
Composition of Critical Properties

Lessons From Other Fields

John Rushby

Computer Science Laboratory

SRI International

Menlo Park CA USA

John Rushby, SR I Composition of Critical Properties: 1



Composition

• Just a fancy word for modular construction

• We build systems from components

• Some of which are standard, some bespoke

• All tied together with “glue logic”

• We do this for economy, efficiency, quality

◦ Good components are a reusable asset

• Our reasoning about the system is based on what we know

about the components and the way they are put together

• What’s wrong with that?

John Rushby, SR I Composition of Critical Properties: 2



Modern Automobiles

• Engine and its control system were traditionally developed

separately from transmission and its control system

• But they actually have to work together

◦ e.g., transmission tells engine to retard ignition while it

changes gear

• Given the two components, it can take six months to

integrate them

◦ Not due to intended interactions such as the one above

◦ But unanticipated consequences of interactions

◦ And low-level details, like bus timing

• Delayed introduction of automated cruise, lane

monitoring/following, automated parking, integration of

powertrain with steering and suspension

• Reputations of some luxury manufacturers damaged

John Rushby, SR I Composition of Critical Properties: 3



Composition Is Easy, No It’s Hard

• It’s easy when there is little interaction among components

◦ e.g., 1960s automobiles, OB1

• It gets harder the more they interact

• Emergent behavior

◦ Behavior of the system not found in any component

◦ That’s why we build systems—e.g., medical device PnP

• But then there’s unanticipated, undesired emergent behavior

• In the limit, we get Normal Accidents (Perrow)

◦ High interactive complexity

◦ Tight coupling

• Challenge is to eliminate bad emergence, keep the good

John Rushby, SR I Composition of Critical Properties: 4



System Properties

• Properties like safety, security, real-time guarantees

• These are properties of the whole system

◦ e.g., where’s the component that makes an airplane safe?

◦ But a single component can easily make it unsafe

i.e., these are emergent properties

• That’s why the FAA certifies only airplanes and engines

◦ OK, propellers too

◦ Components certified only as part of an airplane or engine

◦ Because you need to examine them in their context of

interaction

• But this is becoming ruinously expensive, even infeasible

• Our goal is compositional development and assurance

John Rushby, SR I Composition of Critical Properties: 5



It’s About Interactions

• We must have no unintended interactions

• But in most systems almost every component can affect

every other indirectly

• So we need to focus on the direct interactions

A B C

• And the nature (channels) of interaction

• And we need to be concerned about unintended

consequences of intended interaction channels

• Particularly in the presence of faults, malice

John Rushby, SR I Composition of Critical Properties: 6



Lessons From Other Fields

• The most sophisticated treatment is in embedded systems

◦ They need real time, fault tolerance, safety

• The have the following concepts

◦ Error-propagation boundaries

◦ Elementary and composite interfaces

◦ Fault-containment regions

◦ Composability

• And from integrated modular avionics (IMA), we get

◦ Partitioning

◦ Determinism, time-triggered scheduling

• And from EU safety certification, we get

◦ Argument-based assurance cases

John Rushby, SR I Composition of Critical Properties: 7



Error-Propagation Boundaries

• Errors in a component should be detectable at its interface,

before they propagate to other components

• Two kinds of errors: in control and in data

• Interfaces move data and use control (e.g., a protocol) to

accomplish it

• Control errors are particularly destructive in real-time systems

because they affect workload in the victim and hence ability

to meet deadlines

• Control errors can be detected if there is redundant

information

◦ e.g., static common knowledge such as fixed schedules

◦ Then have less or no need for data in control messages

⋆ e.g., destination of message

• Consequences of control errors depend on interface

John Rushby, SR I Composition of Critical Properties: 8



Elementary and Composite Control Interfaces

• Composite interfaces are those where control is bidirectional

◦ Even when data flow is unidirectional

◦ e.g., producer-consumer, queues

Problem is they allow errors to propagate in both directions

• Elementary interfaces have unidirectional control

◦ Same direction as data flow

◦ e.g., wait-free, lock-free, atomic registers

◦ Such as Simpson’s 4-Slot, Non-Blocking Write (NBW)

Errors propagate in only one direction

• Choice of data affects type of interface

◦ Event vs. state messages

◦ Events require confirmation: therefore composite

John Rushby, SR I Composition of Critical Properties: 9



Fault-Containment Regions

• Two kinds of data errors

◦ Send wrong value, send it at wrong time

• Value errors require redundancy and selection/voting

◦ A host of delicate issues, understood by very few

⋆ So you get homespun designs

⋆ e.g., read incident/accident reports such as NTSB

A07-65 through 86 (Predator), or A08-46, 47 (Eclipse)

◦ A key idea is that of fault containment region

◦ Required so that faults in redundant values will be

independent

• Timing errors (e.g., babbling) are very destructive

◦ Guaranteed elimination requires fixed schedules

◦ e.g., static common knowledge, enforced by bus guardians

⋆ Such as TTEthernet (used by Project Orion)

John Rushby, SR I Composition of Critical Properties: 10



Composability

• aka. preservation of prior properties

• A property established for a component or subsystem will not

be invalidated by system integration

• Even when other parts of the system have faults

• i.e., if components A and B do their thing within allocated

processor and bus utilizations, rest of system must never

invalidate this

◦ Even when another component causes a processor

exception

◦ Or babbles on the bus

• Composability is a stepping stone to compositionality

• DO-297 talks of “tiers of integration”

John Rushby, SR I Composition of Critical Properties: 11



Partitioning

• Allows components to share processor, bus resources

• By eliminating unintended interactions

• Space partitioning

◦ Cannot read/write another component’s memory

• Time partitioning

◦ Cannot affect another component’s access to

processor/bus allocation

• Robust partitioning is key technology for integrated modular

avionics (IMA)

• Now COTS technology from RTOS vendors

• And avionics buses: AFDX (weak), TTEthernet (strong)

John Rushby, SR I Composition of Critical Properties: 12



Assurance and Certification

• We have claims or goals that we want to substantiate

◦ Concerning some system property

• We produce evidence about the product and its development

process to support the claims

◦ E.g., analysis and testing of the product and its design

◦ And documentation for the process of its development

• And we construct an argument that the evidence is sufficient

to support the claims

• This is the intellectual basis for all certification regimes

• Claims and argument generally implicit in standards-based

assurance, which focus on evidence to be produced

• Argument-based safety/security/dependability cases require

explicit claims, evidence, argument

John Rushby, SR I Composition of Critical Properties: 13



Compositional Assurance/Certification

• Assurance case may not decompose along architectural lines

◦ Insight due to Ibrahim Habli & Tim Kelly

• Goes to the heart of what is an architecture

• A good one supports and enforces the assurance case

• We’ve now got enough background to see how to do this

John Rushby, SR I Composition of Critical Properties: 14



Synthesis

We need:

• Robust partitioning to share processor and bus resources

• Determinism to control faults in the time domain

• Redundancy to tolerate faults in the data domain

• And fault containment regions so faults are independent

• Elementary control interfaces to provide error-propagation

boundaries

• Composability so we can build things piecewise (layers)

John Rushby, SR I Composition of Critical Properties: 15



Relationship to Security

• Adversary models for security are generally stronger than

fault hypotheses for safety and fault tolerance

◦ Active malice rather than Mother Nature

◦ Though Mother Nature is assumed to be a strong

cryptographer

⋆ e.g., checksums and nuclear triggers

• Disclosure is more subtle than (most) faults

◦ Any observable variation in behavior can be a side channel

or covert channel that discloses sensitive information

• Manifestation of this is that security is not even a property

John Rushby, SR I Composition of Critical Properties: 16



Properties and Security

• A property is a (possibly infinite) set of behaviors

◦ Safety property: no bad thing happens

◦ Liveness property: good things do happen (eventually)

◦ Any property is the intersection of a safety property and a

liveness property

• The only things we can enforce are safety properties

• Information flow security is not a property

◦ It’s a hyperproperty

◦ Sets of sets of behaviors

• But every hyperproperty can be enforced by a safety property

◦ e.g., information flow enforced by access control

◦ May exclude some good behaviors

• We’ll enforce safety properties, do end-to-end analysis as

hyperproperties

John Rushby, SR I Composition of Critical Properties: 17



The MILS Idea

• Construct an architecture so that security assurance does

decompose along structural lines

• Two issues in security:

◦ Enforce the security policy

◦ Manage shared resources securely

• The MILS idea is to handle these separately

• Focus the system architecture on simplifying the argument

that policy is enforced correctly

◦ Hence policy architecture

• Policy architecture is the interface between the two issues

John Rushby, SR I Composition of Critical Properties: 18



Policy Architecture

• Intuitively, a boxes and arrows diagram

◦ There is a formal model for this

• Boxes encapsulate data, information, control

◦ Access only local state, incoming communications

◦ i.e., they are state machines

• Arrows are channels for information flow

◦ Strictly unidirectional

◦ Absence of arrows is often crucial

• Some boxes are trusted to enforce local security policies

• Want the trusted boxes to be as simple as possible

• Decompose the policy architecture to achieve this

• Assume boxes and arrows are free

John Rushby, SR I Composition of Critical Properties: 19



Crypto Controller Example: Step 1

Policy: no plaintext on black network

dataheader encrypted dataheader

side
red

side
black

encryption

header bypass

operating system

network
stacks utilities

compiler runtime

No architecture, everything trusted

John Rushby, SR I Composition of Critical Properties: 20



Crypto Controller Example: Step 2

Good policy architecture: fewer things trusted

red

bypass

black

crypto

hardware

minimal runtime

Local policies (notice these are intransitive):

Header bypass: low bandwidth, data looks like headers

Crypto: all output encrypted

John Rushby, SR I Composition of Critical Properties: 21



Policy Architecture: Compositional Assurance

• Construct assurance for each trusted component individually

◦ i.e., each component enforces its local policy

• Then provide an argument that the local policies

◦ In the context of the policy architecture

Combine to achieve the overall system policy

• Medium robustness: this is done informally

• High robustness: this is done formally

◦ Compositional verification

John Rushby, SR I Composition of Critical Properties: 22



Enforcing Assumptions Of The Policy Architecture

• Primarily separation

• Five basic mechanisms available

◦ physical: separate boxes

⋆ But even they may need wrapping

◦ temporal: classic periods processing

◦ cryptographic: encryption and checksums

◦ logical: verify no interference

⋆ Only works when you have all the code

◦ separation kernel: runtime enforcement

• Also need unidirectional arrows

◦ Data diodes etc.

• Generally want to combine separation with resource sharing

John Rushby, SR I Composition of Critical Properties: 23



Resource Sharing

• Next, we need to implement the logical components and the

communications of the policy architecture in an affordable

manner

• Allow different components and communications to share

resources

• Need to be sure the sharing does not violate the policy

architecture

◦ Flaws might add new communications paths

◦ Might blur the separation between components

John Rushby, SR I Composition of Critical Properties: 24



Secure Resource Sharing

• For broadly useful classes of resources

◦ e.g., file systems, networks, consoles, processors

• Provide implementations that can be shared securely

• Start by defining what it means to partition specific kinds of

resource into separate logical components

• Definition in the form of a protection profile (PP)

◦ e.g., separation kernel protection profile (SKPP)

◦ or network subsystem PP, filesystem PP, etc.

• Then build and evaluate to the appropriate PP

John Rushby, SR I Composition of Critical Properties: 25



Crypto Controller Example: Step 3

Separation kernel securely partitions the processor resource

blackred device driver

separation kernel

runtime or
operating system

runtime or
operating system

cryptofor

crypto h/w

bypass

minimal runtime

The integrity of the policy architecture is preserved

John Rushby, SR I Composition of Critical Properties: 26



Resource Sharing: Compositional Assurance

• Construct assurance for each resource sharing component

individually

◦ i.e., each component enforces separation

• Then provide an argument that the individual components

◦ Are additively compositional

◦ e.g., partitioning(kernel) + partitioning(network)

provides partitioning(kernel + network)

And therefore combine to create the policy architecture

• Medium robustness: this is done informally

• High robustness: this is done formally

◦ Compositional verification

John Rushby, SR I Composition of Critical Properties: 27



Summary

• MILS (and HAP) are in the mainstream of architectures

promoting compositional development and assurance for

critical systems

• Ahead in some areas

◦ e.g., the policy architecture, COTS cultivation

• Behind in some others

◦ e.g., use of elementary control interfaces

◦ tool support for assurance

• The challenge ahead is compositional certification

• And regulatory adjustment to enable this

John Rushby, SR I Composition of Critical Properties: 28



Thanks

• Joyce Brookins and others at USAF Cryptomod

• Wilmar Sifre and others at AFRL

• Carolyn Boettcher at Raytheon

• Rance DeLong

John Rushby, SR I Composition of Critical Properties: 29


