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Models

• A model is a simplified description of something

◦ To be used in explaining or predicting behavior of the actual thing

• Their use is probably as old as our species

• Maybe mythical/supernatural at first: thunder is caused by the gods

◦ Prediction errors attributed to faulty interpretation rather than poor model

(e.g., Oracle of Delphi)

• But some were geometric and quasi-mathematical: astronomy, Archimedes principle

◦ Predict seasons, eclipses, conjunctions, etc.

◦ Preference for explanatory models (Aristotle)

◦ But also smaller prediction errors (Ptolemy)
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Validation (Aristotle)

• Want an argument from observation to explanation (i.e., model)

• Notion of a demonstrative argument (sets a high bar)

◦ A valid argument that does not merely show the conclusion is true

◦ But also why it is true (i.e., explanation)

◦ All the propositions in the argument must be necessary, general and eternal truths

◦ And must bottom out in fundamental certain truths (grasped by senses)

• Modern criticism: validation proceeds anti-causally

◦ The world causes our sensations

◦ But demonstration reasons from sensations to (our model of) the world

So it goes backwards, from the caused to the cause

• 2,000 years go by. . .
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Validation (Galileo)

• The dawn of (European) science

◦ Saw things never seen before (mountains on moon, sunspots, moons of Jupiter)

◦ Built mathematical models (velocity of falling body)

• Validation by “Method of Regress,” due to Zabarella (Padua)

◦ From observation, try to discern cause

◦ Then demonstrate that the cause leads to the observation

◦ Not circular: intermediate step of considering and testing the cause allows us to

understand the observation differently than before

• Modern criticism: an improvement on Aristotle, but still partially anti-causal

• Galileo also used falsification: e.g., phases of Venus falsify geocentric cosmology

• However, al-Haytham (circa 1,000) was closer to modern scientific method
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Validation (Scientific Method)

• Massive progress in science and engineering from Galileo to present

• But little change in validation: preference for small prediction errors,

simplicity and explanation; falsification acknowledged

◦ This is challenged by models that predict but do not explain

◦ “Those not shocked by quantum theory cannot possibly have understood it” (Bohr)

• Coherent treatments of validation are quite recent (Peirce, Vienna School)

◦ Explicit formulation and experimental testing of hypotheses (i.e., models, theories)

◦ Testing means looking for and evaluating prediction errors

◦ Falsification can be seen as extreme prediction errors

◦ Science is identified with (defined by) models that are potentially falsifiable (Popper)

• But that’s not how science is done: paradigms withstand prediction errors until. . . (Kuhn)

◦ Science advances one funeral at a time (Planck)

• Scientists appreciate Popper, philosophers appreciate Kuhn
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Modern Validation by Scientific Method

• Appreciation: validation proceeds causally

◦ The world causes our observations

◦ We use our model (of the world) to predict observations

◦ Then contemplate prediction error (or falsification if extreme)

• Confirmation Theory

◦ Consider conditional probability of an observation given one model vs. another

◦ Gives rise to Confirmation Measures (Carnap, Hempel)

◦ Applied to assessment of “weight” of evidence (Good & Turing)

◦ And then to software assurance

Google “rushby biblio” then it’s the latest (2022) tech report

• Aside: humans evolved to “weigh” evidence and it’s likely we use confirmation measures

rather than basic probabilities (cf. conjunction “fallacy” of Kahneman & Tversky)
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Further Aside: Models in Science and Engineering

• In his excellent book “Plato and the Nerd” Ed Lee observes that models are used in

diametrically opposite ways in science and engineering

• In science, models are descriptive and predictive: they tell how the world is

• In engineering, models are prescriptive: they tell how the world should be

• Problems if you confuse the two

• Further-Further Aside: in assurance

◦ You want a descriptive model of the world with the system in it, check it is safe etc.

◦ The designers had a prescriptive model of the system

◦ If you can show the actual system matches that model (i.e., verification)

◦ Then can use prescriptive system model plus descriptive world model to check safety
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Model-Based Control

• Conant & Ashby: “Every Good Regulator of a System Must be a Model of that System”

• In classical control theory,

A model is used in design but is not explicitly present in the operational system

• But as the world changes, so ought the model, then needs to be present in operational system

◦ e.g., pressure and temperature of atmosphere change as plane climbs

◦ So allow controller parameters to be adjusted during operation (adaptive control)

◦ Problem of validating the changing model at runtime

◦ cf. fatal crash of X-15: problem not in adaptive control considered alone, but in

presence of other failures—80% loss of effectiveness in one elevon

◦ FAA: Use multiple validated models and move between them (gain scheduling)

• May have uncertainty regarding the plant or environment

◦ Make more of the model explicit in the system

? And subject to modification or construction during operation

◦ But again, how do we validate the current model?

? Maybe apply modern FDIR: adjust model until predictions match observations

John Rushby, SR I Models, Perception, Validation p8



(Human) Perception

• Perception is about building a representation of the world (i.e., a model)

• That is useful for prediction (i.e., for planning actions)

• Let’s consider vision

• Early theories had “rays” coming out of the eyes and acting like a remote sense of touch

• Now, we at least have the optics right (al-Haytham again)

• But untutored view is that perception is built bottom up

◦ From distorted fuzzy pixels

◦ Through many levels of feature and object detection

◦ To the perceived image (i.e., model) of the world

? In humans it is conscious (so that we can report it), but doesn’t have to be

(cf. “blindsight”) and probably is not in animals

• Modern view: first steps OK, last one (bottom up construction of final image) not so

◦ Not enough information in instantaneous “snapshot”: need to integrate as a model

◦ Too much ambiguity (many worlds could cause same image)
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Modern Theories of Perception

• Helmholtz (1867) “Handbuch der Physiologischen Optik III”

• Gregory (1980) “Perceptions As Hypotheses” explicit comparison to scientific theories

• Clark, Hohwy, Friston: predictive coding, predictive error minimization, free energy

• Dominant theory in psychology, much of cogsci

◦ We have a hierarchy of models, descending from “upper levels” into the senses

◦ At each level, model predicts what lower one will perceive next

◦ Prediction error is used to adjust the model at each level

? Big error (“surprise,” or falsification) causes major reevaluation (System 2)

? Small errors lead to model refinement

� Conceptually, a Bayesian update, mechanized as iterative optimization

• Evidence:

◦ Optical illusions (cf. waking up in an unfamiliar room)

◦ Sight restored in adulthood to those born blind

◦ More neural pathways go “down” (predictions) than “up” (prediction errors)
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Validation of Perception

• Evolution must ensure that our perceptions are adequately comprehensive and correct

• Comprehensive is a function of an animal’s life style

◦ A frog surrounded by (edible) dead flies will starve: sees only moving ones

◦ We cannot sense magnetic fields, ultra-violet

• Correctness is universal: does the perceived model enable useful predictions?

• Validation through real-life decisions may be too infrequent and too late

• So should constantly validate correctness

◦ i.e., make predictions and check them

◦ Makes no sense to separate validation of model from its construction

◦ Hence evolution of predictive processing (just so story)

• Higher-level cognitive functions work in a similar way: mental models (Craik)
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Application to Autonomous Systems/Vehicles

• System builds model of its environment

◦ And uses that to plan and execute actions to achieve some goal

◦ Can check safety of proposed actions, given the model

◦ Aside: can also manage classical fault-tolerance of these mechanisms

• But the model is critical: has to be reasonably accurate

• System has perception based on cameras, lidar, radar, ultrasound etc.

◦ Feature and object detection largely based on machine learning

? Known to be flawed and unreliable

◦ And model is then typically built by “fusion” on these

• Criticism

◦ This is anti-causal (bottom up), has all the problems associated with that

◦ Concern focuses on machine learning and lower level perception

◦ But the model accumulates and integrates perception, and should be the focus

◦ Yet there is no validation of the model
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Model Validation

• Does the model enable accurate predictions?

• Validation through real-life decisions (i.e., driving) may be too infrequent and too late

• Testing cannot get there

• So correctness of the model should be constantly validated

◦ i.e., make predictions and check them

◦ Makes no sense to separate validation of model from its construction

◦ So change to a predictive processing architecture

• Predictive processing

◦ Use model to predict output from some stage of the perception pipeline

◦ Compare prediction to actual output

◦ Use prediction error to adjust the model

? Big error (“surprise,” or falsification) causes major reevaluation (“System 2 intervention”)

? Small errors lead to model refinement

� Conceptually, a Bayesian update, mechanized as iterative optimization
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Predictive Processing in Autonomous Vehicles

• The model and the output of perception pipeline may both use same representation

◦ Typically detected objects list (what each object is, size, velocity, intent, etc.)

◦ Plus occupancy grid (bird’s eye view of road and object layout)

• In which case, prediction is just time-advanced model

• So prediction error is simply difference between

◦ Current output of perception pipeline and time-advanced model

• And Bayesian update to model is a form of sensor fusion similar to Kalman filter

• Note that persistence of model masks intermittent perception faults.

• How can it fail? Systematic defects:

◦ Perception system is blind to red cars (actually some unnamed aspect of reality)

◦ Model contains no red cars, predicts no red cars

◦ No prediction errors. . . until you collide with a red car

◦ But if another car pulls in front of red car, it will vanish from view (occluded by red car)

◦ That will trigger surprise, so not all is lost

◦ But can we do better?
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Diversity as Protection for Systematic Defects

• Maintain two perception pipelines, same sensors, different ML architectures, training data

◦ Either feed both pipelines into same model

◦ Or use one as main model, other for checking safe actions

periodically swap them to avoid divergence

• Or add specialized perception pipelines

◦ Looking for specifically for hazards such as imminent collisions

◦ And feed those into the model

◦ Will trigger surprise when hazard detected that main pipeline missed
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Conclusion

• It’s been a long journey, from Aristotle to the present

• But we end up in fairly familiar territory

• Use a perception pipeline to build a model

• Novelty is how perception updates the model: model is given more weight than usual

◦ Equivalent to using prediction error to construct and validate model

◦ Conventionally, output of perception pipeline is the model

• Can use redundancy and diversity of perception to tolerate systematic faults

• And I think the approach can support a plausible case for assurance

• Much of this is in SafeComp 2020 paper with colleagues Susmit Jha and Shankar

“Model-Centered Assurance For Autonomous Systems” (on my web site)
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