
Invited talk for 8th International Symposium on Formal Aspects

of Component Software, FACS’11, Oslo Norway, 14–16 Sept

2011

Composing Safe Systems

John Rushby

Computer Science Laboratory

SRI International

Menlo Park, CA

John Rushby, SR I Composing Safe Systems: 1

Introduction

• We build systems from components

• But what makes something a system is that its properties are

distinct from those of its components

◦ New properties emerge from component interactions

• However, we can generally calculate and predict the system

behavior from those of its components and their

interconnection

• This is what engineering is all about, and it works pretty well,

most of the time

• And for many systems and properties, this is good enough

• But for certain kinds of systems and properties

(quintessentially, safety-critical ones), it is insufficient

• We need properties to be true all of the time

John Rushby, SR I Composing Safe Systems: 2

Failures

• When a system fails, investigation often reveals unexpected

interactions among components

◦ One component does something unexpected

(e.g., fails non-silently)

◦ Other components react badly

◦ The world falls apart

• It is for this reason that the FAA, for example, does not

certify components, only complete airplanes and engines

◦ They need to consider the possible interactions of

multiple components in the context of a specific system

◦ Components seldom advertise their failures; in a specific

system, can focus on the hazards posed by each

John Rushby, SR I Composing Safe Systems: 3

A Research Agenda

• It is currently infeasible to guarantee critical all the time

properties by compositional or modular reasoning

• Have to look at specific systems (like the FAA)

• But it is a good research topic to figure out why this is so

and what can be done about it

• Safety, in the sense of causing no harm to the public, is one

of the most demanding properties

• So the motivation for my title is to indicate a research

agenda focused on methods that might allow certification of

safety for complex systems by compositional means

John Rushby, SR I Composing Safe Systems: 4

Two Kinds of Unanticipated Interactions

• Those that exploit a previously unanticipated pathway for

interaction

◦ Can be controlled by partitioning

• Those due to unanticipated behavior along a known pathway

◦ Can be controlled by monitoring, wrapping, etc., and by

anticipating the unanticipated

• I’ll sketch these, and focus on the last

John Rushby, SR I Composing Safe Systems: 5

Partitioning

• Aircraft employ many interacting subsystems, yet are safe

• Traditionally, they used a federated architecture

◦ Each subsystem (autopilot, brakes, yaw damper etc.) had

its own computer system

◦ Often replicated for reliability

◦ Separate subsystems could communicate through

exchange of messages

◦ But their relative isolation provided a natural barrier to

fault propagation

• Modern aircraft use Integrated Modular Avionics (IMA)

◦ Subsystems share resources

◦ Partitioning restores same fault isolation as federated

system

John Rushby, SR I Composing Safe Systems: 6

Partitioning Mechanisms

• Partitioning for processors is achieved by a minimized OS

kernel/hypervisor (a separation kernel)

• Partitioning for networks requires special engineering to limit

disruption due to faulty (e.g., babbling) nodes

◦ Control either rate, or time of access

(cf. AFDX, TTA/TTE)

• Together, these guarantee information flows specified by box

and arrow diagrams

John Rushby, SR I Composing Safe Systems: 7

Why Partitioning?

Why do I need partitioning when my stuff is formally verified

and is correct?

1. Your stuff may be correct, but the other guy’s might not be

2. Even your stuff is subject to random hardware faults

(SEUs, HIRF etc)

Partitioning guarantees preservation of prior properties

John Rushby, SR I Composing Safe Systems: 8

Sometimes, Partitioning Is All You Need

• Recall, partitioning guarantees information flows specified by

box and arrow diagrams (a policy architecture)

• And sometimes this is all you need

• Certain security properties are like this

sanitizer unclassifiedsecret

• Sometimes you need some of the nodes to guarantee certain

properties (like the sanitizer above)

• Exercise: formalize this

◦ Cf. MILS, and recent work by Ron Van Der Meyden

◦ It depends on intransitive noninterference

John Rushby, SR I Composing Safe Systems: 9

Related Techniques

• There are several related ideas in this space

• Safety kernels, enforceable security, anomaly detection,

wrapping, runtime monitoring, etc.

• Very simple monitors may be possibly perfect

• The reliability of a monitored system is (roughly) the product

of the reliability of the primary system and the probability of

perfection of the monitor

• See a forthcoming TSE paper by Bev Littlewood and me

John Rushby, SR I Composing Safe Systems: 10

From Controlling The Bad To Making Good

• Looked at methods that stop components doing bad things

• Now look at how to ensure that components do good things

John Rushby, SR I Composing Safe Systems: 11

Classical Compositional Reasoning

• Typically assume/guarantee

• Roughly, verify that component A delivers (or guarantees)

property p, on the assumption its environment guarantees q

• And that component B guarantees property q, on the

assumption its environment guarantees p

• When these are composed, each becomes the environment of

the other and their composition A||B guarantees p ∧ q

• But if these are true components, each is surely designed in

ignorance of the other, so it requires prescience (or good

fortune) that they each assume and guarantee just the right

properties to match up

John Rushby, SR I Composing Safe Systems: 12

Lazy Compositional Reasoning

• Shankar has an alternative lazy approach

• Establish that A delivers p in the context of an ideal

environment E

• Later need to show that B refines E

• Less prescience needed: don’t need to know about B when

we design A

• But we do need to postulate a suitable E

John Rushby, SR I Composing Safe Systems: 13

Assumption Synthesis

• An alternative is to design A, then calculate or synthesize the

weakest environment under which it guarantees p

• When A is a concrete state machine, can do this by L∗

learning

• But early in the lifecycle, we have only a sketch for A

• Want to calculate the assumptions needed to make to work

• If these are implausible, revise the design

• If reasonable, note them as the properties that must be

guaranteed by its environment when used in a system

John Rushby, SR I Composing Safe Systems: 14

Assumptions and Hazards

• In safety-critical systems, circumstances that could lead to

safety failure are called hazards

• Safety-critical engineering is about finding all the hazards,

and showing that each is countered (eliminated or mitigated)

effectively

• So assumption synthesis is related to hazard discovery

◦ They are duals

John Rushby, SR I Composing Safe Systems: 15

Assumption Discovery Using Inf-BMC

• Inf-BMC does bounded model checking (BMC) on state

machines defined over theories supported by an SMT solver

◦ SMT is Satisfiability Modulo Theories

◦ Roughly, combines SAT solving with decision procedures

for theories like equality with uninterpreted functions,

linear arithmetic, etc.

◦ The biggest advance in formal methods in last 20 years

◦ Performance honed by annual competition

• State space is potentially infinite, hence inf-BMC

• Combines the expressiveness and abstractness of theorem

proving with the automation of model checking

• Highly abstract components can be specified using

uninterpreted functions, possibly constrained by axioms

John Rushby, SR I Composing Safe Systems: 16

Example: Protecting Against Random Faults

• Components that fail by stopping cleanly are fairly easy to

deal with

• The danger is components that do the wrong thing

• We have to eliminate design faults by analysis (that’s what

we’re doing here), but we still have to worry about random

faults

◦ When an α-particle flips a bit in your instruction counter

• Our goal is to design a component that fails cleanly in the

presence of random faults

John Rushby, SR I Composing Safe Systems: 17

Example: Self-Checking Pair

• If they are truly random, faults in separate components

should be independent

◦ Provided they are designed as fault containment units —

independent power supplies, locations etc.

◦ And ignoring high intensity radiated fields (HIRF) — and

other initiators of correlated faults

• So we can duplicate the component and compare the outputs

◦ Pass on the output when both agree

◦ Signal failure on disagreement

• Under what assumptions does this work?

John Rushby, SR I Composing Safe Systems: 18

Example: Self-Checking Pair (ctd. 1)

control_out
data_in

data_in

control_out
m_data

d
is
tr
ib
u
to
r

c
h
e
c
k
e
r

controller

c_data

safe_out

fault

con_out

data_in

mon_out
controller
(monitor)

• Controllers apply some control law to their input

• Controllers and distributor can fail

◦ For simplicity, checker is assumed not to fail

◦ Can be eliminated by having the controllers cross-compare

• Need some way to specify requirements and assumptions

• Aha! correctness requirement can be an idealized controller

John Rushby, SR I Composing Safe Systems: 19

Example: Self-Checking Pair (ctd. 2)

control_out
data_in

data_in

control_out
m_data

ideal

d
is
tr
ib
u
to
r

c
h
e
c
k
e
r

controller

c_data

ideal_out

safe_out

fault

con_out

data_in

mon_out
controller
(monitor)

The controllers can fail, the ideal cannot

If no fault indicated safe out and ideal out should be the same

Model check for G((NOT fault => safe out = ideal out))

John Rushby, SR I Composing Safe Systems: 20

Example: Self-Checking Pair (ctd. 3)

control_out

errorflag
data_in

data_in
control_out

errorflag

m_data

ideal

d
is
tr
ib
u
to
r

ch
ec
k
er

controller

c_data

ideal_out

safe_out

fault

con_out

data_in

merror

cerror

mon_out
controller
(monitor)

assumptions

violation

We need assumptions about the types of fault that can be

tolerated: encode these in assumptions synchronous observer

G(violation = down => (NOT fault => safe out = ideal out))

John Rushby, SR I Composing Safe Systems: 21

Synthesized Assumptions for Self-Checking Pair

• We will examine this example with the SAL model checker

• Initially, no assumptions

• Counterexamples help us understand what is wrong or

missing

• Will discover four assumptions

• Then verify that the design is correct under these

assumptions

• Then consider the probability of violating these assumptions

and modify our design so that the most likely one is

eliminated

John Rushby, SR I Composing Safe Systems: 22

selfcheck.sal: Types

selfcheck: CONTEXT =

BEGIN

sensor_data: TYPE;

actuator_data: TYPE;

init: actuator_data;

laws(x: sensor_data): actuator_data;

metasignal: TYPE = {up, down};

John Rushby, SR I Composing Safe Systems: 23

selfcheck.sal: Ideal Controller

ideal: MODULE =

BEGIN

INPUT

data_in: sensor_data

OUTPUT

ideal_out: actuator_data

INITIALIZATION

ideal_out = init;

TRANSITION

ideal_out’ = laws(data_in)

END;

John Rushby, SR I Composing Safe Systems: 24

selfcheck.sal: Ordinary Controller

controller: MODULE =

BEGIN

INPUT

data_in: sensor_data

OUTPUT

control_out: actuator_data, errorflag: metasignal

INITIALIZATION

control_out = init; errorflag = down;

TRANSITION

[normal: TRUE -->

control_out’ = laws(data_in); errorflag’ = down;

[] hardware_fault: TRUE -->

control_out’ IN {x: actuator_data | x /= laws(data_in)};
errorflag’ = up;

] END;

John Rushby, SR I Composing Safe Systems: 25

selfcheck.sal: Distributor

distributor: MODULE =

BEGIN

INPUT

data_in: sensor_data

OUTPUT

c_data, m_data: sensor_data

INITIALIZATION

c_data = data_in; m_data = data_in;

TRANSITION

[distributor_ok: TRUE -->

c_data’ = data_in’; m_data’ = data_in’;

[] distributor_bad: TRUE -->

c_data’ IN {x: sensor_data | TRUE};
m_data’ IN {y: sensor_data | TRUE};

] END;

John Rushby, SR I Composing Safe Systems: 26

selfcheck.sal: Checker

checker: MODULE =

BEGIN

INPUT

con_out: actuator_data, mon_out: actuator_data

OUTPUT

safe_out: actuator_data, fault: boolean

INITIALIZATION

safe_out = init; fault = FALSE;

TRANSITION

safe_out’ = con_out’;

[

disagree: con_out’ /= mon_out’ --> fault’ = TRUE

[] ELSE -->

]

END;

John Rushby, SR I Composing Safe Systems: 27

selfcheck.sal: Wiring up the Self-Checking Pair

scpair: MODULE = distributor

|| (RENAME

control_out TO con_out,

data_in TO c_data,

errorflag TO cerror

IN controller)

|| (RENAME

control_out TO mon_out,

data_in to m_data,

errorflag TO merror

IN controller);

|| checker

John Rushby, SR I Composing Safe Systems: 28

selfcheck.sal: Assumptions

assumptions: MODULE =

BEGIN

OUTPUT

violation: metasignal

INPUT

data_in, c_data, m_data: sensor_data,

cerror, merror: metasignal,

con_out, mon_out: actuator_data

INITIALIZATION

violation = down

TRANSITION

[assumption_violation:

FALSE % OR your assumption here (actually hazard)

--> violation’ = up;

[] ELSE -->] END;

John Rushby, SR I Composing Safe Systems: 29

selfcheck.sal: Testing the Assumptions

scpair_ok: LEMMA

scpair || assumptions || ideal |-

G(violation = down

=> (NOT fault => safe_out = ideal_out));

% sal-inf-bmc selfcheck scpair_ok -v 3 -it

John Rushby, SR I Composing Safe Systems: 30

Assumption Synthesis: First Counterexample

• Both controllers have hardware faults

• And generate same, wrong result

• Derived hazard (assumption is its negation)

cerror’ = up AND merror’ = up AND con_out’ = mon_out’

Assumption module reads data of different “ticks”;

important to reference correct values (new state here)

• This hazard requires a double failure

◦ Any double failure may be considered improbable

• Here, require double failure that gives same result

◦ Highly improbable

John Rushby, SR I Composing Safe Systems: 31

Assumption Synthesis: Second Counterexample

• Distributor has a fault: sends wrong value to one controller

• The controller that got the good value has a fault, generates

same result as correct one that got the bad input

• Derived hazard (assumption is its negation)

m_data /= c_data

AND (merror’ = up OR cerror’ = up)

AND mon_out’ = con_out’

• Double fault, so highly improbable

John Rushby, SR I Composing Safe Systems: 32

Assumption Synthesis: Third Counterexample

• Distributor has a fault: sends (different) wrong value(s) to

one or both controllers: Byzantine/SOS fault

• It just happens the different inputs produce same outputs

• Very dubious you could find this with a concrete model

◦ Such as is needed for conventional model checking

◦ Likely to use laws(x) = x+1 or similar

• Derived hazard (assumption is its negation)

m_data /= c_data

AND (merror’ = down AND cerror’ = down)

AND mon_out’ = con_out’

John Rushby, SR I Composing Safe Systems: 33

Assumption Synthesis: Third Counterexample (ctd.)

• The distributor could be as simple as a solder joint, how can

it produce these failures?

• By adding resistance: one component may see weak voltage

as 1, another as 0

• So actually quite plausible

• But fixable: pass inputs to checker

• Since the controllers are nonfaulty they correctly pass their

different inputs to the checker

• This also reduces likelihood of the previous hazard, but does

not eliminate it: the faulty controller could lie about its input

John Rushby, SR I Composing Safe Systems: 34

Assumption Synthesis: Fourth Counterexample

• Distributor has a fault: sends same wrong value to both

controllers

• Derived hazard (assumption is its negation)

m_data = c_data AND m_data /= data_in

• This one we need to worry about

• Byzantine/SOS fault at the distributor is most likely to

generate the previous two cases

◦ This is an unlikely random fault, but suggests a possible

systematic fault

John Rushby, SR I Composing Safe Systems: 35

Assumption Synthesis Example: Summary

• We found four assumptions for the self-checking pair

◦ When both members of pair are faulty, their outputs differ

◦ When the members of the pair receive different inputs,

their outputs should differ

? When neither is faulty: can be eliminated

? When one or more is faulty

◦ When both members of the pair receive the same input,

it is the correct input

• Can prove by 1-induction that these are sufficient

◦ sal-inf-bmc selfcheck scpair ok -v 3 -i -d 1

• One assumption can be eliminated by redesign, two require

double faults

• Attention is directed to the most significant case

John Rushby, SR I Composing Safe Systems: 36

The Big Picture

• Formal verification does not cover everything needed to

certify safety

• For example, there are probabilistic elements concerning

random failures and vulnerabilities in the verification itself

(correctness of the requirements, completeness of hazard

discovery)

• These are addressed in the Safety Case, generally organized

around Claims, Argument, Evidence

• Sometimes Toulmin’s style of argument is advocated here

◦ “argumentation” is a field of its own, distinct from logic

• Certainly need some kind of probabilistic logic

◦ Carnap, BBNs, Dempster-Shafer etc.

• Many opportunities for research here

John Rushby, SR I Composing Safe Systems: 37

Conclusion

• The problem of composing truly safe systems from

components throws many of the issues concerning

component and system design and verification into sharp

relief

• I hope I have illustrated some of these

• And excited you about the opportunities for research here

John Rushby, SR I Composing Safe Systems: 38

