivalent to

lambda-abstraction, so we can conjecture equivalence. . .

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 32

Comparison of O&Z and E&R Reconstructions

• Equivalence

PVS fragment
gr_God: CONJECTURE greatest = God?

ne_Ex: CONJECTURE nonempty?(greatest) IFF EXISTS x: God?(x)

These are proved, respectively, by

PVS proof
(apply-extensionality) (grind :polarity? t)

and

PVS proof
(grind :polarity? t)

• So one potential value is in comparing different reconstructions;

more generally, comparing different models for a system

• And verification is stronger than eyeballing

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 33

Circularity of Greater 1

• The first attempt (with Greater 1) is also in O&Z

• PVS shows it to be directly circular: Greater 1 can be proved

from the conclusion and vice-versa

• I.e., the formulation begs the question

• Not so here, because O&Z use a definite description and

need an additional premise (trichotomy of >) to establish

uniqueness of God?

• However, it is surely plausible to suppose that something

than which there is no greater is also greater than everything

else (i.e., it cannot be unrelated)

• And that is enough for circularity

• I think these kinds of model exploration are another potential

value in mechanization of models and theories

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 34

Unintended Models

• The version with Greater 2 uses two axioms (three in O&Z’s

version) and these could introduce inconsistency

• PVS guarantees conservative extension for purely

constructive specifications

• So one way to establish consistency of axioms is to exhibit a

constructively defined model

• Can do this using PVS capabilities for theory interpretations

◦ Interpret beings by the natural numbers nat

◦ And > by < (so the(greatest) is 0)

◦ And really exists by “less than 4”

• PVS generates TCCs (proof obligations) to prove that the

axioms of the source theory are theorems under the

interpretation

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 35

The Model

model
interpretation: THEORY

BEGIN

IMPORTING ontological {{
beings := nat,

> := <,

really_exists := LAMBDA (x: nat): x<4

}} AS model

END interpretation

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 36

Proof Obligations for Consistency

TCCs

% Mapped-axiom TCC generated (at line 56, column 10) for

% ontological

% beings := nat,

% > := restrict[[real, real], [nat, nat], boolean](<),

% really_exists := LAMBDA (x: nat): x < 4

model_P1_TCC1: OBLIGATION nonempty?[nat](greatest);

% Mapped-axiom TCC generated (at line 56, column 10) for

% ontological

% beings := nat,

% > := restrict[[real, real], [nat, nat], boolean](<),

% really_exists := LAMBDA (x: nat): x < 4

model_someone_TCC1: OBLIGATION EXISTS (x: nat): x < 4;

...continued

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 37

Proof Obligations for Consistency (ctd.)

TCCs
...continuation

% Mapped-axiom TCC generated (at line 56, column 10) for

% ontological

% beings := nat,

% > := restrict[[real, real], [nat, nat], boolean](<),

% really_exists := LAMBDA (x: nat): x < 4

model_reality_trumps_TCC1: OBLIGATION

FORALL (x, y: nat): (x < 4 AND NOT y < 4) => x < y;

• These are all easily proved

• So, our formalization of the Ontological Argument is sound

• And the conclusion is valid

• But it does not compel a theological interpretation

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 38

Unintended Models (ctd.)

• In system verification does it matter if there are models other

than the one intended?

• If the assumptions are true in the intended model and the

conclusion is useful, surely that’s enough—it doesn’t matter

if there are additional models

• Well, we do want only one interpretation of safety

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 39

Why Verification Systems and not Simple Provers?

• O&Z formalized a version of the Argument that employs a

definite description

◦ Used a Free Logic to deal with definitional concerns

• Then mechanized it with Prover9 first-order theorem prover

◦ No first-order theorem prover automates Free Logic

◦ Nor provides definite descriptions

So these delicate issues are dealt with informally outside the

system, and beyond the reach of automated checking

• Deductions performed by Prover9 actually used very little of

their formalization

• This led them a much reduced formalization that Prover9

still found adequate

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 40

Oppenheimer and Zalta’s Simplification (ctd.)

• Believed they had discovered a simplification to the

Argument that

“not only brings out the beauty of the logic inherent in

the argument, but also clearly shows how it constitutes

an early example of a ‘diagonal argument’ used to

establish a positive conclusion rather than a paradox”

• Garbacz refutes this

◦ The simplifications flow from introduction of a constant

(God) that is defined by a definite description

◦ In the absence of definedness checks, this asserts

existence of the definite description and bypasses the

premises otherwise needed to establish that fact

• Lesson: mechanization needs to deal with the whole problem

• See PVS treatment of O&Z’s version for sound

mechanization of definite descriptions (sampler next)

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 41

Definite Descriptions

• O&Z version uses a definite description

◦ The x such that some property φ: ιxφ

◦ Here, “that (i.e., the x) than which there is no greater”

• These are tricky

◦ “The present King of France is bald”

? Note: France is a republic, it has no present king

◦ Is this true, false, inadmissible?

• Must not substitute definite descriptions into quantified

expressions without being sure they are well defined

• PVS deals with this by requiring x to be of a singleton type

• This is a predicate subtype and the TCC mechanism will

force you to prove uniqueness of “that than which. . . ”

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 42

Sophisticated Types: More on Quasi-Id

• There is a lot “packed into” these definitions

• E.g., can prove all Gods have all greater-making properties

PVS fragment
God_all: THEOREM FORALL (a: (P)): God?(x) => a(x)

• And all Gods are quasi-identical

PVS fragment
all_God: THEOREM God?(x) AND God?(y)

=> quasi_id(x, y, emptyset)

• Günter Eder observes it is not intended to use emptyset here

• We can enforce that
PVS fragment

gr_props(D: setof[(P)]): bool = member(re?, D)

strong_quasi_id(x,y: U_beings, D: (gr_props)): bool =

FORALL (F:(P)): NOT D(F) => F(x) = F(y)

strong_all_God: THEOREM God?(x) AND God?(y)

=> strong_quasi_id(x, y, emptyset)

Now strong all God does not typecheck

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 43

Sophisticated Types: More on Quasi-Id (ctd.)

• Now strong all God does not typecheck

TCC

% Subtype TCC generated (at line 60, column 69) for emptyset

% expected type (gr_props)

% unfinished

strong_all_God_TCC1: OBLIGATION

FORALL (x, y: U_beings): God?(y) AND God?(x)

IMPLIES gr_props(emptyset[(P)]);

• Predicate subtypes allow much of the specification to be

embedded in the types

• Keeps the formulas uncluttered

• Typechecking generates proof obligations

• Allows richly expressive specification

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 44

Other Variants

• Richard Campbell (ANU) wrote a book on The Argument (1976)

• Revising it for a new edition, he adopts Eder and

Ramharter’s Greater 3 and Quasi-id

• But criticizes Realization (says it is false, actually)

◦ My take: what if some predicates are

contradictory/incompatible?

• Full treatment is difficult (uses modal operators), but core is

to replace Realization with the following

PVS fragment
DD: setof[(PosProps)] = singleton(Re?)

a9: AXIOM

NOT Re?(x) => (EXISTS z: quasi_id(DD)(z, x) AND Re?(z))

• Leads to a very simple proof

• Do you consider a9 a credible axiom?

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 45

Modal Reconstructions

• Anselm goes on to establish the necessity of God’s existence

• And his perfection, etc.

• Seems natural to employ a modal logic for necessity

• CS employs temporal logics (interpreted over sequences)

• But combinations of general modal and first- or higher-order

logics are difficult

• Gödel left a modal version of the Argument in his nachlass

• Christoph Benzmüller and Bruno Woltzenlogel-Paleo have

mechanized this (using Coq and Isabelle) and detected and

fixed an inconsistency

◦ “. . . their work has received a media repercussion on a

global scale”

• They first embed higher-order modal logic in Isabelle

• Then represent Scott’s version of Gödel’s proof in that

• They explore consistency, modal collapse, make strong claims

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 46

Summary

• We’ve now seen some ways of probing formal models

◦ Do they beg the question?

◦ Are they equivalent to other models?

◦ Do they have unintended interpretations?

• These probings can help us formulate the assumptions and

caveats that should form part of the assurance (sub)case

associated with any use of formal methods

• The big questions are standard

◦ Do we believe the premises?

? As interpreted for our system

◦ Does the conclusion bear the interpretation we need?

◦ Do we trust the theorem prover

? And the formalization of any subsidiary theories?

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 47

Coming Up

Next, we’ll look at modeling human-machine interactions

(a major source of critical failures) with infinite bounded

model checking and synchronous observers.

References

[1] Günther Eder and Esther Ramharter. Formal reconstructions of St. Anselm’s

Ontological Argument. Synthese, 192(9):2795–2825, October 2015

[2] Pawe l Garbacz. Prover9’s simplifications explained away. Australasian

Journal of Philosophy, 90(3):585–592, 2012

[3] Paul E. Oppenheimer and Edward N. Zalta. On the logic of the

Ontological Argument. Philosophical Perspectives, 5:509–529, 1991

[4] Paul E. Oppenheimer and Edward N. Zalta. A

computationally-discovered simplification of the Ontological Argument.

Australasian Journal of Philosophy, 89(2):333–349, 2011

[5] John Rushby. The Ontological Argument in PVS. In Nikolay Shilov,

editor, Fun With Formal Methods, St Petersburg, Russia, July 2013.

Workshop in association with CAV’13

[6] John Rushby. Mechanized analysis of a formalization of Anselm’s

Ontological Argument by Eder and Ramharter. CSL technical note, SRI

International, Menlo Park, CA, January 2016

Marktoberdorf 2016, Lecture 3 John Rushby, SRI 48

