
Presentation for 4th International Workshop on Formal

Methods for Interactive Systems: FMIS 2011, Limerick,

Ireland, 21 June 2011

Formal Modeling and Analysis
For Interactive Hybrid Systems

Ellen J. Bass

Systems and Information Engineering, University of Virginia

Karen M. Feigh

School of Aerospace Engineering, Georgia Institute of Technology

Elsa Gunter

Department of Computer Science, University of Illinois, Urbana-Champaign

John Rushby

Computer Science Laboratory, SRI International, Menlo Park, California

Supported by NSF grant CNS-0720908 and NASA contract NNA10DE79C

John Rushby et al Formal Analysis for Interactive Hybrid Systems 1

Premise

• Human interactions with automated systems are guided by

mental models (Craik 1943)

• Exact nature of the models is a topic of debate and research

◦ Behavioral representation that allows mental simulation

? e.g., state machine

◦ Stimulus/response rules

◦ Both

We’ll assume the first of these

• An automation surprise can occur when the behavior of the

real system and the mental model diverge

• Can discover potential surprises by model checking

◦ Build state machines for the system and its model, explore

all possible behaviors looking for significant divergences

• This works! (Rushby 1997)

John Rushby et al Formal Analysis for Interactive Hybrid Systems 2

Mental Models

• Aviation psychologists elicit pilot’s actual mental models

• However, a well-designed system should induce an effective

model, and the purpose of training is to develop this

• So can construct plausible mental models by extracting state

machines from training material, then applying known

psychological simplification processes (Javaux 1998)

◦ Frequential simplification

◦ Inferential simplification

• But there are some basic properties that should surely be

true of any plausible mental model

◦ e.g., pilots can predict whether their actions will cause

the plane to climb or descend

• Yet many avionics systems are so poor that they provoke an

automation surprise even against such core models

• We will use models of this kind

John Rushby et al Formal Analysis for Interactive Hybrid Systems 3

System Models

• The real system will have many parts, and possibly complex

internal behavior

• But there is usually some externally visible physical plant

◦ e.g., a car, airplane, vacuum cleaner, iPod

• And what humans care about, and represent in their mental

models, is the behavior of the plant

• And divergence between a mental model and the real system

should be in terms of this plant behavior

◦ e.g., does the car or plane go in the right direction, does

the vacuum cleaner use the brush or the hose, does the

iPod play the right song?

• So our analysis should model the plant behavior

• Did not do this previously, just the plant controller

John Rushby et al Formal Analysis for Interactive Hybrid Systems 4

Hybrid Systems

• Many plants are modelled by differential equations

◦ e.g., 6 DOF models for airplanes

• Compounded by different sets of equations in different

discrete modes

◦ e.g., flap extension

• These models are called hybrid systems

◦ Combine discrete (state machine) and continuous

(differential equation) behavior

• The full system model will be the composition of the hybrid

plant model with its controller and its interface and. . .

• Can do accurate simulations (e.g., Matlab)

• But that’s just one run at a time, we need all runs

• And formal analysis of hybrid systems is notoriously hard

John Rushby et al Formal Analysis for Interactive Hybrid Systems 5

Relational Abstractions

• We need to find suitable abstractions (i.e., approximations)

for hybrid systems that are sufficiently accurate for our

purposes, and are easy to analyze

• Several abstractions available for hybrid systems, we use a

very recent kind called relational abstractions (Tiwari 2011)

• For each discrete mode, instead of differential equations to

specify evolution of continuous variables, give a relation

between them that holds in all future states (in that mode)

• Accurate relational abstractions for hybrid systems require

specialized invariant generation and eigenvalue analysis

• But for our purposes, something much cruder suffices

◦ e.g., if pitch angle is positive, then altitude in the future

will be greater than it is now

• Rather than derive these rel’ns, we assert them as our spec’n

John Rushby et al Formal Analysis for Interactive Hybrid Systems 6

Model Checking Infinite State Systems

• Our relational abstractions get us from hybrid systems back

to state machines

• But these state machines are still defined over continuous

quantities (i.e., mathematical real numbers)

◦ Altitude, roll rate, etc.

• How do we model check these?

◦ i.e., do fully automatic analysis of all reachable states

◦ When there’s potentially an infinite number of these

• We can do it by Bounded Model Checking (BMC) over the

theories decided by a solver for Satisfiability Modulo Theories

(SMT)

◦ This is infinite BMC

John Rushby et al Formal Analysis for Interactive Hybrid Systems 7

SMT Solvers: Disruptive Innovation in Theorem Proving

• SMT solvers extend decision procedures with the ability to

handle arbitrary propositional structure

◦ Previously, case analysis was handled heuristically or

interactively in a front end theorem prover

? Where must be careful to avoid case explosion

◦ SMT solvers use the brute force of modern SAT solving

• Or, dually, they generalize SAT solving by adding the ability

to handle arithmetic and other decidable theories

• Typical theories: uninterpreted functions with equality, linear

arithmetic over integers and reals, arrays of these, etc.

• There is an annual competition for SMT solvers

• Very rapid growth in performance

• Biggest advance in formal methods in last 25 years

John Rushby et al Formal Analysis for Interactive Hybrid Systems 8

Bounded Model Checking (BMC)

• Given system specified by initiality predicate I and transition

relation T on states S

• Is there a counterexample to property P in k steps or less?

• i.e., can we find an assignment to states s0, . . . , sk satisfying

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk) ∧ ¬(P (s1) ∧ · · · ∧ P (sk))

• Try for k = 1, 2, . . .

• Given a Boolean encoding of I, T , and P (i.e., circuits), this

is a propositional satisfiability (SAT) problem

• If I, T , and P are over the theories decided by an SMT

solver, then this is an SMT problem

◦ Then called Infinite Bounded Model Checking (inf-BMC)

• Works for LTL (via Büchi automata), not just invariants

• Extends to verification via k-induction

John Rushby et al Formal Analysis for Interactive Hybrid Systems 9

Specifying Relations

• Most model checking notations specify state variables of new

state in terms of those in the old; may be nondeterministic

• For example, guarded command in SAL

◦ pitch > 0 --> alt’ IN {x: REAL | x > alt}
If pitch is positive, new value of alt is bigger than old one

• But how do we say that x and y get updated such that

◦ x*x + y*y < 1 ?

• Various possibilities, depending on the model checker, but

one way that always works is to use a synchronous observer

• Main module makes nondeterministic assignments to x and y

• Observer module sets ok false if relation is violated

◦ NOT(x*x + y*y < 1) --> ok’ = FALSE

• Model check for the property we care about only when ok is

true: G(ok IMPLIES property)

John Rushby et al Formal Analysis for Interactive Hybrid Systems 10

Example: Airbus Speed Protection

• Systems similar to that described below were used in A310,

A320, A330, and A340 airplanes; this is the A320 version

• Autothrottle modes

◦ SPD: try to maintain speed set in the FCU

• Autopilot vertical modes and submodes

◦ VS/FPA: fly at the fight path angle specified in the FCU

◦ OP CLB: climb toward target altitude set in the FCU,

using max thrust at the FPA that maintains set airspeed

◦ OP DES: ...if target altitude is lower than current

• Speed protection

◦ On descent in SPD VS/FPA modes, allow overspeed

◦ But if it exceeds the MAX, change to OP mode

◦ Will be OP CLB if target altitude is above current

◦ MAX speed is lower when flaps are extended

John Rushby et al Formal Analysis for Interactive Hybrid Systems 11

Modeling Airbus Speed Protection

• Composition of three main components

◦ Pilots: nondeterministically set vertical mode, dial values

into FCU, deploy flaps

? Organized by mental mode (descend, climb, level)

◦ Automation: determines actual mode and applies control

laws to determine thrust and pitch

◦ Airplane: uses thrust and pitch values, and flap setting,

to calculate airplane trajectory (altitude and airspeed)

• Plus constraints, which is an observer that sets ok to enforce

plausible relations among pitch, altitude, etc.

• And observer, which sets alarm if airplane climbs while

mental mode is descend

• Model check for G(ok IMPLIES NOT alarm)

John Rushby et al Formal Analysis for Interactive Hybrid Systems 12

Fragment of Pilots Module

INPUT

airspeed: speedvals, altitude: altvals

INITIALIZATION

mental_mode = level; fcu_mode = other; flaps = retracted;

TRANSITION

[extend_flaps: mental_mode = descend and flaps = retracted -->

flaps’ = extended

[] retract_flaps: mental_mode = climb and flaps = extended -->

flaps’ = retracted

[] dial_fcu_alt: fcu_mode = other --> fcu_alt’ IN {x: altvals | TRUE}
[] dial_descend: mental_mode /= descend -->

mental_mode’ = descend; fcu_mode’ = vs_fpa;

fcu_fpa’ IN {x: pitchvals | x < 0};
[] dial_climb: mental_mode /= climb -->

mental_mode’ = climb; fcu_mode’ = vs_fpa;

fcu_fpa’ IN {x: pitchvals | x > 0};
[] pilots_idle: TRUE -->

] END;

John Rushby et al Formal Analysis for Interactive Hybrid Systems 13

Fragment of Automation Module

DEFINITION

max_speed = IF flaps = retracted THEN VMAX ELSE Vfe ENDIF;

TRANSITION

[track-fcu-mode: fcu_mode’ /= fcu_mode --> actual_mode’ = fcu_mode’

[] mode_reversion: actual_mode = vs_fpa AND airspeed > max_speed -->

actual_mode’ = IF fcu_alt > altitude THEN op_clb ELSE op_des ENDIF;

[] vs_fpa_mode: actual_mode = vs_fpa AND airspeed <= max_speed -->

pitch’ IN vs_fpa_pitch_law(...)

[] op_clb_mode: actual_mode = op_clb --> pitch’ IN op_clb_pitch_law(...)

[] op_des_mode: actual_mode = op_des --> pitch’ IN op_des_pitch_law(...)

[] automation_idles: ELSE -->

] END;

John Rushby et al Formal Analysis for Interactive Hybrid Systems 14

Fragment of Airplane Module

INITIALIZATION

airspeed = 200; altitude = 3000;

TRANSITION

[flying_clean: flaps = retracted -->

airspeed’ IN

speed_dynamics_clean(airspeed, altitude, thrust, pitch);

altitude’ IN alt_dynamics_clean(...);

[] flying_flaps: flaps = extended -->

airspeed’ IN speed_dynamics_flaps(...);

altitude’ IN alt_dynamics_flaps(...);

] END;

John Rushby et al Formal Analysis for Interactive Hybrid Systems 15

Fragment of Constraints Module

INITIALIZATION

ok = TRUE;

TRANSITION

[actual_mode = op_des AND pitch > 0 --> ok’ = FALSE;

[] actual_mode = op_clb AND pitch < 0 --> ok’ = FALSE;

[] actual_mode = vs_fpa AND fcu_fpa <= 0 AND pitch > 0 --> ok’ = FALSE;

[] actual_mode = vs_fpa AND fcu_fpa >= 0 AND pitch < 0 --> ok’ = FALSE;

[] pitch > 0 AND altitude’ < altitude --> ok’ = FALSE;

[] pitch < 0 AND altitude’ > altitude --> ok’ = FALSE;

[] pitch=0 AND altitude’ /= altitude --> ok’ = FALSE;

[] ELSE -->

] END;

John Rushby et al Formal Analysis for Interactive Hybrid Systems 16

Observer Module

observer: MODULE =

BEGIN

OUTPUT

alarm: BOOLEAN

INPUT

mental_mode: mental_modes, altitude: altvals

INITIALIZATION

alarm = FALSE

TRANSITION

alarm’ = alarm OR (mental_mode = descend AND altitude’ - altitude > 90)

END;

John Rushby et al Formal Analysis for Interactive Hybrid Systems 17

The System, the Property, the Analysis

system: MODULE = airplane || automation || pilots || constraints || observer;

surprise: THEOREM system |- G(ok IMPLIES NOT alarm);

sal-inf-bmc a320sp.sal surprise -v 3 -it -d 20

John Rushby et al Formal Analysis for Interactive Hybrid Systems 18

First Counterexample

step act mde airspd alt fcu alt fcu fpa fcu md flaps mx spd mntl md pitch

1 other 200 3000 3001 -1 other rtrctd 400 level 0

Commands: flying clean, track fcu md, dial descend

2 vs fpa 401 3000 3001 -2 vs fpa rtrctd 400 descend 0

Commands: flying clean, mode reversion, extend flaps

3 op clb 180 3000 3001 -2 vs fpa extnd 180 descend 0

Commands: flying flaps, op clb mode, pilots idle

4 op clb 0 3000 3001 -2 vs fpa extnd 180 descend 1

Commands: flying flaps, op clb mode, pilots idle

5 op clb 0 3091 3001 -2 vs fpa extnd 180 descend 0

• Mode reversion has occurred

• Causing a climb while the mental mode is descend

• But it is due to airspeed abruptly increasing from 200 to 401

• Also, in steps 4 and 5 the airspeed decays to 0

• Our abstraction is too crude: need more constraints

John Rushby et al Formal Analysis for Interactive Hybrid Systems 19

Additional Constraints

[] airspeed’ > airspeed+10 OR airspeed’ < airspeed-10 --> ok’ = FALSE;

[] pitch > 0 AND altitude’ < altitude+10*pitch --> ok’ = FALSE;

[] pitch < 0 AND altitude’ > altitude+10*pitch --> ok’ = FALSE;

[] pitch=0 AND

(altitude’ > altitude+10 OR altitude’ < altitude-10) --> ok’ = FALSE;

• Want airspeed changes to be gradual

• And altitude coupled more closely to pitch

John Rushby et al Formal Analysis for Interactive Hybrid Systems 20

Second Counterexample

step act mde airspd alt fcu alt fcu fpa fcu md flaps mx spd mntl md pitch

1 other 200 3000 3291 -1/50 other rtrctd 400 level -1/100

Commands: flying clean, track fcu md, dial descend

2 vs fpa 201 2989 3291 -1/100 vs fpa rtrctd 400 descend -1/100

Commands: flying clean, vs fpa mode, extend flaps

3 vs fpa 200 2988 3291 -1/100 vs fpa extnd 180 descend 0

Commands: flying flaps, mode reversion, pilots idle

4 op clb 201 2989 3291 -1/100 vs fpa extnd 180 descend 0

Commands: flying flaps, op clb mode, pilots idle

5 op clb 200 2990 3291 -1/100 vs fpa extnd 180 descend 1/50

Commands: flying flaps, op clb mode, pilots idle

6 op clb 190 3291 3291 -1/100 vs fpa extnd 180 descend 3/100

• The fcu alt is set to 3291 while the aircraft is flying at 3000

• The pilots decide to descend and enter a negative fcu fpa

• Then extend the flaps

• Causes overspeed and a mode reversion to op clb mode

• Which in turn causes a strong climb.

John Rushby et al Formal Analysis for Interactive Hybrid Systems 21

That Scenario Is Real

• It happened on 24 September 1994 to an Airbus A310,

registration YR-LCC, operating as Tarom Flight 381 from

Bucharest to Paris Orly

• Take a look at the following video of the incident

http://www.youtube.com/watch?v=VqmrRFeYzBI

◦ First part is a reconstruction based on information from

the flight data recorder

◦ The second part is actual video taken from the ground

◦ sound track from the voice data recorder is synchronized

to both parts

• Official incident report is available here http://www.bea.aero/

docspa/1994/yr-a940924a/htm/yr-a940924a.html

• Due to this and other similar incidents, Airbus modified its

speed protection package

John Rushby et al Formal Analysis for Interactive Hybrid Systems 22

Workflow

• Although it is very approximate, our modeling is sound

◦ We include all real behaviors

• Idea is to refine the constraints until we get a realistic

scenario that we can take to a high-fidelity simulation

◦ Or discover that the counterexample was due to excessive

approximation

• Formally equivalent, but a conceptual distinction between

constraints that truly refine the model and those that serve

merely to nudge the counterexample in a preferred direction

◦ If desired, the latter can be placed in a separate

constraints module

◦ e.g., the values for pitch and fcu fpa in our example are

implausible

John Rushby et al Formal Analysis for Interactive Hybrid Systems 23

Conclusion

• Model checking systems against mental models is an

effective way to discover automation surprises

• Extending the models to include hybrid systems increases

range of systems for which approach is feasible and realistic

• Approximate modeling is ok: we are not analyzing

performance of a control system

• Approach using relational abstractions is simple and effective

◦ Synchronous observer allows easy spec’n of constraints

◦ Although we used infinite BMC, could approximate with

finite integers (bitvectors) and reproduce in any model

checker—though performance problems are likely

John Rushby et al Formal Analysis for Interactive Hybrid Systems 24

Future Work

• We participate in a project called NextGen Authority and

Autonomy (NextGenAA)

◦ NextGen is decentralized air traffic control

• Intend to explore new procedures such as Continuous

Descent Approach (CDA) and Oceanic Airspace In-Trail

Procedure (ATSA ITP)

• Have developed a notation for task analytic models (EOFM)

• Will couple it to this method of analysis

• No conceptual problem with multiple human actors (e.g.,

pilots plus air traffic controllers) or systems (e.g., multiple

airplanes), but we need to do examples of this kind

John Rushby et al Formal Analysis for Interactive Hybrid Systems 25

