Models and their Validation and their Role in Perception
And in Safe Autonomous Vehicles

John Rushby

Computer Science Laboratory
SRI International
Menlo Park, CA
Models

- A model is a simplified description of something
 - To be used in explaining or predicting behavior of the actual thing

- Their use is probably as old as our species

- Maybe mythical/supernatural at first: thunder is caused by the gods
 - Prediction errors attributed to faulty interpretation rather than poor model
 (e.g., Oracle of Delphi)

- But some were geometric and quasi-mathematical: astronomy, Archimedes principle
 - Predict seasons, eclipses, conjunctions, etc.
 - Preference for explanatory models (Aristotle)
 - But also smaller prediction errors (Ptolemy)
Validation (Aristotle)

• Want an argument from observation to explanation (i.e., model)

• Notion of a **demonstrative argument** (sets a high bar)
 ○ A valid argument that does not merely show the conclusion **is** true
 ○ But also **why** it is true (i.e., explanation)
 ○ All the propositions in the argument must be necessary, general and eternal truths
 ○ And must bottom out in fundamental certain truths (grasped by senses)

• Modern criticism: validation proceeds **anti-causally**
 ○ The world causes our sensations
 ○ But demonstration reasons from sensations to (our model of) the world
 So it goes **backwards**, from the **caused** to the **cause**

• 2,000 years go by...
Validation (Galileo)

- The dawn of (European) science
 - Saw things never seen before (mountains on moon, sunspots, moons of Jupiter)
 - Built mathematical models (velocity of falling body)

- Validation by “Method of Regress,” due to Zabarella (Padua)
 - From observation, try to discern cause
 - Then demonstrate that the cause leads to the observation
 - Not circular: intermediate step of considering and testing the cause allows us to understand the observation differently than before

- Modern criticism: an improvement on Aristotle, but still partially anti-causal

- Galileo also used falsification: e.g., phases of Venus falsify geocentric cosmology

- However, al-Haytham (circa 1,000) was closer to modern scientific method
Validation (Scientific Method)

• Massive progress in science and engineering from Galileo to present

• But little change in validation: preference for small prediction errors, simplicity and explanation; falsification acknowledged
 ○ This is challenged by models that predict but do not explain
 ○ “Those not shocked by quantum theory cannot possibly have understood it” (Bohr)

• Coherent treatments of validation are quite recent (Peirce, Vienna School)
 ○ Explicit formulation and experimental testing of hypotheses (i.e., models, theories)
 ○ Testing means looking for and evaluating prediction errors
 ○ Falsification can be seen as extreme prediction errors
 ○ Science is identified with (defined by) models that are potentially falsifiable (Popper)

• But that’s not how science is done: paradigms withstand prediction errors until. . . (Kuhn)
 ○ Science advances one funeral at a time (Planck)

• Scientists appreciate Popper, philosophers appreciate Kuhn
Modern Validation by Scientific Method

• Appreciation: validation proceeds **causally**
 ◦ The world causes our observations
 ◦ We use our model (of the world) to **predict** observations
 ◦ Then contemplate **prediction error** (or falsification if extreme)

• **Confirmation Theory**
 ◦ Consider conditional probability of an observation given one model vs. another
 ◦ Gives rise to **Confirmation Measures** (Carnap, Hempel)
 ◦ Applied to assessment of “**weight**” of evidence (Good & Turing)
 ◦ And then to **software assurance**
 Google “rushby biblio” then it’s the latest (2022) tech report

• **Aside**: humans evolved to “weigh” evidence and it’s likely we use confirmation measures rather than basic probabilities (cf. conjunction “fallacy” of Kahneman & Tversky)
In his excellent book “Plato and the Nerd” Ed Lee observes that models are used in diametrically opposite ways in science and engineering.

In science, models are descriptive and predictive: they tell how the world is.

In engineering, models are prescriptive: they tell how the world should be.

Problems if you confuse the two.

Further-Further Aside: in assurance
- You want a descriptive model of the world with the system in it, check it is safe etc.
- The designers had a prescriptive model of the system.
- If you can show the actual system matches that model (i.e., verification).
- Then can use prescriptive system model plus descriptive world model to check safety.
Model-Based Control

- **Conant & Ashby**: “Every Good Regulator of a System Must be a Model of that System”

- In classical control theory,

 A model is used in design but is not explicitly present in the operational system

- But as the **world changes**, so **ought the model**, then needs to be **present** in operational system

 - e.g., pressure and temperature of atmosphere change as plane climbs

 - So allow controller parameters to be **adjusted during operation** (adaptive control)

 - Problem of validating the changing model at runtime

 - cf. fatal crash of X-15: problem not in adaptive control considered alone, but in presence of other failures—80% loss of effectiveness in one elevon

 - FAA: Use **multiple validated models** and move between them (gain scheduling)

- May have **uncertainty** regarding the plant or environment

 - Make more of the model **explicit** in the system

 - And subject to modification or **construction during operation**

 - But again, how do we **validate the current model**?

 - Maybe apply modern FDIR: adjust model until **predictions match observations**
(Human) Perception

- **Perception** is about building a representation of the world (i.e., a model)
- That is useful for prediction (i.e., for **planning actions**)
- Let’s consider vision
- Early theories had “rays” coming out of the eyes and acting like a remote sense of touch
- Now, we at least have the optics right (al-Haytham again)
- But untutored view is that perception is built **bottom up**
 - From distorted fuzzy pixels
 - Through many levels of **feature and object detection**
 - To the **perceived image** (i.e., model) of the world
 - In humans it is conscious (so that we can report it), but doesn’t have to be (cf. “blindsight”) and probably is not in animals
- Modern view: first steps OK, last one (bottom up construction of final image) not so
 - Not enough information in instantaneous “snapshot”: need to **integrate** as a model
 - Too much **ambiguity** (many worlds could cause same image)
Modern Theories of Perception

- **Helmholtz** (1867) “Handbuch der Physiologischen Optik III”
- **Gregory** (1980) “Perceptions As Hypotheses” explicit comparison to scientific theories
- **Clark, Hohwy, Friston**: predictive coding, predictive error minimization, free energy
- Dominant theory in psychology, much of cogsci
 - We have a hierarchy of models, descending from “upper levels” into the senses
 - At each level, model predicts what lower one will perceive next
 - Prediction error is used to adjust the model at each level
 - Big error (“surprise,” or falsification) causes major reevaluation (System 2)
 - Small errors lead to model refinement
 - Conceptually, a Bayesian update, mechanized as iterative optimization
- **Evidence**:
 - Optical illusions (cf. waking up in an unfamiliar room)
 - Sight restored in adulthood to those born blind
 - More neural pathways go “down” (predictions) than “up” (prediction errors)
Validation of Perception

- Evolution must ensure that our perceptions are **adequately comprehensive and correct**

- **Comprehensive** is a function of an animal’s life style
 - A frog surrounded by (edible) dead flies will starve: sees only moving ones
 - We cannot sense magnetic fields, ultra-violet

- **Correctness is universal**: does the perceived model enable useful predictions?

- Validation through **real-life decisions** may be too infrequent and too late

- So should **constantly validate correctness**
 - i.e., make predictions and check them
 - **Makes no sense to separate validation of model from its construction**
 - Hence evolution of **predictive processing** (just so story)

- **Higher-level cognitive functions** work in a similar way: mental models (Craik)
Application to Autonomous Systems/Vehicles

- **System builds model of its environment**
 - And uses that to **plan and execute actions** to achieve some goal
 - Can **check safety** of proposed actions, **given the model**
 - Aside: can also manage classical fault-tolerance of these mechanisms

- **But the model is critical:** has to be reasonably accurate

- System has perception based on cameras, lidar, radar, ultrasound etc.
 - **Feature and object detection** largely based on machine learning
 - Known to be **flawed and unreliable**
 - And model is then typically built by “fusion” on these

- **Criticism**
 - This is **anti-causal** (bottom up), has all the problems associated with that
 - Concern focuses on machine learning and lower level perception
 - But the **model** accumulates and integrates perception, and **should be the focus**
 - Yet there is **no validation of the model**
Model Validation

- Does the model enable accurate predictions?
- Validation through real-life decisions (i.e., driving) may be too infrequent and too late
- Testing cannot get there
- So correctness of the model should be constantly validated
 - i.e., make predictions and check them
 - Makes no sense to separate validation of model from its construction
 - So change to a predictive processing architecture

- Predictive processing
 - Use model to predict output from some stage of the perception pipeline
 - Compare prediction to actual output
 - Use prediction error to adjust the model
 - Big error ("surprise," or falsification) causes major reevaluation ("System 2 intervention")
 - Small errors lead to model refinement
 - Conceptually, a Bayesian update, mechanized as iterative optimization
Predictive Processing in Autonomous Vehicles

- The **model** and the **output of perception pipeline** may both use same **representation**
 - Typically **detected objects list** (what each object is, size, velocity, intent, etc.)
 - Plus **occupancy grid** (bird’s eye view of road and object layout)
- In which case, **prediction** is just **time-advanced model**
- So **prediction error** is simply **difference between**
 - Current **output of perception pipeline** and **time-advanced model**
- And Bayesian **update to model** is a form of **sensor fusion** similar to **Kalman filter**
- Note that persistence of model masks **intermittent perception faults**.
- **How can it fail?** **Systematic defects:**
 - Perception system is blind to red cars (actually some unnamed aspect of reality)
 - Model contains no red cars, predicts no red cars
 - No prediction errors... until you **collide with a red car**
 - But if another car **pulls in front of red car**, it will **vanish** from view (occluded by red car)
 - That will trigger **surprise**, so not all is lost
 - But can we do better?
Diversity as Protection for Systematic Defects

- Maintain **two perception pipelines**, same sensors, **different** ML architectures, training data
 - Either feed both pipelines into **same model**
 - Or use one as **main model**, other for **checking** safe actions periodically swap them to avoid divergence

- Or add **specialized perception pipelines**
 - Looking for **specifically for hazards** such as imminent collisions
 - And feed those into the model
 - Will **trigger surprise** when hazard detected that main pipeline missed
Conclusion

• It’s been a long journey, from Aristotle to the present

• But we end up in fairly familiar territory

• Use a perception pipeline to build a model

• Novelty is how perception updates the model: model is given more weight than usual
 ○ Equivalent to using prediction error to construct and validate model
 ○ Conventionally, output of perception pipeline is the model

• Can use redundancy and diversity of perception to tolerate systematic faults

• And I think the approach can support a plausible case for assurance

• Much of this is in SafeComp 2020 paper with colleagues Susmit Jha and Shankar “Model-Centered Assurance For Autonomous Systems” (on my web site)