
Rockwell Collins, Oct 1, 2002, based on JSLC, Grenoble 6–8 November 2001 and

FTRTFT September 2002



Overview of The Time Triggered Architecture
And Its Formal Verification

John Rushby

Computer Science Laboratory

SRI International

Menlo Park, California, USA

John Rushby, SR I TTA Overview: 1



The Time-Triggered Architecture: What Is It?

� The Time-Triggered Architecture (TTA) is a platform for safety-critical embedded

systems
� E.g., aircraft and engine flight control, and “by wire” cars

� Functionally, it is a TDMA (time-triggered) serial bus
� “Bus” understates its criticality and sophistication

� It is the safety-critical core of the systems built above it
� Must achieve failure probability below

�������
	
/hour for 10 hours, maximum outage

10ms

John Rushby, SR I TTA Overview: 2



TTA: Where Did It Come From?

� Developed by the group of Hermann Kopetz, TU Vienna

� Commercialized by TTTech

� Builds on a lineage of research architectures that developed principled solutions to

the challenges of concurrent, real-time, distributed, fault-tolerant systems design
� SIFT (SRI), FTP, FTPP (Draper), MAFT (Allied Signal), MARS (TU Vienna)

� TTA is unique in being developed for mass-market for automobile applications (Audi,

PSA etc.) but also used for aircraft applications (Honeywell)
� “Aircraft safety at automobile cost”

John Rushby, SR I TTA Overview: 3



Similar Systems

� There are other safety-critical buses

� Avionics: SAFEbus (Honeywell 777 AIMS), SPIDER (NASA)

� Automotive: TTA, FlexRay (Daimler/Chrysler et al)

� I’ve written a NASA Tech Report and a paper presented at EMSOFT ’01 that

compare them

� Use Google to find my home page, follow link to my papers

John Rushby, SR I TTA Overview: 4



Applications of TTA and Similar Buses

� Safety-critical embedded systems

Avionics “functions”: flight control, autopilot, autoland, flight management,

displays. . .

Aircraft “controls”: engine controls, thrust reversers, cabin pressurization, brakes,

doors and slides, public address,. . .

Automotive: “by wire” brakes, suspension, steering,. . .

� TTA specifically
� Engine controller for an Italian fighter (Honeywell Tucson)
� Engine controller for F16 (Honeywell Tucson)
� Environmental control for A380 (Hamilton Sundstrand)
� GenAv cockpits (Honeywell Olathe)
� By wire applications in next generation cars (Audi, PSA. . . ), Snowcats, . . .

John Rushby, SR I TTA Overview: 5



Fault Tolerant Architectures

� Provide basic services to a collection of host computers
� Timing, communication

These services must not fail, despite failure of components

� Support fault tolerant applications in the hosts
� E.g., through state machine replication

Consistent message delivery, failure notification, partitioning

John Rushby, SR I TTA Overview: 6



The Rôle of Buses
� There must be some communication system for exchanging sensor samples, state

data, control signals, actuator outputs
� Many possible topologies, but only a serial bus is economically viable
� The bus is then a critical shared resource

� Communication must be assured with guaranteed bandwidth, low jitter, low

end-to-end latency
� In the presence of faults

� Bus embodies the fault tolerant architecture

John Rushby, SR I TTA Overview: 7



The Additional (New) Challenge: Integration

� Previously, these systems were federated
� Each had its own fault-tolerant computing system
� Few interactions between them

� Now becoming integrated
� Resources shared among systems
� Stronger interactions among them

More functionality at less cost
� Integrated Modular Avionics (IMA)
� Modular Aerospace Controls (MAC)
� Integrated steering, brakes, suspension (cars)

� New hazards from fault propagation, and unintended emergent behavior

John Rushby, SR I TTA Overview: 8



Partitioning

� Restores to integrated systems the strong barriers to fault propagation of federated

architectures

� Failure of one component must not affect ability of others to function and

communicate

� Allows low and high-criticality functions to coexist
� Strong composability is a dual to partitioning

� Allows high-criticality functions to be deconstructed
� Into components of differing levels
� Which allows provision of additional capabilities

� The bus has primary responsibility for enforcing partitioning

John Rushby, SR I TTA Overview: 9



Basic Characteristics of TTA

� Exists in both bus and star topologies (logically still a bus)

Host

Interface

Host

Interface

Host

Interface

Host

Interface

Bus

Host

Interface

Host

Interface

Host

Interface

Host

Interface

Star

Hub

Bus/hub are replicated

� All functionality implemented in the distributed interfaces (called TTP/C controllers)

� And in the hub of the star topology (a modified controller)

John Rushby, SR I TTA Overview: 10



Basic Characteristics of TTA (ctd.)

� Creates a synchronous, TDMA ring on a broadcast bus

� Global clock (achieved by synchronizing local clocks)

� Global schedule known at all nodes

John Rushby, SR I TTA Overview: 11



Fault Hypothesis and Fault Containment Units
� Must identify the fault containment units (FCUs) that faults can afflict

� Faults at different FCUs must be independent
� Need design evidence for this

(separate power, physically apart)
� Must state an explicit fault hypothesis

� The modes (kinds), number, and arrival rate of faults that can afflict FCUs
� Must be validated by experiment, experience

� Redundancy and suitable algorithms then provide fault tolerance: this is what we

verify
� And should have a never give up (NGU) strategy in case the fault hypothesis is

violated

John Rushby, SR I TTA Overview: 12



Formal Verification and Stochastic Modeling

� Architecture must be shown to satisfy the mission requirements under its fault

hypotheses

� Formal verification establishes theorems of the form

fault hypothesis satisfied � architecture works correctly

� Stochastic modeling establishes probability of the hypothesis (hence, ability to

satisfy the mission requirement)

System failures that could lead to a catastrophic failure condition must be “extremely

improbable,” which means that they must be “so unlikely that they are not anticipated

to occur during the entire operational life of all airplanes of one type” . . . “When using

quantitative analyses. . . numerical probabilities. . . on the order of
� � ���

per

flight-hour

[FAA Advisory Circular 25.1309-1A]

John Rushby, SR I TTA Overview: 13



Specific, Arbitrary, and Hybrid Fault Models

Specific: enumerate the possible fault modes, provide defense for each one
� Need to show no other kind of fault can occur

Arbitrary (aka. Byzantine): no assumptions at all on behavior of faulty elements
� Requires a lot of redundancy
� Could fail under lots of simple faults

Hybrid: combination of the above
� Originally: arbitrary, symmetric, and manifest node faults
� Improvement: adds omission node fault, plus link faults
� Just right

John Rushby, SR I TTA Overview: 14



Algorithms For Hybrid Fault Models

� Provide properties such as the following

� ICAH (a clock synchronization algorithm) maintains synchronization provided

� � ��� � ���	� 


Where

� � is total number of clocks

� � is number that are arbitrary faulty

� � is number that are symmetric faulty

� � is number that are manifest faulty

John Rushby, SR I TTA Overview: 15



Basic Algorithms of TTA

� Clock synchronization

� Bus guardian window timing

� Group membership

� Clique avoidance

� Nonblocking write

� Startup/restart

John Rushby, SR I TTA Overview: 16



TTA Clock Synchronization

� Keeps good clocks close together, in presence of faulty clocks

� Based on the Lundelius-Lynch algorithm
� Each node collects clock differences wrt. other nodes
� Takes average of 2nd smallest and 2nd largest as its correction

� Restrict to nodes that have accurate oscillators

� But TTA uses only 4 clock differences

� Tolerates a single arbitrary fault

John Rushby, SR I TTA Overview: 17



Bus Guardians

� A faulty node could broadcast at the wrong time

� Or all the time (babbling fault mode)
� Destroys all good communications

� Must introduce a separate FCU with own clock and knowledge of schedule that

mediates access to the bus

� This is a (logical) bus guardian

� Several design choices

SAFEbus: paired interfaces (and buses): each is a guardian for the other

TTA-bus, FlexRay: explicit guardians

TTA-star: guardian functionality in central hub

John Rushby, SR I TTA Overview: 18



Explicit Guardian

� One per bus, or shared?

� Fully independent clock

synchronization?
guardian

controller
host/

John Rushby, SR I TTA Overview: 19



Guardian in Central Hub

Host

Interface

Host

Interface

Host

Interface

Host

Interface

Star

Hub

John Rushby, SR I TTA Overview: 20



Bus Window Timing

� Bus guardian allows its node to write to the bus only during a limited window

� Want the bus guardian window to be as narrow as possible

� But still pass all messages from nonfaulty nodes

� Despite the fact that clocks are only loosely synchronized

� Also, no source or destination addresses are sent with messages
� These are determined by time message sent
� Eliminates masquerading, greatly increases bandwidth

� So receivers also maintain a narrow reception window

John Rushby, SR I TTA Overview: 21



Window Timing: Requirements

� Need to consider windows of three (classes of) components
� A transmitter
� Its bus guardian
� The receivers

� Requirements

Validity: If any nonfaulty node transmits a message, then all nonfaulty nodes will

accept the transmission.

Agreement: If any nonfaulty node accepts a transmission, then all nonfaulty nodes

do

� Given that clocks are synchronized only within some parameter �

John Rushby, SR I TTA Overview: 22



Window Timing: Design Rules

Each slot has a start time and a maximum duration recorded in the schedule

1. Transmission begins � � units after the beginning of the slot and should last no

longer than the allotted duration.

2. The bus guardian for a transmitter opens its window � units after the beginning of

the slot and closes it � � beyond its allotted duration.

3. The receive window extends from the beginning of the slot to � � beyond its allotted

duration.

John Rushby, SR I TTA Overview: 23



Window Timing: In Pictures

TF

BF

RF

Transmitter

Bus Guardian

Receiver

skew

(2Π)

(Π)

(0)

(2Π)

(3Π)

(4Π)RS

BS

TS

(Π)

John Rushby, SR I TTA Overview: 24



Asynchronous Communication

� An important element in Kopetz’ conception of time-triggered systems is the

distinction between elementary and composite interfaces

� Control flow must be unidirectional for elementary interfaces

� At the TTA the controller/host interface, we need reliable, timely communication

across an asynchronous interface with no handshakes or blocking

� In computer science, this is called a wait-free, lock-free, atomic register construction

� TTA uses algorithm called NBW (nonblocking write)
� A combination of Lamport’s lock-free construction
� And ideas from Simpson’s wait-free construction

John Rushby, SR I TTA Overview: 25



Safe, Regular, Atomic Registers

What happens when we read memory at the same time it is being written?

Consider a read that overlaps possibly many writes

Safe: can get any value

regular: gets one of the values written

atomic: a series of reads behaves in a manner that is consistent with the reads and

writes interleaving in some order (reads never return older values than previous

reads)

For atomic registers, want mutual-exclusion on access to the register

� Lock-free: no blocking
� Wait-free: always get the most recent

John Rushby, SR I TTA Overview: 26



Group Membership

� Similar to fault diagnosis

� Informs good nodes which other nodes are good

� Needed for internal fault-tolerance of TTA
� TTA is designed to single fault assumption
� Membership excludes faulty nodes, can then tolerate new faults
� Therefore its properties are a strong influence on the fault hypothesis and arrival

rate

� Is also an application-level service (see later)

John Rushby, SR I TTA Overview: 27



Requirements For Group Membership

Each processor maintains a membership set

Validity: the membership sets of nonfaulty processors contain all the nonfaulty

processors
� And, ideally, nothing else—but this is not possible because it takes some time to

diagnose a faulty processor
� So allow at most one faulty processor in the membership

Agreement: all nonfaulty processors have the same membership sets

Self-Diagnosis: faulty processors eventually remove themselves from their own

membership sets (and fail silently)

Rejoin: Repaired processors can get back in

Subject to fault hypothesis about possible fault modes, fault arrival rate, and maximum

number of faults

John Rushby, SR I TTA Overview: 28



TTA Group Membership Algorithm

� Each broadcaster acknowledges the previous two
� Requires only two bits per message (encoded in CRC)

� Works only under symmetric fault model

� And no more than one fault per two rounds

John Rushby, SR I TTA Overview: 29



Clique Avoidance

� Membership is verified under benign fault hypothesis:

at most one symmetric fault every two rounds

� Beyond this fault hypothesis lie
� Asymmetric faults
� Multiple faults
� Node faults
� Arbitrary faults

� Clique avoidance (elimination) algorithm forces agreement on membership when

outside fault hypothesis of membership algorithm
� So part of “never give up” strategy

� May sacrifice validity

John Rushby, SR I TTA Overview: 30



SOS and Asymmetric (Byzantine) Faults
� SOS = slightly out of specification
� Weak power supply or faulty line driver may send intermediate voltages

� Neither digital 0 nor 1

Some receivers may see 0, others 1, and others may reject
� Or may send weak (slow rise) edges

� May look like 0 or 1, depending when sampled

Some receivers may see 0, others 1, and others may reject
� Or clock drift may put edges at edge of sampling interval
� Or could go metastable
� All these can give rise to asymmetric reception
� Can reduce incidence of these with central hub
� But cannot eliminate at

� � ���
	

John Rushby, SR I TTA Overview: 31



Group Membership and Clique Avoidance

� Group membership and clique avoidance are not separate algorithms, but

intertwined

� Can start from a basic group membership algorithm that works on the basis of

implicit acks from successor and next-successor

� Then add accept and reject counter

� Replace some of the fault detection by comparison between these counters

� Still have membership, but also ability to tolerate wider class of faults—this is clique

avoidance

� Can then consider clique avoidance as a self stabilizing extension to group

membership

John Rushby, SR I TTA Overview: 32



Startup/Restart

� When a node has heard nothing for a while, sends a wakeup message

� Other nodes may do same thing at the same time

� Collision detection is unreliable

� Needs self stabilization

� Should get clean wakeup after some small interval

� Need to prove this is achieved, in the presence of faults
� Previous membership information is lost

� Involves transition between two models of computation (asynchronous to

synchronous)

� Awaits formalization (some work at TU Vienna)

John Rushby, SR I TTA Overview: 33



Services

� Basics make it possible to build safe, fault tolerant, integrated applications

� May do more to make it easy to build them

� The applications themselves must be fault tolerant

And must therefore be replicated

Master/monitor: detect faults and fail silent

Master/shadow: self-checking master shuts down, shadow takes over

Compensation: survivors adjust their behavior to cover for failed component

Masking: Triple modular redundancy and voting

John Rushby, SR I TTA Overview: 34



Applications Need Consistent Knowledge
� Consider a brake-by-wire application

� Separate computers at each wheel adjust braking force according to inputs from

brake pedal, accelerometers, steering angle, wheel-spin sensors etc.

� Suppose one of these computers fails

� The others need to redistribute the braking force

� So must have consistent opinion about who has failed

John Rushby, SR I TTA Overview: 35



Replica Determinism as a System Service

� Strategies for fault-tolerant applications require that all nonfaulty replicas have the

same state

� That is, have received same sequence of messages

� So need more than “best efforts” message delivery

� Need consensus (aka. Byzantine agreement, interactive consistency)

� Under weakest fault hypothesis (Byzantine) this sets lower bounds (to tolerate �
simultaneous faults):
� � � �

�
FCUs

� � � �
�

disjoint comms paths, or � �
�

broadcast channels
� � �

�
rounds of information exchange

John Rushby, SR I TTA Overview: 36



Consensus

SAFEbus: Honeywell implementation has an extra communication channel; uses

method of Davies and Wakerly

SPIDER: Has redundancy inside central hub; uses variation on Draper FTP algorithm

TTA:
� Provides Group Membership as basic service

(assumes benign fault modes)
� With Clique Avoidance as NGU backup

(on asymmetric faults)
� Provides Draconian Consensus (resembles Crusader Agreement) by eliminating

receivers that disagree

Need to verify Draconian consensus and explain how it (apparently) violates known

lower bounds

John Rushby, SR I TTA Overview: 37



Top-Level Issues

� The individual algorithms are useful and interesting, but the real value of TTA is in

the top-level properties that it provides
� Partitioning
� Time-triggered model of computation

� These are emergent: not found in any single algorithm

John Rushby, SR I TTA Overview: 38



Partitioning

� The main issue for aircraft certification

� It’s what allows several “functions” to be integrated on single platform (IMA and MAC

architectures)

� Important dual attribute: strong composability

� Putative requirement specification for partitioning:
� Behavior perceived by nonfaulty components must be consistent with some

behavior of faulty components interacting with it through specified interfaces

� Need to formalize this

� And verify it for TTA

� The most difficult outstanding challenge?

John Rushby, SR I TTA Overview: 39



The Time-Triggered Model of Computation

� Hermann Kopetz has a whole philosophy for this
� Includes Temporal firewalls, composability arguments, elementary vs. compound

interfaces. . .

� Tom Henzinger has Giotto: a time-triggered language, that provides some additional

ideas

� Would like to give a formal account for this

(cf. Paul Caspi’s rational reconstruction for CriSys)

� I have verified that TTA supports the abstraction of synchronous system (TSE ’99)

but more is needed

John Rushby, SR I TTA Overview: 40



Modular Certification

� How to certify components separately?

� And glue the arguments together?

� Certification differs from verification in that you have to take faults (hazards) seriously

� Trying assume-guarantee approach, based on normal and (multiple) abnormal

assumptions and guarantees

� May help explain Perrow’s concerns, and Kopetz’ recommendation for elementary

interfaces

John Rushby, SR I TTA Overview: 41



Why Formal Verification?

Safety motivation:
� Need all the assurance possible
� Help move certification from process- to product-basis
� Help develop approach to modular certification

Developer (TTTech) motivation:
� Nowadays, expected to have at least an informal proof
� Formal proof gets into all the corners, may find bugs
� Formal proof exposes assumptions (fault hypotheses)
� Model checking and mechanized proof allow refined design exploration

Pruning of assumptions, strengthening of claims

Formal methods motivation:
� TTA algorithms are challenging, push the technology of automated verification

John Rushby, SR I TTA Overview: 42



The TTA Algorithms are Challenging. . .

� TTA comprises several algorithms

� That are individually challenging for formal verification

� Even in their “academic” form
� Hard to do at all
� Really hard to automate

Further complicated by practical details

� The algorithms interact in interesting ways

� And some of the most important properties are emergent
� Consistent message delivery is achieved indirectly, not by an agreement

algorithm
� Partitioning is not ensured by any individual algorithm

John Rushby, SR I TTA Overview: 43



The TTA Algorithms are Challenging To. . .

� I’ll sketch formal analyses by several projects and groups

� Projects
� SRI, with Honeywell Tucson and NASA
� NextTTA: TU Vienna, VERIMAG, Ulm, . . .
� ??? with Esterel

� Groups
� Liafa, Paris 7
� PAX, Kiel

� But I’ll focus on what remains to be done

John Rushby, SR I TTA Overview: 44



Clock Synchronization: Previous Verifications

� Byzantine fault-tolerant clock synchronization algorithms are a major challenge for

formal verification systems
� Intricate combination of arithmetic and combinatorial reasoning

� Friedrich von Henke and I were the first to verify one (called interactive convergence)

using EHDM (TSE ’93)
� Subsequently repeated by Bill Young using Nqthm

� Schneider’s general treatment and Lundelius-Lynch instantiation formally verified by

Shankar (FTRTFT 92) and improved by Paul Miner (MS Thesis) using EHDM

� Verification of interactive convergence extended to hybrid fault model by me (PODC

94)

John Rushby, SR I TTA Overview: 45



Clock Synchronization: TTA Case

� TTA uses only 4 clock differences

� Miner’s treatment was converted to PVS, generalized, and applied to TTA variant by

group at Ulm (DCCA ’97)

� But then lost in a fire

� Need to recreate this, but don’t want merely to repeat the lost Ulm treatment

� Satisfaction of mission requirements requires a hybrid fault model
� This will allow formulation of properties when less than 4 good clocks remain, or

more than a single fault arrives

John Rushby, SR I TTA Overview: 46



Clock Synchronization: Full TTA Case

� Proposal: verify Ulrich Schmid’s treatment of clock synch. under hybrid fault model

with link faults (DSN ’01)
� Independently interesting

� Then interpret TTA algorithm in this model with � � � “permanent” link faults to each

node

� Will be interesting to compare gain in efficiency of PVS over EHDM (hope for an

order of magnitude)

� But real desire is for fully automated proofs
� Feasible with timed/hybrid automata?

John Rushby, SR I TTA Overview: 47



Verification of Window Timing

� Done by me (Tech Report)

� Straightforward and largely automatic (used as tutorial)

John Rushby, SR I TTA Overview: 48



Simpson’s 4-Slot Algorithm (Similar To Part Of NBW)

� Patented by BAe in the 80s

� Widely used

� Uses 4 safe slots (buffers)

� And 4 Boolean control registers

� To construct a wait-free, lock-free atomic register

� What are the assumptions on the control registers?

John Rushby, SR I TTA Overview: 49



Analyzing 4-Slot

� I did it by model checking with SALenv
� Its first road test

� Found that it achieves mutual exclusion even when the control registers are merely

safe
� Finite state, so model checking provides verification

� But does not provide atomicity

� Even if control registers are written only when changed
� This makes them regular, not atomic

� Requires atomic control registers!

� Turns out there is a large activity on this in UK, and interesting work by Hesselink

(ACTA ’02)

John Rushby, SR I TTA Overview: 50



Verification of Group Membership

� Lincoln verified MAFT diagnosis algorithms (TSE 95)

� We became interested in verifying membership, which is a similar problem

� But TTA algorithm was not published at that time

� So Katz, Lincoln, and I invented our own (WDAG ’97)

� Needs only bit per message

� Verified by hand

John Rushby, SR I TTA Overview: 51



The Published WDAG Proof

� Was a conventional inductive invariance proof

� It is incorrect (incomplete)
� And the algorithm has a bug

�
Found independently by Shankar (inspection), and

�
Sadie Creese and Bill Roscoe (model checking)

� But is fairly easy to correct

� However, it defeated attempts by Pat Lincoln, Shmuel Katz, and me to formally verify

it in PVS
� Because of its horrible complexity

John Rushby, SR I TTA Overview: 52



The Published WDAG Invariant

The invariant has the following conjuncts.

1. All nonfaulty processors have the same membership sets.

2. All nonfaulty processors are in their own membership sets.

3. All nonfaulty processors have the same value for ��� � .

4. For each processor � , ��� ��� ��� is true iff in the most recent previous step in which � expected a broadcast

from a processor 	 , either � was 	 , or 
��
�
������� � 	�������� � ��� ��� 	���� ����� ��� ����� in that step.

5. If a processor � became faulty less than  steps ago and ! is a nonfaulty processor, either � is the

present broadcaster or the present broadcaster is in � ’s local membership set iff it is in ! ’s.

6. If a receive fault occurred to processor � less than  steps ago, then either � is not the broadcaster or

��� ��� ��� is "$#&%('*) while all nonfaulty ! have ��� ��� !+�-, .0/21�) , or � is not in its local membership set.

7. If in the previous step 	 is broadcaster, � is a nonfaulty processor, and 
3�
�
������� � 	��4��� does not hold,

then 	 is faulty in the current step.

8. If the broadcaster 	 is expected by a nonfaulty processor, then 	 is either nonfaulty, or became faulty less

than  steps ago.

John Rushby, SR I TTA Overview: 53



Successful Verification of Membership

� I found a method to verify the WDAG algorithm

� Uses disjunctive invariants

� Proof has a natural diagrammatic representation

� And can be constructed systematically

� I described the method using a simplified version of the WDAG algorithm (CAV ’00)

John Rushby, SR I TTA Overview: 54



There is a Natural Diagrammatic Representation

initial configuration

missed_rcv(x)

fault arrival
x broadcasts

nonfaulty broadcaster

broadcaster

x fails to receive

receive

any

self_diag(x)
x not

already-faulty
broadcaster

x fails to broadcast

x fails to broadcast

x fails to broadcast

excluded(x)

stable

already-faulty
broadcaster

latent(x)

John Rushby, SR I TTA Overview: 55



Verification of TTA Group Membership

� Performed by Holger Pfeifer (Forte/PSTV 00)

� Based on disjunctive invariants method (CAV 00)

� Generates a diagram of possible “configuration” that conveys a lot of insight into the

operation of the algorithm

� Proof is completely systematic, but not highly automated
� Well. . . try it in your prover

John Rushby, SR I TTA Overview: 56



Other Verifications of Membership
� Creese and Roscoe verified the WDAG algorithm by manually abstracting it to a

finite configuration, then model checking

� Problem with such approaches is that formal verification of the abstraction is hard

� An alternative uses theorem proving to construct the abstraction
� E.g., predicate abstraction
� Creates the context for failure-tolerant theorem proving
� Precision of the abstraction depends on the theorem proving power deployed

� PAX group at Kiel use WS1S and Mona to perform automated abstraction

� Handles the CAV algorithm automatically

John Rushby, SR I TTA Overview: 57



Self Stabilization

� Given a network of processes in arbitrary initial states, prove they converge to some

good state

� A good model for recovery from transient faults
� Components do silly things, then the faults go away
� Leaving just the contaminated state

(Combination with permanent faults is a research topic)

� Previous verifications were tours-de-force

� Detectors and correctors theory of Kulkarni and Arora provides tractable treatment

(formalized in PVS by Kulkarni)

John Rushby, SR I TTA Overview: 58



Detectors and Correctors
� Stripped down version of the theory, with only correctors

� “Base” algorithm � whose purpose is to maintain invariant � in presence of fault

class � (e.g., group membership)

� ����� ���	� � ���
� Transients take system outside � , “corrector” 
 brings it back


 � � � �
� But � and 
 actually run concurrently and must not interfere with each other, so

really need � ���

 ����� ���	� � ����� 
 ���	� ����� � � � �
� If 
 is part of � , only need prove � doesn’t interfere with 

� Small complication that 
 only corrects to ���

John Rushby, SR I TTA Overview: 59



Weakened Detectors and Correctors

� � ���

 ����� ����� � ���
� � � � �

 ����� ���	� � � ��� ����������� � � � �
� 
 ����� ���	� � � � � �

John Rushby, SR I TTA Overview: 60



Interpretation for TTA

� The base algorithm is group membership

� The corrector is clique avoidance

� The benign fault model is at most one symmetric fault every two rounds

� � is validity
� All and only nonfaulty nodes in membership, except one faulty one is allowed

during recovery

and agreement

� � � sacrifices validity to ensure agreement
� May exclude some nonfaulty nodes

John Rushby, SR I TTA Overview: 61



Verification of Clique Avoidance

� Bauer and Paulitsch verify (by hand)

� � � � 
 ���	� ����� � � � � ���

where � is a single asymmetric fault (SRDS ’00)

� Bouajjani and Merceron verify (automatically)

� � � �

 ���	� � � � � ���

where � is a single asymmetric fault (multiple faults verified by hand)

� Challenge is to combine and extend these results

John Rushby, SR I TTA Overview: 62



Interaction of Membership and Synchronization

� Each depends on the other

� How to break the circularity?

� There are assume/guarantee methods that do this

� Ken McMillan has a rule that is appropriate here: breaks the dependency by time
� Membership at round � depends on synchronization up to round � �

�

� Synchronization at round � depends on membership up to round � �

�

John Rushby, SR I TTA Overview: 63



Interaction of Membership and Synchronization (ctd)

� McMillan’s rule: � is a “helper” property, � is the “always” modality of Linear

Temporal Logic (LTL), and � � � means that if � is always true up to time � , then �
holds at time � �

�
(i.e., � fails before � )

� � ��� �
�
	�� � 	

� �� � ��� �
�
	
� � 	�� �� � ��� � ����� ��� � � 	 ��� 	���� �

� I have formally verified McMillans’s rule

� Now plan to apply it to synchronization/membership
� Here, � � is membership, � �

is synchronization

� Holger Pfeifer (Ulm) is working on the same problem from a different direction

John Rushby, SR I TTA Overview: 64



Utility of These Verifications?

� The completed verifications will have obvious utility in certification

� But the main benefits are sharpened statements of assumptions and properties

� And clarification of interactions and interdependencies among the algorithms

� Stimulates useful dialog with the designers of TTA

� And provides education for potential users of TTA

� Severe test of verification methods and automation

John Rushby, SR I TTA Overview: 65



Next Steps

� Want to support developers of applications to run on TTA

� Should be able to verify their designs
� Expressed in e.g., Lustre or Simulink

� And their transformation into fault-tolerant implementations running on TTA

� Formalization needs to be largely transparent

� And verification must be largely automatic
� Need test vectors as well as formal proofs

� We cannot do all of this: concentrate on providing basic toolkits for others

John Rushby, SR I TTA Overview: 66



The Wall of Formal Verification

theorem
proving

Effort

verification
for system
Assurance

John Rushby, SR I TTA Overview: 67



A Smooth Slope of Formal Methods

ICS

PVS

SAL

Effort

refutation

invisible fm

verification

automated

abstraction

Assurance
for system

John Rushby, SR I TTA Overview: 68



Summary

� TTA is the last best hope for introducing rational fault-tolerance to distributed

embedded systems
� Displacing homespun solutions

� Analysis of its algorithms is a challenging and interesting problem for formal

verification
� But only needs to be done once

� Formalizing the computational model and properties presented to its client

applications is crucial

� Can then bring formalization and verification to those clients

� In the form of “disappearing formal methods”

John Rushby, SR I TTA Overview: 69


