
Calculating the Behavior of Software

John Rushby

Computer Science Laboratory

SRI International

Menlo Park, California, USA

John Rushby 1

We All Know. . .

• That software is

unreliable and can fail

• And even its “correct”

behavior can surprise us

• But why is this, and what

can we do about it?

John Rushby 2

Why is Software Unreliable?

• Because it’s complicated

◦ And it allows us to do

complicated things

• And because it’s not

developed the same way

as other engineered

artifacts

◦ It’s more like a craft

• But also because it’s

different to physical

systems

◦ Aha!

John Rushby 3

Engineering vs. Craft

Engineering: Applying scientific knowledge to practical

problems

• Systematic methods of design and analysis leading to

artifacts with predictable properties

• Heavy use of mathematical modeling and calculation

Craft: Skilled practice of a trade

• Relies mainly on experience

• Heavy use of “build it and test”

John Rushby 4

Build It And Test

• Marching troops over a

bridge, for example

• Only examines the

dimensions actually tested

• But plausible in the

dimensions tested

• Because physical systems

are continuous

John Rushby 5

Software Is Not Continuous

• It’s constructed out of

discrete choices

◦ if...then...else...

◦ Billions of them

• So testing only examines

a tiny fraction of total

behaviors

• And we cannot

interpolate from tested to

untested behaviors

[gear ==3]

[gear == 3]

[V <= shift_speed_32]

[gear == 1]

[V > shift_speed_23]

[V > shift_speed_34]

[V <= shift_speed_21] [V > shift_speed_12] [V <= shift_speed_43]

[V > shift_speed_23]

[V <= shift_speed_23]

[gear == 2]

[gear == 4]

[V <= shift_speed_43]

[V > shift_speed_34]

[gear == 2][V <= shift_speed_21]

[V > shift_speed_12]

third_gear
entry: to_gear=3;first_gear

entry: to_gear = 1;

transition12

[ctr > DELAY]

shift_pending_a
entry: ctr=0;
 to_gear=1;
during: ctr=ctr+1;

shifting_a
entry: to_gear=2;

transition23

[ctr > DELAY]

shift_pending2
entry: ctr=0;
 to_gear=2;
during: ctr=ctr + 1;

shifting2
entry: to_gear=3;

transition34

[ctr > DELAY]

shift_pending3
entry: ctr=0;
 to_gear=3;
during: ctr = ctr+1;

shifting3
entry: to_gear=4;

fourth_gear
entry: to_gear =4;

second_gear
entry: to_gear=2;

transition43

[ctr > DELAY]

shift_pending_d
entry: ctr=0;
 to_gear =4;
during: ctr=ctr+1;

shifting_d
entry: to_gear=3;

transition32

[ctr > DELAY]

shift_pending_c
entry: ctr=0;
 to_gear=3;
during: ctr=ctr+1;

shifting_c
entry: to_gear=2;

transition21

[ctr > DELAY]

shift_pending_b
entry: ctr=0;
 to_gear=2;
during: ctr = ctr+1;

shifting_b
entry: to_gear=1;

John Rushby 6

Mathematical Modeling and Calculation

• So software should adopt some of the methods of engineering

◦ Build mathematical models of the design

◦ And calculate their properties

• But the calculations are much harder than for physical

systems for just the same reason that testing is harder

◦ No continuity: have to consider all the discrete cases
time

problem size

◦ Hampered by computational infeasibility

John Rushby 7

But Now We Can Do It!

• 30 years of sustained research at SRI on automated

deduction (AIC as well as CSL)

• Better ways of using human insight to guide the process

• Smarter modeling: less is more

◦ First calculate an approximation to the system,

then analyze that

• Pragmatic focus

◦ e.g., improving test generation rather than proving

abstract correctness

• And we’re starting to get industrial takeup

John Rushby 8

Wild Claim: Calculation in the 21st Century

• The industrialization of the 19th and 20th century was based

on continuous mathematics

◦ And its automation

• That of the 21st century will be based on symbolic

mathematics

◦ Whose automation is now feasible

• Allows analysis of systems too complex and numerically too

indeterminate for classical methods

• For example: symbolic systems biology

Glucagon
Insulin

Glucose

Pancreatic

7 cont. vars. 8 cont. vars.

1 cont. var.

Insulin Release
3 cont. vars.

John Rushby 9

Why SRI?

• When I joined SRI in 1983, several other corporate,

university, and startup groups were working on these topics

◦ ISI, ORA, GE, SDC, CLI, UT Austin

• Only UT is still a force (and they came from SRI)

• Universities can seldom sustain large system development

over many years

• Startups have been premature

• Corporate research focus is volatile

• We have a unique environment

◦ Not university, not commercial, not corporate

◦ But capable of providing the advantages of all these

• A place to pursue a long-term strategic vision, but with

support for agile tactics

John Rushby 10

What I Hope to Do

• Well, we need some agile tactics right now

• A perfect storm of opportunity

• So I plan to spend time in industrial labs to understand how

we can connect our technology to their needs in a way that

will really make a difference

John Rushby 11

Thanks

• To my colleagues who have the ideas and do the work

◦ Leonardo de Moura, Sam Owre, Harald Rueß, Shankar,

Ashish Tiwari

• To all others in CSL for a stimulating research environment

◦ And especially our director, Pat Lincoln

• And to SRI!

John Rushby 12

