IFIP 10.4 11 May 2022

Models and their Validation and their Role in Perception And in Safe Autonomous Vehicles

John Rushby

Computer Science Laboratory SRI International Menlo Park, CA

John Rushby, SRI

Models

- A model is a simplified description of something
 - To be used in explaining or predicting behavior of the actual thing
- Their use is probably as old as our species
- Maybe mythical/supernatural at first: thunder is caused by the gods
 - Prediction errors attributed to faulty interpretation rather than poor model (e.g., Oracle of Delphi)
- But some were geometric and quasi-mathematical: astronomy, Archimedes principle
 - Predict seasons, eclipses, conjunctions, etc.
 - Preference for explanatory models (Aristotle)
 - But also smaller prediction errors (Ptolemy)

Validation (Aristotle)

- Want an argument from observation to explanation (i.e., model)
- Notion of a demonstrative argument (sets a high bar)
 - $\circ\,$ A valid argument that does not merely show the conclusion is true
 - But also why it is true (i.e., explanation)
 - All the propositions in the argument must be necessary, general and eternal truths
 - And must bottom out in fundamental certain truths (grasped by senses)
- Modern criticism: validation proceeds anti-causally
 - The world causes our sensations
 - But demonstration reasons from sensations to (our model of) the world So it goes backwards, from the caused to the cause
- 2,000 years go by...

Validation (Galileo)

- The dawn of (European) science
 - Saw things never seen before (mountains on moon, sunspots, moons of Jupiter)
 - Built mathematical models (velocity of falling body)
- Validation by "Method of Regress," due to Zabarella (Padua)
 - From observation, try to discern cause
 - Then demonstrate that the cause leads to the observation
 - Not circular: intermediate step of considering and testing the cause allows us to understand the observation differently than before
- Modern criticism: an improvement on Aristotle, but still partially anti-causal
- Galileo also used falsification: e.g., phases of Venus falsify geocentric cosmology
- However, al-Haytham (circa 1,000) was closer to modern scientific method

Validation (Scientific Method)

- Massive progress in science and engineering from Galileo to present
- But little change in validation: preference for small prediction errors, simplicity and explanation; falsification acknowledged
 - This is challenged by models that predict but do not explain
 - "Those not shocked by quantum theory cannot possibly have understood it" (Bohr)
- Coherent treatments of validation are quite recent (Peirce, Vienna School)
 - Explicit formulation and experimental testing of hypotheses (i.e., models, theories)
 - Testing means looking for and evaluating prediction errors
 - Falsification can be seen as extreme prediction errors
 - Science is identified with (defined by) models that are potentially falsifiable (Popper)
- But that's not how science is done: paradigms withstand prediction errors until...(Kuhn)
 Science advances one funeral at a time (Planck)
- Scientists appreciate Popper, philosophers appreciate Kuhn

Modern Validation by Scientific Method

- Appreciation: validation proceeds causally
 - $\circ~$ The world causes our observations
 - $\circ\,$ We use our model (of the world) to predict observations
 - Then contemplate prediction error (or falsification if extreme)
- Confirmation Theory
 - Consider conditional probability of an observation given one model vs. another
 - Gives rise to Confirmation Measures (Carnap, Hempel)
 - Applied to assessment of "weight" of evidence (Good & Turing)
 - $\circ~$ And then to software assurance

Google "rushby biblio" then it's the latest (2022) tech report

• Aside: humans evolved to "weigh" evidence and it's likely we use confirmation measures rather than basic probabilities (cf. conjunction "fallacy" of Kahneman & Tversky)

Further Aside: Models in Science and Engineering

- In his excellent book "Plato and the Nerd" Ed Lee observes that models are used in diametrically opposite ways in science and engineering
- In science, models are descriptive and predictive: they tell how the world is
- In engineering, models are prescriptive: they tell how the world should be
- Problems if you confuse the two
- Further-Further Aside: in assurance
 - You want a descriptive model of the world with the system in it, check it is safe etc.
 - The designers had a prescriptive model of the system
 - If you can show the actual system matches that model (i.e., verification)
 - Then can use prescriptive system model plus descriptive world model to check safety

Model-Based Control

- Conant & Ashby: "Every Good Regulator of a System Must be a Model of that System"
- In classical control theory,

A model is used in design but is not explicitly present in the operational system

- But as the world changes, so ought the model, then needs to be present in operational system
 - e.g., pressure and temperature of atmosphere change as plane climbs
 - So allow controller parameters to be adjusted during operation (adaptive control)
 - Problem of validating the changing model at runtime
 - cf. fatal crash of X-15: problem not in adaptive control considered alone, but in presence of other failures—80% loss of effectiveness in one elevon
 - FAA: Use multiple validated models and move between them (gain scheduling)
- May have uncertainty regarding the plant or environment
 - $\circ\,$ Make more of the model explicit in the system
 - * And subject to modification or construction during operation
 - But again, how do we validate the current model?

* Maybe apply modern FDIR: adjust model until predictions match observations John Rushby, SRI Models, Perception, Validation p8

(Human) Perception

- Perception is about building a representation of the world (i.e., a model)
- That is useful for prediction (i.e., for planning actions)
- Let's consider vision
- Early theories had "rays" coming out of the eyes and acting like a remote sense of touch
- Now, we at least have the optics right (al-Haytham again)
- But untutored view is that perception is built bottom up
 - $\circ~$ From distorted fuzzy pixels
 - Through many levels of feature and object detection
 - To the perceived image (i.e., model) of the world
 - * In humans it is conscious (so that we can report it), but doesn't have to be (cf. "blindsight") and probably is not in animals
- Modern view: first steps OK, last one (bottom up construction of final image) not so
 - Not enough information in instantaneous "snapshot": need to integrate as a model
 - Too much ambiguity (many worlds could cause same image)

John Rushby, SRI

Modern Theories of Perception

- Helmholtz (1867) "Handbuch der Physiologischen Optik III"
- Gregory (1980) "Perceptions As Hypotheses" explicit comparison to scientific theories
- Clark, Hohwy, Friston: predictive coding, predictive error minimization, free energy
- Dominant theory in psychology, much of cogsci
 - We have a hierarchy of models, descending from "upper levels" into the senses
 - At each level, model predicts what lower one will perceive next
 - Prediction error is used to adjust the model at each level
 - * Big error ("surprise," or falsification) causes major reevaluation (System 2)
 - * Small errors lead to model refinement
 - ◊ Conceptually, a Bayesian update, mechanized as iterative optimization

• Evidence:

- Optical illusions (cf. waking up in an unfamiliar room)
- Sight restored in adulthood to those born blind
- More neural pathways go "down" (predictions) than "up" (prediction errors)

John Rushby, SRI

Validation of Perception

- Evolution must ensure that our perceptions are adequately comprehensive and correct
- Comprehensive is a function of an animal's life style

A frog surrounded by (edible) dead flies will starve: sees only moving ones
We cannot sense magnetic fields, ultra-violet

- Correctness is universal: does the perceived model enable useful predictions?
- Validation through real-life decisions may be too infrequent and too late
- So should constantly validate correctness
 - $\circ\,$ i.e., make predictions and check them
 - Makes no sense to separate validation of model from its construction
 - Hence evolution of predictive processing (just so story)
- Higher-level cognitive functions work in a similar way: mental models (Craik)

Application to Autonomous Systems/Vehicles

- System builds model of its environment
 - And uses that to plan and execute actions to achieve some goal
 - Can check safety of proposed actions, given the model
 - Aside: can also manage classical fault-tolerance of these mechanisms
- But the model is critical: has to be reasonably accurate
- System has perception based on cameras, lidar, radar, ultrasound etc.
 - Feature and object detection largely based on machine learning
 - * Known to be flawed and unreliable
 - $\circ\,$ And model is then typically built by "fusion" on these
- Criticism
 - This is anti-causal (bottom up), has all the problems associated with that
 - Concern focuses on machine learning and lower level perception
 - But the model accumulates and integrates perception, and should be the focus
 - $\circ~$ Yet there is no validation of the model

Model Validation

- Does the model enable accurate predictions?
- Validation through real-life decisions (i.e., driving) may be too infrequent and too late
- Testing cannot get there
- So correctness of the model should be constantly validated
 - $\circ\,$ i.e., make predictions and check them
 - Makes no sense to separate validation of model from its construction
 - So change to a predictive processing architecture
- Predictive processing
 - Use model to predict output from some stage of the perception pipeline
 - Compare prediction to actual output
 - $\circ~$ Use prediction error to adjust the model
 - * Big error ("surprise," or falsification) causes major reevaluation ("System 2 intervention")
 - * Small errors lead to model refinement
 - ◊ Conceptually, a Bayesian update, mechanized as iterative optimization

John Rushby, SRI

Predictive Processing in Autonomous Vehicles

- The model and the output of perception pipeline may both use same representation
 - Typically detected objects list (what each object is, size, velocity, intent, etc.)
 - Plus occupancy grid (bird's eye view of road and object layout)
- In which case, prediction is just time-advanced model
- So prediction error is simply difference between
 - Current output of perception pipeline and time-advanced model
- And Bayesian update to model is a form of sensor fusion similar to Kalman filter
- Note that persistence of model masks intermittent perception faults.
- How can it fail? Systematic defects:
 - Perception system is blind to red cars (actually some unnamed aspect of reality)
 - Model contains no red cars, predicts no red cars
 - $\circ~$ No prediction errors. . . until you collide with a red car
 - But if another car pulls in front of red car, it will vanish from view (occluded by red car)
 - $\circ\,$ That will trigger surprise, so not all is lost
 - $\circ~$ But can we do better?

Diversity as Protection for Systematic Defects

- Maintain two perception pipelines, same sensors, different ML architectures, training data
 - Either feed both pipelines into same model
 - Or use one as main model, other for checking safe actions periodically swap them to avoid divergence
- Or add specialized perception pipelines
 - Looking for specifically for hazards such as imminent collisions
 - And feed those into the model
 - Will trigger surprise when hazard detected that main pipeline missed

Conclusion

- It's been a long journey, from Aristotle to the present
- But we end up in fairly familiar territory
- Use a perception pipeline to build a model
- Novelty is how perception updates the model: model is given more weight than usual
 Equivalent to using prediction error to construct and validate model
 Conventionally, output of perception pipeline is the model
- Can use redundancy and diversity of perception to tolerate systematic faults
- And I think the approach can support a plausible case for assurance
- Much of this is in SafeComp 2020 paper with colleagues Susmit Jha and Shankar "Model-Centered Assurance For Autonomous Systems" (on my web site)

John Rushby, SRI