
1st International Workshop on Argument for Agreement and

Assurance (AAA 2013), Kanagawa Japan, October 2013



Mechanized Support
For Assurance Case Argumentation

John Rushby

Computer Science Laboratory

SRI International

Menlo Park CA USA

John Rushby, SR I Mechanized Support for Assurance Case Argumentation 1



Introduction

• I’m from a group that does formal verification

◦ PVS, SAL, Yices, ETB are some of our tools

Everything looks like a proof to me

• But I have come to realize an assurance case is not a proof

• There are inherent uncertainties, like identifying all hazards

• So an assurance case is an inductive argument

◦ Probable truth of premises

indicates probable truth of conclusion

• But then we really ought to quantify the probabilities

• Lots of ideas for combining logic and probability

◦ Probabilistic logics, Dempster-Shafer, BBNs etc.

But none are universally accepted

• So does that condemn us to informal reasoning?

John Rushby, SR I Mechanized Support for Assurance Case Argumentation 2



Assurance Case Evaluation

• An assurance case is a big argument

◦ Needs reliable review

• John Knight and colleagues examined three cases

◦ All had basic reasoning flaws

◦ Different reviewers found different flaws

• Need mechanized support for reliability and economy

• Some of the subcases are going to involve formal verification

◦ And those tools are powerful (SMT solvers etc.)

• So can we extend these tools to larger aspects of the case?

• Classical method

◦ Embed uncertainty in the premises

◦ Argument based on these should be deductively sound

• Cf. formal verification of fault tolerant algorithms in 1980s

◦ Formally verify algorithm, assuming no more than f faults

◦ Separately, estimate probability of > f faults

John Rushby, SR I Mechanized Support for Assurance Case Argumentation 3



Epistemic and Logic Uncertainty

• Epistemic uncertainty

◦ How accurate is our knowledge of the system, its

environment, assumptions, etc.?

• Logic uncertainty

◦ Given our knowledge, how accurate is our reasoning?

• Proposal: encode our knowledge in logic

◦ How best to do that? See SafeComp 2013 paper

◦ Software is logic

◦ Encode the rest as constraint-based models

These are our premises

• Formally verify the argument based on the premises

◦ Eliminates logic doubt (modulo soundness of prover)

• But need to incorporate the evidence supporting our premises

John Rushby, SR I Mechanized Support for Assurance Case Argumentation 4



Attaching Informal Justifications

• We will have premises that say things like

◦ A, B, and C are all the hazards

And the assurance argument enumerates over these

• We need a way to attach the evidence for this premise

◦ e.g., description of the hazard analysis process used

To the formal verification that uses it

• Simple proposal in SSS 2010

• Given premise named N, formalized as p write it as

good doc(N) IMPLIES p

• Attach evidence for N to uninterpreted predicate good doc(N)

◦ Formally this is just a comment

• Enable the predicate (i.e., set it to true) only when reviewers

are satisfied with the evidence

◦ Can have more complex arrangement if multiple reviewers

◦ ETB mechanisms should make this more transparent

John Rushby, SR I Mechanized Support for Assurance Case Argumentation 5



Argumentation

• But this all neglects the argumentation aspect

◦ Need to allow reviewers to challenge and explore

◦ e.g., conduct “what if” experiments

• Vast amount of work on formal argumentation, defeasible

reasoning etc.

◦ That’s why I’m here: to learn about that

• But I’m also interested in how the representation of an

assurance case in a verification system can be extended to

support defeasible reasoning

John Rushby, SR I Mechanized Support for Assurance Case Argumentation 6



Argumentation: A Really Simple Proposal

• Like the good doc predicates we use to attach evidence, we

can attach defeater predicates

• Premise named N, formalized as p becomes

NOT dN IMPLIES p

Where dN is the defeater for N, initially false

• Conduct “what if” exercises by toggling defeaters and letting

the automation rip

◦ Counterexamples (often) help insight

• With SMT automation, it would be easy to provide a GUI

with switches and dials

John Rushby, SR I Mechanized Support for Assurance Case Argumentation 7



Example

• In the paper I do a small example from Michael Holloway

• I do it PVS (an interactive theorem prover)

◦ Mainly because we lack a sugared syntax for SMT

• Demo in the final session

• Here’s the idea. . .

John Rushby, SR I Mechanized Support for Assurance Case Argumentation 8



Idea of the Example

• Three hazards identified: H1, H2, H3

• Subarguments that each has been adequately mitigated

• Assumption (premise): No other hazards

• Therefore safe by “enumerate over hazards” pattern
√

• Challenge: what about joint occurrence of two hazards?

◦ Specifically H2 and H3

• Aha! Add new hazard H23 and assert that it is mitigated by

evidence provided for H2 and H3 separately
√

• Evidence for each not evidence for both: turn on defeater X

• New evidence: combo used previously in similar system
√

• Not similar enough: turn on defeater X

• OK, neither argument is convincing on its own

◦ But together they are persuasive

• Hmm, modify so either defeater can be on, but not both
√

John Rushby, SR I Mechanized Support for Assurance Case Argumentation 9



Discussion

• Technical

◦ The manipulations performed here are all propositional

◦ The horsepower of SMT etc. is needed only in the details

◦ So could maybe combine SAT-based methods of

argumentation with powerful lower-level automation

? Just as an SMT solver is SAT plus decision procedures

◦ Alternatively put an outer loop above the SMT solver

? That is how MaxSAT and AllSAT are done

• Philosophical

◦ Does this really capture what argumentation is about?

◦ Does argumentation really capture what assurance cases

are about?

John Rushby, SR I Mechanized Support for Assurance Case Argumentation 10


