

John Rushby

Computer Science Laboratory SRI International Menlo Park, California, USA

John Rushby

We All Know...

- That software is unreliable and can fail
- And even its "correct" behavior can surprise us
- But why is this, and what can we do about it?

Why is Software Unreliable?

- Because it's complicated

 And it allows us to do complicated things
- And because it's not developed the same way as other engineered artifacts
 - It's more like a craft
- But also because it's different to physical systems
 - Aha!

Engineering vs. Craft

Engineering: Applying scientific knowledge to practical problems

- Systematic methods of design and analysis leading to artifacts with predictable properties
- Heavy use of mathematical modeling and calculation

Craft: Skilled practice of a trade

- Relies mainly on experience
- Heavy use of "build it and test"

Build It And Test

- Marching troops over a bridge, for example
- Only examines the dimensions actually tested
- But plausible in the dimensions tested
- Because physical systems are continuous

Software Is Not Continuous

- It's constructed out of discrete choices
 - \circ if...else...
 - Billions of them
- So testing only examines a tiny fraction of total behaviors
- And we cannot interpolate from tested to untested behaviors

Mathematical Modeling and Calculation

- So software should adopt some of the methods of engineering
 - Build mathematical models of the design
 - And calculate their properties
- But the calculations are much harder than for physical systems for just the same reason that testing is harder
 - $\circ~$ No continuity: have to consider all the discrete cases

But Now We Can Do It!

- 30 years of sustained research at SRI on automated deduction (AIC as well as CSL)
- Better ways of using human insight to guide the process
- Smarter modeling: less is more
 - First calculate an approximation to the system, then analyze that
- Pragmatic focus
 - e.g., improving test generation rather than proving abstract correctness
- And we're starting to get industrial takeup

Wild Claim: Calculation in the 21st Century

- The industrialization of the 19th and 20th century was based on continuous mathematics
 - And its automation
- That of the 21st century will be based on symbolic mathematics
 - Whose automation is now feasible
- Allows analysis of systems too complex and numerically too indeterminate for classical methods

Why SRI?

- When I joined SRI in 1983, several other corporate, university, and startup groups were working on these topics
 ISI, ORA, GE, SDC, CLI, UT Austin
- Only UT is still a force (and they came from SRI)
- Universities can seldom sustain large system development over many years
- Startups have been premature
- Corporate research focus is volatile
- We have a unique environment
 - Not university, not commercial, not corporate
 - But capable of providing the advantages of all these
- A place to pursue a long-term strategic vision, but with support for agile tactics

What I Hope to Do

- Well, we need some agile tactics right now
- A perfect storm of opportunity
- So I plan to spend time in industrial labs to understand how we can connect our technology to their needs in a way that will really make a difference

Thanks

- To my colleagues who have the ideas and do the work
 - Leonardo de Moura, Sam Owre, Harald Rueß, Shankar, Ashish Tiwari
- To all others in CSL for a stimulating research environment
 And especially our director, Pat Lincoln
- And to SRI!