HACMS Panel, LAW 2012, Orlando FL

HACMS Ground Team Integration

John Rushby

Computer Science Laboratory
SRI International
Menlo Park CA USA

John Rushby, SRI Evidential Tool Bus 1

John

Overview

SRI performs in the systems and controls task areas

And we are also the Ground Team Integrator

o Assembling and integrating code from other performers
and getting it onto the Landshark and Cadillac

o Integrating the formal assurances supplied with the code

I'm going to focus on the last of these

And our technology for doing this
o The Evidential Tool Bus (ETB)

Rushby, SR

Evidential Tool Bus 2

Aside: Low-Level Formal Integrations

e Modern formal verification and synthesis are seldom
performed with a single monolithic tool (cf. VCQC)
o Emerging market of interacting specialized components
o Very rapid technology development

o E.g., predicate abstractors, abstract interpreters,
relational abstractors, invariant generators, (infinite)
bounded model checkers, SMT solvers, language
translators, typecheckers, VC generators

e Typical verifications weave several supported and ad hoc
tools plus lots of glue code into a one-off workflow

e Almost impossible to replicate someone else’s results

e But Airbus (say) needs to be able to trust the claims of these
improvisations

e And to be able to revisit a modified design in 50 years time

John Rushby, SRI Evidential Tool Bus 3

Aside: High-Level Formal Integrations
e Separately verified or synthesized elements need to compose

e Some components discharge assumptions of others

o Possibly mutually (that's assume/guarantee reasoning)

e Others have their own assumptions, models of the
environment, etc. and we need overall coherence

e We use idea of an assurance case (cf. safety case) as the
top-level organizing principle

o Claims, Argument, Evidence

e \What's the difference between an assurance case and a
formal verification or synthesis?

o Verification allays logic doubts
o What remains are epistemic doubts

Cf. V&V: verification and validation

John Rushby, SRI Evidential Tool Bus 4

Evidential Tool Bus: Purpose
The Evidential Tool Bus

e A way to assemble the claims made by different formally
assured developments using different tools

o And to compose them into an assurance case
e And a way to assemble the code they generate

e In a way that keeps everything consistent
The Evidential Tool Bus

e A distributed, location-transparent way of invoking tools
o A way for one tool to invoke services of another
o And for scripting workflows

e And for accessing files, specs, etc.

e Cost of attaching tools to the ETB must be low
o Lightweight wrappers

o No mandated logic, format, methodology
John Rushby, SRI Evidential Tool Bus 5

ETB Architecture: Servers, Tools and Files

e ETB needs to be distributed

o Some tools run only in specific places, on specific systems
o Users are in many different places

e SO the ETB is a fully connected graph of servers

o Distributed on a subnet or via SSH tunnels
e Servers can come and go

e Servers can run various tools (and tool components)

o Some servers may run no tools

o Some may run many

o Tools can run on one or more servers
o Tools can be scripts

e Servers also store files

John Rushby, SRI Evidential Tool Bus 6

ETB: Picture

Clients Clients

O

| |
| |
AN
N -
N -

Q— - -[Server Server Q

S

(O

. 7 Clients
Clients \ f
Q Server Server

O O O

John Rushby, SRI Evidential Tool Bus 7

Architecture: Clients

e Humans interact with the ETB via clients

e Which connect to a server using an API (about 20 methods)

e Clients have no ETB state,

e Currently, we provide just a simple shell

e Hope that safety case managers such as ASCE will choose to
use ETB as their back end (i.e., they become ETB clients)

John Rushby, SRI Evidential Tool Bus 8

Architecture: Mechanisms

e Each server runs a simple daemon (written in Python) that
exchanges messages with the others

o When something happens
o Or periodic heartbeat

e Underlying protocols use XML-RPC
o With data represented in JSON

e Files are stored in a GIT repository on each server

o Hence, are global, but consistency is lazy (by need)

o Referenced by name (relative to server directory)
and SHA1 hash

o Hence, unique

John Rushby, SRI Evidential Tool Bus 9

John

ETB Predicates, Claims, and Workflows

The unit for computation and for claims is a predicate

o Like a (remote) procedure call that also attests a claim

An ETB predicate is of the form
o name(argl, arg2, ..., argn)
Where the args are variables, or data

o If this is issued by a client, then it's a query
o If this is the output of a tool, then it’'s a claim

Claims are recorded in the ETB claims table

o Which is later analyzed to yield the assurance case

The name can be interpreted or uninterpreted

o interpreted predicates cause invocation of tools
o uninterpreted predicates invoke workflows

Rushby, SRI Evidential Tool Bus 10

John

Example Interpreted Predicates

YicesCheck(Fmla, SAT?)

o Where Fmla is an SMT formula (or file)
o And SAT? is a variable

This is a query (queries can also be ground)

Can be evaluated by a server that has the Yices SMT solver
o Will instantiate the variables
o And yield a claim (attested ground predicate)

o e.g. YicesCheck(Fmla, "satisfiable") where satisfiable
is a literal that indicates Fmla is satisfiable

Can then do YicesShowModel (Fmla, MODEL?) to obtain model

Claims Table keeps detailed log of claims

Rushby, SR Evidential Tool Bus 11

Tools, Wrappers, Scripts

e [ools attach to the ETB via wrappers

o Typically a dozen lines of Python
o EXport appropriate predicates for that tool
o Possibly of various granularities

* e.g., specific proof vs. all proofs in a file

e A wrapper may include fairly complex scripting

o Can issue queries, make claims (including “error claims’)

o Can establish sessions, run interactive tools and invoke
external activity (e.g., “ask Sam to prove this")

e Later, may want to deconstruct tools into shared components

e Claims established by interpreted predicates provide
attestation (e.g., “proved by PVS"”, “John says it's so")

e But are internally opaque (trust bottoms out here)
o i.e., they do not provide an ETB-level proof
o That's what uninterpreted predicates are for

John Rushby, SRI Evidential Tool Bus 12

Support Tools
e Some interpreted tools just check the format of a file
e Others do translations between formats/logics

e Not everything is a specification or a theorem

o Also have counterexamples, sets of predicates (for
predicate abstraction), interpolants, etc.

o Anticipate evolution of a 2-dimensional ontology
*x Kinds of things x logic/representation

e Some tools run a makefile, create code

o Code goes in a file, just like other data

e At present, limited fault tolerance, load balancing, security,
job management

John Rushby, SRI Evidential Tool Bus 13

Uninterpreted Predicates
e ETB has a simple logic engine (inspired by Datalog)

e Uninterpreted predicates are defined by Horn-clause rules that
are evaluated directly by the ETB: e.qg.,

prove(F,M,P) :- sal file(F),
sal _smc(F,P),
sal_deadlock_check(F,M).

e [hese define workflows
e Evaluation builds an ETB proof connecting claims

e \Workflows can provide different proof modes
o e.g., discovery vs. certification
o First might call many SMT solvers, use first to complete
* T here's an API query for tool completion
o Second might call many, require all to give same answer
o Or might call a trusted solver

John Rushby, SRI Evidential Tool Bus 14

ETB: Proof Tree

This is from the query prove(short.sal, main, thl)
using the rule on the previous page

sal_smc(short.sal, th1) sal_deadlock_check(short.sal, main)
___________:A____K _________
|
i sal_smc(short.sal, th1), sal_deadlock_check(short.sal, main) | sal_file(short.sal)

prove(short.sal, main, th1)

John Rushby, SRI Evidential Tool Bus 15

Conclusion

e ETB tries to address two urgent new problems

o Linking tools and components together into flexible
workflows

o Tracking and assembling the interdependent claims of
multiple tools working on part of the same problem

e Bridges the gap between formal verification/synthesis and
assurance

e Creates the opportunity to formalize the upper levels of
argument

o Cf. Adelard FOG project
e And exposes the epistemic elements to scrutiny

e \Workshop VeriSure: Verification and Assurance at CAV
2013, St Petersburg

John Rushby, SRI Evidential Tool Bus 16

