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Overview

• It’s pretty hard to get embedded systems working at all

• But many embedded systems are used in contexts where

failures are really bad news

Expensive: e.g., Prius recalls

Catastrophic (to the mission): e.g., crash of Mars Polar

Lander, several others

Dangerous/Deadly: e.g., violent pitching of VH-QPA

• Because hardware can fail, critical systems often must be

fault tolerant

• This adds complexity, and the mechanisms for fault tolerance

often become the leading cause of failures

• We’ll look at some of these issues, starting with sensors,

then computation, then actuators
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Sensors: Violent Pitching of VH-QPA

• An Airbus A330 en-route from Singapore to Perth on 7

October 2008

• Started pitching violently, unrestrained passengers hit the

ceiling, 12 serious injuries, so counts as an accident

• Three Angle Of Attack (AOA) sensors, one on left (#1),

two on right (#2, #3) of airplane nose

• Want to get a consensus good value

• Have to deal with inaccuracies, different positions,

gusts/spikes, failures
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A330 AOA Sensor Processing

• Sampled at 20Hz

• Compare each sensor to the median of the three

• If difference is larger than some threshold for more than 1

second, flag as faulty and ignore for remainder of flight

• Assuming all three are OK, use mean of #1 and #2

(because they are on different sides)

• If the difference between #1 or #2 and the median is larger

than some (presumably smaller)threshold, use previous

average value for 1.2 seconds

• Failure scenario: two spikes, first shorter than 1 second,

second still present 1.2 seconds after detection of first

• Spike gets passed though rate limiter, flight envelope

protections activate inappropriately
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Another Example: X29

• Three sources of air data: a nose probe and two side probes

• Selection algorithm used the data from the nose probe,

provided it was within some threshold of the data from both

side probes

• The threshold was large to accommodate position errors in

certain flight modes

• If the nose probe failed to zero at low speed, it would still be

within the threshold of correct readings, causing the aircraft

to become unstable and “depart”

• Found in simulation

• 162 flights had been at risk
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Sensor Processing: Analysis

• This is a difficult issue and there’s no completely satisfactory

solution known (good research problem)

• Most algorithms are complex and homespun

• My hunch is that it could be better to deal separately with

inaccuracies, position errors, gusts/spikes, failures

• Possible approach: intelligent sensor communicates an

interval, not a point value

• Width of interval indicates confidence, health
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Sensor Fusion: Marzullo’s Algorithm

Axiom: if sensor is nonfaulty, its interval contains the true

value

Observation: true value must be in overlap of nonfaulty

intervals

Consensus (fused) Interval to tolerate f faults in n, choose

interval that contains all overlaps of n − f ;

i.e., from least value contained in n − f intervals to largest

value contained in n − f

Eliminating faulty samples: separate problem, not needed for

fusing, but any sample disjoint from the fused interval must

be faulty
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True Value In Overlap of Nonfaulty Intervals

S(2)
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Marzullo’s Fusion Interval
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Marzullo’s Fusion Interval: Fails Lipschitz Condition

S(2)
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S(1)
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Schmid’s Fusion Interval

• Choose interval from f + 1’st largest lower bound to f + 1’st

smallest upper bound

• Optimal among selections that satisfy Lipschitz Condition
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Schmid’s Fusion Interval
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Compute: Fuel Emergency on G-VATL

• An Airbus A340 en-route from Hong Kong to London on 8

February 2005

• Toward the end of the flight, two engines flamed out, crew

found certain tanks were critically low on fuel, declared an

emergency, landed at Amsterdam

• Two Fuel Control Monitoring Computers (FCMCs) on this

type of airplane; they cross-compare and the “healthiest” one

drives the outputs to the data bus

• Both FCMCs had fault indications, and one of them was

unable to drive the data bus

• Unfortunately, this one was judged the healthiest and was

given control of the bus even though it could not exercise it

• Further backup systems were not invoked because the

FCMCs indicated they were not both failed
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Computational Redundancy: Analysis

• This is big topic, several approaches

Self-checking pairs: two computers cross-compare,

shutdown on disagreement, then another pair takes over

(more later)

N-modular redundancy: N computers vote on a consensus

◦ Exact-match voting, or averaging?

◦ Synchronized or unsynchronized?

• The separate computers are generally called channels

• Axiom: failures are independent

• Requires they are separate Fault Containment Units (FCUs)

◦ Physically separate

◦ Separate power, cooling, etc.
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Unsynchronized Designs (e.g., F16)

• Channels sample sensors independently, compute

independently

• Intuitively maximizes diversity, independence

• But cannot expect outputs to match exactly, so need

selection, or averaging, as with sensors

• Tends to produce homespun solutions

• Outputs depend on time integrated values

(e.g., velocity, position)

◦ Accumulated errors are compounded by clock drift

◦ So must exchange and vote integrator values

◦ Requires ad-hoc synchronization in the applications code

• Redundancy management pervades applications code (as

much as 70% of the code)
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Unsynchronized Designs (e.g., F16)

sensor

sensor

sensor

compute

compute

compute

actuator
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Problems with Unsynchronized Designs

• Output selection can induce large transients (cf. Lipschitz)

◦ Averaging functions dragged along by faulty values

◦ Exclusion on fault detection causes drastic change

• Mode switches can cause channel divergence

◦ IF x > 100 THEN . . . ELSE . . .

Time

change of mode here

100

◦ Output very sensitive to sample when near decision point

• Have to modify control laws to ramp changes in and out

smoothly, or use ad hoc synchronization and voting

• So computational redundancy interacts with control
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Historical Experience of DFCS (early 1980s)

• Advanced Fighter Technology Integration (AFTI) F16

• Digital Flight Control System (DFCS) to investigate

“decoupled” control modes

• Triplex DFCS to provide two-fail operative design

• Analog backup

• Digital computers not synchronized

• “General Dynamics believed synchronization would introduce

a single-point failure caused by EMI and lightning effects”
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AFTI F16 Flight Test, Flight 36

• Control law problem led to “departure” of three seconds

duration

• Sideslip exceeded 20◦, normal acceleration exceeded −4g,

then +7g, angle of attack went to −10◦, then +20◦, aircraft

rolled 360◦, vertical tail exceeded design load, failure

indications from canard hydraulics, and air data sensor

• Side air data probe blanked by canard at high AOA

• Wide threshold passed error, different channels took different

paths through control laws

• Analysis showed this would cause complete failure of DFCS

for several areas of flight envelope
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AFTI F16 Flight Test, Flight 44

• Unsynchronized operation, skew, and sensor noise led each

channel to declare the others failed

• Simultaneous failure of two channels not anticipated

So analog backup not selected

• Aircraft flown home on a single digital channel

(not designed for this)

• No hardware failures had occurred
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Other AFTI F16 Flight Tests

• Repeated channel failure indication in flight was traced to

roll-axis software switch

• Sensor noise and unsynchronized operation caused one

channel to take a different path through the control laws

• Decided to vote the software switch

• Extensive simulation and testing performed

• Next flight, same problem still there

• Found that although switch value was voted, the unvoted

value was used
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Analysis: Dale Mackall, NASA Engineer

AFTI F16 Flight Test

• Nearly all failure indications were not due to actual hardware

failures, but to design oversights concerning unsynchronized

computer operation

• Failures due to lack of understanding of interactions among

◦ Air data system

◦ Redundancy management software

◦ Flight control laws (decision points, thumps, ramp-in/out)
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Synchronized Designs
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Synchronized Fault-Tolerant Systems (e.g., 777 AIMS)

• Synchronized systems can use exact-match voting for

fault-masking and transient recovery—potentially simpler and

more predictable

• It’s easier to maintain order than to establish order (Kopetz)

◦ Synchronized designs solve the hard problems once

◦ Unsynchronized designs must solve them on every frame

• Need fault-tolerant clock synchronization

• And fault-tolerant distribution of sensor values so that each

channel works on the same data: interactive consistency

(aka. source congruence, Byzantine agreement)

• Both these need to deal with asymmetric or Byzantine faults
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Interactive Consistency

• Needed whenever a single source (e.g., sensor) is distributed

to multiple channels (e.g., redundancy for fault tolerance)

◦ Faulty source could otherwise drive the channels apart

• A solution is to pass through n intermediate relays in parallel

and vote the results (OM(1) algorithm)

2 n1

k1

source

relay relay relay

receiver receiver

Can tolerate certain numbers and kinds of faults: e.g.,

n ≥ 3a + 2s + m + 1
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SOS Interpretation of Byzantine Faults

• The “loyal” and “traitorous” Byzantine Generals metaphor is

unfortunate

◦ Also academic focus on asymptotic issues rather than

maximum fault tolerance from given resources

• Leads most homespun designers to reject the problem

◦ Also, 10−9 per hour is beyond casual human experience

◦ Actual frequency of rare faults is underestimated

• Slightly Out of Specification (SOS) faults can exhibit

Byzantine behavior

◦ Weak voltages (digital 1/2)

⋆ One receiver may interpret 2.5 volts as 0, another as 1

◦ Edges of clock regions

⋆ One receiver may get the message, another may not
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A Real SOS Fault

• Massively redundant aircraft system

• Theoretically enough redundancy to withstand 2 Byzantine

faults

• But homespun design did not consider such possibility

• Several failures in 2 out of 3 “independent” units

• Entire fleet within days of being grounded

• Adequate fix developed by engineer who had designed a

Byzantine-resilient system for same aircraft
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Actuators: Airbus Aileron Design

• One approach, based on self-checking pairs does not attempt

to distinguish computer from actuator faults

• Must tolerate one actuator fault and one computer fault

simultaneously

241 3

actuator 1 actuator 2

P M

self−checking
pair

• Can take up to four frames to recover control
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Consequences of Slow Recovery

• Use large, slow moving ailerons rather than small, fast ones

◦ Hybrid systems question: why?

• So the ailerons take up a larger part of the wing

• As a result, wing is structurally inferior

• Holds less fuel

• And plane has inferior flying qualities

• All from a choice about how to do fault tolerance
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Actuators: Physical Averaging

• Alternative uses averaging at the actuators

◦ E.g., multiple coils on a single solenoid

◦ Or multiple pistons in a single hydraulic pot

• Hybrid systems question: how well does this work?
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Human Interaction

• Sophisticated control laws can leave the operator (pilot) out

of phase, get Pilot Induced Oscillations (PIOs): first Shuttle

drop test, F22 crash (Google for the video)

• Human error is the dominant cause of aircraft incidents and

accidents (70% of accidents)

• Actually, the error is usually bad and complex interface

design, which provokes automation surprise, of which mode

confusion is a special case

• Pilots are surprised by the behavior of the automation

◦ Or confused about what “mode” it is in

◦ “Why did it do that?”

◦ “What is it doing now?”

◦ “What will it do next?”
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Human Factors Example: MD-88 Altitude Bust

• The pitch modes determine how the plane climbs

◦ VSPD: climb at so many feet per minute

◦ IAS: climb while maintaining set airspeed

◦ ALT HLD: hold current altitude

• The altitude capture mode determines whether there is a

limit to the climb

◦ If altitude capture is armed

⋆ Plane will climb to set altitude and hold it

⋆ There is also an ALT CAP pitch mode that is used to

end the climb smoothly

◦ Otherwise

⋆ Plane will keep climbing until pilot stops it
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Altitude Bust Scenario—I

Crew had just made a missed approach

Climbed and leveled at 2,100 feet

Color code: done by pilot, done by others or by automation

• Air traffic Control: “Climb and maintain 5,000 feet”

• Captain set MCP altitude window to 5,000 feet

◦ Causes ALT capture to arm

• Also set pitch mode to VSPD with a value of 2,000 fpm

• And autothrottle (thrust) to SPD mode at 255 knots
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Altitude Bust Scenario—II

• Climbing through 3,500 feet, flaps up, slats retract

• Captain changed pitch mode to IAS

◦ Causes autothrottle (thrust) to go to CLMP

• Three seconds later, nearing 5,000 feet, autopilot

automatically changed pitch mode to ALT CAP

◦ Which disarmed ALT capture

• 1/10 second later, Captain changed VSPD dial to 4,000 fpm
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Altitude Bust Scenario: Outcome

• Plane passed through

5,000 feet at vertical

velocity of 4,000 fpm

• “Oops: It didn’t arm”

• Captain took manual

control, halted climb at

5,500 with the

“altitude—altitude”

voice warning sounding

repeatedly
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Human Factors: Analysis

• Operators use “mental models” to guide their interaction

with automated systems

• Automation surprises arise when the operator’s mental model

does not accurately reflect the behavior of the actual system

• Mode confusion is a just a special case: the mental model is

not an accurate reflection of the actual mode structure

◦ Or loses sync with it

• Mental models can be explicitly formulated as state machines

◦ And we can “capture” them through observation,

interviews, and introspection

◦ Or by studying training manuals

(which are intended to induce specific models)
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Mental Model for Pitch Modes in MD88

capture altitude

HLD

IAS/VSP

IAS/VSP

CAP
CAP

HLD/arrive

capture

active

holdnot active

Whether capture is active is independent of the pitch mode
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Actual System, Pitch Modes in MD88

capture

capture

altitude

HLD

IAS/VSP

IAS/VSP

HLD/arrivenear

HLD/arriveIAS/VSP

CAP
CAP

not armed hold

is alt_cap

armed

pitch mode

There is an alt cap pitch mode that flies the final capture
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Reliability and Safety

• These are not the same

• Different techniques are needed to ensure them

• Often require both simultaneously

◦ Nuclear: shutdown on problems, reliability affects

efficiency, not safety

◦ Airplane: have to keep flying

• Both can be specified probabilistically

◦ Typically probability of (safety) failure on demand

◦ Or probability of (safety) failure per hour
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Nine Nines

• Requirement for civil aircraft is no catastrophic failure

condition (one which could prevent continued safe flight and

landing) in the entire life of the fleet concerned

• Say 1,000 aircraft in fleet, 40 years life, 5,000 hours/year, 10

embedded systems, each with 10 catastrophic failure

conditions

• That’s 2 × 109 hours exposure for each

• So need probability of failure less than 10−9 per hour,

sustained for 20 hours

• Also known as nine nines (reliability 0.999999999)
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Assurance for Nine Nines

• Hardware reliability is about six nines

◦ Small transistors of modern processors increasingly

vulnerable to single event upsets (SEU)s, aging effects

• Can test systems to about three nines (maybe four)

• Nine nines would require 114,000 years on test

• So most of the assurance has to come from analysis

• With proper fault-tolerant design, channel failures are

independent

• So can multiply probabilities: two-channel system with three

nines per channel gives six nines

• Use Markov and similar models to model reliabilities of more

complex architectures
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Design Errors

• All software errors are design errors

• FPGAs, ASICS, etc. are the same as software

• Failure is certain, given a scenario that activates the bug

• But scenarios are a stochastic process

• So can speak of software reliability

◦ Three nines means probability of encountering a scenario

that activates a bug is 1 in 1,000

• n-version software: develop n different versions of the

software, deliberately diverse, and vote them

• Experiments and theory cast doubt on the approach

◦ Failures not independent: difficulty varies over input space

• Seems to work in practice (Airbus fly-by-wire)

• But difficult to quantify benefits, costs
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Certification

• Have to convince a regulator that you’ve thought of

everything

• Your design deals safely with every contingency

• And your implementation is correct

• Can choose where design (analyzed for safety) ends and

implementation (analyzed for correctness) begins

• Have thought of everything: means you have considered all

possible behaviors of your design in interaction with its

environment

• Conceptually, this is what model checking is about

◦ Build models of the design, and of the environment

◦ Explore reachable states of their composition

• Except it’s traditionally done by hand, with very informal and

abstract models
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Hazard Analysis

• First, identify the hazards (e.g, fire in airplane hold)

• Then figure out how to eliminate, control or mitigate them

◦ e.g., if hazard is fire, can eliminate by having no

combustible material or no oxygen, control by fire

extinguishing system, mitigate by preventing spread

◦ cf. ETOPS planes

• Iterate as the design evolves, and new hazards emerge

• Formulate safety claims

◦ e.g., reliability of fire extinguishing system

• Then analyze those

John Rushby, SR I Safety etc.: 44



Safety Analysis

• Can think of it as model checking by hand

• Can only explore a few paths

• So focus on those likely to harbor safety violation

• Explore backward from hypothesized system failure

◦ Fault Tree Analysis (FTA)

• And forward from hypothesized component failures

◦ Failure Modes and Effects Analysis (FMEA, FMECA)

• And along control, data, other flows

◦ HAZOP guidewords

◦ e.g., late, missing, wrong, too little, too much
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Certification Processes

• These differ considerably across industries

• As do the power of the regulatory authorities

• Most are based on standards or guidelines

• FDA 510(k) process is an exception

◦ Argue that your device is equivalent to something prior

◦ e.g., Da Vinci surgical system (a robot) was certified

under 510(k) as equivalent to a clamp
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Standards-Based Assurance

Commercial airplanes, for example

• ARP 4761: Guidelines and Methods for Conducting the Safety

Assessment Process on Civil Airborne Systems and Equipment

• ARP 4754: Certification Considerations for Highly-Integrated or Complex

Aircraft Systems

• DO-297: Integrated Modular Avionics (IMA) Development Guidance and

Certification Considerations

• DO-254: Design Assurance Guidelines for Airborne Electronic Hardware

• DO-178B: Software Considerations in Airborne Systems and Equipment

Certification

Works well in fields that are stable or change slowly

• Can institutionalize lessons learned, best practice

◦ e.g. evolution of DO-178 from A to B to C

But less suitable with novel problems, solutions, methods
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Software Standards Focus on Correctness

Rather than Safety

safety

verification

correctness

safety goal system rqts

software rqts

code

software specs

system specs

validation

• Premature focus on correctness is hugely expensive
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Standards and Argument-Based Assurance

• All assurance is based on arguments that purport to justify

certain claims, based on documented evidence

• Standards usually define only the evidence to be produced

• The claims and arguments are implicit

• Hence, hard to tell whether given evidence meets the intent

• E.g., is MC/DC coverage evidence for good testing or good

requirements?

• Recently, argument-based assurance methods have been

gaining favor: these make the elements explicit
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The Argument-Based Approach to Software Certification

• E.g., UK air traffic management (CAP670 SW01),

UK defence (DefStan 00-56), growing interest elsewhere

• Applicant develops a safety case

◦ Whose outline form may be specified by standards or

regulation (e.g., 00-56)

◦ Makes an explicit set of goals or claims

◦ Provides supporting evidence for the claims

◦ And arguments that link the evidence to the claims

⋆ Make clear the underlying assumptions and judgments

⋆ Should allow different viewpoints and levels of detail

• Generalized to security, dependability, assurance cases

• The case is evaluated by independent assessors

◦ Explicit claims, evidence, argument
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Looking Forward

• Systems are becoming massively more complex

• And more integrated

• cf. Integrated Modular Avionics (IMA)

• OTOH. sophisticated COTS components (e.g.,

TT-Ethernet) replace homespun designs

• “Thinking of everything” becomes a lot harder: emergent

behaviors

• Need compositional methods of assurance and certification

• Need much more automation in the assurance process

◦ Consider more scenarios, more reliably

• Adaptive systems move design to runtime

◦ Assurance must go there, too
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A Hint of the Future

• Recall the A340 FCMC fault

• Monitoring for reasonable fuel distribution would have caught

this

• Software requirements were the source of the bug

◦ So monitor the safety case instead

• Given a formal safety case, could generate a monitor

• It would be possibly perfect

• At the aleatory level, failures of a reliable channel and a

possibly perfect one are conditionally independent

• Can multiply their probabilities

risk ≤ f × c1 × (C + PA1 × PB1) + (1 − f) × c2 × PB2

• Epistemic estimation of the parameters is feasible
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