

지수 법 전 모두 해 변경 전 모두 해 변경 번 모두 해 변경 한 모두 해 변경

ASSURANCE 2.0: A MANIFESTO

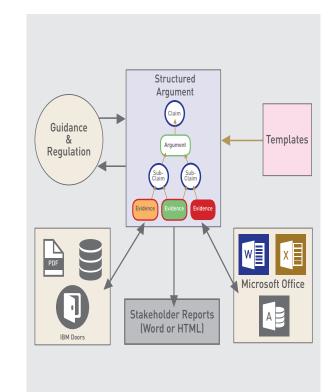
THE DEVELOPMENT AND APPLICATION OF ASSURANCE 2.0

Prof Robin E Bloomfield FREng Adelard LLP and City, University of London reb@adelard.com

Joint paper with John Rushby, SRI

Presentation to SSS'21. Feb 10th 2021

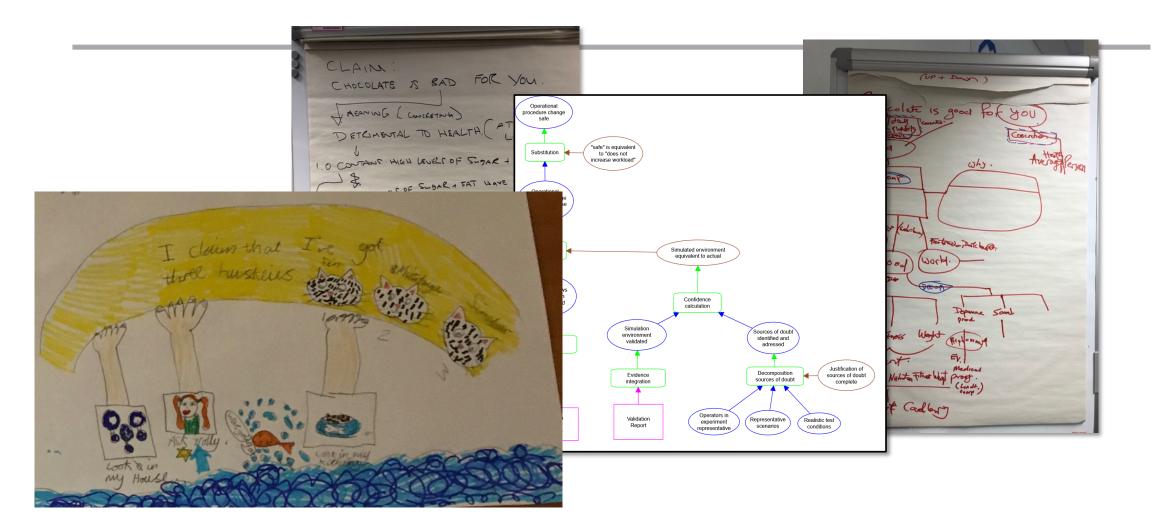
PT/908/180001/9


Ielard LLP, 24 Waterside, 44-48 Wharf Road, London N1 7UZ +44 20 7832 5850 E office@adelard.com W www.adelard.com

© 2021 ADELARD LLP

ADELARD

- Adelard is a specialized, influential product and services company working on safety, security and resilience
- Wide-ranging experience of assessing computer-based systems and components
- Work across different industrial sectors, including nuclear, transport, defence, financial, medical
 - Policy, methodology, technology
 - Product for managing safety and assurance cases (ASCE)
- Consultants PhD level, international team



OUTLINE

- Motivation
 - Briefly, why is Assurance 2.0 needed
- Summary of Assurance 2.0
 - Joint work with John Rushby, SRI
- Some application experience
 - Templates and guidance for Autonomous systems
 - Tool support
 - Industry courses
- Conclusions from manifesto to methodology

WHAT DOES GOOD LOOK LIKE?

DRIVERS FOR CHANGE

- Trustworthy systems expensive and often slow to produce
 - And still have failures
- Assurance is essential gaining confidence in the system
 - Essential for legal, reputational, market, ethical, commercial reasons
 - Can be slow to produce, slow to change
- Innovation challenges
 - New lifecycles, new technology
 - Higher tempo, varied supply chains. increased threats

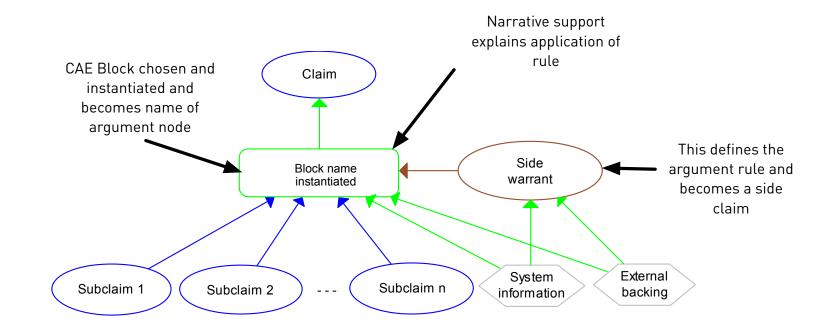
- Address existing and emerging requirements for safety and assurance arguments
 - ISO26262, PAS11281, UL4600, EU Pegasus project, Safety First For Automated Driving, UK Regulation for the Fourth Industrial Revolution White Paper

DRIVERS FOR NEW APPROACH

- Challenge from broadening approach to security and engineering justifications
 - The "non safety case" world using the approach
 - Long term study CAE adoption and CAE role in supporting innovation
- Commoditisation of risk assessment, loss of mindset
 - UK NCSC withdrawal of risk assessment guidance IS1 and IS2
 - <u>https://www.ncsc.gov.uk/guidance/critical-appraisal-risk-methods-and-frameworks</u>
- Challenge of
 - autonomous systems and those using AI/ML
 - automated certification
- Evolution of research on argumentation and assurance
- Overall need for
 - understanding, explanation, challenge, and learning

ASSURANCE 2.0

- Our idea is to make assurance an enabler for innovation, not a brake
- Paradoxically, we think we can achieve this by making it more rigorous
 - Keep structure of traditional assurance cases
 - Strengthen focus on evidence and reasoning
 - Bring assurance thinking forward within life-cycle
 - makes it clear what must be done and makes you do it earlier
 - Support assurance with known best practices
 - reduce the bewildering choice of free form cases with "pre-validated" blocks or templates


ASSURANCE 2.0 - MANIFESTO

- Making explicit inference rules and the separation of inductive and deductive reasoning.
 - empirically based CAE Blocks provides a mechanism for separating inductive and deductive aspects of the reasoning. *Natural language deductivism*. (NLD)
- Explicit use of doubts and defeaters
 - both undercutting and rebuttal, that confidence an integral part of the justification
 - indefeasibility criterion
- Focus on evidence integration, addressing both the relevance and provenance of evidence.
 - evidential threshold, in which a claim can be reasoned about deductively might be used when considering the role of automated reasoning
- Confirmation theory to evaluate the strength of evidence and arguments.
- Explicit approach to reduce bias by the use of counter-cases and confirmation theory.
- Recognition of importance of both mindset and methodology

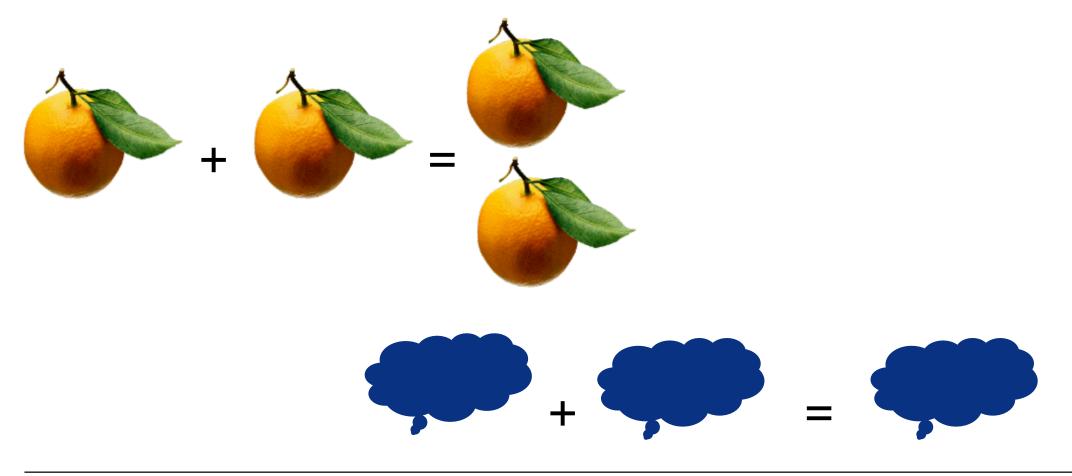
CAE BUILDING BLOCKS - NLD

- Well defined argument fragments, empirically based, but rigorously defined, supporting reasoning both deductive and inductive
- Fragment that support a combined graphical and narrative approach

DEDUCTIVE AND INDUCTIVE ARGUMENTS

- For valid deductive arguments the premises *logically entail* the conclusion, where the entailment means that the truth of the premises provides a *guarantee* of the truth of the conclusion
- An inductive logic is a system of evidential support that extends deductive logic to lessthan-certain inferences
- In a good inductive argument the premises should provide some *degree of support* for the conclusion, where such support means that the truth of the premises indicates with some *degree of strength* that the conclusion is true.
 - acceptability, relevance and sufficiency

Adapted from https://plato.stanford.edu/index.html


DEDUCTIVE AND INDUCTIVE ARGUMENTS

- For valid deductive arguments the premises *logically entail* the conclusion, where the entailment means that the truth of the premises provides a *guarantee* of the truth of the conclusion
- An inductive logic is a system of evidential support that extends deductive logic to lessthan-certain inferences
- In a good inductive argument the premises should provide some *degree of support* for the conclusion, where such support means that the truth of the premises indicates with some *degree of strength* that the conclusion is true.
 - acceptability, relevance and sufficiency

Adapted from https://plato.stanford.edu/index.html

EXAMPLE

DEDUCTIVE AND INDUCTIVE ARGUMENTS –WHY SEPARATE OUT?

Science of security – importance of deductive/inductive split

"We now detail security research failures to adopt accepted lessons from the history and philosophy of science.

A. Failure to observe inductive-deductive split

Despite broad consensus in the scientific community, in Security there is repeated failure to respect the separation of inductive and deductive statements "

SoK: Science, Security, and the Elusive Goal of Security as a Scientific Pursuit

Cormac Herley Microsoft Research, Redmond, WA, USA cormac@microsoft.com P.C. van Oorschot Carleton University, Ottawa, ON, Canada paulv@scs.carleton.ca

DOI: <u>10.1109/SP.2017.38</u>

Conference: 2017 IEEE Symposium on Security and Privacy (SP)

DEDUCTIVE AND INDUCTIVE ARGUMENTS – WHY SEPARATE OUT?

- Side claim provides a mechanism for factoring
 - Inductive argument-A = Deductive argument + Inductive argument-B
 - Where deductive gives some leverage e.g. analysis, tool support
 - Inductive argument-B is easier to show than Inductive argument-A (then we have made progress!

- Examples
 - Application of deductive models
 - Infer properties
 - Testing evidence -> reliability
 - Abstract interpretation -> run time errors
 - Architecture
 - Property distributes over components (e.g. confidentiality)
 - System properties
 - Fire, flood, earthquakes
 - Each time need to address validity of model and proper application via a side claim

FIVE CAE BUILDING BLOCKS

- Well defined argument fragments
 - Empirically based, but rigorously defined
 - Supporting both deductive and inductive reasoning
- Fragments support a combined graphical and narrative approach

Decomposition

Partition some aspect of the claim Divide and conquer

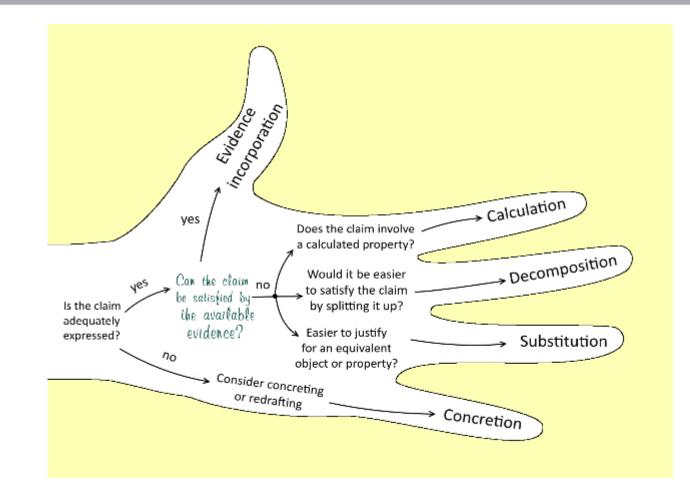
Substitution

Refine a claim about an object into claim about an equivalent object

Evidence incorporation

Evidence supports the claim Emphasis on direct support

Concretion


Some aspect of the claim is given a more precise definition

Calculation or proof

Some value of the claim can be computed or proved

'HELPING HAND' - GUIDANCE ON SELECTING BLOCKS

U.

DEFEATERS – EXPLICITLY DEALING WITH SOURCES OF DOUBT

- One concept used to address stopping rules and over-confidence is "defeaters". The concept of defeaters is used to articulate reasons why a claim might **not** be supported.
- Two kinds of defeaters:
 - Rebutting defeaters, which are reasons for believing the negation of the conclusion, and
 - Undercutting defeaters, which provide a reason for doubting that claim.
- Identification and mitigation of defeaters are foundational to assurance
 - Think of as hazard analysis applied to arguments
- In CAE
 - Rebutting defeaters can be addressed with negated subclaims
 - Undercutting defeaters can be addressed by explicitly showing them in the CAE structure

CONFIDENCE

- The purpose of an assurance case is to assist in making, justifying, and communicating the *decision* to deploy a system or service in a given context
- Top level requirement is that the justification should be indefeasible.
 - Meaning it is so well supported and all credible doubts & objections have been so thoroughly considered & countered
 - That no credible doubts remain that could change the decision
- Confidence is strength of our belief that case is indefeasible
- We do not think is can be reduced to some single assessment of the case
- Instead, we identify three perspectives, and assessments and measures within those
 - Assessment of confidence based on all three perspectives

THREE PERSPECTIVES ON CONFIDENCE

- Positive: extent to which case makes positive case to justify belief in its claims
 - Soundness: logical criterion using Natural Language Deductivism (NLD)
 - Based on weight of evidence, deductive reasoning
 - Probabilistic valuation: probabilistic criterion using Bayesian framework (CBI, BBN)
 - This is what many others mean by confidence: usually flawed (Graydon & Holloway)
 - We require case to be sound, only 5 argument blocks: avoids flaws
- Negative: extent to which doubts have been investigated and addressed
 - Doubts are vague, become defeaters when sharpened, recorded in the case
 - Together with justification for their own defeat (eliminative argumentation)
 - Use systematic methods to find credible defeaters (cf. hazard analysis)
 - May also be possible to invert positive perspective on counterclaims
- Residual Risks: cannot eliminate all doubt (world is uncertain)
 - So must assess risk (likelihood and cost) posed by residual doubts. Tiny ones that do not aggregate, small ones that do, Significant ones that must be quantified

ACARP - ANALOGY WITH ALARP

WEIGHT OF EVIDENCE – STRENGTH OF CLAIM

- It's not enough for evidence to support a claim
- It must distinguish a claim from its negation
- Confirmation measures do this: e.g., Kemeny-Oppenheim
 - Goes back to work of Good and Turing in WW2 codebreaking
- These force you to look at counterclaims
 - These are potential defeaters
- Can do this informally/qualitatively, don't need numerical probabilities

confirmation_ratio(Evidence,Claim)

 $= \frac{\Pr(Evidence | Claim_true) - \Pr(Evidence | Claim_false)}{\Pr(Evidence | Claim_true) + \Pr(Evidence | Claim_false)}$

Probability that you see the evidence if the claim is true Probability that you see the evidence if the claim is false

CONFIRMATION – ROLE OF DIFFERENT EVIDENCE

	Probability see	e evidence if clai	m true			
Probability see evidence if claim false			very unlikely	perhaps	quite probable	very likely
clain			0.05	0.1	0.6	0.95
e if o	very					
denc	unlikely	0.05	0.00	0.33	0.85	0.90
evic	perhaps	0.1	-0.33	0.00	0.71	0.81
/ see	quite					
bility	probable	0.6	-0.85	-0.71	0.00	0.23
oba	very likely	0.95	-0.90	-0.81	-0.23	0.00
Р						

confirmation_ratio(Evidence,Claim)

 $= \frac{\Pr(Evidence | Claim_true) - \Pr(Evidence | Claim_false)}{\Pr(Evidence | Claim_true) + \Pr(Evidence | Claim_false)}$

CREATING COUNTER CASES

Group #1

• Chocolate is good for you

Group #2

• Chocolate is bad for you

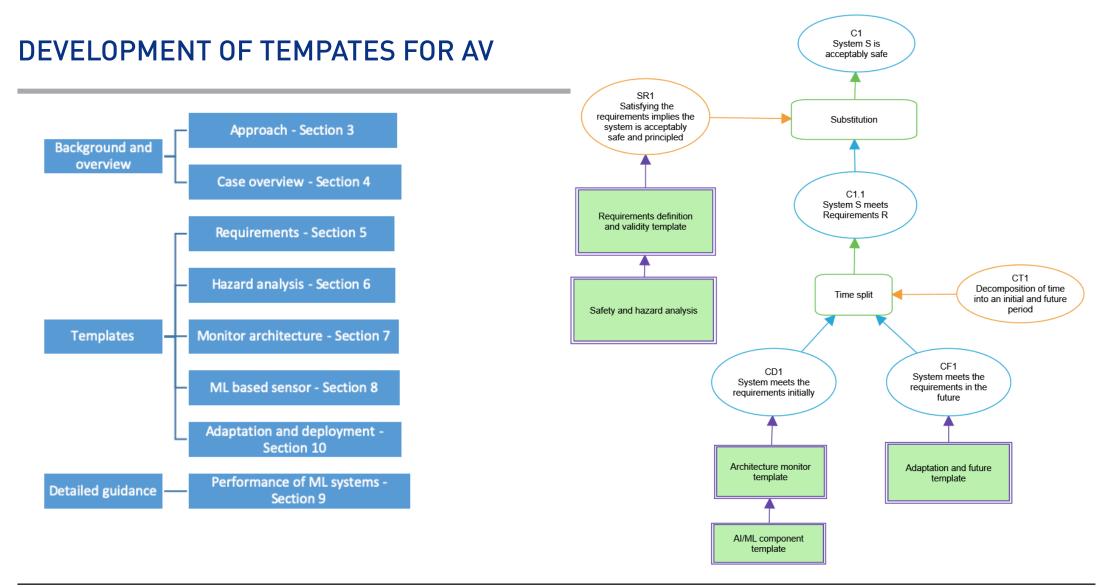
SUMMARY – ASSURANCE 2.0 MANIFESTO

- Assurance 2.0 key components
- Basic Concepts CAE
- CAE Blocks
 - Empirically based
 - Potential for deductive/inductive split
- Defeaters and confidence
 - Indefeasibility and residual rikss
- Evidence
 - Relevance and provenance
 - Confirmation theory and strength of arguments and evidence
- Explicit approach to bias
 - Counter-cases and confirmation theory

DEVELOPMENT AND APPLICATION – WILL IT WORK?

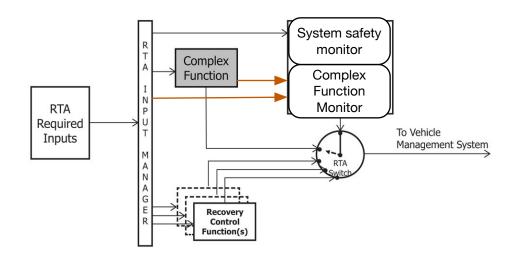
- Security applications
- Impact on regulation of systems incorporating AI/machine learning
- Developed autonomous system "templates and guidance"
- Tool support
 - building on Adelard ASCE tool within a program on automated certification
- Teaching concepts to professional engineers
 - many disciplines

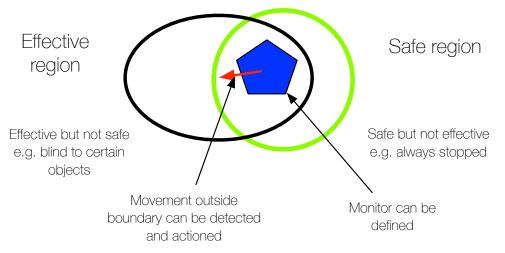
Theory into practice


DSTL sponsored research

SAFETY CASE TEMPLATES FOR AUTONOMOUS SYSTEMS

http://arxiv.org/abs/2102.02625





© 2021 ADELARD LLP

Ŀī

GENERIC MONITOR GUARD ARCHITECTURE

Monitor feasibility

F3269-17 Standard Practice for Methods to Safely Bound Flight Behavior of Unmanned Aircraft Systems Containing Complex Functions, ASTM International

DEFEATER WORKSHOP – MONITOR/GUARD ARCHITECTURE

- Colour coded issues and organisations
- Identified issues on-line with international team
 - Briefing
 - Silent brainstorm
 - Collaborative
 - Grouping, sentencing
- Work in progress
 - Still exploring how to capture and present defeaters

DEFEATERS

• Summary tables – with supporting narrative

Description	Part of monitor pattern	Possible mitigations
Operating out of permitted operational envelope not detectable/detected.	Guard/recovery action.	Well-defined operating requirements, testing.
		Operational restrictions.
		Make an explicit part of case to detect out of envelope (see Section 7.2.1.1).
AI/ML guard functional behaviour not fully verifiable.	Guard.	Restrict design to verifiable ML algorithms in guards.
		Use reliability rather correctness arguments.
AI/ML guard functional behaviour too complex in practice.	Guard.	Simplify guards and place restrictions on operation.
Not enough of diversity/independence in sensor and guard. Common cause	Architecture level.	Functional diversity – use different type of input data provides some defence.
issues, e.g. due to external common systems GPS or due to sensors finding similar situations difficult.		Architectural diversity – different computer system for guards.
Similar situations unicult.		Justify a level of dependence and use a confidence evaluation that takes this into account.
Architecture sensitive to complex failures, e.g. dataflow between sensor	Architecture level.	Adopt appropriate explicit fault models, validate these and engineer

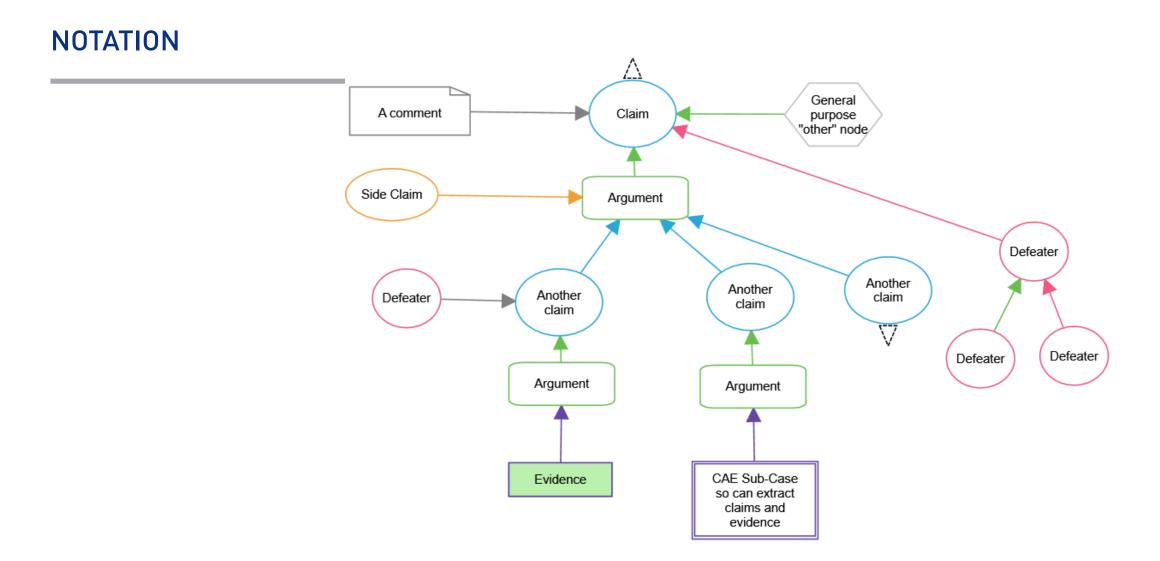
TECHNICAL GUIDANCE

- Confidence measures for ML
 - Conformal Prediction
 - Inductive Conformal Prediction
 - Attribution-based confidence
 - Learning confidence

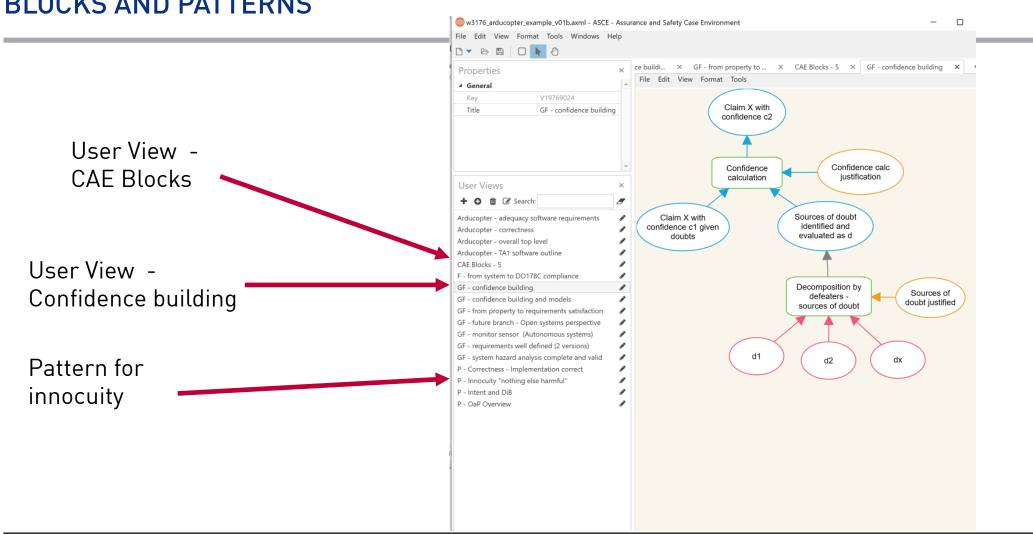
• Performance of ML based components

- Performance metrics for binary classifiers
- Object detection
- Experimental performance

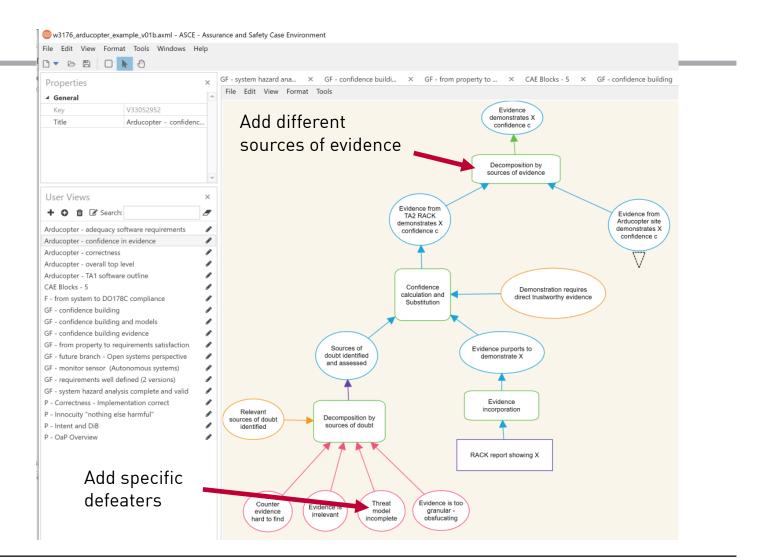
Evidence	Example	Role in case	Example claim
Temporal redundancy	The "Person of Interest" tracker tracked 41% of pedestrians and lost 19% of pedestrians over 20 consecutive frames. The traffic light detection system detected all red lights in the test data within 1.6 seconds at a distance of at least 80 metres.	If the sensor output is processed further to produce a model of the world, then the frequency with which each vehicle/pedestrian is detected can support claims about the accuracy of the model. Evidence regarding temporal redundancy is particularly relevant in detecting static objects such as traffic lights or a stop sign, which need not be detected every frame, but must be detected within a suitably short timeframe. The sensor must also be resilient against single event upsets (if not detected or if falsely detected) to ensure the stability of its outputs.	The pedestrian tracking system identifies 80% of pedestrians which are visible for at least one second ¹ . All red traffic lights are detected from a distance greater than the stopping distance of the vehicle.
Additional information (e.g. GPS)	The traffic light detection system correctly identified all traffic lights in the test using predictions from YOLOv3, GPS data and a map of traffic light locations. Keeping maps up-to-date used for navigation and locations of static objects of interest (traffic lights, stop signs, junctions) needs to be made in the system is safe in the future branch.	Information such as GPS location can be combined with object detection algorithms to provide better performance for a sensor. A performance claim can be made for this combined system. Additional information such as GPS location could also be used as a guard by, e.g. setting a maximum speed if a traffic light is not detected when expected, or geofencing the area in which the AV can operate autonomously.	The addition of a GPS guard reduces false positive traffic light detections by 80%. The traffic light detection system correctly identifies 95% of traffic lights in Vitoria with confidence 60% ² . The AV only operate autonomously withi the city of Vitoria.



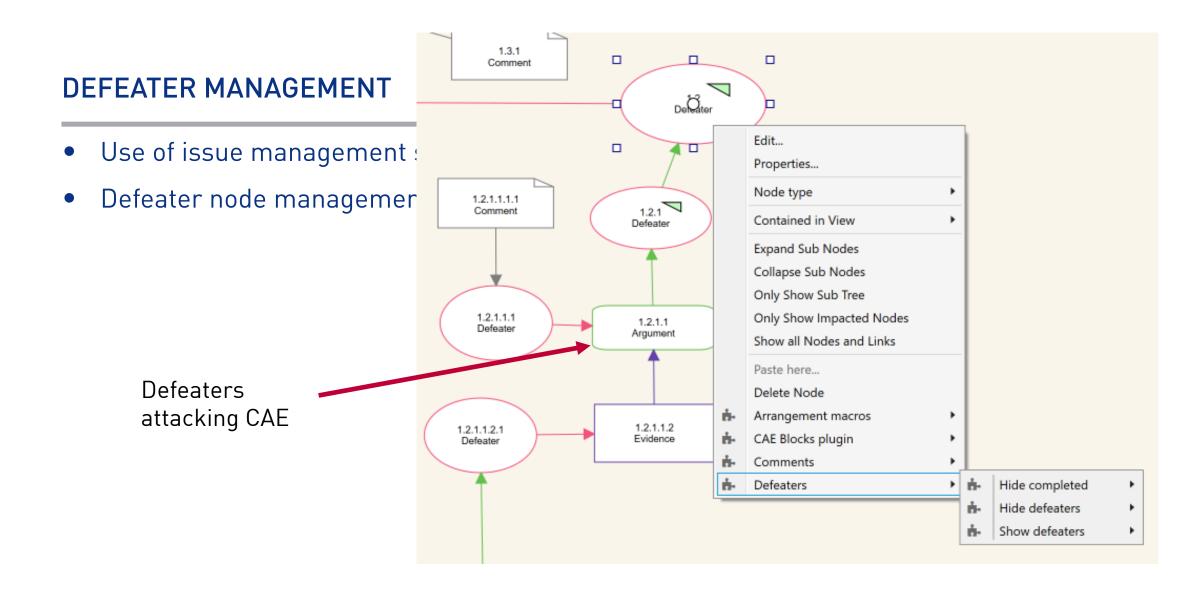
TOOL SUPPORT


© 2021 ADELARD LLP

Slide 41

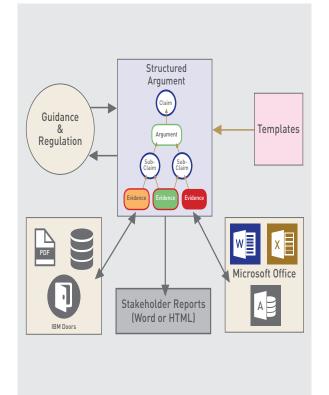


BLOCKS AND PATTERNS



SYNTHESIS

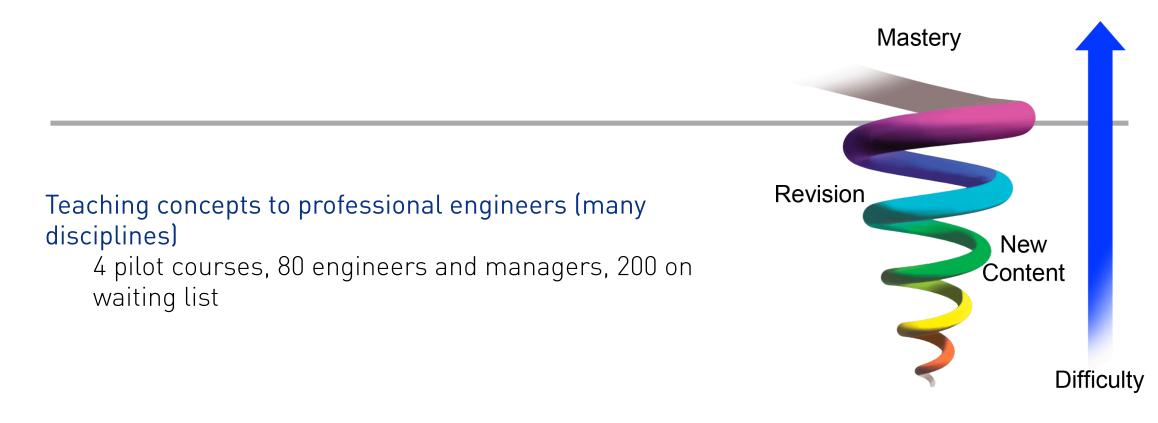
- Evidence Integration + Confidence pattern
- Different sources of evidence
 - Added Decomposition
- Added specific defeaters



EMBEDDED DEFEATERS

ssue T	уре				defeate	r 🗸			
wner	(optional)				Kate				
nclude	completed items				v				
can					All node	s v			
umma	rize from remote ne	etwork							
rev	iew							Refresh	
lev	16.04							Refresh	
umm	ary of all embedde	d [defeater]] DNRs	in the curr	ent network				
						1			
	Location	Completed	Due- date	Issue- type	Keywords	Text	Owner	Title	
<u>Show</u>	Location Decomposition by sources of doubt	Completed false			Keywords expert evaluation, validity, source of doubt	Text There are concerns about possible shortages of knowledge and experience on the part of experts.	Owner Kate	Title Doubts about expert validity	_
<u>Show</u>	Decomposition by		date 14- Jul-	type	expert evaluation, validity, source of	There are concerns about possible shortages of knowledge and		Doubts about expert	
	Decomposition by		date 14- Jul-	type	expert evaluation, validity, source of	There are concerns about possible shortages of knowledge and experience on the part of experts. The discussion of the expert validity claims should be captured. An argument-based approach to validation should be used. There are uncertaincies about a specific kind of evidence supplied. Detailed analysis should be performed		Doubts about expert	_
	Decomposition by sources of doubt	false	date 14- Jul- 2020 20- Jul-	type defeater	expert evaluation, validity, source of doubt evidence trustworthiness, relevance, source of	There are concerns about possible shortages of knowledge and experience on the part of experts. The discussion of the expert validity claims should be captured. An argument-based approach to validation should be used. There are uncertaincies about a specific kind of evidence supplied.	Kate	Doubts about expert validity Evidence is	-

NEXT STEPS


- Assurance 2.0 support in Adelard ASCE tool
 - Available in new release, March 2021
 - If interested in beta versions please get in touch
- Safety Case Templates for Autonomous Systems
 - Example templates for autonomous systems will be available too based on work for DSTL. Report is
 - <u>http://arxiv.org/abs/2102.02625</u>

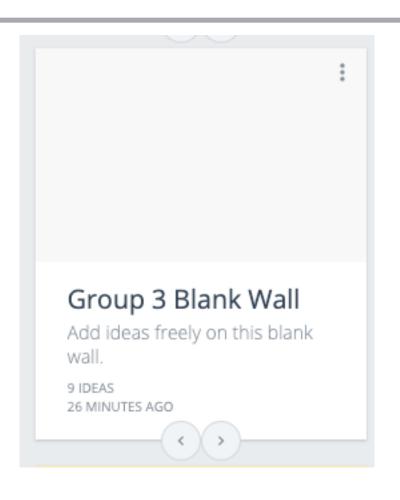
ASCE - in the wider environment

APPLICATION - MAJOR HAZARDS SITE

OUTLINE – ONLINE COURSE

- Session 1: CAE concepts
 - Claims, Arguments, Evidence (CAE): concepts and background
 - Inductive and deductive reasoning
 - Application of CAE concepts
 - Introduction to defeaters
 - Short exercise
- Session 2: Theory into practice
 - Short exercise
 - The CAE blocks and guidance
 - Discussion of Operations Room example
 - Workshop exercise and discussion

- Session 3: Learning by doing, workshop exercises and discussion
- Session 4: Challenge, review and deployment
 - Build confidence into the justification
 - Review and challenge
 - Summary
- Session 5: Wrap up and discussion
 - Putting it all together and next steps, work projects



EXERCISES

- Objective is to practice using the CAE Blocks
- Work in groups with a canvas per group

Stages

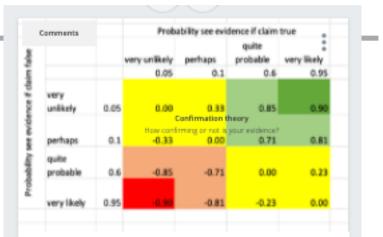
- Decomposition Block example
- An example of putting the Blocks together
- Examples of all 5 Blocks
- Add questions and comments to us as you go
- Review

EXERCISE - DOUBTS AND SIMULATION VALIDATION

- Objective is to express defeaters
 - What might defeat the reasoning that the simulator is valid i.e. sufficiently realistic?
 - "Simulated environment equivalent to actual"
- Work individually
- Add questions and comments to us as you go

Trial Defeater validation of models/simulators

To identify and group defeaters so we can improve assurance


2 IDEAS 16 HOURS AGO

EXERCISE

- In groups discuss examples of claims and evidence asking
 - How likely I am to see the evidence if the claim is true?
 - How likely I am to see the evidence if the claim is false?
- and put on the grid along with any comments

Confirmation theory trial

6 IDEAS 2 DAYS AGO

APPLICATION IN MAJOR HAZARDOUS SITE – CONCLUSIONS TO DATE

- Can get ideas across with a day course
 - Teaching concepts to professional engineers (many disciplines)
 - Often those without safety case background find it easier
 - Wide range of responses struggle, OK, great
- Follow up application on real projects required
 - Over several months
 - Surgeries and support
- Experience and feedback
 - In progress
 - So far 4 pilot courses, 80 engineers and managers, 200 on waiting list
 - CAE Blocks , defeaters, counter cases 🙂
 - Will review and publish experience after ~100 through course

FROM MANIFESTO TO MATURE METHODOLOGY

- Empirically based CAE Blocks separate inductive and deductive aspects
- Explicit use of doubts and defeaters
- Increased focus on evidence integration, addressing both relevance and provenance
- Confirmation theory to evaluate the strength of evidence and arguments.
- Explicit approach to bias by the use of counter-cases and confirmation theory.
- Recognition of both mindset and methodology

- Publish and apply
 - Different maturity
- Real applications
 - Engineering justifications, safety and security
- Teaching and learning evaluation
 - >100 industry by April
- Further development of methodology
 - Defeater identification and management
 - Synthesis approaches
 - Confidence and defeaters
- Assurance 2.0 and templates + tools
 - Evaluation and further development

Prof Robin E Bloomfield FREng

Adelard LLP and City, University of London <u>reb@adelard.com</u> r.e.bloomfield@city.ac.uk

Joint paper with John Rushby, SRI

ADELARD

Presentation to SSS'21, Feb 10th 2021