
AIAA GNC Conference 19 August 2008, Honolulu conf center,

based on

Kickoff for “Formal Verification and Automated Testing for

Diagnostic and Monitoring Systems Using Hybrid Abstraction”

NASA LaRC/NIA, 29 April 2008

Formal Verification and Automated Testing

For Diagnostic and Monitoring Systems

Bruno Dutertre, John Rushby, Ashish Tiwari (SRI)

César Muñoz and Radu Siminiceanu (NIA)

Computer Science Laboratory

SRI International

Menlo Park CA USA

John Rushby, SR I Formal Verification and Testing for IVHM 1

Project Context

• New 3-year project under IVHM

(Integrated Vehicle Health Management)

• Started January 2008

• Cooperative agreement with NASA LaRC

◦ Managed by Ben DiVito

• Approximately equal split between SRI and NIA

• Describe our technology, ideas, approach, and seek your input

John Rushby, SR I Formal Verification and Testing for IVHM 2

Technical Context

• Diagnostic and monitoring systems are elements of IVHM

• Monitor physical aspects of an aircraft for indications of

problems

◦ May then alert maintenance or flight crews

◦ Or may try to diagnose specific fault and recommend or

perform remedial action

⋆ Autonomy needed for UAVs, similar to Spacecraft

• Modern developments enlarge the scope from individual

aircraft to many interacting aircraft (e.g., NGATS)

• Our focus: support assurance and certification of these

functions

• Specifically, formal methods for verification and test

automation

John Rushby, SR I Formal Verification and Testing for IVHM 3

Formal Analysis

• Simulations (e.g., using Matlab) examine only a tiny fraction

of possible behaviors

• For assurance, we are interested in all possible behaviors

• Can sometimes achieve this using formal methods

• These are methods of calculation that use symbolic

techniques

◦ e.g., symbolic expression x < y represents an infinite

number of explicit states (0,1), (0,2), ... (1,2), (1,3)...

◦ cf. universal demonstration (x − y) × (x + y) = (x2 − y2) vs.

experiments for specific values of x and y.

• Fairly well-known for finite discrete systems

◦ e.g., symbolic and bounded model checking (SMC, BMC)

• Exciting extensions to some infinite and continuous systems

◦ e.g., infinite bounded model checking using SMT solvers

John Rushby, SR I Formal Verification and Testing for IVHM 4

SAT Solving

• Find satisfying assignment to a propositional logic formula

• Formula can be represented as a set of clauses

◦ In CNF: conjunction of disjunctions

◦ Find an assignment of truth values to variable that makes

at least one literal in each clause TRUE

◦ Literal: an atomic proposition A or its negation Ā

• Example: given following 4 clauses

◦ A,B

◦ C ,D

◦ E

◦ Ā, D̄, Ē

One solution is A, C, E, D̄

(A, D, E is not and cannot be extended to be one)

• Do this when there are 1,000,000s of variables and clauses

John Rushby, SR I Formal Verification and Testing for IVHM 5

SAT Solvers

• SAT solving is the quintessential NP-complete problem

• But now amazingly fast in practice (most of the time)

◦ Breakthroughs (starting with Chaff) since 2001

⋆ Building on earlier innovations in SATO, GRASP

◦ Sustained improvements, honed by competition

• Has become a commodity technology

◦ MiniSAT is 700 SLOC

• Can think of it as massively effective search

◦ So use it when your problem can be formulated as SAT

• Used in bounded model checking and in AI planning

◦ Routine to handle 10300 states

John Rushby, SR I Formal Verification and Testing for IVHM 6

SAT Plus Theories

• SAT can encode operations and relations on bounded

integers

◦ Using bitvector representation

◦ With adders etc. represented as Boolean circuits

And other finite data types and structures

• But cannot do not unbounded types (e.g., reals),

or infinite structures (e.g., queues, lists)

• And even bounded arithmetic can be slow when large

• There are fast decision procedures for these theories

• But their basic form works only on conjunctions

• General propositional structure requires case analysis

◦ Should use efficient search strategies of SAT solvers

That’s what an SMT solver does

John Rushby, SR I Formal Verification and Testing for IVHM 7

Decidable Theories

• Many useful theories are decidable

(at least in their unquantified forms)

◦ Equality with uninterpreted function symbols

x = y ∧ f(f(f(x))) = f(x) ⊃ f(f(f(f(f(y))))) = f(x)

◦ Function, record, and tuple updates

f with [(x) := y](z)
def
= if z = x then y else f(z)

◦ Linear arithmetic (over integers and rationals)

x ≤ y ∧ x ≤ 1 − y ∧ 2 × x ≥ 1 ⊃ 4 × x = 2

◦ Special (fast) case: difference logic

x − y < c

• Combinations of decidable theories are (usually) decidable

e.g., 2 × car(x) − 3 × cdr(x) = f(cdr(x)) ⊃

f(cons(4 × car(x) − 2 × f(cdr(x)), y)) = f(cons(6 × cdr(x), y))

Uses equality, uninterpreted functions, linear arithmetic, lists

John Rushby, SR I Formal Verification and Testing for IVHM 8

SMT Solving

• SMT is Satisfiability Modulo Theories

• Individual and combined decision procedures decide

conjunctions of formulas in their decided theories

• SMT allows general propositional structure

◦ e.g., (x ≤ y ∨ y = 5) ∧ (x < 0 ∨ y ≤ x) ∧ x 6= y

. . . possibly continued for 1000s of terms

• Combines decision procedures with search strategies of

modern SAT solvers

• There are several effective SMT solvers

• Ours is Yices

• Honed by competition, can handle tens of thousands of

variables and constraints

John Rushby, SR I Formal Verification and Testing for IVHM 9

Bounded Model Checking (BMC)

• Given system specified by initiality predicate I and transition

relation T on states S (i.e., a nondeterministic state machine)

• Is there a counterexample to property P in k steps or less?

• Find assignment to states s0, . . . , sk satisfying

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk) ∧ ¬(P (s1) ∧ · · · ∧ P (sk))

• Given a Boolean encoding of I, T , and P (i.e., circuit), this is

a propositional satisfiability (SAT) problem

• But if I, T and P use decidable but unbounded types, then

it’s an SMT problem: infinite bounded model checking

• (Infinite) BMC also generates test cases and plans

◦ State the goal as negated property

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk) ∧ (G(s1) ∨ · · · ∨ G(sk))

John Rushby, SR I Formal Verification and Testing for IVHM 10

k-Induction

• BMC extends from refutation to verification via k-induction

◦ Other ways include finding diameter of the statespace,

abstraction/refinement, using interpolants to find fixpoint

• Ordinary inductive invariance (for P):

Basis: I(s0) ⊃ P (s0)

Step: P (r0) ∧ T (r0, r1) ⊃ P (r1)

• Extend to induction of depth k:

Basis: No counterexample of length k or less

Step: P (r0)∧T (r0, r1)∧P (r1)∧ · · ·∧P (rk−1)∧T (rk−1, rk) ⊃ P (rk)

These are close relatives of the BMC formulas

• Induction for k = 2, 3, 4 . . . may succeed where k = 1 does not

• Note that counterexamples help debug invariant

John Rushby, SR I Formal Verification and Testing for IVHM 11

Application: Verification of Real Time Programs

• Continuous time excludes automation by finite state methods

• Timed automata methods (e.g., Uppaal)

◦ Handle continuous time

◦ But are defeated by the case explosion when (discrete)

faults are considered as well

• Infinite bounded model checkers can handle both dimensions

◦ With discrete time, can have a clock module that

advances time one tick at a time

⋆ Each module sets a timeout, waits for the clock to

reach that value, then does its thing, and repeats

◦ Better: move the timeout to the clock module and let it

advance time all the way to the next timeout

⋆ These are Timeout Automata (Dutertre and Sorea):

and they work for continuous time

John Rushby, SR I Formal Verification and Testing for IVHM 12

Example: Biphase Mark Protocol

Biphase Mark is a protocol for asynchronous communication

receiver

lots of 1’s how many 1’s?

........

unsynchronized, independent clocks

transmitter

• Clocks at either end may be skewed and have different rates,

and jitter

• So have to encode a clock in the data stream

• Used in CDs, Ethernet

• Verification identifies parameter values for which data is

reliably transmitted

John Rushby, SR I Formal Verification and Testing for IVHM 13

Example: Biphase Mark Protocol (ctd)

• Flip the signal at the begining of every bit cell

• For a 1 bit, flip it in the middle, too

• For a 0 bit, leave it constant

BMP encoding

1 1 0 1 0 0 1 1 1 0 1 1

Original bitsream

Prove this works provided the sender and receiver clocks run at

similar rates

John Rushby, SR I Formal Verification and Testing for IVHM 14

Biphase Mark Protocol Verification

• Verified by human-guided proof in ACL2 by J Moore (1994)

• Three different verifications used PVS

◦ One by Groote and Vaandrager used PVS + UPPAAL

required 37 invariants, 4,000 proof steps, hours of prover

time to check

John Rushby, SR I Formal Verification and Testing for IVHM 15

Biphase Mark Protocol Verification (ctd)

• Brown and Pike recently did it with sal-inf-bmc

◦ Used timeout automata to model timed aspects

◦ Statement of theorem discovered systematically using

disjunctive invariants (7 disjuncts)

◦ Three lemmas proved automatically with 1-induction,

◦ Theorem proved automatically using 5-induction

◦ Verification takes seconds to check

• Adapted verification to 8-N-1 protocol (used in UARTs)

◦ Automated proofs more reusable than step-by-step ones

◦ Additional lemma proved with 13-induction

◦ Theorem proved with 3-induction (7 disjuncts)

◦ Revealed a bug in published application note

John Rushby, SR I Formal Verification and Testing for IVHM 16

Industrial Uptake

• The move to model based development is an opportunity to

move formal methods into industrial practice

• For the first time we have “machinable” artifacts prior to the

code—i.e., models

• Simulink Design Verifier from Mathworks is based on exactly

the technology just described

◦ It does verification, refutation, and test generation for

discrete time Stateflow/Simulink by k-induction and

infinite bounded model checking using an SMT solver

◦ Its principal developer, Gregoire Hamon, is from our group

• Tools like this can improve the quality of early-lifecycle

products, reducing overall development time and cost

John Rushby, SR I Formal Verification and Testing for IVHM 17

Traditional Vee Diagram (Much Simplified)

system
requirements test

design/code unit/integration
test

time and money

John Rushby, SR I Formal Verification and Testing for IVHM 18

Vee Diagram Tightened with Formal Methods

system
requirements test

design/code unit/integration
test

time and money

Example: Rockwell-Collins

John Rushby, SR I Formal Verification and Testing for IVHM 19

The Spectrum of V&V for Autonomous IVHM

A wealth of opportunities to the left; can apply them early, too
N

um
bu

r
of

 c
as

es
 e

xa
m

in
ed

Fidelity of model

10^2

10^4

10^6

10^8

10^10

state machines flight h/w

current

new

practice

opportunities

h/w in loopsimulationsmodels

John Rushby, SR I Formal Verification and Testing for IVHM 20

Diagnostic and Monitoring Systems

• These usually operate with respect to some model of the

monitored system

◦ Problem indicated when observed behavior of actual

system departs from that of its (fault-free) model

• Models of physical systems generally involve differential

equations

• Which may change as system enters different discrete modes

◦ e.g., different lift, drag for different settings of the flaps

• So the models combine discrete and continuous mathematics

◦ e.g., Simulink/Stateflow

• Hybrid systems (aka. hybrid automata) provide a formal

framework for analyzing these models

John Rushby, SR I Formal Verification and Testing for IVHM 21

Analysis of Hybrid Systems

• We are interested in questions such as

◦ Can the system ever get into a state satisfying some

relationship among the continuous variables? (e.g., the

positions of two aircraft are closer than a desired

minimum)

◦ Can we automate operation of a testbed for the system

(e.g., the actual code plus simulated hardware) to achieve

desired test coverage?

• Both these are solved if we can analyze hybrid systems for

invariants (or, more generally, safety properties)

◦ Test cases are derived from counterexamples

• Note, control theory and infinite-BMC do not solve these

John Rushby, SR I Formal Verification and Testing for IVHM 22

Formal Analysis of Hybrid Systems

• Analysis of hybrid systems is a challenging problem

• Little progress since HyTech of 1995

• Tools can seldom handle more than 5 continuous variables

• This is because they work by calculating the reachable states

• Overkill: we just want to know if a specific property is

reachable

• Hybrid Abstraction (Tiwari and others 2002–) focuses on this

and is much more efficient

• Can often handle 15 or 25 continuous variables

• Automated by HybridSAL: freely distributed since 2007

• Trivial example in the paper

John Rushby, SR I Formal Verification and Testing for IVHM 23

Hybrid Abstraction

• Hybrid Abstraction constructs a discrete overapproximation

(abstraction) to the hybrid system

• Can then analyze the abstraction with conventional model

checker

• Overapproximation: any safety property true in the

abstraction is true of the original hybrid system

• But we may be unable to prove some true properties if the

abstraction is too coarse

• Dually, some test-cases derived from the model may be

infeasible in the real system if the abstraction is too coarse

• Can often refine the abstraction in these cases

John Rushby, SR I Formal Verification and Testing for IVHM 24

Hybrid Abstraction (ctd.)

• The abstraction is not a simple discretization

• It replaces the continuous variables by qualitative signs of

selected polynomials over the variables and their derivatives

• Qualitative signs: replace real values by {neg, zero, pos}

• Approximation is calculated by automated theorem proving

over real closed fields (hard problem)

• Quality of the approximation is determined by choice of how

many derivatives to consider

• And which polynomials to use

• Automated selection of polynomials (uses eigenvectors)

makes the method complete for linear hybrid automata

◦ Heuristically effective for others

John Rushby, SR I Formal Verification and Testing for IVHM 25

Test Case Generation

• Generating unit test cases with a model checker is well

understood

• Counterexamples to negation of desired test target provide

the test cases

• Automated by SAL-ATG, a standard part of SAL

• It is also known how to integrate concrete and symbolic

(concolic) execution, or constraint solving and deduction, to

achieve strong coverage in domains that are hard for SMT

solvers

• But for IVHM we need to test with (real or simulated)

hardware in the loop

John Rushby, SR I Formal Verification and Testing for IVHM 26

Test Case Generation with Hardware in the Loop

• Have partial control of the system (e.g., can inject a fault

into the simulated hardware, supply sensor inputs)

• But cannot easily drive execution toward a specific test target

◦ Uncontrolled inputs may take us away

• So test generation is this context has to be seen as

synthesizing an active tester, rather than a static set of test

inputs

• Hence, controller synthesis is the appropriate framework

John Rushby, SR I Formal Verification and Testing for IVHM 27

Test Generation by Controller Synthesis

• Synthesis works by calculating the possible moves of the

environment, then choosing inputs that avoid bad outcomes

(basically a state exploration exercise)

• Effectiveness depends on the quality of the models of the

uncontrolled parts of the system

◦ e.g., the simulated physical plant

• We want a high-quality discrete over-approximation

◦ May sometimes go wrong because the actual hardware

cannot make a move predicted by the approximation (but

better than being surprised by unexpected moves)

• Aha! Hybrid abstraction does this

• Use it to develop test automation for hardware in the loop

John Rushby, SR I Formal Verification and Testing for IVHM 28

Current and Planned Activity

• Mostly technology development

• Developing efficient decision procedure for nonlinear

arithmetic

◦ Needed for infinite-BMC, calculating hybrid abstractions

◦ Will also improve interactive verification (e.g., with PVS)

• A parallel project has developed a static analysis procedure

for hybrid systems

◦ Gulwani and Tiwari, CAV 08

◦ Discovers invariants, rather than check them

Needs the same improved decision procedures

• Developing methods for generating helper invariants

• Applying our new methods to previous analysis of operational

concept for SATS airport procedures

John Rushby, SR I Formal Verification and Testing for IVHM 29

