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Introduction

• I’m from a group that does formal verification

◦ PVS, SAL, Yices, ETB are some of our tools

Everything looks like a proof to me

• But I have come to realize an assurance case is not a proof

• There are inherent uncertainties, like identifying all hazards

• So an assurance case is an inductive argument

◦ Probable truth of premises

indicates probable truth of conclusion

• But then we really ought to quantify the probabilities

• Lots of ideas for combining logic and probability

◦ Probabilistic logics, Dempster-Shafer, BBNs etc.

But none are universally accepted

• So does that condemn us to informal reasoning?
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Assurance Case Evaluation

• An assurance case is a big argument

◦ Needs reliable review

• John Knight and colleagues examined three cases

◦ All had basic reasoning flaws

◦ Different reviewers found different flaws

• Need mechanized support for reliability and economy

• Some of the subcases are going to involve formal verification

◦ And those tools are powerful (SMT solvers etc.)

• So can we extend these tools to larger aspects of the case?

• Classical method

◦ Embed uncertainty in the premises

◦ Argument based on these should be deductively sound

• Cf. formal verification of fault tolerant algorithms in 1980s

◦ Formally verify algorithm, assuming no more than f faults

◦ Separately, estimate probability of > f faults
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Epistemic and Logic Uncertainty

• Epistemic uncertainty

◦ How accurate is our knowledge of the system, its

environment, assumptions, etc.?

• Logic uncertainty

◦ Given our knowledge, how accurate is our reasoning?

• Proposal: encode our knowledge in logic

◦ How best to do that? See SafeComp 2013 paper

◦ Software is logic

◦ Encode the rest as constraint-based models

These are our premises

• Formally verify the argument based on the premises

◦ Eliminates logic doubt (modulo soundness of prover)

• But need to incorporate the evidence supporting our premises
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Attaching Informal Justifications

• We will have premises that say things like

◦ A, B, and C are all the hazards

And the assurance argument enumerates over these

• We need a way to attach the evidence for this premise

◦ e.g., description of the hazard analysis process used

To the formal verification that uses it

• Simple proposal in SSS 2010

• Given premise named N, formalized as p write it as

good doc(N) IMPLIES p

• Attach evidence for N to uninterpreted predicate good doc(N)

◦ Formally this is just a comment

• Enable the predicate (i.e., set it to true) only when reviewers

are satisfied with the evidence

◦ Can have more complex arrangement if multiple reviewers

◦ ETB mechanisms should make this more transparent
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Argumentation

• But this all neglects the argumentation aspect

◦ Need to allow reviewers to challenge and explore

◦ e.g., conduct “what if” experiments

• Vast amount of work on formal argumentation, defeasible

reasoning etc.

◦ That’s why I’m here: to learn about that

• But I’m also interested in how the representation of an

assurance case in a verification system can be extended to

support defeasible reasoning
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Argumentation: A Really Simple Proposal

• Like the good doc predicates we use to attach evidence, we

can attach defeater predicates

• Premise named N, formalized as p becomes

NOT dN IMPLIES p

Where dN is the defeater for N, initially false

• Conduct “what if” exercises by toggling defeaters and letting

the automation rip

◦ Counterexamples (often) help insight

• With SMT automation, it would be easy to provide a GUI

with switches and dials
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Example

• In the paper I do a small example from Michael Holloway

• I do it PVS (an interactive theorem prover)

◦ Mainly because we lack a sugared syntax for SMT

• Demo in the final session

• Here’s the idea. . .
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Idea of the Example

• Three hazards identified: H1, H2, H3

• Subarguments that each has been adequately mitigated

• Assumption (premise): No other hazards

• Therefore safe by “enumerate over hazards” pattern
√

• Challenge: what about joint occurrence of two hazards?

◦ Specifically H2 and H3

• Aha! Add new hazard H23 and assert that it is mitigated by

evidence provided for H2 and H3 separately
√

• Evidence for each not evidence for both: turn on defeater X

• New evidence: combo used previously in similar system
√

• Not similar enough: turn on defeater X

• OK, neither argument is convincing on its own

◦ But together they are persuasive

• Hmm, modify so either defeater can be on, but not both
√
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Discussion

• Technical

◦ The manipulations performed here are all propositional

◦ The horsepower of SMT etc. is needed only in the details

◦ So could maybe combine SAT-based methods of

argumentation with powerful lower-level automation

? Just as an SMT solver is SAT plus decision procedures

◦ Alternatively put an outer loop above the SMT solver

? That is how MaxSAT and AllSAT are done

• Philosophical

◦ Does this really capture what argumentation is about?

◦ Does argumentation really capture what assurance cases

are about?

John Rushby, SR I Mechanized Support for Assurance Case Argumentation 10


