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Requirements, Assumptions, Specifications

• There is an environment, aka. the world (given)

• And a system (to be constructed)

• Assumptions A describe behavior/attributes of the

environment that are true independently of the system

◦ Expressed entirely in terms of environment variables

• Requirements R describe desired behavior in the environment

◦ Expressed entirely in terms of environment variables

• There’s a boundary/interface between system & environment

◦ Typically shared variables (e.g., 4-variable model)

• Specification S describes desired behavior on shared variables

• Correctness is A,S ` R and A, I ` S, where I is implementation
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The Fault, Error, Failure Chain

Failure: departure from requirements

For critical failures, the requirement is sometimes implicit

Error: discrepancy between actual and intended behavior

(inside system boundary)

Fault: a defect (bug) in a system

• Faults (may) cause errors, which (may) cause failure

◦ What about errors not caused by a fault,

such as bit-flips caused by alpha particles?

◦ These are environmental phenomena, should appear in

assumptions, requirements; fault is not dealing with them

• Failure in a subsystem (may) cause an error in the system

• Fault tolerance is about detecting and repairing or masking

errors before they lead to failure

• Formal methods is typically about detecting faults

• Verification is about guaranteeing absence of faults

Marktoberdorf 2016, Lecture 1 John Rushby, SRI 3



Critical Failures

• System failures can cause harm

◦ To people, nations, the world

• Harm can occur in many dimensions

◦ Death and injury, theft and loss (of property, privacy),

loss of service, reduced quality of life

• I will mostly focus on critical failures

◦ Those that do really serious harm

• Serious faults are often in the requirements

◦ A,S ` violation of implicit requirements due to

◦ A,R ` violation of implicit requirements

◦ But for this lecture we’ll assume requirements are OK

• Generally want severity of harm and frequency of occurrence

to be inversely related

• Risk is the product of severity and frequency
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Risk

• Public perception and tolerance of risk is not easy to explain

◦ Unrelated to statistical threat, mainly “dread factor”:

involuntary exposure, uncontrollable, mass impact

• US data, annual deaths (typical recent years)

◦ Medical errors: 440,000

◦ Road accidents: 35,000

◦ Firearms: 12,000

mass shootings [≥ 4 victims]: more than 1 a day

(but other crime is quite low in the US)

◦ Terrorism: 30

◦ Plane crashes: 0

◦ Train crashes: 0

◦ Nuclear accidents: 0

• UK data: cyber crime (2.11m victims) exceeds physical crime

• Our task is to ensure low risk for computerized systems
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Assurance Requirements

• For a given severity of harm, we need to guarantee some

acceptable upper bound on frequency of failure

• Example: aircraft failure conditions are classified in terms of

the severity of their consequences

• Catastrophic failure conditions are those that could prevent

continued safe flight and landing

• And so on through severe major, major, minor, to no effect

• Severity and probability/frequency must be inversely related

• AC 25.1309: No catastrophic failure conditions expected to

occur in the operational life of all aircraft of one type

• Arithmetic, history, and regulation require the probability of

catastrophic failure to be less than 10−9 per hour, sustained

for many hours

• Similar for other critical systems and properties
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Software Assurance and Software Reliability

• Software contributes to system failures through faults in its

specifications, design, implementation—bugs

• Assurance requirements are expressed in terms of probabilities

• But a fault that leads to failure is certain to do so whenever

it is encountered in similar circumstances

◦ There’s nothing probabilistic about it

• Aaah, but the circumstances of the system are a stochastic

process

• So there is a probability of encountering the circumstances

that activate the fault and lead to failure

• Hence, probabilistic statements about software reliability or

failure are perfectly reasonable

• Typically speak of probability of failure on demand (pfd), or

failure rate (per hour, say)
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Assurance in Practice

• Prior to deployment, the only direct way to validate a

reliability requirement (i.e., rate or frequency of failure)

is by statistically valid random testing

◦ Tests must reproduce the operational profile

◦ Requires a lot of tests

? Must not see any failures

◦ Infeasible to get beyond 10−3, maybe 10−4

◦ 10−9 is completely out of reach

• Instead, most assurance is accomplished by coverage-based

testing, inspections/walkthroughs, formal methods

• But these do not measure failure rates

• They attempt to demonstrate absence of faults

• So how is absence of faults related to frequency of failure?

• Let’s focus on formal verification
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Formal Verification and Assurance

• Suppose we formally verify some property of the system

• This guarantees absence of faults (wrt. those properties)

• Guarantees?

◦ Suppose theorem prover/model checker is unsound?

◦ Or assumed semantics of language is incorrect?

◦ Or verified property doesn’t mean what we think it means?

◦ Or environment assumptions are formalized wrongly?

◦ Or ancillary theories are formalized incorrectly?

◦ Or we model only part of the problem, or an abstraction?

◦ Or the requirements were wrong?

• Must admit there’s a possibility the verification is incorrect

◦ Or incomplete

• How can we express this?

• As a probability!
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Probability of Fault-Freeness

• Verification and other assurance activities aim to show the

software is free of faults

• The more assurance we do, the more confident we will be in

its fault-freeness

• Can express this confidence as a subjective probability that

the software is fault-free or nonfaulty: pnf

◦ Or perfect: some papers speak of probability of perfection

• For a frequentist interpretation: think of all the software that

might have been developed by comparable engineering

processes to solve the same design problem

◦ And that has had the same degree of assurance

◦ Then pnf is the probability that any software randomly

selected from this class is nonfaulty

• Fault-free software will never experience a failure, no matter

how much operational exposure it has
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Relationship Between Fault-Freeness and Reliability

• By the formula for total probability

P (s/w fails [on a randomly selected demand]) (1)

= P (s/w fails | s/w fault-free)× P (s/w fault-free)

+ P (s/w fails | s/w faulty)× P (s/w faulty).

• The first term in this sum is zero

◦ Because the software does not fail if it is fault-free

◦ Which is why the theory needs this property

• Define pF |f as the probability that it Fails, if faulty

• Then (1) becomes pfd = pF |f × (1− pnf )
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Aleatoric and Epistemic Uncertainty

• Aleatoric or irreducible uncertainty

◦ is “uncertainty in the world”

◦ e.g., if I have a coin with P (heads) = ph, I cannot predict

exactly how many heads will occur in 100 trials because

of randomness in the world

Frequentist interpretation of probability needed here

• Epistemic or reducible uncertainty

◦ is “uncertainty about the world”

◦ e.g., if I give you the coin, you will not know ph; you can

estimate it, and can try to improve your estimate by

doing experiments, learning something about its

manufacture, the historical record of similar coins etc.

Frequentist and subjective interpretations OK here
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Aleatoric and Epistemic Uncertainty in Models

• In much scientific modeling, the aleatoric uncertainty is

captured conditionally in a model with parameters

• And the epistemic uncertainty centers upon the values of

these parameters

• In the coin tossing example: ph is the parameter

• In our software assurance model

pfd = pF |f × (1− pnf )

pF |f and pnf are the parameters
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Epistemic Estimation

• To apply our model, we need to assess values for pF |f and pnf

• These are most likely subjective probabilities

◦ i.e., degrees of belief

• Beliefs about pF |f and pnf might not be independent

• So will be represented by some joint distribution F (pF |f , pnf )

• Probability of software failure will be given by the

Riemann-Stieltjes integral∫
0≤pF |f≤1

0≤pnf≤1

pF |f × (1− pnf ) dF (pF |f , pnf ) (2)

• If beliefs can be separated F factorizes as F (pF |f )× F (pnf )

• And (2) becomes PF |f × (1− Pnf )

Where PF |f and Pnf are means of the posterior distributions

representing the assessor’s beliefs about the two parameters

• One way to separate beliefs is via conservative assumptions
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Practical Application—Nuclear

• Traditionally, UK nuclear protection systems are assured by

statistically valid random testing

• Very expensive to get required pfd of 10−4 this way

• Our analysis says pfd ≤ PF |f × (1− Pnf )

• They are essentially setting Pnf to 0 and doing the work to

assess PF |f < 10−4

• Any assurance process that could give them Pnf > 0

• Would reduce the amount of testing they need to do

◦ e.g., Pnf > 1− 10−1, which seems very plausible

◦ Would deliver the same pfd with PF |f < 10−3

• This could reduce the total cost of assurance and

certification
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Practical Application—Aircraft, Version 1

• Aircraft software is assured by V&V processes such as

ARP-4754A, and DO-178C Level A

• Need software failure rate < 10−9

• As well as DO-178C, they also do a massive amount of all-up

testing but do not take assurance credit for this

• Our analysis says software failure rate ≤ PF |f × (1− Pnf )

• So they are setting PF |f = 1 and Pnf > 1− 10−9

• This is completely implausible as an a priori assessment

• Even if they implicitly get PF |f ≤ 10−3 from testing, they still

would need Pnf > 1− 10−6

• Which is also implausible

• There must be another explanation
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Relationship Between Fault-Freeness and Survival

• Instead of failure on individual demands, look at survival over many

• The probability psrv (n) of surviving n independent demands

(e.g., flights) without failure is given by

psrv (n) = pnf + (1− pnf )× (1− pF |f )
n (3)

• A suitably large n can represent “the entire lifetime of all

aircraft of one type”

◦ 2,000 planes × 25 years × 5.5 flights per day

gives n = 108

• First term in (3) establishes a lower bound for psrv (n) that is

independent of n

• If assurance gives us the confidence to assess, say, pnf > 0.9

• Then we are almost there

• Just need some contribution from the second term
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Practical Application—Aircraft, Version 2

• We need confidence that the second term in (3) will be

nonzero, despite exponential decay

• Confidence could come from prior failure-free operation

• Calculating overall psrv (n) is a problem in Bayesian inference

◦ We have assessed a value for Pnf

◦ Have observed some number r of failure-free demands

◦ Want to predict prob. of n− r future failure-free demands

• Need a prior distribution for PF |f

◦ Difficult to obtain, and difficult to justify for certification

◦ However, there is a distribution that delivers provably

worst-case predictions

? One where PF |f is a probability mass at some qn ∈ (0, 1]

◦ So can make predictions that are guaranteed

conservative, given only Pnf , r, and n
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Practical Application—Aircraft, Version 2 Continued

• For values of pnf above 0.9

• The second term in (3) is well above zero

• Provided r > n
10

• So it looks like we need to fly 107 hours to certify 108

• Maybe not!

• Entering service, we have only a few planes, need confidence

for only, say, first six months of operation, so a small n

• Flight tests are enough for this

• Next six months, have more planes, but can base prediction

on first six months (or ground the fleet, fix things)

• And bootstrap our way forward

• This is a rational reconstruction of how aircraft software

certification could work (due to Strigini and Povyakalo)

• It provides a model that is consistent with practice

Marktoberdorf 2016, Lecture 1 John Rushby, SRI 19



Why This Matters

• We don’t really know how/why certification works

◦ And it does seem to work

• And we don’t really know what makes for effective

standards/guidelines

• But we need to make changes

◦ New kinds of systems

◦ New methods of software development

◦ New methods of analysis/verification

◦ Desire to reduce costs

• Now we know it comes down to assessing useful values for pnf

◦ i.e., effective methods and tools for analysis

? That’s for software, we don’t have much for systems

◦ And coherent treatment for all the attendant doubts
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Variant: Monitoring

• In some systems, it’s feasible to have a simple monitor that

can shut off a more complex operational component

◦ Turns malfunction and unintended function into loss of function

◦ Prevents transitions into unsafe states

• Reliability of the whole is not the product of the reliabilities

of the operational and monitor components

• But it is a theorem that the fault freeness of the monitor is

independent of the reliability of the operational component

• And reliability of the whole is the product of these

◦ At aleatoric level, it’s more complex for epistemic

◦ Must also deal with undesired monitor activation

• Application (also known as runtime verification)

◦ Formally synthesize monitor from formal safety constraints

◦ Feasible to assess good pnf for the monitor

• Significant overall benefit at relatively low cost
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Monitoring Example: A340 fuel management

• Fuel emergency on Airbus A340-642, G-VATL, on 8 February

2005 (AAIB SPECIAL Bulletin S1/2005)

• Toward the end of a flight from Hong Kong to London: two

engines flamed out, crew found certain tanks were critically

low on fuel, declared an emergency, landed at Amsterdam

• Two Fuel Control Monitoring Computers (FCMCs) on this

type of airplane; each a self-checking pair with a backup (so

6-fold redundant in total); they cross-compare and the

“healthiest” one drives the outputs to the data bus

• Both FCMCs had fault indications, and one of them was

unable to drive the data bus

• Unfortunately, this one was judged the healthiest and was

given control of the bus even though it could not exercise it

• The backups were suppressed because the FCMCs indicated

they were not both failed

• Contemplate a monitor synthesized from the safety requirements
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Coming Up

Next, we’ll look at how assurance can justify a claim

such as pnf > 0.9
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