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John

Overview

SRI performs in the systems and controls task areas

And we are also the Ground Team Integrator

o Assembling and integrating code from other performers
and getting it onto the Landshark and Cadillac

o Integrating the formal assurances supplied with the code

I'm going to focus on the last of these

And our technology for doing this
o The Evidential Tool Bus (ETB)
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Aside: Low-Level Formal Integrations

e Modern formal verification and synthesis are seldom
performed with a single monolithic tool (cf. VCQC)
o Emerging market of interacting specialized components
o Very rapid technology development

o E.g., predicate abstractors, abstract interpreters,
relational abstractors, invariant generators, (infinite)
bounded model checkers, SMT solvers, language
translators, typecheckers, VC generators

e Typical verifications weave several supported and ad hoc
tools plus lots of glue code into a one-off workflow

e Almost impossible to replicate someone else’s results

e But Airbus (say) needs to be able to trust the claims of these
improvisations

e And to be able to revisit a modified design in 50 years time
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Aside: High-Level Formal Integrations
e Separately verified or synthesized elements need to compose

e Some components discharge assumptions of others

o Possibly mutually (that's assume/guarantee reasoning)

e Others have their own assumptions, models of the
environment, etc. and we need overall coherence

e We use idea of an assurance case (cf. safety case) as the
top-level organizing principle

o Claims, Argument, Evidence

e \What's the difference between an assurance case and a
formal verification or synthesis?

o Verification allays logic doubts
o What remains are epistemic doubts

Cf. V&V: verification and validation
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Evidential Tool Bus: Purpose
The Evidential Tool Bus

e A way to assemble the claims made by different formally
assured developments using different tools

o And to compose them into an assurance case
e And a way to assemble the code they generate

e In a way that keeps everything consistent
The Evidential Tool Bus

e A distributed, location-transparent way of invoking tools
o A way for one tool to invoke services of another
o And for scripting workflows

e And for accessing files, specs, etc.

e Cost of attaching tools to the ETB must be low
o Lightweight wrappers

o No mandated logic, format, methodology
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ETB Architecture: Servers, Tools and Files

e ETB needs to be distributed

o Some tools run only in specific places, on specific systems
o Users are in many different places

e SO the ETB is a fully connected graph of servers

o Distributed on a subnet or via SSH tunnels
e Servers can come and go

e Servers can run various tools (and tool components)

o Some servers may run no tools

o Some may run many

o Tools can run on one or more servers
o Tools can be scripts

e Servers also store files
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ETB: Picture

Clients Clients

O

| |
| |
AN
N -
N -

Q— - -[ Server Server Q

S

(O

. 7 Clients
Clients \ f
Q Server Server

O O O

John Rushby, SRI Evidential Tool Bus 7




Architecture: Clients

e Humans interact with the ETB via clients

e Which connect to a server using an API (about 20 methods)

e Clients have no ETB state,

e Currently, we provide just a simple shell

e Hope that safety case managers such as ASCE will choose to
use ETB as their back end (i.e., they become ETB clients)
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Architecture: Mechanisms

e Each server runs a simple daemon (written in Python) that
exchanges messages with the others

o When something happens
o Or periodic heartbeat

e Underlying protocols use XML-RPC
o With data represented in JSON

e Files are stored in a GIT repository on each server

o Hence, are global, but consistency is lazy (by need)

o Referenced by name (relative to server directory)
and SHA1 hash

o Hence, unique
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ETB Predicates, Claims, and Workflows

The unit for computation and for claims is a predicate

o Like a (remote) procedure call that also attests a claim

An ETB predicate is of the form
o name(argl, arg2, ..., argn)
Where the args are variables, or data

o If this is issued by a client, then it's a query
o If this is the output of a tool, then it’'s a claim

Claims are recorded in the ETB claims table

o Which is later analyzed to yield the assurance case

The name can be interpreted or uninterpreted

o interpreted predicates cause invocation of tools
o uninterpreted predicates invoke workflows
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Example Interpreted Predicates

YicesCheck(Fmla, SAT?)

o Where Fmla is an SMT formula (or file)
o And SAT? is a variable

This is a query (queries can also be ground)

Can be evaluated by a server that has the Yices SMT solver
o Will instantiate the variables
o And yield a claim (attested ground predicate)

o e.g. YicesCheck(Fmla, "satisfiable") where satisfiable
is a literal that indicates Fmla is satisfiable

Can then do YicesShowModel (Fmla, MODEL?) to obtain model

Claims Table keeps detailed log of claims
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Tools, Wrappers, Scripts

e [ools attach to the ETB via wrappers

o Typically a dozen lines of Python
o EXport appropriate predicates for that tool
o Possibly of various granularities

* e.g., specific proof vs. all proofs in a file

e A wrapper may include fairly complex scripting

o Can issue queries, make claims (including “error claims’ )

o Can establish sessions, run interactive tools and invoke
external activity (e.g., “ask Sam to prove this")

e Later, may want to deconstruct tools into shared components

e Claims established by interpreted predicates provide
attestation (e.g., “proved by PVS"”, “John says it's so")

e But are internally opaque (trust bottoms out here)
o i.e., they do not provide an ETB-level proof
o That's what uninterpreted predicates are for
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Support Tools
e Some interpreted tools just check the format of a file
e Others do translations between formats/logics

e Not everything is a specification or a theorem

o Also have counterexamples, sets of predicates (for
predicate abstraction), interpolants, etc.

o Anticipate evolution of a 2-dimensional ontology
*x Kinds of things x logic/representation

e Some tools run a makefile, create code

o Code goes in a file, just like other data

e At present, limited fault tolerance, load balancing, security,
job management
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Uninterpreted Predicates
e ETB has a simple logic engine (inspired by Datalog)

e Uninterpreted predicates are defined by Horn-clause rules that
are evaluated directly by the ETB: e.qg.,

prove(F,M,P) :- sal file(F),
sal _smc(F,P),
sal_deadlock_check(F,M).

e [ hese define workflows
e Evaluation builds an ETB proof connecting claims

e \Workflows can provide different proof modes
o e.g., discovery vs. certification
o First might call many SMT solvers, use first to complete
* T here's an API query for tool completion
o Second might call many, require all to give same answer
o Or might call a trusted solver
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ETB: Proof Tree

This is from the query prove(short.sal, main, thl)
using the rule on the previous page

sal_smc(short.sal, th1) sal_deadlock_check(short.sal, main)
___________:A____K _________
|
i sal_smc(short.sal, th1), sal_deadlock_check(short.sal, main) | sal_file(short.sal)

prove(short.sal, main, th1)
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Conclusion

e ETB tries to address two urgent new problems

o Linking tools and components together into flexible
workflows

o Tracking and assembling the interdependent claims of
multiple tools working on part of the same problem

e Bridges the gap between formal verification/synthesis and
assurance

e Creates the opportunity to formalize the upper levels of
argument

o Cf. Adelard FOG project
e And exposes the epistemic elements to scrutiny

e \Workshop VeriSure: Verification and Assurance at CAV
2013, St Petersburg
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