SMT Solvers:
A Disruptive Technology

John Rushby

Computer Science Laboratory
SRI International
Menlo Park, California, USA
SMT Solvers

- SMT stands for Satisfiability Modulo Theories
- SMT solvers generalize SAT solving by adding the ability to handle arithmetic and other decidable theories
- SAT solvers are used for
 - Bounded model checking, and
 - AI planning,
 among other things
- Anything a SAT solver can do, an SMT solver can do better
- I'll describe these from the informed consumer's point of view
Overview

- SAT solving
- SMT solvers
- Application to verification
 - Via bounded model checking and k-induction
 - With a demo
- Application to AI planning and scheduling
 - With a demo
- Extensions to MaxSMT and OptSMT
- Conclusions
SAT Solving

- Find satisfying assignment to a propositional logic formula
- Formula can be represented as a set of clauses
 - In **CNF**: conjunction of disjunctions
 - Find an assignment of truth values to variable that makes at least one literal in each clause TRUE
 - Literal: an atomic proposition A or its negation \bar{A}
- Example: given following 4 clauses
 - A, B
 - C, D
 - E
 - $\bar{A}, \bar{D}, \bar{E}$

 One solution is A, C, E, \bar{D}
 (A, D, E is not and cannot be extended to be one)

- Do this when there are 1,000,000s of variables and clauses
SAT Solvers

- SAT solving is the quintessential NP-complete problem
- But now amazingly fast in practice (most of the time)
 - Breakthroughs (starting with Chaff) since 2001
 - Sustained improvements, honed by competition
- Has become a commodity technology
 - MiniSAT is 700 SLOC
- Can think of it as massively effective search
 - So use it when your problem can be formulated as SAT
- Used in bounded model checking and in AI planning
 - Routine to handle 10^{300} states
SAT Plus Theories

- SAT can encode operations and relations on bounded integers
 - Using bitvector representation
 - With adders etc. represented as Boolean circuits
 And other finite data types and structures
- But cannot do not unbounded types (e.g., reals), or infinite structures (e.g., queues, lists)
- And even bounded arithmetic can be slow when large
- There are fast decision procedures for these theories
- But they work only on conjunctions
- General propositional structure requires case analysis
 - Should use efficient search strategies of SAT solvers
That's what an SMT solver does
Decision Procedures

- Decision procedures are specific to a given theory.
- Tell whether a formula is inconsistent, satisfiable, or valid.
- Can decide conjunctions of formulas.
- Or whether one formula is a consequence of others.
 - E.g., does $4 \times x = 2$ follow from $x \leq y$, $x \leq 1 - y$, and $2 \times x \geq 1$ when the variables range over the reals?
- Decision procedures may use heuristics for speed, but must always give the correct answer, and terminate (i.e., must be sound and complete).
Decidable Theories

- Many useful theories are decidable
 (at least in their unquantified forms)
 - Equality with uninterpreted function symbols
 \[x = y \land f(f(f(x))) = f(x) \lor f(f(f(f(f(y))))) = f(x) \]
 - Function, record, and tuple updates
 \[f \text{ with } [(x) := y](z) \equiv \text{ if } z = x \text{ then } y \text{ else } f(z) \]
 - Linear arithmetic (over integers and rationals)
 \[x \leq y \land x \leq 1 - y \land 2 \times x \geq 1 \lor 4 \times x = 2 \]
 - Special (fast) case: difference logic
 \[x - y < c \]
- Combinations of decidable theories are (usually) decidable

 \[e.g., 2 \times \text{car}(x) - 3 \times \text{cdr}(x) = f(\text{cdr}(x)) \lor \]

 \[f(\text{cons}(4 \times \text{car}(x) - 2 \times f(\text{cdr}(x)), y)) = f(\text{cons}(6 \times \text{cdr}(x), y)) \]

Uses equality, uninterpreted functions, linear arithmetic, lists
SMT Solving

- Individual and combined decision procedures decide **conjunctions** of formulas in their decided theories

- **SMT** allows general propositional structure
 - e.g., \((x \leq y \lor y = 5) \land (x < 0 \lor y \leq x) \land x \neq y\)
 - ...possibly continued for 1000s of terms

- Should exploit search strategies of modern SAT solvers

- So replace the terms by propositional variables
 - i.e., \((A \lor B) \land (C \lor D) \land E\)

- Get a solution from a SAT solver (if none, we are done)
 - e.g., \(A, D, E\)

- Restore the interpretation of variables and send the conjunction to the core decision procedure
 - i.e., \(x \leq y \land y \leq x \land x \neq y\)
SMT Solving by “Lemmas On Demand”

- If satisfiable, we are done
- If not, ask SAT solver for a new assignment
- But isn’t it expensive to keep doing this?
- Yes, so first, do a little bit of work to find fragments that explain the unsatisfiability, and send these back to the SAT solver as additional constraints (i.e., lemmas)
 - $A \land D \supset E$ (equivalently, $\neg A \lor \neg D \lor E$)
- Iterate to termination
 - e.g., $A, C, E, \neg D$
 - i.e., $x \leq y, x < 0, x \neq y, y \not\leq x$ (simplifies to $x < y, x < 0$)
 - A satisfying assignment is $x = -3, y = 1$
- This is called “lemmas on demand” (de Moura, Ruess, Sorea) or “DPLL(T)”; it yields effective SMT solvers
Fast SMT Solvers

- There are several effective SMT solvers
 - Ours are ICS (released 2002), Yices, Simplics (prototypes for next ICS)
 - European examples: Barcelogic, MathSAT

- SMT solvers are being honed by competition
 - Provoked by our benchmarking in 2004
 - Now institutionalized as part of CAV, FLoC
SMT Competition

- Various divisions (depending on the theories considered)
 - Equality and uninterpreted functions
 - Difference logic \((x - y < c)\)
 - Full linear arithmetic
 - For integers as well as reals
 - Arrays ... etc.

- **ICS** won in 2004

- **Yices** and **Simplics** (prototypes for next ICS) won the hard divisions in 2005, came second to Barcelogic in all the others
 - Let’s take a look
Building Fast(er) SMT Solvers

- Individual decision procedures need to be fast
 - Especially linear arithmetic (Simplex)
 - Linear arithmetic procedure should also be effective for difference logic (not a discrete switch to Bellman-Ford)
- Need fast and effective interaction with the SAT solver
 - Good, but cheap explanations
 - Fast backtracking
- SAT solver must be fast, good cache performance
- Equality integrated with SAT for fast propagation
- Choices must be validated by extensive benchmarking
- Look out for the 2006 competition
Disruption is when low-end technology overtakes the price performance of high-end.
SMT Solvers as Disruptive Technology

![Graph showing the price/performance of SMT-based Model Checkers and Verification Systems over time. The graph indicates that SMT-based Model Checkers are currently ahead (Now?) in terms of price/performance compared to Verification Systems.](image-url)
Verification Systems vs. SMT-Based Model Checkers

Actually, both kinds will coexist as part of the evidential tool bus—the topic for a different talk
Evolution of SMT-Based Model Checkers

- Replace the backend decision procedures of a verification system with an SMT solver, and specialize and shrink the higher-level proof manager.

- Example:
 - **SAL** language has a type system similar to **PVS**, but is specialized for specification of state machines (as transition relations).
 - The **SAL** infinite-state bounded model checker uses an **SMT** solver (**ICS**), so handles specifications over reals and integers, uninterpreted functions.
 - Often used as a model checker (i.e., for **refutation**).
 - But can perform **verification** with a single higher level proof rule: **k-induction** (with lemmas).
 - Note that **counterexamples** help debug invariant.
Bounded Model Checking (BMC)

- Given system specified by initiality predicate I and transition relation T on states S
- Is there a counterexample to property P in k steps or less?
- Find assignment to states s_0, \ldots, s_k satisfying

$$I(s_0) \land T(s_0, s_1) \land T(s_1, s_2) \land \cdots \land T(s_{k-1}, s_k) \land \neg (P(s_1) \land \cdots \land P(s_k))$$

- Given a Boolean encoding of I, T, and P (i.e., circuit), this is a propositional satisfiability (SAT) problem
- But if I, T and P use decidable but unbounded types, then it’s an SMT problem: infinite bounded model checking
- (Infinite) BMC also generates test cases and plans
 - State the goal as negated property

$$I(s_0) \land T(s_0, s_1) \land T(s_1, s_2) \land \cdots \land T(s_{k-1}, s_k) \land (G(s_1) \lor \cdots \lor G(s_k))$$
k-Induction

- BMC extends from refutation to verification via k-induction
- Ordinary inductive invariance (for P):

 Basis: $I(s_0) \supset P(s_0)$

 Step: $P(r_0) \land T(r_0, r_1) \supset P(r_1)$

- Extend to induction of depth k:

 Basis: No counterexample of length k or less

 Step: $P(r_0) \land T(r_0, r_1) \land P(r_1) \land \cdots \land P(r_{k-1}) \land T(r_{k-1}, r_k) \supset P(r_k)$

 These are close relatives of the BMC formulas

- Induction for $k = 2, 3, 4 \ldots$ may succeed where $k = 1$ does not

- Is complete for some problems (e.g., timed automata)
 - Fast, too, e.g., Fischer's mutex with 83 processes
Application: Verification of Real Time Programs

- **Continuous time** excludes automation by finite state methods.
- **Timed automata** methods handle continuous time:
 - But are defeated by the case explosion when (discrete) faults are considered as well.
- **SMT solvers** can handle both dimensions:
 - With discrete time, can have a clock module that advances time one tick at a time:
 - Each module sets a timeout, waits for the clock to reach that value, then does its thing, and repeats.
 - Better: move the timeout to the clock module and let it advance time all the way to the next timeout.
 - These are Timeout Automata (Dutertre and Sorea):
 - and they work for continuous time.
Example: Biphase Mark Protocol

- **Biphase Mark** is a protocol for asynchronous communication
 - Clocks at either end may be skewed and have different rates, and jitter
 - So have to encode a clock in the data stream
 - Used in CDs, Ethernet
 - Verification identifies parameter values for which data is reliably transmitted
- **Verified** by human-guided proof in ACL2 by J Moore (1994)
- **Three different verifications** used PVS
 - One by Groote and Vaandrager used PVS + UPPAAL
 - Required 37 invariants, 4,000 proof steps, hours of prover time to check
Brown and Pike recently did it with sal-inf-bmc

- Used timeout automata to model timed aspects
- Statement of theorem discovered systematically using disjunctive invariants (7 disjuncts)
- Three lemmas proved automatically with 1-induction,
- Theorem proved automatically using 5-induction
- Verification takes seconds to check
- Demo:

 sal-inf-bmc -v 3 -d 5 -i -l l0 -l l1 -l l2 biphase t0

- Adapted verification to 8-N-1 protocol (used in UARTs)
 - Additional lemma proved with 13-induction
 - Theorem proved with 3-induction (7 disjuncts)
 - Revealed a bug in published application note
Application: AI Planning and Scheduling

- This is speculative: I don’t know much about AI planning
- SAT-based planning is essentially the same technology as BMC
 - Uses different languages in front (e.g., PDDL)
 - And may be able to break into independent subproblems
- SMT-based planning is similar, except we can have metric quantities like mass, power, and can do scheduling over real time
 - Because we can do arithmetic
Example: Simple Rover

- Consider a simple planetary rover with three components
 - Navigator
 - Instrument
 - Radio

 Each consume power and take time to do their things

- We have flight rules
 - Must not move while the instrument is unstowed

- And a goal
 - Go to Rock4, take a sample, and radio it back
 - Without depleting the battery
Rover Navigator

- Takes at least 10 mins to get anywhere
- Consumes 400 mwh of battery power
Rover Instrument

- Takes between 2 and 6 mins to stow/unstow, uses 20 mwh
- Takes between 3 and 12 mins to place
- Takes between 20 and 25 mins to sample, uses 120 mwh
Rover Radio

- Starts transmission within 20 to 25 mins of sample
- Chooses nondeterministically between lander and home
- But home uses 600 mwh, lander uses 20 mwh
- Both take between 2 and 5 mins
Rover Flight Rules

- Rover must not move while the instrument is unstowable
- Original spec wove this into the descriptions of Navigator and Instrument
- Instead, we encode it in a synchronous observer which says OK as long as flight rules are satisfied
Rover Goals

- Go to Rock4, take a sample, and radio it back
- Without depleting the battery (really a flight rule)
- Can state these in the goal property, or use another synchronous observer
 - We do both
Rover System and Plan Description

- System is asynchronous composition of the components
 - And the clock
- All synchronously composed with the flight rules and goal observers
- System: MODULE = (Nav [] Instr [] Radio [] Clock) || flight_rules || goals;
- Plan requires satisfaction of properties observed by flight rules and goals, plus others stated directly
 - All negated inside an invariant
- sched_sys: THEOREM System |- AG(NOT(
 OK AND done
 AND measurement_done
 AND battery > 0)));
Plan Output

demo: sal-inf-bmc -v 3 rover sched_sys -d 14

time = 0 nav_get_going

time = 50 nav_arrive

time = 50 instr_unstow

time = 56 instr_place

time = 68 instr_take_sample

time = 68 radio_note_samp

time = 91 inst_stow

time = 91 radio_ready_to_phone

time = 96 radio_phone_lander

- Martha Pollack et al have done similar with SMT solver Ario
- Need to benchmark performance against conventional planner
- I certainly prefer our specification
Optimization

- We have an **automated test case generator** `sal-atg`
- Takes specifications annotated with trap variables for structural coverage goals
- And *incrementally* finds *long tests* that visit *many goals in sequence*
- Works by greedily reaching any goal, then extending the test by *restarting* the bounded model checker *from there*
- Implemented as less than 100 lines of Scheme script (SAL is scriptable)
- **Speculate** that we can generate *long plans for multiple goals in a similar way*
Extensions to MaxSMT and OptSMT

- In AI applications, often have inconsistent knowledge
 - E.g., from different sources, ignorance of true state

- Rather than UNSAT, we want a SAT assignment for some subset of constraints

- We can weight the knowledge according to “credibility,” then want a SAT assignment of maximum weight: MaxSAT
 - May also want to find the source of inconsistency: unsat core

- These can be implemented by SMT and extended to MaxSMT

- May also want not just a satisfying assignment to an SMT problem, but one that maximizes some specific constraint: OptSMT
MaxSAT via SMT

- This is not what we actually do, but gives the idea
- Description is simpler if we interpret weights as penalties for violating a constraint
- Then want assignment of minimum weight
- For a constraint C_i of weight W_i
 - Assert $C_i \lor y_i = W_i$ to SMT solver, where y_i is a new arithmetic variable
 - Or, equivalently, $\neg C_i \supset y_i = W_i$
 - In a satisfying assignment, $y_1 + y_2 + \ldots y_n$ is the total weight of violated constraints
 - Can obviously find a solution with weight $M = W_1 + W_2 \ldots W_n$
Implementing MaxSAT via SMT (ctd.)

- So we can check whether a solution with weight at most m exists by asserting the constraint $y_1 + y_2 + \cdots y_n \leq m$ to SMT solver and asking whether the resulting set of clauses is satisfiable.

- SMT solver can do this because it handles linear arithmetic.

- We want a satisfying assignment of minimum weight.

- But we know that all feasible m must lie between 0 and $M = W_1 + W_2 \cdots W_n$.

- So do a binary search for the least m in $[0 \ldots M]$.

- This requires $\log M$ invocations of SMT solver.

- Can get anytime solutions (satisfiable but not necessarily minimal) by starting with a large value for m (e.g., M).
MaxSMT

- This is closer what we actually do
- Build the propagation over weights into the SAT core
 - Rather than delegate to arithmetic procedure of SMT
- Binary search destroys solver context
 - And repeatedly encounters phase transition region
 - So creep up to max from one side
 - Anytime solution is still possible
- Actually does MaxSMT, MaxSAT as special case
- But believed to be the fastest MaxSAT solver
Maximal Assignments

- The Simplex linear arithmetic solver decides whether a set of constraints is satisfiable
 - And can maximize any expression under those constraints
- Can solve an SMT problem, then maximize target expression under the satisfying assignment
- Then seek new assignments with larger maximum
 - Test the maximum periodically, and terminate branches that do not better current maximum
- Call this OptSMT, can probably extend to OptMaxSMT
- One use is test case generation
 - SMT covers the control structure
 - OptSMT allows boundary coverage
Conclusions

- SMT makes SAT much more useful
 - More expressive
 - More efficient
- Many problems can be cast as SAT, SMT, MaxSMT, OptSMT
- And can then use these powerful solvers
 - Off the shelf automation, so new areas can be automated
 - And combination problems can use a single solver
- Specialized solvers may be relegated to niches
 - This is disruption
 - Needs to be validated by benchmarking
- Planned extensions to SMT solvers: bitvectors, quantifier elimination, evidence
To Learn More

- Our systems, PVS, SAL, ICS and our papers are all available from http://fm.csl.sri.com

- Thanks to Bruno Dutertre, Grégoire Hamon, Leonardo de Moura, Sam Owre, Harald Rueß, Hassen Saïdi, N. Shankar, and Maria Sorea