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Project Context

• New 3-year project under IVHM

(Integrated Vehicle Health Management)

• Started January 2008

• Cooperative agreement with NASA LaRC

◦ Managed by Ben DiVito

• Approximately equal split between SRI and NIA

• Describe our technology, ideas, approach, and seek your input
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Technical Context

• Diagnostic and monitoring systems are elements of IVHM

• Monitor physical aspects of an aircraft for indications of

problems

◦ May then alert maintenance or flight crews

◦ Or may try to diagnose specific fault and recommend or

perform remedial action

⋆ Autonomy needed for UAVs, similar to Spacecraft

• Modern developments enlarge the scope from individual

aircraft to many interacting aircraft (e.g., NGATS)

• Our focus: support assurance and certification of these

functions

• Specifically, formal methods for verification and test

automation
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Formal Analysis

• Simulations (e.g., using Matlab) examine only a tiny fraction

of possible behaviors

• For assurance, we are interested in all possible behaviors

• Can sometimes achieve this using formal methods

• These are methods of calculation that use symbolic

techniques

◦ e.g., symbolic expression x < y represents an infinite

number of explicit states (0,1), (0,2), ... (1,2), (1,3)...

◦ cf. universal demonstration (x − y) × (x + y) = (x2 − y2) vs.

experiments for specific values of x and y.

• Fairly well-known for finite discrete systems

◦ e.g., symbolic and bounded model checking (SMC, BMC)

• Exciting extensions to some infinite and continuous systems

◦ e.g., infinite bounded model checking using SMT solvers
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SAT Solving

• Find satisfying assignment to a propositional logic formula

• Formula can be represented as a set of clauses

◦ In CNF: conjunction of disjunctions

◦ Find an assignment of truth values to variable that makes

at least one literal in each clause TRUE

◦ Literal: an atomic proposition A or its negation Ā

• Example: given following 4 clauses

◦ A,B

◦ C ,D

◦ E

◦ Ā, D̄, Ē

One solution is A, C, E, D̄

(A, D, E is not and cannot be extended to be one)

• Do this when there are 1,000,000s of variables and clauses
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SAT Solvers

• SAT solving is the quintessential NP-complete problem

• But now amazingly fast in practice (most of the time)

◦ Breakthroughs (starting with Chaff) since 2001

⋆ Building on earlier innovations in SATO, GRASP

◦ Sustained improvements, honed by competition

• Has become a commodity technology

◦ MiniSAT is 700 SLOC

• Can think of it as massively effective search

◦ So use it when your problem can be formulated as SAT

• Used in bounded model checking and in AI planning

◦ Routine to handle 10300 states
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SAT Plus Theories

• SAT can encode operations and relations on bounded

integers

◦ Using bitvector representation

◦ With adders etc. represented as Boolean circuits

And other finite data types and structures

• But cannot do not unbounded types (e.g., reals),

or infinite structures (e.g., queues, lists)

• And even bounded arithmetic can be slow when large

• There are fast decision procedures for these theories

• But their basic form works only on conjunctions

• General propositional structure requires case analysis

◦ Should use efficient search strategies of SAT solvers

That’s what an SMT solver does
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Decidable Theories

• Many useful theories are decidable

(at least in their unquantified forms)

◦ Equality with uninterpreted function symbols

x = y ∧ f(f(f(x))) = f(x) ⊃ f(f(f(f(f(y))))) = f(x)

◦ Function, record, and tuple updates

f with [(x) := y](z)
def
= if z = x then y else f(z)

◦ Linear arithmetic (over integers and rationals)

x ≤ y ∧ x ≤ 1 − y ∧ 2 × x ≥ 1 ⊃ 4 × x = 2

◦ Special (fast) case: difference logic

x − y < c

• Combinations of decidable theories are (usually) decidable

e.g., 2 × car(x) − 3 × cdr(x) = f(cdr(x)) ⊃

f(cons(4 × car(x) − 2 × f(cdr(x)), y)) = f(cons(6 × cdr(x), y))

Uses equality, uninterpreted functions, linear arithmetic, lists
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SMT Solving

• SMT is Satisfiability Modulo Theories

• Individual and combined decision procedures decide

conjunctions of formulas in their decided theories

• SMT allows general propositional structure

◦ e.g., (x ≤ y ∨ y = 5) ∧ (x < 0 ∨ y ≤ x) ∧ x 6= y

. . . possibly continued for 1000s of terms

• Combines decision procedures with search strategies of

modern SAT solvers

• There are several effective SMT solvers

• Ours is Yices

• Honed by competition, can handle tens of thousands of

variables and constraints
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Bounded Model Checking (BMC)

• Given system specified by initiality predicate I and transition

relation T on states S (i.e., a nondeterministic state machine)

• Is there a counterexample to property P in k steps or less?

• Find assignment to states s0, . . . , sk satisfying

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk) ∧ ¬(P (s1) ∧ · · · ∧ P (sk))

• Given a Boolean encoding of I, T , and P (i.e., circuit), this is

a propositional satisfiability (SAT) problem

• But if I, T and P use decidable but unbounded types, then

it’s an SMT problem: infinite bounded model checking

• (Infinite) BMC also generates test cases and plans

◦ State the goal as negated property

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk) ∧ (G(s1) ∨ · · · ∨ G(sk))
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k-Induction

• BMC extends from refutation to verification via k-induction

◦ Other ways include finding diameter of the statespace,

abstraction/refinement, using interpolants to find fixpoint

• Ordinary inductive invariance (for P):

Basis: I(s0) ⊃ P (s0)

Step: P (r0) ∧ T (r0, r1) ⊃ P (r1)

• Extend to induction of depth k:

Basis: No counterexample of length k or less

Step: P (r0)∧T (r0, r1)∧P (r1)∧ · · ·∧P (rk−1)∧T (rk−1, rk) ⊃ P (rk)

These are close relatives of the BMC formulas

• Induction for k = 2, 3, 4 . . . may succeed where k = 1 does not

• Note that counterexamples help debug invariant
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Application: Verification of Real Time Programs

• Continuous time excludes automation by finite state methods

• Timed automata methods (e.g., Uppaal)

◦ Handle continuous time

◦ But are defeated by the case explosion when (discrete)

faults are considered as well

• Infinite bounded model checkers can handle both dimensions

◦ With discrete time, can have a clock module that

advances time one tick at a time

⋆ Each module sets a timeout, waits for the clock to

reach that value, then does its thing, and repeats

◦ Better: move the timeout to the clock module and let it

advance time all the way to the next timeout

⋆ These are Timeout Automata (Dutertre and Sorea):

and they work for continuous time

John Rushby, SR I Formal Verification and Testing for IVHM 12



Example: Biphase Mark Protocol

Biphase Mark is a protocol for asynchronous communication

receiver

lots of 1’s how many 1’s?

........

unsynchronized, independent clocks

transmitter

• Clocks at either end may be skewed and have different rates,

and jitter

• So have to encode a clock in the data stream

• Used in CDs, Ethernet

• Verification identifies parameter values for which data is

reliably transmitted

John Rushby, SR I Formal Verification and Testing for IVHM 13



Example: Biphase Mark Protocol (ctd)

• Flip the signal at the begining of every bit cell

• For a 1 bit, flip it in the middle, too

• For a 0 bit, leave it constant

BMP encoding

1 1 0 1 0 0 1 1 1 0 1 1

Original bitsream

Prove this works provided the sender and receiver clocks run at

similar rates
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Biphase Mark Protocol Verification

• Verified by human-guided proof in ACL2 by J Moore (1994)

• Three different verifications used PVS

◦ One by Groote and Vaandrager used PVS + UPPAAL

required 37 invariants, 4,000 proof steps, hours of prover

time to check
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Biphase Mark Protocol Verification (ctd)

• Brown and Pike recently did it with sal-inf-bmc

◦ Used timeout automata to model timed aspects

◦ Statement of theorem discovered systematically using

disjunctive invariants (7 disjuncts)

◦ Three lemmas proved automatically with 1-induction,

◦ Theorem proved automatically using 5-induction

◦ Verification takes seconds to check

• Adapted verification to 8-N-1 protocol (used in UARTs)

◦ Automated proofs more reusable than step-by-step ones

◦ Additional lemma proved with 13-induction

◦ Theorem proved with 3-induction (7 disjuncts)

◦ Revealed a bug in published application note
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Industrial Uptake

• The move to model based development is an opportunity to

move formal methods into industrial practice

• For the first time we have “machinable” artifacts prior to the

code—i.e., models

• Simulink Design Verifier from Mathworks is based on exactly

the technology just described

◦ It does verification, refutation, and test generation for

discrete time Stateflow/Simulink by k-induction and

infinite bounded model checking using an SMT solver

◦ Its principal developer, Gregoire Hamon, is from our group

• Tools like this can improve the quality of early-lifecycle

products, reducing overall development time and cost
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Traditional Vee Diagram (Much Simplified)

system
requirements test

design/code unit/integration
test

time and money
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Vee Diagram Tightened with Formal Methods

system
requirements test

design/code unit/integration
test

time and money

Example: Rockwell-Collins
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The Spectrum of V&V for Autonomous IVHM

A wealth of opportunities to the left; can apply them early, too
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Diagnostic and Monitoring Systems

• These usually operate with respect to some model of the

monitored system

◦ Problem indicated when observed behavior of actual

system departs from that of its (fault-free) model

• Models of physical systems generally involve differential

equations

• Which may change as system enters different discrete modes

◦ e.g., different lift, drag for different settings of the flaps

• So the models combine discrete and continuous mathematics

◦ e.g., Simulink/Stateflow

• Hybrid systems (aka. hybrid automata) provide a formal

framework for analyzing these models
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Analysis of Hybrid Systems

• We are interested in questions such as

◦ Can the system ever get into a state satisfying some

relationship among the continuous variables? (e.g., the

positions of two aircraft are closer than a desired

minimum)

◦ Can we automate operation of a testbed for the system

(e.g., the actual code plus simulated hardware) to achieve

desired test coverage?

• Both these are solved if we can analyze hybrid systems for

invariants (or, more generally, safety properties)

◦ Test cases are derived from counterexamples

• Note, control theory and infinite-BMC do not solve these
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Formal Analysis of Hybrid Systems

• Analysis of hybrid systems is a challenging problem

• Little progress since HyTech of 1995

• Tools can seldom handle more than 5 continuous variables

• This is because they work by calculating the reachable states

• Overkill: we just want to know if a specific property is

reachable

• Hybrid Abstraction (Tiwari and others 2002–) focuses on this

and is much more efficient

• Can often handle 15 or 25 continuous variables

• Automated by HybridSAL: freely distributed since 2007

• Trivial example in the paper
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Hybrid Abstraction

• Hybrid Abstraction constructs a discrete overapproximation

(abstraction) to the hybrid system

• Can then analyze the abstraction with conventional model

checker

• Overapproximation: any safety property true in the

abstraction is true of the original hybrid system

• But we may be unable to prove some true properties if the

abstraction is too coarse

• Dually, some test-cases derived from the model may be

infeasible in the real system if the abstraction is too coarse

• Can often refine the abstraction in these cases
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Hybrid Abstraction (ctd.)

• The abstraction is not a simple discretization

• It replaces the continuous variables by qualitative signs of

selected polynomials over the variables and their derivatives

• Qualitative signs: replace real values by {neg, zero, pos}

• Approximation is calculated by automated theorem proving

over real closed fields (hard problem)

• Quality of the approximation is determined by choice of how

many derivatives to consider

• And which polynomials to use

• Automated selection of polynomials (uses eigenvectors)

makes the method complete for linear hybrid automata

◦ Heuristically effective for others
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Test Case Generation

• Generating unit test cases with a model checker is well

understood

• Counterexamples to negation of desired test target provide

the test cases

• Automated by SAL-ATG, a standard part of SAL

• It is also known how to integrate concrete and symbolic

(concolic) execution, or constraint solving and deduction, to

achieve strong coverage in domains that are hard for SMT

solvers

• But for IVHM we need to test with (real or simulated)

hardware in the loop
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Test Case Generation with Hardware in the Loop

• Have partial control of the system (e.g., can inject a fault

into the simulated hardware, supply sensor inputs)

• But cannot easily drive execution toward a specific test target

◦ Uncontrolled inputs may take us away

• So test generation is this context has to be seen as

synthesizing an active tester, rather than a static set of test

inputs

• Hence, controller synthesis is the appropriate framework
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Test Generation by Controller Synthesis

• Synthesis works by calculating the possible moves of the

environment, then choosing inputs that avoid bad outcomes

(basically a state exploration exercise)

• Effectiveness depends on the quality of the models of the

uncontrolled parts of the system

◦ e.g., the simulated physical plant

• We want a high-quality discrete over-approximation

◦ May sometimes go wrong because the actual hardware

cannot make a move predicted by the approximation (but

better than being surprised by unexpected moves)

• Aha! Hybrid abstraction does this

• Use it to develop test automation for hardware in the loop

John Rushby, SR I Formal Verification and Testing for IVHM 28



Current and Planned Activity

• Mostly technology development

• Developing efficient decision procedure for nonlinear

arithmetic

◦ Needed for infinite-BMC, calculating hybrid abstractions

◦ Will also improve interactive verification (e.g., with PVS)

• A parallel project has developed a static analysis procedure

for hybrid systems

◦ Gulwani and Tiwari, CAV 08

◦ Discovers invariants, rather than check them

Needs the same improved decision procedures

• Developing methods for generating helper invariants

• Applying our new methods to previous analysis of operational

concept for SATS airport procedures
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