Tutorial, CPS PI Meeting, DC 3–5 Oct 2013
Formal Verification Technology

John Rushby

Computer Science Laboratory
SRI International
Menlo Park, CA
Overview

- A tour of the landscape
- Some topics for the future/close to my heart
Formal Analysis: The Basic Idea

- **Symbolic evaluation** . . .
- Instead of evaluating, say, \((5 - 3) \times (5 + 3)\) and observing that this equals \(5^2 - 3^2\)
- We evaluate \((x - y) \times (x + y)\)
- And get some big symbolic expression
 \[x \times x - y \times x + x \times y - y \times y\]
- And we use automated deduction
 - The laws of (some) logic
 - And of various theories, e.g., arithmetic, arrays, datatypes
 To establish some properties of that expression
 - Like it always equals \(x^2 - y^2\)
- The symbolic evaluation can be over computational systems expressed as hardware, programs, specifications, etc.
Formal Analysis: Relation to Engineering Calculations

• This is *just like the calculations regular engineers do* to examine properties of their designs
 ◦ Computational fluid dynamics
 ◦ Finite element analysis
 ◦ And so on

• In each case, build models of the artifacts of interest in some appropriate mathematical domain

• And do *calculations* over that domain

• Useful only when *mechanized*
Formal Analysis: The Difficulty

• For calculations about computational systems, the appropriate mathematical domain is logic

• Where every problem is at least NP Hard

• And many are exponential, superexponential \((2^{2^n}) \), nonelementary \((2^{2^{2^{\cdots}^n}}) \), or undecidable

• Hence, the worst case computational complexity of formal analysis is extremely high

• So we need clever algorithms that are fast much of the time

• But we also need to find ways to simplify the problems
Formal Analysis: The Benefit

- Can examine all possible cases
 - Relative to the simplifications we made

- Because finite formulas can represent infinite sets of states
 - e.g., $x < y$ represents $\{(0,1), (0,2), \ldots (1,2), (1,3)\ldots\}$

- Massive benefit: computational systems are (at least partially) discrete and hence discontinuous, so no justification for extrapolating from examined to unexamined cases

- In addition to providing strong assurance

- Also provides effective ways to find bugs, generate tests

- And to synthesize guaranteed designs
Basic Technology: BDDs

- For finite state systems (or approximations that are)
- We can grind everything down to Booleans and represent the system as essentially a circuit
 - Reduced Ordered Binary Decision Diagrams (BDDs) and variants provide canonical forms with efficient operations
 - Use these to calculate the reachable states by composing BDD representing current set of states with BDD representing the system until a fixed point is reached
 - Check desired properties are true in all reachable states
 - Desired properties can be represented as a synchronous observer, or a formula in a temporal logic (CTL, LTL, etc.), eventuality properties require Buchi automata
 - Can also go backwards from a set of states where property is violated to see if an initial state can be reached

- This is Symbolic Model Checking: SMV etc.
- Good for up to 300–1,000 state bits
Reachability

- Computing the set of reachable states is expensive
 - Even when done symbolically

- Nowadays, generally seek methods that are sensitive to the property concerned and thereby perform smaller computations

- OTOH, reachability is often fully automatic

- Whereas other methods may require more human guidance
Basic Technology: SAT

- Can alternatively ask if a property is **violated in** k or less steps, where k is a specific number, like 37
- Given system specified by initiality predicate I and transition relation T on states S, and desired property P
- Find assignment to states s_0, \ldots, s_k satisfying
 \[I(s_0) \land T(s_0, s_1) \land T(s_1, s_2) \land \cdots \land T(s_{k-1}, s_k) \land \neg(P(s_1) \land \cdots \land P(s_k)) \]
- Given a Boolean encoding of I, T, and P (i.e., circuit), this is a propositional satisfiability (SAT) problem
- SAT solvers have become **amazingly effective** recently, and continue to improve (annual competition)
 - 100,000s of variables and formulas
- This is called **Bounded Model Checking (BMC)**: NuSMV etc.
- Can also perform **verification** rather than refutation by slight adjustment that performs k-induction (may need invariants)
Basic Technology: Decision Procedures and SMT

- Suppose we don’t want to grind everything down to circuits

- Many useful theories are decidable (e.g., linear arithmetic, equality with uninterpreted functions)

- Decision procedures work on conjunctions of formulas

- Combine these with SAT solving to handle propositionally complex formulas over combinations of decided theories

- This yields solvers for Satisfiability Modulo Theories (SMT)
 - Biggest advance in 20 years

- Which in turn yields infBMC and inf-k-induction
 - Inf because some of the theories are infinite
Basic Technology: Beyond SMT

- All SMT solvers employ **heuristics** for performance
 - On multicore, run different heuristics/strategies in parallel
 - Called a **portfolio**

- Beyond SMT, there’s **nonlinear arithmetic** and other hard theories, **quantifiers** (\exists, \forall, first and higher order), and **lemma generation** (especially loop invariants)
 - Active areas; lots of recent progress

- That’s the basic technology
 - I’m going to describe some others later

But how do we use them?

- Remember even these stunningly powerful methods are typically not polynomial, and **do not scale** (much)
Dealing With Computational Complexity

- Use human guidance
 - Even with automation, often need user-supplied invariants
 - Or interactive theorem proving—e.g., PVS

- Use approximate models, incomplete search
 - Model checkers are often used this way

- Aim at something other than verification
 - E.g., bug finding, test case generation

- Verify weak properties
 - That’s what static analysis typically does

- Give up soundness and/or completeness
 - That’s what commercial static analysis typically does

- Concentrate on small, high criticality components
 - For example, monitors
Approximations, Simplifications, Abstractions (1)

- These can be sound or unsound
 - **Sound** means if no errors found, then there are none

- Unsound: **downscaling**
 - Just chop things down
 - e.g., replace 32 bit integers by 2 bits, limit size of data structures, omit entire parts of the system

- Works for bug finding
 - Exploring all behaviors of an **approximation** finds more bugs than sampling some of the behaviors of the **real thing**
Approximations, Simplifications, Abstractions (2)

- Sound: data abstraction, abstract interpretation
- Instead of computing on integers, say, compute on \{negative, zero, positive\}
- And many more sophisticated domains
- Iterate to fixed point
 - Need widening and other methods to force convergence
- Can be effective for weak properties
 - Absence of runtime exceptions
 - e.g., Microsoft system (Clousot)
- A lot of engineering, and/or annotation needed to reduce false alarms
 - e.g., Astrée (avionics floating point)
- Can deliver invariants useful to other methods
Approximations, Simplifications, Abstractions (3)

- Sound: predicate abstraction

- Instead of individual variables, focus on their relations

- e.g., eliminate x and y, track $x < y$ (i.e., a Boolean)

- Use the relations appearing in conditionals, loops
CEGAR Loops

- Use aggressive, sound approximation
- Get a counterexample to desired property
- Is this due to overapproximation, or because the property really is false?
- Try to evaluate the counterexample on original problem
- If it works, we are done (property is false)
- If not, mine it to find source of overapproximation
 - Craig Interpolation often used for this
- Counter-Example-Guided Abstraction Refinement: CEGAR
Software (As Opposed to State Machines)

- There’s a program counter
- Inefficient to represent it as just another state variable
- Need Abstract Reachability Tree (ART), etc.
- Yields Software Model Checking (Blast, CMBC, CPA Checker, etc.)
- Alternatively, focus on the abstract data types (e.g., Alloy)
- Or generate test cases using deliberate counterexamples
- Can interleave symbolic and concrete evaluation to force tests to all reachable control locations
 - Concolic testing (CUTE, Dart, KLEE, SAGE etc.)
Software, Again

• Software model checking, interactive program verification, even static analysis often need user-supplied invariants, and other annotations

• **Difficult to obtain**, even a spec can be difficult to obtain

• Powerful type systems can help
 ◦ Predicate subtypes, dependent types

• But software engineering is rarely concerned with creating truly new code, mostly it is modifying existing code: fixing bugs, adding APIs or functionality, refactoring

• The new code should be the same as the old code, except for what was changed

• This is equivalence checking

• Tractable to SMT without annotations

• E.g., SymDiff (Microsoft)
Cyber Physical Systems

- We have **realtime**
- And a controlled **plant**
 - Typically described by **differential equations**
- These yield **timed automata, hybrid automata** etc.
- Verification problems are **harder**, but the payoffs **greater**
 - Because testing seldom encounters critical cases
- A lot of progress recently
- Some of it **direct automation**: UPPALL, SpaceEx
- Some of it **abstractions** to problems solved by SMT
 - Timeout automata, relational abstractions etc.
State of the Art

• Few off the shelf tools for std. programming environments
 ○ Some sound, often specialized, static analysis: Astrée
 ○ Mostly unsound: Coverity, Code Sonar, PRQA etc.

• Quite good tools for some CPS environments
 ○ Design Verifier for Stateflow/Simulink
 ○ Similar for SCADE, Statemate

• Many good backend tools (model checkers), tool components (SMT)

• SOA applications often employ many of these in ad-hoc toolchains with a lot of glue code and engineering

• Sometimes starting from standard languages, sometimes from specialized ones (SAL, Charon etc.)

• What’s needed is an ecosystem of components and a tool bus

• We are building one (ETB)
Interim Summary

- There’s a lot of backend power available (SMT)

- And a lot of good ideas, experimental tools, components

- Most of the work is building toolchains that start from something acceptable to the shop concerned

- And that does something valuable while limiting annotation and user interaction to a level acceptable to the shop concerned

- It need not be full verification
So what? Verification and Safety

- Even if it is full verification, it is not an unequivocal guarantee of properties like safety

- Safety often concerns attributes of the plant

- Like the hazards that it poses

- Verification may establish that each hazard is adequately eliminated or managed

- But how do we know we’ve identified all the hazards?
Safety/Assurance Cases

- The intellectual foundation of all methods of system assurance is that we have
 - **Claims** about safety (or other critical attribute)
 - **Evidence** about our system (tests, reputation of developers, prior systems, formal assurance)
 - **Arguments** that justify the claims, based on the evidence

- In standards-based approaches, claims and argument are **implicit**, the standard specifies what evidence to produce

- But there is a notion of **Safety** (or more generally **Assurance**) Case that makes the CAE structure explicit
 - That’s why our tool bus is an **Evidential Tool Bus** (ETB)

- **Standards** work well in slow-moving, uniform fields (aircraft)

- **Safety Cases** may be best where there is a lot of innovation and diversity (medical devices)
Epistemic and Logic Vulnerabilities in Safety Cases

- In civil aircraft, all accidents and incidents caused by software are due to flaws in the system requirements specification or to gaps between this and the software specification
 - i.e., none are due to coding errors
 - Because their verification is pretty good, albeit manual
- Verification is wrt. assumptions, requirements, knowledge of the system and its environment
- These are all about epistemology: what you know
 - Can get these wrong: e.g., overlooked hazard
- So there are two sources of vulnerability in safety cases
 - Epistemic (flawed knowledge): new ideas needed here
 - Logic (flawed reasoning): verification can fix this
 - Subject to epistemic concerns about its own soundness
- Cf. validation and verification in traditional V&V
A Conundrum

- Cannot eliminate failures with certainty (because the environment is uncertain), so top-level safety claims about systems are stated quantitatively
 - E.g., no catastrophic failure in the lifetime of all airplanes of one type
- And these lead to probabilistic requirements for software-intensive subsystems
 - E.g., probability of failure in civil flight control $< 10^{-9}$ per hour
- To assure this, do lots of verification and validation (V&V)
- But V&V is all about showing correctness
- And for stronger claims, we do more V&V
 - Or more intensive V&V: e.g., formal verification
- So how does amount of V&V relate to probability of failure?
Useful Small Systems: Monitors

- These are particularly interesting in safety critical applications, where you need extreme reliability
 - One operational “channel” does the business
 - Simpler monitor channel can shut it down on error

- Used in airplanes (ARP 4754)

- Turns malfunction and unintended function into loss of function
 - Which is dealt with OK by higher-level fault handling

 Also prevents transitions into bad states

- Monitors against system requirements, not software requirements

- Can be simple because it only need observe, rather than generate, behavior

- Can be formally verified or synthesized
Reliability of Monitored Systems (1)

- The most critical aircraft software needs failure rates below 10^{-9} per hour sustained for 15 hours or more (flight duration).

- Suppose the failure rate of the operational system is 10^{-4} and that of the monitor is 10^{-5}, does that give us 10^{-9}?

- No! Failures may not be independent
 - Failure of one channel probably indicates a hard demand.

- No good way forward based on claims about reliability
 - Need “covariance of the difficulty function”
Reliability of Monitored Systems (2)

- But the monitor is simple enough that it can be formally verified or synthesized.

- Claim is not that it is reliable but that it is perfect... probably
 - Perfection means will never have a failure in operation
 - Failure is defined wrt. system requirements, not software requirements, hence differs from correctness

- Attach subjective probability to likelihood of perfection

- **Theorem:** probability of failure of monitor alone is related to its probability of perfection: \(p_{fd} = p_{np} \times p_{f|np} \)

- **Theorem:** probability of perfection of the monitor is conditionally independent of the failure rate of the primary

- So if the monitor has probability of imperfection of \(10^{-5} \), we do get \(10^{-9} \) overall!
Reliability of Monitored Systems (3)

- Lots of technical details omitted here
- This analysis is *aleatoric*, need the *epistemic* assessment
- And is 10^{-5} credible as a probability of imperfection?
- Monitor may go off when it should not (*Type 2 failure*)
- But the basic idea is *sound*
 - IEEE TSE Spotlight Paper September/October 2012
- Idea is that you monitor the *system* specification
 - Get this right by *assumption synthesis* etc.
- Whereas the operational system is built to the *software* requirements specification
- Recall, *all* aircraft incidents due to problems precisely here
- So this approach precisely addresses most vulnerable point
Finally, A Thought Experiment

• Suppose that at some point in a system development I discern the need to make some part of it fault tolerant
• I must choose the types and numbers of faults that it should tolerate (this is called the fault model)
• Suppose I choose a “simple” fault model
e.g., “crash” faults, and no more than two of them
• Then that might enable me to design a correspondingly simple algorithm to perform the fault tolerance
• Thus, I might have very few doubts about whether my algorithm is correct (wrt. its fault model)
 ◦ i.e., little logic doubt
• But I might have considerable doubts about whether the fault model will be valid in the real context of its deployment
 ◦ i.e., large epistemic doubt
Alternatively

- I could make very few assumptions about the faults
 - That is, a weak fault model
- But then the mechanisms to tolerate those faults might take me into the world of complex adaptive systems
- So here I reduce my epistemic doubt at the price of larger logic doubt
- Traditionally, in critical systems, we have favored reducing logic doubt at the expense of epistemic doubt
 - e.g., no adaptive systems in flight control
- Resilience is about tipping the balance in the other direction
- But without too much logic doubt
- This is the CPS verification challenge of the future
Summary

- There's a lot of verification technology available
- Off the shelf toolchains for weak properties
- For strong properties, still need to roll your own
- Emerging ecosystem of components, standardized intermediate representations, APIs, tool buses
- Beyond the science and technology, big issues are integration
 - Into industrial workflows and toolchains
 - Into totality of an assurance case
- New opportunities
 - Synthesis rather than verification: \(\exists \forall \text{ SMT solvers} \)
 - \(\exists A, B, C : \forall x, y : A \times x + B \times y = C \)
 - Resilience: possibly move the verification to runtime
 - Adaptive systems, online synthesis