Invited paper (slightly expanded) for a special session on the Verified Software Initiative, 12th IEEE International Conference on the
Engineering of Complex Computer Systems (ICECCS), Auckland, New Zealand, July 2007, pp. 270-276.

What Use is Verified Software?

John Rushby
Computer Science Laboratory,
SRI International
Menlo Park CA USA
rushby@csl.sri.com

Abstract (because the system shields its programs from the circum-
stances that provoke their faults, or because it has ways of

The world at large cares little for verified software; what €oping with the manifestations of those faults).
it cares about are trustworthy and cost-effective systems Furthermore, the technology of program verification can
that do their jobs well. We examine the value of verified soft- be applied in many different ways and to many different tar-
ware and of verification technology in the systems contextgets and for different purposes. For example, as static anal-
from two perspectives, one analytic, the other synthetic. Weysis it can be applied to large suites of executable programs
propose some research opportunities that could enhance thén a highly automated way but can guarantee only relatively
contribution of the verified software initiative to the prac- Shallow and local properties (e.g., absence of runtime errors,
tices of systems engineering and assurance. such as those caused by dereferencing a null pointer, or di-
viding by zero); as theorem proving it is often applied under
skilled human guidance to rather abstract representations of
small programs (e.g., as algorithms described in a speci-
1. Introduction fication language) and can guarantee fairly strong proper-
ties (e.g., that the algorithm achieves its purpose); and as
The Verified Software Initiative (VSI) aims to foster the M0del checking it can be used for many purposes other than
science and technology of formal verification—and the cul- Verification (e.g., for test generation, bug finding, or explo-
ture of software development—so that it becomes routine ration)! These d|ﬁerent_appl|cat|ops of formal venﬁcanop
for software to be delivered with a guarantee of correctness Methods support very different claims and apply to very dif-
But we as users, and larger society as stakeholders, havTent artifacts in the software development process.
little direct interest in the correctness of software; what we 11€re seem to be two existing perspectives from which
care about arsystemgsuch as those for air traffic control, 0 VIEW thg potential contributions of verlflgd software an.d
credit cards, or cellphones), whose operation is the resultof verification technology to systems. One is the perspective
of complex interactions among many software subsystems Of System assurance, which is best developed in its applica-
and whose failures and infelicities are generally due to sub-tion to safety-critical systems. Specifically, software verifi-
tle faults in those interactions, sometimes provoked by hard-cation can be included among the evidence that supports a
ware malfunction, user error, or other unanticipated combi- Safety case or, more generally, an assurance case. | consider
nations of circumstances, and sometimes the result of mis-thiS perspective in Section 2. The other perspective, which |
understood requirements and expectations. will call the “systems view,” holds that component reliabil-

What is the relationship between guaranteed propertiesty 1 N0t the most important factor in overall system qual-
of software programs and the reliability, safety, and gen- ity, an_d .thatmr_:ljor sys.temfanures are generally the result of
eral felicity of systems? It is not a simple one, for itis well- Unanticipated interactions among system components or be-
known that systems built on correct programs can fail (be- tweeq th? system and its envanment. ! conS|der this per-
cause they are correct with respect to inadequate propertiesjPective in Section 3. My considerations raise more ques-

and that satisfactory systems can contain incorrect programd/onS than answers, and | conclude in Section 4 with sug-
gestions for further research.

+ This research was partially supported by AFRL through a subcontract
to Raytheon, by NASA Langley contract NNLO6AAO7B through a 1 These are examples only; each technology can be used for other pur-
subcontract to ERA Corporation, and by NSF grant CNS-0644783. poses as well.

2. The Assurance Perspective Belief Nets (BBNs) provide a graphical way explicitly to
represent dependence among different items of evidence,
Many industries require safety caséo be demonstrated and they are supported by tools (e.g., HUGIN Expert [13])
before a potentially hazardous system may be deployed. Athat can perform the necessary calculations to estimate pos-
safety case [1] is terior probabilities.

“A documented body of evidence that provides a

convincing and valid argument that a system is 7
adequately safe for a given application in a given

environment.”

A safety case is generally structured as an expéoiu-

ment based on documenteyidencehat supports suitable O

claimsconcerning system safety. This general approach is

widely applicable, so that one hears of “security cases,” or

“dependability cases.” Beyond critical systems, this seems

a rational framework for justifying propositions that may

be made about any particular system and the goals it is in- S

tended to achieve, and | refer to the general approach as pro-

viding anassurance case T Vv
Formal verification is among the evidence that might be

considered in an assurance case, but it is unlikely to be the

only evidence. This is because the correctness properties

that have been verified might not include everything that is

important about the system, because only some parts of the

system might have been formally verified, because the veri-

fication itself may be considered fallible, and because some

aspects of behavior may be beyond the reach of formal ver- C

ification (a topic that is considered in Section 3). Conse-

quently, we need a way to assemble multiple items of evi- Figure 1. BBN For A Two-Legged Assurance

dence and their associated arguments into a coherent overall Case (from [17])

assurance case. The claims supported by most forms of ev-

idence (and, indeed, the top level claims that we really care

about) usually are conditional and are often stated proba-

bilistically (e.g., a claim for the primary protection system Littlewood and Wright [17] examine a two-legged assur-

for a nuclear plant might be that its probability of failure ance case whose BBN is shown in Figure 1. Here, evidence

on demand (PFD) is less thafn—3). The claims supported from testing is combined with formal verification; the nodes

by formal methods, on the other hand, usually are uncondi-represent judgments about components of the argument and

tional (e.g., this program will generate runtime errors). the arcs indicate dependence between these. In particular,

But although the claim may be unconditional, there will the nodeZ concerns the specification for the system and the

be some uncertainty about the evidence itself—even for-analysis must consider two possibilities: that it@srect

mal methods may be fallible—which can be expressed as(i.e., accurately represents the true requirements on the sys-

a subjective probability; thus we may speak of 99.9% confi- tem) orincorrect . The evaluator must attach some prior

dence that static analysis supports a claim of no runtime ex-probability distribution to these possibilities (e.g., 99% con-

ceptions or, in the conditional case, of 95% confidence thatfidence itiscorrect , vs. 1% that itidncorrect). The

testing evidence supports a claimiof3 PFD. nodeV represents the outcome of formal verification (i.e.,
We now need a method for “adding up” multiple forms pass orfail); we presumably will undertake some reme-

of evidence, in which we have different degrees of confi- dial action if the verification fails, so we are only concerned

dence, to support a possibly conditional claim: this is called with the case that it passes. The natleepresents the true

a “multi-legged” assurance case [3]. Bayes theorem is the(but unknown) quality of the system (e.g., its probability

principal tool for analyzing subjective probabilities [14]: it of failure on demand, in which case will have a value

allows a prior assessment of probability to be updated by between 0 and 1). There are arcs fréfrand S to V' be-

new evidence to yield a rational posterior probability. It is cause the verification outcome should surely depend on the

technically difficult to deal with large numbers of complex correctness of the specification and the quality of the sys-

conditional (i.e., interdependent) probabilities but Bayesian tem.O is the test oracle; it is derived in some way from the

specificationZ and may becorrect orincorrect — Analysis of Z” proceeds without formal evidence, while
the probability distribution over these will be some func- thatofZ’ can use Littlewood and Wright's insights. A com-
tion of the distribution over the correctnessXfle.g., if Z plicating factor is that the formally verified artifacts may be
iscorrect , we might suppose itis 95% probable tiaais algorithms or other intermediate products rather than the ac-
correct ,butif Zisincorrect ,thenitisonly 2% prob- tual system S, but | suspect this can be handled by adding
able thatO is correct). T'is the outcome of testing: that nodes to the BBN to represent these artifacts (though only
is, whether or not failures were discovered. Again, we pre- the nodes corresponding to these artifacts will have uncon-
sumably will fix things if failures are discovered in testing, ditional claims).

SO we are Only concerned with the casaof failures . Adaptations to the BBN of Figure 1 seem more prob_
T" depends on the oraci@ and the true quality of the sys- |ematic when formal verification has delivered only implicit
tem S and its probability distribution over these will rep- properties such as guaranteed absence of runtime errors. It
resent the evaluator’s confidence in the test quality (as in-is not viable, in my opinion, to treat such implicit proper-
dicated by coverage measures, or mutant detection, for exties as conjuncts of the full specification; they are at best
ample). Finally, the nodé' represents the outcome or con- derived properties that should be entailed by the full spec-

clusion of the analysis; presumably this will besecept ification. It might seem that we could then extend Figure
the system only if the systepesses verification ancho 1 by adding aZ’ to represent the formal verified proper-
failures are discovered in testing. ties, and we might expect that the entailmen#éby 7 al-

In this example, onlyI’ andV are directly observable, lows relatively straightforward analysis. Unfortunately, this
andC is fully determined by these. Using a BBN tool, itis may not be so.

possible to conduct “what if” exercises on this example to phijlosophers interested in the scientific method study
see how prior estimates for the conditional probability dis- topjcs similar to those considered here; they are interested in
tributions of the various nodes are updated by the evidencehe extent to which evidence supports one hypothesis rather
(i.e., that verification passes and that testing finds no er-than another, and have notions of theherenceof evi-
rors) and thereby to determine the posterior probability dis- gence [4] and a general topicadnfirmation theory8]. The
tribution that the conclusion is correct. Rather than “what (gots of much of their analysis lie in attempts to construct
if” exercises with a tool, Littlewood and Wright [17] exam- 3 Bayesian account of inductive reasoning that would be a
ine this example symbolically. They observe that surprising close analog to classical logic for deductive reasoning [5].
outcomes are possible; for example, if the prior probability |t might be hoped to combine the two forms of reasoning,
distributions oril” are changed to represent harder (or more gq that if evidences supports a hypothesil and H de-
numerous) tests, and still no failures are detected, this mayductively entailsH’, then surelyE should also suppott!’.
weaken confidence in correctness of the test oracle ratherrhis expectation is dashed under any plausible probabilis-
than increase confidence in the conclusion. They show thatuc interpretation of “Supports” by the fo”owing counterex-
these surprising outcomes are eliminated when the claimgmple. LetH be the hypothesis that a card drawn at random
supported by verification is unconditional (i.e., when for- from a shuffled deck is the Ace of Hearts, Iét be the hy-
mal verification supports the claim of “perfectiors"= 0). pothesis that the card is red, and febe the evidence that
This is an attractive conclusion: it suggests that the un-the card is an Ace. Certainlif entailsH’ and E supports
conditional character of formal verification evidence yields H, but £ cannot be considered to suppdft. (I learned
significant added value. However, Littlewood and Wright's this counterexample from a talk by Brandon Fitelson of UC
analysis assumes that the correctness property guaranteeBerkeley; his websitenttp://fitelson.org/ con-
by formal verification is the full specification for the sys- tains much material on these topics.) It is interesting in this
tem (whose correctness is represented by the single nodeontext to note that some exponents of goal-based assurance
7). As we noted earlier, formal verification may consider look to Toulmin [27] rather than classical logic in fram-
only weak properties, such as absence of runtime errors, oling assurance cases [2]; Toulmin stregassficationrather
properties of an abstraction such as correctness of an algothaninference

rithm. Inquiries by philosophers also raise interesting questions
If the formally verified properties are fragments of the on how to estimate the strength of evidence. It seems im-
full specification, then | believe we can split the BBN into plicit in the BBN approach that the extent to which evi-
two: one that considers the union of these verified frag- denceFE tends to support hypothesig is some function
ments, which we can represent&s and one that consid- of the prior probabilityP(H) and the posterior probability
ers the rest of the specificatiot’ = Z\Z’ (| am abus- P(H|E). Fitelson [8] considers measures related to these
ing notation here and using these symbols to represent bottand other conditional probabilities and gives compelling ar-
the specifications themselves, and the quantities actuallyguments that the best are those that comp¥&|H) and
used in the BBNs, which are estimates of their correctness).P(E|—H) (in particular, the logarithm of their ratio is the

single most attractive choice). These measures are very dif3. The System Perspective

ferent from one another and | suggest that some review the

philosophers’ considerations will be useful in developing Accident analysis is a mirror-image to assurance; by
multi-legged assurance cases. studying how things fail, we can learn how to develop them

The conclusion | draw from this discussion and the coun- SO they will not fail (at least, not in the same way as the
terexample above is that it may not be straightforward to de-ast accident) and how to provide assurance that we have
velop schema for multi-legged assurance cases that use eydone so. The traditional view of accidents, which devel-
idence of formal verification for weak properties. In partic- OPed in the mid-20th century, was that they are triggered
ular, the entailment relationships among the various partial Py (often multiple) component faults that lead to a cascad-
specifications may not yield simpler BBNs than unrelated ing chain of further events and, ultimately, to some bad out-
analyses. On the other hand, their unconditional charactecome. Remedies suggested by this analysis are to use reli-
should allow all the formal analyses to be “added up” sep- able components, to detect latent faults, and to have mech-
arately in a fairly simple way (as evidence for the uncon- anisms that interrupt the cascade. A more recent view, fa-

ditional conjunction of their separate claims), and only that mously introduced by Perrow [20], is the notion ofys-
“sum” need be added into the full BBN. tem accidentHere, accidents are not (mainly) the result of

component failures but of flaws in the system as a whole,
which can create interactions among its components so that
bad outcomes follow from (what were thought to be) cor-

Absent more principled analyses that might follow from
reexamination of multi-legged cases to include formal evi-

dence for weak properties, we can describe an intuitive ar-oot pehaviors. Perrow identifiésteractive complexitgand
gument why this evidence may be valuable. This is an argu-tjght couplingas system attributes that contribute to acci-

ment | call “coupling,” based on use of this term for a Sim- - 4ents | eveson [15, 16] develops related ideas, with partic-
ilar idea in testing [19]. The idea from testing is that tests . applications to computer-intensive systems.
that expose simple errors often catch subtle ones too; trans- .
ferred to verification, it is the idea that violation of a small T_hose who adopt the. sys_tem perspective foc_us much at-
property may indicate violation of a big one too. tention on human organizations and relatgq topics (e.g., the
notion of resilience[12]) rather than specific engineering
Formal verification, even for weak properties, has the at- technologies such as formal verification. However, | think it
tribute that it considers all possible executions. Thus, for- is fair to say they would attach relatively little importance
mal verification may detect violation of a weak property by to verified software as a contribution to system safety. This
discovering an unanticipated scenario; the detected viola-is because they see software as a component and do not re-
tion (e.g., a runtime error) acts as a “canary in the mine” gard component reliability as the main issue: rather it is in-
that alerts us to overlooked cases that require deeper conteractions between components where the big problems lie.
sideration. Testing might overlook the scenario because theThus, Leveson, in particular, places great stress on require-
tester shares the same lacunae as the developer, or becaugfents engineering, but treats it from the point of view of
the scenario is very rare and difficult to construct, but for- human problem solving.
mal verification will find it because it considers every case. gpe can agree with much of the systems view without
| suspect it is this examination of all possible scenarios that agreeing with all its diagnoses and prescriptions. In particu-
explains how static analysis has been able to find bugs injg; e have the “luxury” of system accidents only because
avionics code that had already been subjected to the tes“”%omponents have become sufficiently reliable that they are
and other assurance methods for the highest level of FAAnq jonger the chief precipitators of accidents—and the tech-
certification (DO-178B Level A) [9]. Viewed from this per- nology of formal verification may be, or may become, the
spective, it seems that the main value in static analysis andyost effective and cost-effective way to ensure reliable soft-
other formal methods that examine implicit or local prop- \yare components. However, the systems view is surely cor-
erties is that they provide a check on the efficacy of other yg¢t 1o identify the importance of interactions among com-
assurance activities: if testing and other assurance methOdﬁonents and the crucial significance of good requirements
did not find errors uncovered by static analysis, then they engineering. The verified software initiative will not achieve
cannot have been thorough enough and should be reexamys full potential if it focuses solely on verification of soft-
ined. ware with respect to its specifications without also address-

Verification for weak properties has obvious value when ing correctness and suitability of those specifications and
it exposes otherwise undetected problems; it is less obvioughe requirements from which they are derived.
what value should be attached to successful verifications of Conversely, traditional requirements engineering needs
this kind. Certainly, those who espouse the system view at-help, for it demands great feats of human imagination: we
tach very little value, and it is this perspective that we con- have to imagine the interaction of the proposed system with
sider next. its environment (to identify both its desired function and un-

desired hazards), imagine its design and its components an@ver, which carries over to formal methods: namely, design
imagine their interactions, and so on. Imagination may be models are augmented by models of the environment (e.g.,
supported by sketches and physical models or prototypesthe controlled plant, in the case of embedded systems) and
and guided by checklists and by a carefully managed en-these are no less valuable in verification than in simulation.

gineering process, but it is chiefly a mental activity, and @ another distinctive value of formal methods is that they
difficult one that bengfits from .Iorjg experience. We should 51 calculate properties of highly abstract models: in the
not expect—nor desire—to eliminate the need for human g4y stages of exploration, a few axioms may adequately
imagination, intelligence, and experience from this process, .paracterize a component and may serve our purposes bet-
but surely we can augment these precious resources by thgsy than a detailed model. (Training engineers to appreci-
power of computation. . ate and exploit abstraction may be one of the more difficult
The recent and growing adoption of model-based devel- 55k in technology transfer for formal methods.) Through
opment has created what seems to me a once-in-a-lifetimg g chapility analysis, initial models and properties can be
opportunity to apply the technologies underlying formal jieatively refined as oversights and undesirable behaviors
verification to the important topics of requirements analysis 5o discovered, and a more complete, precise, and consis-
and development. Model-based design environments sucRent requirements specification can be developed through
as Esterel/SCADE, Matlab/Simulink/Stateflow, AADL, or his symbiosis of man and machine. Many traditional safety
UML provide graphical specification notations based on gngineering analyses such as hazard analysis and failure
concepts familiar or a(_:ceptable to engineers (e.g., control,oqes and effects analysis can be seen as informal ways
diagrams, state machines, sequence charts), methods fqg o reachability analysis, and these can be recast as for-
simulating or otherwise exercising specifications, and some 5 analyses and integrated in this process. An early and
means to generate or construct executable programs oMy, ial bt very encouraging, application of this approach
the models. Until the advent of model-based methods, arti-is gescribed by researchers at Rockwell Collins [18]. Coun-
facts produced in the early stages of system developmenterexamples generated by formal analysis can be used to
were generally descriptions in natural language, possibly yrive the simulator of the modeling environment, or they
augmented by tables and sketches. While they could be Vo5 pe presented to the user in one of its modeling nota-
luminous and precise, these documents were not amenablg,ns (e.g., as message sequence charts).
to any kind of formal analysis. Model-based methods have i i
changed that: for the first time, early-lifecycle artifacts such A weakness n-my advoc_a cy of formal anaIyS|s_ for
as requirements, specifications, and outline designs have pehodel-based designs in requirements development IS that
come available in forms that are useful for mechanized for- there generally are many stakeholders, each with a partial

mal analysis. Some of the notations used in model-based deYI€W Of the system, and often conflicting expectations; each

sign environments have quite awkward semantics, but theyOf these may develop and analyze their own models, but

present no insuperable difficulties (see, e.g., [11]) and for- then we need ways to integrate these and to discover and

mal methods have been applied successfully to most modelf€concile their inconsistencies. Integration is not easy be-
based notations cause each constituency may have its own modeling meth-

The opportunity as | see it is to combine the strengths ods that are entirely silent about the concerns of others (e.g.,
of man and machine: people are good at describing howthe scheduling people may say nothing about security, and

things work and at stating some of the things they do and doyicg-versa), yet gertain tppics cut across'both (e.g.., covert
not want to happen, but they are not good at imagining thetiming channels in security). Or we may find that different

consequences of collections of such descriptions and State(_:onstituencies_ have specified contlicting requ_irements g,
ments? computers are good at tireless calculation and, in those scheduling the CPU a”?' those sqhedullng th? _bus may
the guise of formal methods they can calculate these conseyIOIate each others assumptions). | thmk these difficulties
quences for us. The unique value of formal methods is thatShOUId be seen as research opportunities, and there are al-

they can compute properties of all reachable states, and thiéeady some encouraging developments, such as those that

extends their value far beyond that of simulation, which can show ho_w_modellng and analysis fo_r real time can be under-
merely sample that space. The use of simulation in rnodel_taken within a standard state machine framework [7]. There

based development does provide a significant benefit, how-2re notations such as the Archnecture Analysis and Design
Language (AADL) [23] that allow a single model to be an-

2 In evidence, | cite one very experienced software architect who ex- nOtated_'n d'ﬁerent ways, but its semantics are_Weak for for-
plained that there are two phases in requirements acquisition: one permal verification and do not support cross-cutting analyses.
formed at the beginning of the project, and a second performed after These limitations should be seen as a further research op-
the first attempt at component integration reveals how much has been L d find blish that diff
overlooked. The idea here is to move the second phase into the first, bpr”U”'ty- we _nee. to find ways to estabplish that di ergnt
using formal methods to explore “integration” issues early in the de- Views are projections of a common model and to combine
velopment. specialized analyses performed along different projections.

Whereas the assurance perspective encourages usto sedk Summary and Recommendations
ways in which the guarantee of correctness conferred on
software by formal verification can be elevated to support Systems are more than software and the relationship be-
claims about the overall system, the systems view encour-tween verified software and trustworthy and attractive sys-
ages us to think about how the technology of formal veri- tems is not simple. | have outlined two ways in which veri-

fication can help us engineer good systems from the begin-ied software and the technology of formal verification can
ning: the first view is analytic, the second synthetic. contribute to high quality systems.

The first way is analytic: it uses verification as evidence
in developing an assurance case for the system concerned.

 which th ¢ ¢ | Verification will be combined with other evidence, so we
process in which the products of every step of developmenty e concerned with multi-legged assurance cases, and | de-

are subjected to rigorous analysis, both internal to the prod-giheq some of the benefits and difficulties in using verifi-

uct (e.g., static analysis of source code), and with respect. 4o, evidence in such cases. The difficulties raise interest-
to the products of earlier steps (e.g., specification-based,q rasearch questions for those skilled in BBNs and other
te;png of the source code); this IS |n.c0ntrast tq the_ ra- ethods for analyzing and combining evidence: in partic-
ditional *v Model,” where the verification and validation ,ar how to factor in evidence delivered by static analysis
steps follow the development steps. The idea is to find and(where the properties verified are not directly related to the

fix problems early, and before moving on to the next stage. g 1o specification), and how to respond to issues raised
Such approaches are widely advocated in safety engmeerby philosophers working on confirmation theory.
ing (e.g., [21, 24, 25]), where intensive (informal) verifica-

tion is performed within each step and extengiaeeabil-

This synthetic view leads, inevitably in my opinion, to
advocacy forcorrectness by constructigi0], which is a

The second way is synthetic: it uses verification technol-
ogy to aid in the construction of high-quality systems (an

ity is required from one step to the next. The difference is . .
. . approach sometimes called correctness by construction).

that the technology of formal verification could provide au- . . . o
The engineering challenges here are to integrate verifica-

tomated assistance for many of these activities, thereby re-. :)
. ; : ! . .~ tion technology into the processes and tools used in systems
ducing their cost and increasing their efficacy. Examples in-

clude automated generation and monitoring of tests (at the."9'Ne€rng, the rise of model-based development provides

integration and systems levels, not merely the unit level), an opportunity to do this. The research challenges are to

. N L .~ " find ways to deliver the singular advantages of formal anal-
model exploration (e.g., “show me an execution in which

both these states are active and this value is zero”), and im—y sis (the ability to work with highly abstract models, and

e : the ability to explore all reachable states) in contexts where
proved specification and enforcement of constraints on pro- .
. . knowledge (e.g., of the real world, or of the customer’s
gramming at the unit level.

expectations) is imperfect, where some requirements may
conflict, and where properties other than functional correct-

To illustrate the last point: faults often arise at the in- ; 50 b idered
terfaces between software components. Extended type aness (e.g., cost, performance) must also be considered.

notations for interfaces would allow formal analysis of The value of both analytic and synthetic formal verifica-

limited—but better than current—checks that components tion will surely increase as systems become more intercon-
respect their interfaces. Stronger checks require specifical’®cted and subject to constant evolution. Itis no longer sen-
tion of how the interface is to be used (e.g., a protocol for in- SiPl€ to think of systems as ever finished: components are
teraction)typestatd26] andinterface automat{6] provide modified and added as new needs or oppo_rtunltles emerge,
ways to do this. Formal methods can then attempt to verify Whole subsystems are grafted on, and deliberate and acci-
correct interface interactions, or can generate monitors todental integrations are created between previously separate
check them at runtime or test benches to explore them dur-SyStems. The local mechanics of adaptation and integration

ing development (rather like the bus functional models usedMay be mastered while emergent properties, both good and
in hardware). ill, are left to chance. Medical systems provide interesting

examples: many devices that each manage some aspect of

Integration frameworks such as the Time Triggered Ar- physiology can be attached to a single patient, creating an
chitecture (TTA) and operating system kernels for partition- accidental system of systems that interact through the con-
ing and separation provide yet stronger mechanisms for enirolled plant—the patient. It is known that patients respond
forcing interfaces: those of well-behaved components arebetter when different elements of their physiology operate
guaranteed, even in the presence of faulty and maliciousin harmony (e.g., so many heartbeats to each breath) but the
components. Formal verification of these frameworks is a separately designed devices each manage their own param-
challenging undertaking, but one that reduces the burdergter in ignorance of the others.
for other components. | discuss these and related topics ina Manual methods of analysis and design have limited util-
companion paper [22]. ity in the face of continual evolution: itis hard to apply these

methods to a single static system and vastly harder to re- [9] A. German.

visit the assurance case or the requirements capture or de-
sign rationale for separate systems and components, years
after their initial construction, to explore the consequences
of madifications, extensions, or integrations. But automated [10]
formal methods bring the same scrutiny to a specification
many years later as on the day of its creation, and in jux-
taposition with new environment specifications as with the
old: they are a reusable asset.

Acknowledgments. Presentations and discussions at meet-
ings for the verified software initiative and its earlier in-
carnations helped me formulate my views on these topics,
as did discussions with my colleagues Rance DelLong and
Shankar, and with Martyn Thomas. | am grateful to Robin
Bloomfield and Bev Littlewood and their colleagues for ed-

ucating me on safety cases and BBNs during a visit to CSR[

at City University in November 2006.

References

(1]

(2]

(3]

(5]
(6]

(7]

(8]

P. Bishop and R. Bloomfield. A methodology for safety
case development. IrSafety-Critical Systems Sym-
posium Birmingham, UK, Feb. 1998. Available at
http://www.adelard.com/resources/papers/

pdf/sss98web.pdf
P. Bishop, R. Bloomfield, and S. Guerra. The fu-
ture of goal-based assurance cases. D8N Work-

shop on Assurance Cases: Best Practices, Possible Ob-
stacles, and Future Opportunitied=lorence, ltaly, July
2004. Available fromhttp://www.aitcnet.org/
AssuranceCases/agenda.html

R. Bloomfield and B. Littlewood. Multi-legged arguments:

The impact of diversity upon confidence in dependability ar-
guments. InThe International Conference on Dependable
Systems and Networkpages 25-34, San Francisco, CA,
June 2003. IEEE Computer Society.

L. Bovens and S. HartmannBayesian EpistemologyOx-
ford University Press, 2003.

R. Carnap. Logical Foundations of Probability Chicago
University Press, second edition, 1962.

L. de Alfaro and T. A. Henzinger. Interface automata. In
Proceedings of the Ninth Annual Symposium on Foundations
of Software Engineering (FSH)ages 109—120. Association
for Computing Machinery, 2001.

B. Dutertre and M. Sorea. Modeling and verification
of a fault-tolerant real-time startup protocol using calen-
dar automata. InFormal Techniques in Real-Time and
Fault-Tolerant Systemssolume 3253 ofLecture Notes in
Computer Sciengésrenoble, France, Sept. 2004. Springer-
Verlag.

B. Fitelson. Studies in Bayesian Confirmation TheoBhD
thesis, Department of Philosophy, University of Wisconsin,
Madison, May 2001. Available dittp:/fitelson.
org/thesis.pdf

(11]

(14]
(15]

(16]

(17]

(19]

(20]

(21]

[22]

(23]
(24]

Software static code analysis lessons
learned. Crosstalk Nov. 2003. Available at
http://www.stsc.hill.af.mil/crosstalk/
2003/11/0311German.htmi

A. Hall. Software verification and software engineering: A
practitioner’s perspective. In N. Shankar, editéitP Work-

ing Conference on Verified Software: Theories, Tools, and
ExperimentsZurich, Switzerland, Oct. 2005. Available at
http://vstte.inf.ethz.ch/papers.html

G. Hamon and J. Rushby. An operational semantics for
Stateflow. In M. Wermelinger and T. Margaria-Steffen, ed-
itors, Fundamental Approaches to Software Engineering:
7th International Conference (FASEjolume 2984 of_ec-
ture Notes in Computer Scienqeages 229-243, Barcelona,
Spain, 2004. Springer-Verlag.

E. Hollnagel, D. D. Woods, and N. Leveson, editoiRe-
silience EngineeringAshgate, 2005.

13] HUGIN home pagehttp://www.hugin.com/

R. Jeffrey. Subjective Probability: The Real ThingCam-
bridge University Press, 2004.

N. Leveson. A new accident model for engineering safer sys-
tems. Safety Science2(4):237-270, Apr. 2004.

N. G. Leveson. Safety Engineering: Back to the Fu-
ture. Draft available ahttp://sunnyday.mit.edu/
book2.pdf

B. Littlewood and D. Wright. The use of multi-legged argu-
ments to increase confidence in safety claims for software-
based systems: a study based on a BBN analysis of an ide-
alised example.l[EEE Transactions on Software Engineer-
ing, 33(5):347-365, May 2007.

S. P. Miller, A. C. Tribble, and M. P. E. Heimdahl. Proving
the shalls. In K. Araki, S. Gnesi, and D. Mandrioli, editors,
International Symposium of Formal Methods Europe, FME
2003 volume 2805 ofLecture Notes in Computer Science
pages 75-93, Pisa, Italy, Mar. 2001. Springer-Verlag.

R. A. D. Millo, R. J. Lipton, and F. G. Sayward. Hints on test
data selection: Help for the practicing programmé&EEE
Computer11(4):34-41, Apr. 1978.

C. Perrow. Normal Accidents: Living with High Risk Tech-
nologies Basic Books, New York, NY, 1984.

Requirements and Technical Concepts for Aviation, Wash-
ington, DC.DO-178B: Software Considerations in Airborne
Systems and Equipment Certificati@ec. 1992. This doc-
ument is known as EUROCAE ED-12B in Europe.

J. Rushby. Just-in-time certification. |b2th |IEEE
International Conference on the Engineering of Com-
plex Computer Systems (ICECC®)ages 15-24, Auck-
land, New Zealand, July 2007. IEEE Computer Society.
Available at http://www.csl.sri.com/rushby/
abstracts/iceccs07

AADL home pagehttp://www.aadl.info/
Society of Automotive Engineers. Aerospace Recom-
mended Practice (ARP) 4754: Certification Considerations

for Highly-Integrated or Complex Aircraft Systemsov.
1996.

(25]

[26]

[27]

Society of Automotive Engineerg&erospace Recommended
Practice (ARP) 4761: Guidelines and Methods for Conduct-
ing the Safety Assessment Process on Civil Airborne Systems
and EquipmentDec. 1996.

R. E. Strom and S. Yemini. Typestate: A programming
language concept for enhancing software reliabilitEE
Transactions on Software Engineerjri2(1):157-171, Jan.
1986.

S. E. Toulmin.The Uses of ArgumenEambridge University
Press, 2003. Updated edition (the original is dated 1958).

