
HACMS Panel, LAW 2012, Orlando FL



HACMS Ground Team Integration

John Rushby

Computer Science Laboratory

SRI International

Menlo Park CA USA

John Rushby, SR I Evidential Tool Bus 1



Overview

• SRI performs in the systems and controls task areas

• And we are also the Ground Team Integrator

◦ Assembling and integrating code from other performers

and getting it onto the Landshark and Cadillac

◦ Integrating the formal assurances supplied with the code

• I’m going to focus on the last of these

• And our technology for doing this

◦ The Evidential Tool Bus (ETB)

John Rushby, SR I Evidential Tool Bus 2



Aside: Low-Level Formal Integrations

• Modern formal verification and synthesis are seldom

performed with a single monolithic tool (cf. VCC)

◦ Emerging market of interacting specialized components

◦ Very rapid technology development

◦ E.g., predicate abstractors, abstract interpreters,

relational abstractors, invariant generators, (infinite)

bounded model checkers, SMT solvers, language

translators, typecheckers, VC generators

• Typical verifications weave several supported and ad hoc

tools plus lots of glue code into a one-off workflow

• Almost impossible to replicate someone else’s results

• But Airbus (say) needs to be able to trust the claims of these

improvisations

• And to be able to revisit a modified design in 50 years time

John Rushby, SR I Evidential Tool Bus 3



Aside: High-Level Formal Integrations

• Separately verified or synthesized elements need to compose

• Some components discharge assumptions of others

◦ Possibly mutually (that’s assume/guarantee reasoning)

• Others have their own assumptions, models of the

environment, etc. and we need overall coherence

• We use idea of an assurance case (cf. safety case) as the

top-level organizing principle

◦ Claims, Argument, Evidence

• What’s the difference between an assurance case and a

formal verification or synthesis?

◦ Verification allays logic doubts

◦ What remains are epistemic doubts

Cf. V&V: verification and validation

John Rushby, SR I Evidential Tool Bus 4



Evidential Tool Bus: Purpose

The Evidential Tool Bus

• A way to assemble the claims made by different formally

assured developments using different tools

◦ And to compose them into an assurance case

• And a way to assemble the code they generate

• In a way that keeps everything consistent

The Evidential Tool Bus

• A distributed, location-transparent way of invoking tools

◦ A way for one tool to invoke services of another

◦ And for scripting workflows

• And for accessing files, specs, etc.

• Cost of attaching tools to the ETB must be low

◦ Lightweight wrappers

◦ No mandated logic, format, methodology
John Rushby, SR I Evidential Tool Bus 5



ETB Architecture: Servers, Tools and Files

• ETB needs to be distributed

◦ Some tools run only in specific places, on specific systems

◦ Users are in many different places

• So the ETB is a fully connected graph of servers

◦ Distributed on a subnet or via SSH tunnels

• Servers can come and go

• Servers can run various tools (and tool components)

◦ Some servers may run no tools

◦ Some may run many

◦ Tools can run on one or more servers

◦ Tools can be scripts

• Servers also store files

John Rushby, SR I Evidential Tool Bus 6



ETB: Picture

Clients

Server Server

Server Server

Clients Clients

Clients

John Rushby, SR I Evidential Tool Bus 7



Architecture: Clients

• Humans interact with the ETB via clients

• Which connect to a server using an API (about 20 methods)

• Clients have no ETB state,

• Currently, we provide just a simple shell

• Hope that safety case managers such as ASCE will choose to

use ETB as their back end (i.e., they become ETB clients)

John Rushby, SR I Evidential Tool Bus 8



Architecture: Mechanisms

• Each server runs a simple daemon (written in Python) that

exchanges messages with the others

◦ When something happens

◦ Or periodic heartbeat

• Underlying protocols use XML-RPC

◦ With data represented in JSON

• Files are stored in a GIT repository on each server

◦ Hence, are global, but consistency is lazy (by need)

◦ Referenced by name (relative to server directory)

and SHA1 hash

◦ Hence, unique

John Rushby, SR I Evidential Tool Bus 9



ETB Predicates, Claims, and Workflows

• The unit for computation and for claims is a predicate

◦ Like a (remote) procedure call that also attests a claim

• An ETB predicate is of the form

◦ name(arg1, arg2, ..., argn)

Where the args are variables, or data

◦ If this is issued by a client, then it’s a query

◦ If this is the output of a tool, then it’s a claim

• Claims are recorded in the ETB claims table

◦ Which is later analyzed to yield the assurance case

• The name can be interpreted or uninterpreted

◦ interpreted predicates cause invocation of tools

◦ uninterpreted predicates invoke workflows

John Rushby, SR I Evidential Tool Bus 10



Example Interpreted Predicates

• YicesCheck(Fmla, SAT?)

◦ Where Fmla is an SMT formula (or file)

◦ And SAT? is a variable

This is a query (queries can also be ground)

• Can be evaluated by a server that has the Yices SMT solver

◦ Will instantiate the variables

◦ And yield a claim (attested ground predicate)

◦ e.g. YicesCheck(Fmla, "satisfiable") where satisfiable

is a literal that indicates Fmla is satisfiable

• Can then do YicesShowModel(Fmla, MODEL?) to obtain model

• Claims Table keeps detailed log of claims

John Rushby, SR I Evidential Tool Bus 11



Tools, Wrappers, Scripts

• Tools attach to the ETB via wrappers

◦ Typically a dozen lines of Python

◦ Export appropriate predicates for that tool

◦ Possibly of various granularities

? e.g., specific proof vs. all proofs in a file

• A wrapper may include fairly complex scripting

◦ Can issue queries, make claims (including “error claims”)

◦ Can establish sessions, run interactive tools and invoke

external activity (e.g., “ask Sam to prove this”)

• Later, may want to deconstruct tools into shared components

• Claims established by interpreted predicates provide

attestation (e.g., “proved by PVS”, “John says it’s so”)

• But are internally opaque (trust bottoms out here)

◦ i.e., they do not provide an ETB-level proof

◦ That’s what uninterpreted predicates are for

John Rushby, SR I Evidential Tool Bus 12



Support Tools

• Some interpreted tools just check the format of a file

• Others do translations between formats/logics

• Not everything is a specification or a theorem

◦ Also have counterexamples, sets of predicates (for

predicate abstraction), interpolants, etc.

◦ Anticipate evolution of a 2-dimensional ontology

? Kinds of things x logic/representation

• Some tools run a makefile, create code

◦ Code goes in a file, just like other data

• At present, limited fault tolerance, load balancing, security,

job management

John Rushby, SR I Evidential Tool Bus 13



Uninterpreted Predicates

• ETB has a simple logic engine (inspired by Datalog)

• Uninterpreted predicates are defined by Horn-clause rules that

are evaluated directly by the ETB: e.g.,

prove(F,M,P) :- sal file(F),

sal smc(F,P),

sal deadlock check(F,M).

• These define workflows

• Evaluation builds an ETB proof connecting claims

• Workflows can provide different proof modes

◦ e.g., discovery vs. certification

◦ First might call many SMT solvers, use first to complete

? There’s an API query for tool completion

◦ Second might call many, require all to give same answer

◦ Or might call a trusted solver

John Rushby, SR I Evidential Tool Bus 14



ETB: Proof Tree

This is from the query prove(short.sal, main, th1)

using the rule on the previous page

prove(short.sal, main, th1)

sal_file(short.sal), sal_smc(short.sal, th1), sal_deadlock_check(short.sal, main)

sal_smc(short.sal, th1)

sal_smc(short.sal, th1), sal_deadlock_check(short.sal, main) sal_file(short.sal)

sal_deadlock_check(short.sal, main)

John Rushby, SR I Evidential Tool Bus 15



Conclusion

• ETB tries to address two urgent new problems

◦ Linking tools and components together into flexible

workflows

◦ Tracking and assembling the interdependent claims of

multiple tools working on part of the same problem

• Bridges the gap between formal verification/synthesis and

assurance

• Creates the opportunity to formalize the upper levels of

argument

◦ Cf. Adelard FOG project

• And exposes the epistemic elements to scrutiny

• Workshop VeriSure: Verification and Assurance at CAV

2013, St Petersburg

John Rushby, SR I Evidential Tool Bus 16


