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Intelligent Vehicle Dependability

• My focus: theory/speculation about assurance for autonomous systems

• Quintessential example: self-driving cars, Level 5, a little on Level 3/3+

• Autonomy architecture invariably has two components

Perception: use sensors to build a model of the local world

Action: use the model to calculate safe and effective behavior

• Both components may use Artificial Intelligence (AI) software,

including Machine Learning (ML)

◦ Difficult to anticipate behavior in all circumstances; often fails

◦ Perception/action errors due to flawed ML and AI are vastly more significant source

of failure than classical software and hardware faults

• Yet we want assurance:

◦ Confidence in claims about the system within some context (ODD)

◦ e.g., safety of self-driving on freeways

◦ To very high levels (100 times better than human; 10−9 and beyond)
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Assurance and Predictability

• Assurance requires predictable system-level behavior

◦ But here we are using unpredictable components

◦ Within an unpredictable environment

• Predictable behavior need not be deterministic

◦ But requires some predicates to hold, given assumptions

• Components may be unpredictable, if larger architecture ensures predictability

◦ e.g., unpredictable action component is guarded by a predictable monitor

? Calculating effective behavior may require AI

? But can check or monitor or guard its safety with assured conventional software

? Given a model of the world

? So the model becomes the focus of our attention

• Action and monitor components might use different models/sensors

• Both models need to be accurate, or at least safely approximate

• For simplicity, we speak of just the model
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Architectures for Action Generation Monitor/Guardian/Checker

Can protect against flawed action generation, but utterly dependent on model(s)
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Safely Approximate Models

• Safety is defined in human-focused (i.e., naturalistic) terms

• Therefore model needs to be naturalistic

◦ i.e., defined on the variables of some human-defined framework

◦ Not on the latent variables of a learned classifier

• For cars, typical model has detected objects list (what it is, size, velocity, intent)

◦ Plus occupancy grid (bird’s eye view of road and object layout)

◦ And these can be probabilistic

• A good model the most valuable asset in the architecture

◦ Needs to be cultivated with care

• A good model need not be perfectly accurate

• Requirement:

if behavior looks safe in the model, then it must be safe in the real world

• Reverse need not be true

• So model can be conservative: safely approximate
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(Un)Predictable (In)Accuracy of Models

• Models are built by machine learning

• Despite astonishing performance, accuracy of ML methods is not predictable, nor fault-free

Evidence: observed failures

◦ Real-world testing (reveals large fat tails)

◦ Adversarial examples (minor input changes produce big & bad effects)

◦ Training data is often low quality, poorly labeled (garbage in, garbage out)

ML explanation: there’s no understanding of the world

◦ Debate on memorization vs generalization in deep learning

◦ It’s just curve fitting (Pearl)

◦ Will always be anomalies adjacent to correct behavior (Shamir et al)

Deeper explanation: traditional perception is anti-causal (i.e., backwards)

◦ The world causes the impressions that our sensors observe

◦ Sensors try to infer the world from sense impressions: anti-causal

◦ Unpredictable because different worlds can generate same sense impressions

• So instead, try to reason causally: generative models
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Understanding Generative vs Anti-Causal Model Construction

• Thought experiment: reconstruct sharp image of face from degraded surveillance photo

• Old way: attempt to undo degradation—image sharpening, deconvolution etc.

◦ Hopeless, utterly anti-causal

• Machine Learning: DNNs work by memorizing training examples, then make prediction

on new examples by fitting them to training ones (Pedro Domingos)

◦ So train on lots of sharp/degraded image pairs

New degraded image will be matched to training examples

And output will be a combination of the sharp images that generated them

◦ Not bad, but anti-causal, vulnerable to anomalies, unpredictable

• Generative Models: start with candidate sharp image (use learning as above to find it)

Predict degraded image (a causal simulation/calculation)

Compare to actual, use error to revise sharp image

Repeat until prediction error is small

◦ Works well (implemented as GANs), works causally
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Dealing with (Un)Predictable (In)Accuracy of Models

• Massive training to reduce unpredictability (“collecting miles”) requires infeasible effort

◦ Billions of training and test miles (RAND and others)

• Runtime checking for unfavorable cases can help

◦ E.g., detect when input is far from training data

◦ Or influential parts of input do not coincide with decision

? e.g., pixels that affect cat vs. dog do not coincide with face

Update the model conservatively when these trigger

◦ These yield some improvement, but not to the levels required (beyond 10−9)

• Need to address the basic problem: anti-causal inference

• So turn things around and reason causally from model to sensors

• We use the model to generate/predict sensor input

• Difference between predicted and sensed input is prediction error

• Use prediction error for model update and fault detection
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Predictive Processing and Model Update

• Predictive processing is the application of generative modeling to model-based control

• Use (small) prediction error to adjust the model

• E.g., by refining its parameters

• May have several candidate models and use prediction error to discriminate

◦ E.g., detected object might be a bicycle or a pedestrian

◦ The alternative models generate different predictions

? Bicycles tend to go with traffic, pedestrians across it

◦ Over time, better model will have smaller prediction errors

• Models can be probabilistic

◦ Bayesian framework: predictions are priors, errors give posteriors

◦ Whole loop can be mechanized as Variational Bayes

◦ Provides iterative model refinement to minimize prediction error

• Like a Kalman Filter, generalized to complex data representations
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Predictive Processing and Fault Detection

• Large prediction errors register surprise; indicate something is wrong

◦ All sources of failure detected by this single indicator: untrained space, adversarial

input, inaccurate model, unexpected evolution of world, etc.

• Prediction error provides constant feedback on quality of model and sensor interpretations

• Hence, prediction error is a single organizing principle for operation and assurance

◦ Small prediction error: all is well, do model update

? Sound, provided no systematic faults (see later)

◦ Large prediction error: surprise, deal with it (see later)

? Also a good trigger for event recorders and SPIs

• Assurance is itself autonomous!

John Rushby; SR I Model-Centered Assurance 10



Predictive Processing in Practice (skip)

• Use anti-causal methods (and prior knowledge) to construct initial model

• Thereafter use predictive processing to refine and update it

• At what level are the predictions?

◦ Pixel/point cloud level is too low

? e.g., color is irrelevant, so need some abstraction

◦ Detected object list is an attractive level

? May require some anti-causal interpretation to get there

• Predictions can guide sensors to better/faster interpretations

◦ e.g, can localize search for lane markings
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Responses to Surprise

There are exactly three ways to respond to surprise (i.e., a large prediction error)

1. Adjust the sensors (or their interpretation/lower level model)

• e.g., change interpretation algorithm/ML parameters

• Ignore troublesome sensors for a while

• Temporarily synthesize fallback sensors: e.g., in fog, cannot see lane markings

◦ Use proximity and radar to detect neighboring cars and infer lanes

2. Adjust the model

• e.g., increase uncertainty

• Or make more surgical adjustments, rebuild anti-causally

3. Adjust the world

• e.g., get in shadow of adjacent truck to avoid blinding sun

Or a combination

How to choose? Next slide
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Managing Responses to Surprise

Surprising (i.e., large) prediction errors could be due to:

• Localized sensor fault (e.g., ML blip, hardware hiccup)

◦ Ride it out for a while, using other sensors

• Major fault in one (class of) sensor

◦ We assume different classes of sensor fail independently

? e.g., cameras dazzled by sun, radar unfazed

? Ride it out, using other sensors, increase uncertainty in model

• Systematic misinterpretation: must not happen, see later

• Hardware or other traditional fault: not our problem,

Must be resolved by FT platform

• Real world did not evolve as model expected

◦ Large prediction errors from several (classes of) sensors

◦ Need to adjust either the model or the world, but what information to trust?

◦ Employ dual-process architecture for just this reason
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Dual-Process Architecture (Illustrative Example)

• Suppose we’re on a freeway, camera detects a truck ahead

◦ Truck has bicycle painted on its rear

• As we get closer, camera changes detected object to bicycle

◦ Or flickers between truck and bike

◦ Or says probability x for truck, y for bicycle, and these wobble

• Prior was truck, so large prediction errors: a surprise

• But we are on a freeway, bicycles not allowed

• So object must be a truck

• System needs to apply AI knowledge and reasoning to model

◦ Here, it is “laws and rules of the road”

◦ The more you know, the less you need to sense

Locate this in a separate “higher level” process

◦ Hence, dual-process architecture
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Dual-Process Architecture (ctd. 1)
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Dual-Process Architecture (ctd. 2)

• System 1 (lower) does automated model construction

◦ Based on predictive processing

• System 2 (upper) does model refinement

◦ Based on symbolic methods, rules, reasoning, general AI

◦ Intervenes on surprise (persistent, large prediction errors)

◦ But its goal is to minimize surprise (next slide)

• Model is like blackboard: repository for all relevant knowledge

• Again: prediction errors provide single organizing principle

• For Level 3/3+, surprise could be the trigger for handover

◦ System 2 is implemented by the human driver
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Minimizing Surprise: Situation Awareness

• (Automated) System 2 intervenes on surprise

• But it should also anticipate and reduce future surprises

• This is situation awareness

• Explore counterfactuals, hypotheticals, theory of mind in longer range projections

from current model

• Plausible contingencies added to model with suitable probabilities

• E.g., hypotheticals due to occluded vision

◦ “If there were a car the other side of that truck, we would not be able to see it”

? Add car to model with low probability (ghost)

◦ Or “the driver of that car may not be able to see us” (due to an obstruction)

? Increase probability car will pull out (adjust intent)

These make the model more conservative: fewer safe actions

• Evolution of actual world will cause adjustments in probabilities, not surprise
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Assurance Argument

• Assurance for monitor is conventional, but relies on model

• So need assurance that model is safely approximate

• System 1 Predictive processing provides constant run-time verification of model,

assuming sensor interpretation faults are independent and localized

• System 2 AI provides situation awareness, responds to surprise

◦ Generally increases uncertainty in model

◦ Makes it more approximate, therefore safer

• Must be no systematic (i.e., nonlocalized) interpretation faults

◦ e.g., blind to red cars:

predict no red cars, see no red cars

so no prediction error. . . and then collide with red car

◦ Develop evidence for assurance by model comparison (next slide)

◦ Additionally, can employ diverse model construction (later)
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Model Comparison for Evidence of No Systemic Faults (skip)

• Construct modeled world in simulation environment

• Calculate sensor interpretation of that world

• And derive and maintain a model of the world by predictive processing

• Compare that to the model you started with

• Repeat millions of times

• Ensure failures are few, do not persist over many frames

• This is not the same as collecting miles

◦ We are verifying general behavior

◦ Not seeking edge cases

• Whole argument provides prior for assurance by Conservative Bayesian Inference

(CBI, Strigini et al)
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Prior Art: The Human Brain

• Although our architecture is derived and justified on engineering grounds

• It happens to be the way the brain works

• Predictive processing

◦ Helmholtz (1867), Rao and Ballard

◦ Also known as predictive coding, predictive error minimization

? Metzinger, Clark, Hohwy

◦ Generalization: free energy (Friston)

◦ Human brain has multiple models at different levels: lower levels like sensors to upper levels

• Dual Process model (Systems 1 and 2)

◦ Frankish, Evans & Stanovich

◦ “Thinking, Fast and Slow” (Kahneman)
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General Fault Tolerance

• Need redundancy and fault tolerance for

traditional software and hardware faults

• Hermann Kopetz has developed principles

and candidate architectures for cars

• Need to situate our architecture within his

• Also need to handle OTA updates safely

• Exploring options with Wilfried Steiner

• One opportunity is for secondary model

construction to be deliberately diverse, run

on a separate ECU; compare/fuse or. . .

Periodically exchange primary and

secondary models (detects/masks

systematic faults, keeps models aligned)
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Conclusions

• Can guard autonomous actions with conventional, assured, checker/monitor software

• But it depends on a safely approximate model of the world

• ML used in construction of that model

• Infeasible to assure ML directly

• So do it indirectly by run-time checking of the generative model

• Best framework for this is a two-level architecture

◦ System 1 (lower level): Predictive processing

? Small prediction errors indicate all is well

? Assumes sensors fail independently

? And no systematic ML flaws (assured by testing, mitigated by diversity)

◦ System 2 (higher level): Model Refinement

? Goal is to avoid large prediction errors, generally makes model more conservative

? And recover when they do occur

? Uses AI for situation awareness

• Needs experimental validation
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