
SAL introduction for AFM, Seattle 21 August 2006

SAL: Language, Model Checking,

and Test Generation

Tutorial for Automated Formal Methods 2006

John Rushby

SAL was built by Leonardo de Moura

Computer Science Laboratory

SRI International

Menlo Park CA USA

John Rushby, SR I AFM’06 SAL Tutorial–1

SAL Origins

• SAL stands for Symbolic Analysis Laboratory

• Originally intended as an intermediate language between

application notations such as Statecharts and model checkers

such as Murφ and SMV

• And also a common intermediate language among other

tools such as invariant generators

◦ A (too) early tool bus

• Developed in collaboration with David Dill, Tom Henzinger,

and some Verimag input

• Murφ died (actually, it’s reportedly living in Utah)

• And translation to SMV was so arduous you might as well

build a direct model checker

• So we did

John Rushby, SR I AFM’06 SAL Tutorial–2

SAL Language

• I’ll use the Needham Schroeder cryptographic authentication

protocol as an example to introduce the language

• Many of the type and expression constructions, and much of

the syntax should be familiar to PVS users

• The big difference is we’re specifying the system (and its

environment) as state machines

• And its properties as LTL formulas

John Rushby, SR I AFM’06 SAL Tutorial–3

Example: Needham Schroeder

Message 1. A → B: A.B.{A, NA}PK(B)

Message 2. B → A: B.A.{NA, NB}PK(A)

Message 3. A → B: A.B.{NB}PK(B).

John Rushby, SR I AFM’06 SAL Tutorial–4

Getting Started: the Network

• Want a “network” that is generic wrt. message type

• Acts like a one-place buffer

• Messages can be written (if empty),

• And read, copied, overwritten (if full)

John Rushby, SR I AFM’06 SAL Tutorial–5

Network

network{msg: TYPE;}: CONTEXT =

BEGIN

bufferstate: TYPE = {empty, full};

action: TYPE = {read, write, overwrite, copy};

network: MODULE =

BEGIN

INPUT act: action, inms: msg

OUTPUT nstate: bufferstate, buffer: msg

INITIALIZATION

nstate = empty;

TRANSITION

...

John Rushby, SR I AFM’06 SAL Tutorial–6

Network (ctd.)

[

act’ = write AND nstate = empty -->

nstate’ = full; buffer’ = inms’;

[]

act’ = overwrite AND nstate = full -->

buffer’ = inms’;

[]

act’ = read AND nstate = full -->

nstate’ = empty;

[]

act’ = copy AND nstate = full -->

nstate’ = nstate;

[]

ELSE -->

]

John Rushby, SR I AFM’06 SAL Tutorial–7

The Participants

• Need at least two principals

• And an intruder

• These are subtypes of participants

• Useful to have an extra “error” id for initialization etc.

John Rushby, SR I AFM’06 SAL Tutorial–8

Participants

needhamschroeder: CONTEXT =

BEGIN

ids: TYPE = {a, b, e, X};

participants: TYPE = {x: ids | x /= X};

intruder(x: participants): BOOLEAN = x=e;

intruders: TYPE = {x: participants | intruder(x)};

principals: TYPE = {x: participants | NOT intruder(x)};

John Rushby, SR I AFM’06 SAL Tutorial–9

Nonces

• In practice, need to make sure these are fresh

• In modeling, they can be deterministic

◦ Do not endow the intruder with guessing ability

nonces: TYPE = ids;

nonce(a: participants): nonces = a;

John Rushby, SR I AFM’06 SAL Tutorial–10

Messages

• Messages contain an encrypted component

• When decrypted it’s a triple of type dmsg

• arb is used for the initial value

dmsg: TYPE = [ids, nonces, nonces];

arb: dmsg = (X,X,X);

Otherwise the model checker might use a “magic” value

• An encrypted message records the key used

emsg: TYPE = DATATYPE

enc(key: ids, payload: dmsg)

END;

• An encrypted message on the network indicates its source

and destination

msg: TYPE = [# src: participants, dest: participants,

em: emsg #];

• Tuple, datatype, record, just for variety

John Rushby, SR I AFM’06 SAL Tutorial–11

Decryption

Can successfully decrypt an encrypted message only if you are

the participant whose key was used

dec(k: participants, m:emsg): dmsg =

IF key(m)=k THEN payload(m) ELSE arb ENDIF;

Otherwise, get arb

John Rushby, SR I AFM’06 SAL Tutorial–12

State of the Principals

• Initially sleeping

• May decide to initiate a dialog and go to waiting

• And then to engaged if the protocol completes

states: TYPE = {sleeping, waiting, engaged,

tentative, responding};

• If another initiates the dialog, go to tentative

• And then to responding if the protocol completes

• In either case, responder is the identity of the other

John Rushby, SR I AFM’06 SAL Tutorial–13

Principals

Initially, each principal is sleeping, and its responder is set to

itself

principal[i: principals]: MODULE =

BEGIN

INPUT nstate: net!bufferstate, imsg: msg

GLOBAL act: net!action, omsg: msg

LOCAL pc: states, responder: participants

INITIALIZATION

pc = sleeping;

responder = i;

John Rushby, SR I AFM’06 SAL Tutorial–14

Principals (ctd. 1)

Waking up and initiating a dialog with j

TRANSITION

[

([] (j: participants): i /= j AND

pc = sleeping AND nstate = net!empty -->

pc’ = waiting;

responder’ = j;

omsg’ = (# src := i, dest := j,

em := enc(j, (i, nonce(i), X)) #);

act’ = net!write;

)

John Rushby, SR I AFM’06 SAL Tutorial–15

Principals (ctd. 2)

Waking up and responding to a dialog initiated by j

[]

([] (j: participants): i /= j AND

pc = sleeping AND nstate = net!full

AND imsg.src = j AND imsg.dest = i

AND dec(i, imsg.em).1=j -->

responder’ = j;

pc’ = tentative;

act’ = net!overwrite;

omsg’ = (# src := i, dest := j,

em := enc(j, (X, dec(i,imsg.em).2, nonce(i)))#);

)

John Rushby, SR I AFM’06 SAL Tutorial–16

Principals (ctd. 3)

Initiator accepts the response from j

[]

pc = waiting AND nstate = net!full

AND imsg.src = responder AND imsg.dest = i

AND dec(i,imsg.em).2 = nonce(i) -->

pc’ = engaged;

act’ = net!overwrite;

omsg’ = (# src := i, dest := responder,

em := enc(responder, (X, dec(i,imsg.em).3, X))#);

John Rushby, SR I AFM’06 SAL Tutorial–17

Principals (ctd. 4)

Responder accepts second message from initiator j

[]

pc = tentative AND nstate = net!full

AND imsg.src = responder AND imsg.dest = i

AND dec(i,imsg.em).3 = nonce(i) -->

pc’ = responding;

act’ = net!read;

[]

ELSE -->

]

END;

Otherwise do nothing

John Rushby, SR I AFM’06 SAL Tutorial–18

Intruders

Need to provide the intruder with memory for messages it has

seen but not been able to decrypt, and for the contents of

messages (i.e., nonces) that it has decrypted

intruder[x:intruders]: MODULE =

BEGIN

GLOBAL act: net!action, omsg: msg

INPUT nstate: net!bufferstate, imsg: msg

LOCAL nmem, n1, n2: nonces, mmem: emsg

INITIALIZATION

nmem = nonce(e);

mmem = enc(X,(X,X,X));

We provide memory for one of each: nmem and mmem; n1 and

n2 are temporaries

John Rushby, SR I AFM’06 SAL Tutorial–19

Intruders (ctd. 1)

Intruder can read and decrypt messages sent to itself

TRANSITION

[

nstate = net!full AND imsg.dest = x -->

nmem’ IN {dec(x,imsg.em).2, nmem};

act’ IN {net!read, net!copy};

Nondeterministically replaces saved nonce with the new one,

and removes the message or copies it

John Rushby, SR I AFM’06 SAL Tutorial–20

Intruders (ctd. 2)

Can save whole messages not addressed to itself

[]

nstate = net!full AND imsg.dest /= x -->

mmem’ IN {imsg.em, mmem};

act’ IN {net!read, net!copy};

John Rushby, SR I AFM’06 SAL Tutorial–21

Intruders (ctd. 3)

Can send remembered message to j, while masquerading as i

[]

([] (i: participants, j: principals): TRUE -->

act’ = IF nstate = net!empty

THEN net!write

ELSE net!overwrite ENDIF;

omsg’ = (# src := i, dest := j, em := mmem #);

)

John Rushby, SR I AFM’06 SAL Tutorial–22

Intruders (ctd. 4)

And can manufacture messages containing its own nonce or a

remembered one

[]

([] (i: participants, j: principals): TRUE -->

act’ = IF nstate = net!empty

THEN net!write

ELSE net!overwrite ENDIF;

n1’ IN {nmem, nonce(x)}; n2’ IN {nmem, nonce(x)};

omsg’ = (# src := i, dest := j, em := enc(j, (i, n1’, n2’))#);

)

[]

ELSE -->

]

END;

And that’s all it can do

John Rushby, SR I AFM’06 SAL Tutorial–23

The Complete System

• Asynchronously compose some collection of principals and

intruders

• And synchronously compose that compound with the network

• We’ll have two principals a and b, and single intruder e

No explicit limit on interleaved runs

system: MODULE =

(([] (id: principals): principal[id]) [] intruder[e])

|| (RENAME buffer TO imsg, inms TO omsg IN net!network);

• We rename the buffer and inms of the network so that they

connect up to the imsg and omsg of the principals and

intruder

John Rushby, SR I AFM’06 SAL Tutorial–24

Authentication Property

• The property we wish to examine is correct authentication

• Whenever a principal x reaches the responding state with a

principal y, must be that y initiated the protocol with x

◦ That is, y must be in the waiting or engaged states and

have x as its responder

• We specify this as the property prop

prop: THEOREM system |- G((FORALL (x,y: principals):

(pc[x]=responding AND responder[x]=y) =>

((pc[y]=waiting OR pc[y]=engaged)

AND responder[y]=x)));

John Rushby, SR I AFM’06 SAL Tutorial–25

Symbolic Model Checking

• Compile the model to a Boolean transition relation T

◦ i.e., a circuit

• Initialize the Boolean representation of the stateset S to the

initial states I

• Repeatedly apply T to S until a fixpoint

◦ S′ = S ∪ {t | ∃s ∈ S : T (s, t)}

◦ Final S is a formula representing all the reachable states

• Check the property against final S

• Mechanized efficiently using BDDs

◦ Reduced ordered Binary Decision Diagrams

Commodity software, honed by competition (CUDD)

John Rushby, SR I AFM’06 SAL Tutorial–26

Bounded Model Checking (BMC)

• Given system specified by initiality predicate I and transition

relation T on states S

• Is there a counterexample to property P in k steps or less?

• Find assignment to states s0, . . . , sk satisfying

I(s0) ∧ T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk) ∧ ¬(P (s1) ∧ · · · ∧ P (sk))

• Given a Boolean encoding of I, T , and P (i.e., circuit), this is

a propositional satisfiability (SAT) problem

• SAT is the quintessential NP-Complete problem

• But current SAT solvers are amazingly fast

• Commodity software, honed by competition (MiniSAT)

• BMC uses same representation as SMC, different backend

• If I, T and P use decidable but unbounded types, then it’s an

SMT problem: infinite bounded model checking

John Rushby, SR I AFM’06 SAL Tutorial–27

k-Induction

• BMC extends from refutation to verification via k-induction

• Ordinary inductive invariance (for P):

Basis: I(s0) ⊃ P (s0)

Step: P (r0) ∧ T (r0, r1) ⊃ P (r1)

• Extend to induction of depth k:

Basis: No counterexample of length k or less

Step: P (r0)∧T (r0, r1)∧P (r1)∧ · · ·∧P (rk−1)∧T (rk−1, rk) ⊃ P (rk)

These are close relatives of the BMC formulas

• Induction for k = 2, 3, 4 . . . may succeed where k = 1 does not

• Note that counterexamples help debug invariant

John Rushby, SR I AFM’06 SAL Tutorial–28

Model Checking Needham Schroeader

• Symbolic model checking

◦ sal-smc -v 3 needhamschroeder prop

Builds a transition relation on 150 state bits, 339,917,146

reachable states, and reports a counterexample ten steps

long in about 10 secs

• Bounded model checking

◦ sal-bmc -v 3 -d 10 needhamschroeder prop

Builds a SAT problem with 40,756 nodes and reports the

counterexample in under 10 secs

• Witness model checking

◦ sal-wmc -v 3 needhamschroeder prop

Also reports the counterexample, in about 40 secs

• Deadlock checking (may be unsound otherwise)

◦ sal-deadlock-checker -v 3 needhamschroeder system

John Rushby, SR I AFM’06 SAL Tutorial–29

The Counterexample
Step 0: Initialization

--

Step 1: a sends message 1 to e

pc[a] = waiting; pc[b] = sleeping; responder[a] = e;

omsg.src = a; omsg.dest = e; omsg.em = enc(e, (a, a, X));

--

Step 2: e remembers a’s nonce: nmem = a;

--

Step 3: e (masquerading as a) send message 1 to b

omsg.src = a; omsg.dest = b; omsg.em = enc(b, (a, a, a));

--

Step 4: b sends message 2 to a, but it is intercepted by e

pc[a] = waiting; pc[b] = tentative; responder[b] = a;

omsg.src = b; omsg.dest = a; omsg.em = enc(a, (X, a, b));

--

Step 5: e remembers encrypted part of b’s message

mmem = enc(a, (X, a, b));

--

Step 6: e sends message 2 (using remembered part) to a

omsg.src = e; omsg.dest = a; omsg.em = enc(a, (X, a, b));

--

Step 7: a sends message 3 to e

pc[a] = engaged; pc[b] = tentative;

omsg.src = a; omsg.dest = e; omsg.em = enc(e, (X, b, X));

--

Step 8: e remembers b’s nonce from a’s message 3: nmem = b;

--

Step 9: e (masquerading as a) sends message 3 to b (with remembered nonce)

omsg.src = a; omsg.dest = b; omsg.em = enc(b, (a, e, b));

--

Step 10: b falsely believes it has authenticated a: pc[b] = responding;

John Rushby, SR I AFM’06 SAL Tutorial–30

The Counterexample (ctd.)

Is essentially the classic one

Message 1a. A → I: A.I.{A, NA}PK(I)

Message 1b. IA → B: A.B.{A, NA}PK(B)

Message 2b. B → IA: B.A.{NA, NB}PK(A)

Message 2a. I → A: I.A.{NA, NB}PK(A)

Message 3a. A → I: A.I.{NB}PK(I)

Message 3b. IA → B: A.B.{NB}PK(B).

Here, IA indicates I masquerading as A, and the suffices a, and

b on the message numbers indicate which run of the protocol

they belong to

John Rushby, SR I AFM’06 SAL Tutorial–31

Repairing The Protocol

The protocol is easily fixed by including the identity of the

responder in the encrypted portion of the second message (this

prevents the replay of the encrypted portion of 2b in 2a)

Message 2′. B → A: B.A.{B, NA, NB}PK(A)

John Rushby, SR I AFM’06 SAL Tutorial–32

Repairing The Protocol (ctd.)

• In SAL, we need to change the final assignment on slide 16

to the following (the X is changed to i)

omsg’ = (# src := i, dest := j,

em := enc(j, (i, dec(i,imsg.em).2, nonce(i)))#);

• The guard on slide 17 must then be changed (by addition of

the third line below) to check that the message really does

come from the expected responder

pc = waiting AND nstate = net!full

AND imsg.src = responder AND imsg.dest = i

AND dec(i,imsg.em).1 = responder

AND dec(i,imsg.em).2 = nonce(i) -->

John Rushby, SR I AFM’06 SAL Tutorial–33

Model Checking Again

• Symbolic model checking

◦ sal-smc -v 3 needhamschroeder prop

This time there are 339,954,654 reachable states, and the

property is “verified” in 12 seconds

◦ Verification is relative to the intruder model and

dimensions used

• Bounded model checking

◦ sal-bmc -v 3 -d 10 needhamschroeder prop

Finds no counterexamples to depth 10 in 25 seconds

• Witness model checking

◦ sal-wmc -v 3 needhamschroeder prop

Verifies the property in 30 seconds, and (internally)

constructs a witness

John Rushby, SR I AFM’06 SAL Tutorial–34

Exploration

• Finding bugs and verifying are extreme examples of

exploration

• In general, want to see runs that take us to interesting states

or through interesting scenarios as a way of increasing our

understanding and confidence in the operation of the system

• Can do this in a simulator, but have to think of all the inputs

and interactions ourselves

• Supposing we had a simulator built on a model checker

• Then we could tell the model checker to find a path to an

interesting state, then take over and explore in detail, and so

on

• The SAL simulator does this

John Rushby, SR I AFM’06 SAL Tutorial–35

Exploration with the SAL Simulator

• Suppose we are interested in the scenario where the intruder

spoofs both principals into thinking they are responding to

the other

• We start the simulator and tell it to take us to a state where

both principals are in tentative state

tulip:sal> sal-sim

SAL Simulator (Version 2.2). Copyright (c) 2003, 2004 SRI

sal > (import! "needhamschroeder")

sal > (start-simulation! "system")

sal > (run! "pc[a]=tentative) AND pc[b]=tentative")

#t

• The #t means it succeeded

John Rushby, SR I AFM’06 SAL Tutorial–36

Exploration with the SAL Simulator (ctd. 1)

• Now we would like to see the intruder continue and bring

both principals to the responding state

sal > (run! "pc[a]=responding) AND pc[b]=responding")

#f

• The #f means it failed

• Perplexed, we see if it can bring either to completion

sal > (run! "pc[a]=responding) OR pc[b]=responding")

#f

• Hmm! Let’s restart and find a path where a is responding to

the intruder

sal > (start-simulation! "system")

sal > (run! "pc[a]=responding AND responder[a]=e")

#f

John Rushby, SR I AFM’06 SAL Tutorial–37

Exploration with the SAL Simulator (ctd. 1)

• So let’s get to a state where a is in the tentative state

(which we already know is possible)

sal > (run! "pc[a]=tentative AND responder[a]=e")

#t

• Now we know that the intruder should be able to construct

the message to take a to the responding state provided it

knows a’s nonce (which is also a)

• So let’s see if the intruder does know this nonce in the

current state

sal > (filter-curr-states! "nmem = a")

sal > (display-curr-states)

#t

Evidently not—the #t means the filtered set is empty (we

also could have just looked at the current state)

John Rushby, SR I AFM’06 SAL Tutorial–38

Exploration with the SAL Simulator (ctd. 2)

• So now let’s get back to where we were

sal > (backtrack!)

sal > (run! "pc[a]=tentative AND responder[a]=e")

#t

• And look for a state where the intruder knows the nonce

sal > (run! "nmem = a")

#f

• Hmm! Let’s go back to the beginning and look for any state

where it knows this nonce

sal > (start-simulation! "system")

sal > (run! "nmem = a")

#t

sal > (display-curr-states)

John Rushby, SR I AFM’06 SAL Tutorial–39

Exploration with the SAL Simulator (ctd. 3)

• It turns out the simulator has found a run where a initiated

the dialog

• It seems that the intruder can learn a’s nonce when a is the

initiator, but not when it is the responder

• The difference between these cases is that a’s nonce is in the

second position of the emsg tuple in the former case, and the

third in the latter

• Sure enough, the command in the relevant step of the

intruder is the following

nmem’ IN {dec(x,imsg.em).2, nmem}

It should, of course, be changed as follows

nmem’ IN {dec(x,imsg.em).2, dec(x,imsg.em).3, nmem}

John Rushby, SR I AFM’06 SAL Tutorial–40

Exploration with the SAL Simulator (ctd. 3)

• After making this change, we exit the simulator and restart

it, and again check the properties of interest

sal > (import! "needhamschroeder")

sal > (start-simulation! "system")

sal > (run! "pc[a]=responding AND responder[a]=e")

#t

sal > (run! "pc[a]=responding AND pc[b]=responding")

#t

This time, the simulator is able to find suitable paths

• We also check that the authentication property is still true

using sal-smc

John Rushby, SR I AFM’06 SAL Tutorial–41

Test Generation

• Observe that counterexample to: “control cannot reach this

point” is a structural test case

• So BMC can be used for automated test generation

• Actually, a customized combination of SMC and BMC works

best

◦ Use SMC to reach first control point, then use BMC to

extend to further control points

◦ Get long tests that probe deep into the system

◦ Can add test purposes that constrain the kinds of tests

generated

? e.g., Change the gear input by 1 at every step

◦ Easily built because checkers are scriptable (in Scheme)

John Rushby, SR I AFM’06 SAL Tutorial–42

Generating Tests Using a Model Checker

• Add trap variables go TRUE when a test goal is satisfied

◦ Trap variables can be inserted automatically during

translation from the MBD language to the model checker

• Model check for “always not mytrap”

• Counterexample will be desired test case

• Trap variables add negligible overhead (’cos no interactions)

• For finite cases (e.g., numerical variables range over bounded

integers) any standard model checker will do

◦ Although many pragmatic issues concerning symbolic vs.

bounded vs. explicit vs. . . for this application

◦ Otherwise need infinite bounded model checker as in SAL

John Rushby, SR I AFM’06 SAL Tutorial–43

Tests Generated Using a Model Checker

John Rushby, SR I AFM’06 SAL Tutorial–44

Problems Using OTS Model Checker as Test Generator

• Each test goal is treated separately: model checker is called

repeatedly and performs much redundant work

• Test set has many short tests

◦ Each incurs a startup cost during execution

◦ Total length is large, so high execution cost

◦ Much redundancy among the tests (wasteful)

◦ Few long tests (so deep bugs undetected)

• Model checker may be unable to reach deep test goals

John Rushby, SR I AFM’06 SAL Tutorial–45

A Better Way

• Instead of starting each test from the the start state, we try

to extend the test found so far

• Extending tests allows a bounded model checker to reach

deep states at low cost

◦ 5 searches to depth 4 much easier than 1 to depth 20

• Could get stuck if we tackle the goals in a bad order

• So, simply try to reach any outstanding goal and let the

model checker find a good order

◦ Can slice the model after each goal is discharged

◦ A virtuous circle: the model will get smaller as the

remaining goals get harder

• Go back to the start (or another earlier state) when unable

to extend current test

John Rushby, SR I AFM’06 SAL Tutorial–46

An Efficient Test Set

Less redundancy, and longer tests tend to find more bugs

John Rushby, SR I AFM’06 SAL Tutorial–47

The SAL Automated Test Generator: sal-atg

• SAL is scriptable in Scheme

• sal-atg implements the method described in a few hundred

lines of Scheme

◦ (Re)starts use either symbolic or bounded model checking

? Parameterized choice and search depth

◦ Extensions use bounded model checking

? Parameterized incremental search depth

◦ Optional slicing after each extension or each restart

◦ Customizable output to drive test harness

John Rushby, SR I AFM’06 SAL Tutorial–48

Core Of The SAL-ATG Test Generation Script

(define (extend-search module goal-list

path scan prune innerslice start step stop)

(let ((new-goal-list (if prune (goal-reduce scan goal-list path)

(minimal-goal-reduce scan goal-list path))))

(cond ((null? new-goal-list) (cons ’() path))

((> start stop) (cons new-goal-list path))

(else

(let* ((goal (list->goal new-goal-list module))

(mod (if innerslice

(sal-module/slice-for module goal) module))

(new-path

(let loop ((depth start))

(cond ((> depth stop) ’())

((sal-bmc/extend-path

path mod goal depth ’ics))

(else (loop (+ depth step)))))))

(if (pair? new-path)

(extend-search mod new-goal-list new-path scan

prune innerslice start step stop)

(cons new-goal-list path)))))))

John Rushby, SR I AFM’06 SAL Tutorial–49

Outer Loop Of The SAL-ATG Test Generation Script

(define (iterative-search module goal-list

scan prune slice innerslice bmcinit start step stop)

(let* ((goal (list->goal goal-list module))

(mod (if slice (sal-module/slice-for module goal) module))

(path (if bmcinit

(sal-bmc/find-path-from-initial-state

mod goal bmcinit ’ics)

(sal-smc/find-path-from-initial-state mod goal))))

(if path

(extend-search mod goal-list path scan prune

innerslice start step stop)

#f)))

John Rushby, SR I AFM’06 SAL Tutorial–50

Experimental Results

• Rockwell Collins has developed a series of flight guidance

system (FGS) examples for NASA

• SAL translation of largest of these kindly provided by UMN

• Model has 490 variables (576 state bits), 196 reachable

control states, and 313 transitions

◦ Takes 61 seconds to generate single test case of length

45 that covers all states

◦ Takes 98 seconds to generate a single test of length 55

that covers all transitions

• Without extensions, get 73 tests to cover transitions: 1 of

length 3, 9 of length 2, and the rest of length 1

◦ Poor mutant detection

• We are in the process of testing our tests

John Rushby, SR I AFM’06 SAL Tutorial–51

Test Engineering with Automation

• Generating tests just to achieve structural coverage is a poor

strategy

• Traditional test engineers develop tests to explore interesting

cases, requirements, fault hypotheses

• We need to give them a way to do this using automation

• Specify the desired tests rather than constructing them

• Develop an observer module that sets a variable TRUE when

a test has achieved some purpose

• Tell sal-atg to search for conjunction of each trap variable

with the purpose

• In general, sal-atg can search for arbitrary conjunctions

◦ E.g., product of structural coverage on control states and

boundary coverage on some data structure

John Rushby, SR I AFM’06 SAL Tutorial–52

Example Shift Scheduler

[gear ==3]

[gear == 3]

[V <= shift_speed_32]

[gear == 1]

[V > shift_speed_23]

[V > shift_speed_34]

[V <= shift_speed_21] [V > shift_speed_12] [V <= shift_speed_43]

[V > shift_speed_23]

[V <= shift_speed_23]

[gear == 2]

[gear == 4]

[V <= shift_speed_43]

[V > shift_speed_34]

[gear == 2][V <= shift_speed_21]

[V > shift_speed_12]

third_gear
entry: to_gear=3;first_gear

entry: to_gear = 1;

transition12

[ctr > DELAY]

shift_pending_a
entry: ctr=0;
 to_gear=1;
during: ctr=ctr+1;

shifting_a
entry: to_gear=2;

transition23

[ctr > DELAY]

shift_pending2
entry: ctr=0;
 to_gear=2;
during: ctr=ctr + 1;

shifting2
entry: to_gear=3;

transition34

[ctr > DELAY]

shift_pending3
entry: ctr=0;
 to_gear=3;
during: ctr = ctr+1;

shifting3
entry: to_gear=4;

fourth_gear
entry: to_gear =4;

second_gear
entry: to_gear=2;

transition43

[ctr > DELAY]

shift_pending_d
entry: ctr=0;
 to_gear =4;
during: ctr=ctr+1;

shifting_d
entry: to_gear=3;

transition32

[ctr > DELAY]

shift_pending_c
entry: ctr=0;
 to_gear=3;
during: ctr=ctr+1;

shifting_c
entry: to_gear=2;

transition21

[ctr > DELAY]

shift_pending_b
entry: ctr=0;
 to_gear=2;
during: ctr = ctr+1;

shifting_b
entry: to_gear=1;

John Rushby, SR I AFM’06 SAL Tutorial–53

Shift Scheduler

• One input is the gear currently selected by the gearbox

• Tests often change this discontinuously (e.g., 1, 3, 4, 2)

• Can easily establish the test purpose to change only in single

steps, and to change at every step

John Rushby, SR I AFM’06 SAL Tutorial–54

Example: Shift Scheduler in StateFlow

[gear ==3]

[gear == 3]

[V <= shift_speed_32]

[gear == 1]

[V > shift_speed_23]

[V > shift_speed_34]

[V <= shift_speed_21] [V > shift_speed_12] [V <= shift_speed_43]

[V > shift_speed_23]

[V <= shift_speed_23]

[gear == 2]

[gear == 4]

[V <= shift_speed_43]

[V > shift_speed_34]

[gear == 2][V <= shift_speed_21]

[V > shift_speed_12]

third_gear
entry: to_gear=3;first_gear

entry: to_gear = 1;

transition12

[ctr > DELAY]

shift_pending_a
entry: ctr=0;
 to_gear=1;
during: ctr=ctr+1;

shifting_a
entry: to_gear=2;

transition23

[ctr > DELAY]

shift_pending2
entry: ctr=0;
 to_gear=2;
during: ctr=ctr + 1;

shifting2
entry: to_gear=3;

transition34

[ctr > DELAY]

shift_pending3
entry: ctr=0;
 to_gear=3;
during: ctr = ctr+1;

shifting3
entry: to_gear=4;

fourth_gear
entry: to_gear =4;

second_gear
entry: to_gear=2;

transition43

[ctr > DELAY]

shift_pending_d
entry: ctr=0;
 to_gear =4;
during: ctr=ctr+1;

shifting_d
entry: to_gear=3;

transition32

[ctr > DELAY]

shift_pending_c
entry: ctr=0;
 to_gear=3;
during: ctr=ctr+1;

shifting_c
entry: to_gear=2;

transition21

[ctr > DELAY]

shift_pending_b
entry: ctr=0;
 to_gear=2;
during: ctr = ctr+1;

shifting_b
entry: to_gear=1;

Demo: sal-atg -v 3 trans ga monitored system

trans ga goals.scm -id 15 -ed 7 --testpurpose

John Rushby, SR I AFM’06 SAL Tutorial–55

