
International Journal on Software Tools for Technology Transfer (STTT)
Volume 9, Numbers 5-6, October 2007; Special section FASE’04/05, Pages 447–456

An Operational Semantics for Stateflow?

Grégoire Hamon and John Rushby
1 The MathWorks, Natick, MA, USA
2 Computer Science Laboratory, SRI International, Menlo Park CA, USA

Abstract. We present a formal operational semantics
for Stateflow, the graphical Statecharts-like language of
the Matlab/Simulink tool suite that is widely used in
model-based development of embedded systems. State-
flow has many tricky features but our operational treat-
ment yields a surprisingly simple semantics for the sub-
set that is generally recommended for industrial appli-
cations. We have validated our semantics by developing
an interpreter that allows us to compare its behavior
against the Matlab simulator. We have used the seman-
tics as a foundation for developing prototype tools for
formal analysis of Stateflow designs.

1 Introduction

The design process for embedded systems has changed
dramatically over the last few years. Increasingly, design-
ers use model-based development environments; these al-
low the system, including its software, the plant that it
will control, and the environment in which it will oper-
ate, to be represented in graphical form at a high level
of abstraction. Model-based development environments
provide extensive tools for validation through simula-
tion, and code generators that can compile an executable
controller from its graphical representation. One of the
most widely used environments of this kind is the Mat-
lab suite from Mathworks which, with more than 500,000
licensees, is widespread throughout aerospace, automo-
tive, and several other industries, and ubiquitous in en-
gineering education.

? This material is based on work performed at SRI and sup-
ported by the National Science Foundation under Grant No. CCR-
0086096 through the University of Illinois and by NASA Langley
Research Center under Contract NAS1-00079. This version was
prepared while the first author was with Chalmers Institute of
Technology, Göteborg, Sweden.

Stateflow is a component of the Simulink graphi-
cal language used in Matlab. It combines hierarchical
state-machine diagrams of the kind introduced by Stat-
echarts [10] with traditional flowchart diagrams. State-
flow is generally used to specify the discrete controller
(i.e., the software) in the model of a hybrid system where
the continuous dynamics (i.e., the behavior of the plant
and environment) are specified using other capabilities
of Simulink. As part of the Matlab tool suite, Stateflow
inherits all its simulation and code generation capabili-
ties.

The evolution of industrial practice toward model-
based development has been driven by the growing num-
ber of embedded systems, and their increasing complex-
ity. Alongside these developments has been an increase in
the criticality of embedded systems, with regard to both
human safety (e.g., fly-by-wire control systems) and the
cost of faults (e.g., systems deployed in huge quantities
in automobiles and domestic appliances). This increas-
ing criticality creates a need for improved methods of
analysis and verification and provides an opportunity
for formal methods. Formal methods can provide tools
to check properties of a design and they can also apply
a computational procedure, such as generation of test
cases, systematically and automatically, to all parts of a
design. However, notations like Stateflow were not built
with formal methods in mind, and do not appear to be
well suited to formalization.

1.1 Understanding Stateflow

Stateflow is a complex language (its User’s Guide [12]
is 896 pages long) with numerous, complicated, and of-
ten overlapping features lacking any formal definition.
Its documentation [12, Chapter 4] describes the seman-
tics in informal operational terms supported by many
examples, but the actual definition of the language is
the “simulation semantics” given by its behavior when

2 Grégoire Hamon and John Rushby: An Operational Semantics for Stateflow

simulated in the Matlab environment. Proposing formal
tools for Stateflow requires first giving it a formal defi-
nition.

This complexity of the language can be seen as an ob-
stacle to formalization. On the other hand, it makes the
need for tools to help programmers clearly visible, and
users of the language are asking for them. For example,
a Stateflow program can fail with a runtime exception
for any of several reasons, and it is desirable to be able
to avoid such failures, or at least be able to detect when
a program may be vulnerable to them. One popular way
to do this is to rely on programming guidelines [2, 5]
that restrict the language to a safe subset. But these
guidelines have no more formal basis than the language
itself and are based on experience. Precisely identifying
the reasons for runtime errors or, dually, giving a formal
definition for a safe subset, would allow development of
static analysis tools that could guarantee their absence.

1.2 A framework for formal tools

In this work, we propose a formalization of Stateflow
that can be used as a starting point for the definition of
formal tools. Thus, we choose not to idealize the lan-
guage but to follow strictly the simulation semantics
given by the Mathworks documentation and tools, even
in its shortcomings. The main result lies in understand-
ing that although Stateflow is superficially similar to
other statechart notations, it is in truth a sequential im-
perative language. As such, the problems arising when
formalizing the language are different in nature than
those for other statechart languages, and different solu-
tions are required. We use a formal operational seman-
tics as it precisely captures the order of execution of the
different components of a Stateflow chart and is able to
express the more complicated features of the language.

We have used this formalization in the development
of several tools for Stateflow; it provides a detailed un-
derstanding of the language, and readily supports the
construction of static analyzers and translation to for-
mal tools such as model checkers.

1.3 Overview of the paper

We first introduce Stateflow through an example. Sec-
tion 3 then develops a formalization for a subset of the
language (the subset is comparable to that generally rec-
ommended for industrial applications) and gives it an op-
erational semantics. We describe how this semantics has
been used to develop prototype static analysis, model
checking, and test generation tools for Stateflow. In Sec-
tion 4, we outline a recently developed denotational se-
mantics for Stateflow that complements the operational
semantics described here. Finally, in Section 5 we com-
pare our approach with related work and suggest direc-
tions for further research.

2 Introduction to Stateflow

The Stateflow language provides hierarchical state ma-
chines, similar to those of Statecharts (although these
two languages give different semantics to the state ma-
chines). It includes complicated features like interlevel
transitions, complex transitions through junctions (these
appear as small circles in Stateflow diagrams such as Fig-
ure 1) and event broadcasting. Stateflow also provides
flowcharts, which are specified using internal transitions
leading to terminal junctions. Describing the whole lan-
guage is beyond the scope of this paper, so we present
here a simple example program that includes both kinds
of notation and sketch its execution.

2.1 A stopwatch in Stateflow

Figure 1 presents the Stateflow specification for a stop-
watch with lap time measurement. This stopwatch con-
tains a counter represented by three variables (min, sec,
cent) and a display, also represented as three variables
(disp min, disp sec, disp cent).

The stopwatch is controlled by two command but-
tons, START and LAP. The START button switches the
time counter on and off; the LAP button freezes the dis-
play to show the lap time when the counter is running
and resets the counter when the counter is stopped. This
behavior can be modeled as four exclusive states:

– Reset: the counter is stopped. A LAP event resets
the counter and the display, while START causes a
transition to the Running state.

– Lap Stop: the counter is stopped. A LAP event causes
a transition to the Reset state, while START causes a
transition to the Lap state.

– Running: the counter is running, and the display up-
dated. A START event causes a transition to the Stop
state, while LAP causes a transition to the Lap state.

– Lap: the counter is running, but the display is not up-
dated, thus showing the last value it received. Receiv-
ing a START event causes a transition to Lap Stop,
while LAP causes a transition to Running.

These four states are here grouped by pairs inside two
main states: Run and Stop, active respectively when the
counter is counting or stopped. The counter itself is spec-
ified within the Run state as a flowchart, incrementing its
value every time a clock TIC is received (every 1/100s).

2.2 Executing the stopwatch chart

A Stateflow chart always has one active state. Execut-
ing the chart means executing the active state (which
may then make another state active) each time an event
occurs in the environment. Events here are either an ac-
tion on one of the buttons (START or LAP) or a clock tick
(TIC). Executing the active state is done in three steps:

Grégoire Hamon and John Rushby: An Operational Semantics for Stateflow 3

[sec==60] {
 sec=0;
 min=min+1;
}

[cent==100] {
 cent=0;
 sec=sec+1;
}

TIC {
 cent=cent+1;
}LAP {

 cent=0; sec=0; min=0;
 disp_cent=0; disp_sec=0;
 disp_min=0;
}

Run

Running

Lap

during:
disp_cent=cent;
disp_sec=sec;
disp_min=min;

LAPLAP

Stop

Reset

Lap_stop

LAP

START

START

START

START

Fig. 1. A simple stopwatch in Stateflow

1. See if a transition leaving the state can be taken, else
goto step 2.

2. Execute internal actions (internal transitions, then
during actions).

3. Execute any internal state that is active.

Transitions can be guarded by events or conditions or
both, and they can trigger actions. The internal transi-
tion in state Reset for example is guarded by the LAP
event and triggers a series of actions reinitializing the
counter and the display. Supposing that the Run state is
active, with the Running substate active, receiving the
START event will trigger the following sequence of reac-
tions:

– there is no transition leaving the state (the transi-
tions guarded by START belong to its substates),

– the flowchart is executed, but is guarded by TIC, thus
does nothing,

– the active substate is executed, it has a transition
which can be fired, leading to Reset, itself a substate
of Stop; Running and then Run are exited, and Stop
and then Reset are entered.

This step is completed, and execution will continue from
the newly active state next time an event is received from
the environment.

The model contains a flowchart that implements the
counter. Flowcharts are described using transitions be-
tween junctions. Unlike states, a junction is exited in-
stantaneously when entered, and the flowchart executes
until a terminal junction (one without outgoing tran-
sitions) is reached, or all paths have failed. Backtrack-
ing can occur if a wrong path is tried. In our example,
the flowchart is guarded by the TIC event. If activated
by this event, the cent variable is incremented and the
first junction reached. Two transitions leave it, and the
guarded one is always executed first. If cent is equal
to 100, the guarded transition is taken, cent is reset to
0 and sec incremented, the second junction is reached,
and execution continues. If cent is not equal to 100, the
guarded transition fails, the unguarded one is tried and,
being unguarded, succeeds, leading to the third junction,
which is terminal, so execution ends.

This short example does not present all Stateflow
features, but it introduces hierarchical states, inter-
level transitions, and mixed design with statecharts and
flowcharts. Our informal description of the execution of
this example is actually close to the presentation of the
language’s semantics in its documentation.

3 Formalizing Stateflow

Studying the language, we came to realize that, although
superficially similar to other statechart notations, State-
flow greatly differs from them. In particular, all possibil-
ities of non-determinism are avoided by relying on strict
ordering rules, and the scheduling between concurrent
components is always statically known. Thus, we decided
to consider Stateflow as an imperative language, and to
use a structural operational semantics (SOS) [15], which
is well-adapted to the description of such languages. This
semantics is efficient in dealing with the complexity of
Stateflow, which lies in the intricacy of its constructions,
not in concurrency or non-determinism.

3.1 A Stateflow subset

We now introduce a linear language that encodes a strict
subset of Stateflow. This language eliminates some dif-
ficulties of the graphical notation, by making the order
between components explicit. We then give this language
a formal semantics.

The language is presented in Figure 2. Its basic com-
ponents (reading from the bottom) are states s, junc-
tions j, events e, actions a, and conditions c. We also de-
fine active states sa (which may be nothing or a state),
transition events et (nothing or an event), and paths
(lists of states).

Transitions t are guarded by a transition event and
a condition, can execute two actions and go to a desti-
nation d (either a path or a junction). The first action
is executed as soon as the transition is valid; the sec-
ond one is executed only if taking the transition leads
somewhere.

4 Grégoire Hamon and John Rushby: An Operational Semantics for Stateflow

composition C = Or(sa, p, T, SD) | And(b, SD)

state definition sd = ((a, a, a), C, Ti, To, J)
state definition list SD = {s0 : sd0; ...; sn : sdn}

junction definition list J = {j0 : T0; ...; jn : Tn}

transition t = (et, c, a, a, d)
transition list T = ∅T | t.T

state s active state sa = ∅s | s
junction j
path p = ∅p | s.p destination d = p | j
event e transition event et = ∅e | e
action a condition c

Fig. 2. The language

Transitions are grouped into lists T . Junction defini-
tion lists J associate lists of transitions with junctions.
State definition lists SD associate state definitions sd
with states. A state definition is a triplet of actions, exe-
cuted respectively upon entering, during, and exiting the
state, an internal composition, a list of inner transitions,
a list of outgoing transitions, and a junction definition
list. State definitions will be written (A,C, nTi, To, J),
with A representing a triplet of actions: the entering,
during, and exit actions, which will be noted respec-
tively as A.e, A.d, and A.x.

Finally, a composition C is a composition of states,
and is either an And or an Or composition. An And com-
position is defined by a Boolean (true if the composition
is active) and a state definition list. An Or composition
is an active state, a path, a set of default transitions,
and a state definition list.

We note the following properties of this language.

– Actions a and conditions c are expressions of the ac-
tion language, which is distinct from Stateflow itself;
we keep this distinction here. The action language
is a very simple imperative language. For the same
reason we do not have variables here, they are part
of the action language, not of Stateflow itself.

– Transition lists T and state definition lists SD are
ordered, and their order is significant. When using
the graphical representation of a program, the order
is determined by the position of the components on
the chart: states are ordered top to bottom and then
left to right. Transitions are ordered following the
12 o’clock rule: they are first ordered using a par-
tial ordering on the form of their guards (transitions
guarded by an event are evaluated before transitions
guarded only by a condition, and unguarded transi-
tions come last), and when this ordering fails, they
are ordered by following their source clockwise start-
ing from a 12 o’clock position.

To illustrate the language, the Stop state from the
stopwatch is shown in Figure 3. The � symbol represents
both an empty action and an empty condition. The name
j corresponds to the terminal junction found in state
Reset (junctions being anonymous in Stateflow, they are
given unique ids during the translation).

We see here that Stop is a state, containing an
Or composition made from states Reset and Lap Stop.
Reset contains an internal transition guarded by LAP
and a transition guarded by START going to state
Run.Running; Lap Stop contains two transitions, one
guarded by LAP going to state Stop.Reset, the other
guarded by START going to state Run.Lap.

3.2 Operational semantics

Executing a Stateflow program consists, on each (dis-
crete) step, in processing an input event through the pro-
gram. This processing can modify the value of variables
in the environment, raise output events, and change the
program itself as it may change the active states if tran-
sitions occur.

We propose here an SOS semantics for the language.
This semantics precisely expresses the sequence of ac-
tions involved in processing an event through a chart. It
is made of rules with the following general form:

e,D ` P
D′

→ P ′, tv

Processing an event e in an environment D (a binding
of variables to values) through a program component P
produces a new environment D′, a new program P ′, and
a transition value tv. P here can denote any syntactic
class of the language. Transition values tv are used for
communication between different parts of the chart. The
rules for some of the particular syntactic classes given
below extend and slightly differ from this general form.

Grégoire Hamon and John Rushby: An Operational Semantics for Stateflow 5

Stop: ((�, �, �),
Or(∅s,Stop, (∅e, �, �, �, Stop.Reset).∅T ,
{ Reset: ((�, �, �), Or(∅s,Stop.Reset, ∅t, { }),

(LAP, �, (cent ← 0; sec ← 0; min ← 0; disp cent ← 0; disp sec ← 0; disp min ← 0), �, j).∅T ,
(START, �, �, �, Run.Running). ∅T , {j : ∅T });

Lap stop: ((�, �, �), Or(∅s, Stop.Lap stop, ∅T , { }),∅T ,
(LAP, �, �, �, Stop.Reset).
(START, �, �, �, Run.Lap). ∅T , { })

}),
∅T , ∅T , { })

Fig. 3. The Stop state from the stopwatch in the linear language

Definition 1 (Environment D). Environments D
contain bindings from variables of the action language
to values and the list of output events that are raised in
the current instant.

D ::= [x0 : v0; ...;xn : vn; e0; ...ek]

Definition 2 (Transition value tv). Transition val-
ues indicate if a transition has fired or not. If no transi-
tion has fired, two distinct values, End and No, are nec-
essary to distinguish a failing transition from the final
transition of a flowchart. If a transition has fired, we
keep track of its destination and of an eventual pending
action.

tv ::= Fire(d, a) | End | No

We abstract from the details of the action language
and assume that we have semantic rules for actions and
conditions such that

e,D ` a ↪→ D′ e,D ` c → b

Evaluating an action when processing event e in envi-
ronment D produces a new environment D′; evaluating
a condition when processing e in D produces a Boolean
value b.

We now present the semantic rules for the different
syntactic classes. For compactness, we detail only the
rules for transitions, transition lists and parallel compo-
sitions; the remaining rules are available in the appendix.

Transitions (Figure 4) – A transition (e0, c, ac, at, d) fires
to destination d if e0 corresponds to the processed
event e or is empty, and if the condition c is true. In
this case, the action ac is immediately executed and
at is left pending in the returned value (rule t-Fire).
If e0 is different from the processed event and is not
empty (rule t-No1) or if the condition is false (rule
t-No2), the transition fails and returns No.

Transition lists (Figure 5) – Lists of transitions, to-
gether with junctions, are used to model both
flowcharts and complex transitions between states.
The important point here is that a list of transitions
is processed sequentially and the first transition that
can fire is taken, as shown by rules T-No and T-Fire.

If a transition fires to a junction, the list of transitions
associated with this junction needs to be processed:
evaluation continues instantaneously when reaching
a transition. This goes on until we fire to a path
(rule T-Fire-j-F), we reach a terminal junction (rule
T-End) or we fail, in which case we have to back-
track and try the next transition in our first list (rule
T-Fire-j-N).

State definitions (Figure 8 in the Appendix)
– The rules exhibit the order of execution. Different
rules are necessary for entering, executing, and exit-
ing a state. When executing a state, outgoing tran-
sitions are tested first; if they fail, the during code
is executed, then the internal transitions and then
the internal composition. If the composition fires, the
transition actions are executed followed by the exit
code. If the outgoing transitions fire, the transition
actions are executed, the internal composition exited,
and the exit code executed.

Or compositions (Figures 9 and 10 in the Appendix) –
Rules for Or compositions take care of the control
changes between states and handle interlevel transi-
tions. The currently active state is executed. If this
state fires, either it fires to one of its siblings, in which
case this sibling is entered and becomes the active
state, or it fires outside of the composition.

And compositions (Figure 6) – Executing an And com-
position consists in sequentially entering, executing,
or exiting all its parallel substates, each state being
executed in the environment returned by the execu-
tion of its predecessor. It is important to notice here
that the parallel construction is in fact completely se-
quential, and the order of execution statically known:
none of the problems associated with concurrency ap-
pears here.

3.3 Supporting local events

We now extend our treatment to include one of the trick-
iest features of Stateflow, the local events mechanism,
which the preceding semantics does not consider. This
mechanism allows actions to send an event to a state;

6 Grégoire Hamon and John Rushby: An Operational Semantics for Stateflow

t-Fire
(e = e0) ∨ (e0 = ∅e) e, D ` c→ true e, D ` ac ↪→ D′

e, D ` (e0, c, ac, at, d)
D′
→ Fire(d, at)

t-No1

(e 6= e0) ∧ (e0 6= ∅e)

e, D ` (e0, c, ac, at, d)
D→ No

t-No2

(e = e0) ∨ (e0 = ∅e) e, D ` c→ false

e, D ` (e0, c, ac, at, d)
D→ No

Fig. 4. Rules for transitions t

∅t

e, D, J ` ∅t
D→ End

T-Fire

e, D ` t
D′
→ Fire(p, act)

e, D, J ` t.T
D′
→ Fire(p, act)

T-No-Last

e, D ` t
D1→ No

e, D, J ` t.∅T
D1→ No

T-No

T 6= ∅T e, D ` t
D1→ No e, D1, J ` T

D2→ tv

e, D, J ` t.T
D2→ tv

t-Fire-j-F

e, D ` t
D1→ Fire(j, a1) e, D1, J [j : Tj] ` Tj

D2→ Fire(p, a2)

e, D, J [j : Tj] ` t.T
D2→ Fire(p, a1; a2)

t-End

e, D ` t
D1→ Fire(j, a1) e, D1, J [j : Tj] ` Tj

D2→ End

e, D, J [j : Tj] ` t.T
D2→ End

t-Fire-j-N

e, D ` t
D1→ Fire(j, a1) e, D1, J [j : Tj] ` Tj

D2→ No e, D2, J [j : Tj] ` T
D3→ tv

e, D, J [j : Tj] ` t.T
D3→ tv

Fig. 5. Rules for transition list T

And

(tv = No) ∨ (tv = End) ∀i ∈ [0..n], e, Di, J ` sdi

Di+1→ sd′i, No

e, D0, J, tv ` And({s0 : sd0; ...; sn : sdn})
Dn+1→ And({s0 : sd′0; ...; sn : sd′n}), No

And-Init

pj = p ∀i 6= j, pi = ∅p ∀i ∈ [0..n], e, Di, pi ` sdi

Di+1

⇑ sd′i

e, D0, sj .p ` And({s0 : sd0; ...; sn : sdn})
Dn+1

⇑ And({s0 : sd′0; ...; sn : sd′n})

And-Exit

∀i ∈ [0..n], e, Di ` sdn−i

Di+1

⇓ sd′n−i

e, D0 ` And({s0 : sd0; ...; sn : sdn})
Dn+1

⇓ And({s0 : sd′0; ...; sn : sd′n})

Fig. 6. Rule for AND compositions

Grégoire Hamon and John Rushby: An Operational Semantics for Stateflow 7

when this occurs, the current processing is interrupted
while the sent event is processed through the receiving
state. The receiving state acts here as a function, the ac-
tion of sending it an event being the function call. How-
ever, this mechanism also introduces some complicated
cases and fully supporting it in the general case appears
difficult. We exhibit a restricted form of this mechanism
that is both expressive and supports a simple semantics.

We first try to extend our semantics with a simple in-
terpretation of local events. The action send(e, s) sends
event e to a named state s (broadcasting an event to
the whole chart consists in sending an event to the main
state). Its behavior can be expressed by the following
rule:

Send

e′, D[s : sd], ∅J ` sd
D′

→ sd′, tv

e,D[s : sd] ` send(e′, s) ↪→ D′[s : sd′]

Sending e′ to state s results in processing it through the
definition of s. We have extended environments by the
definitions of states:

Definition 3 (Extended Environment D).

D ::= [x0 : v0; ...;xn : vn; e0; ...ek;SD]

where SD is a list of state definitions. The notation D[s :
sd] denotes the environment D in which s is associated
with sd.

However, this rule alone does not fully handle event
sending; deeper modifications of the semantics are
needed. Processing the local event changes the defini-
tion of the destination state (in the rule, the definition
of s is sd′ after processing the event). The destination
state can be an ancestor of the current state, which might
have been modified. It is necessary, whenever an action
is performed, to read the (eventually new) definition of
the current state and continue the execution at the cor-
responding control point in this new definition. If the
active state has been modified by the call, the return
point may even not be active anymore, which leads in
Stateflow to a runtime error.

Investigating this mechanism to understand its be-
havior and its expressive power, we distinguished two
different usages:

– Describing recursive behaviors. Recursion occurs if
the caller sends an event to itself or one of its ances-
tors. In practice, those recursions are very difficult to
control (the event sending action might get executed
by the recursive call) and to understand. Providing
tools to check that the recursion will stop is difficult
(see [18]). Moreover, these recursions easily lead to
runtime errors and their use is discouraged in indus-
trial applications.

– Explicit scheduling of parallel states. Parallel states
are normally ordered statically given their position
on the chart. Local events can be used to make some

explicit, or dynamic, scheduling of parallel states,
guarding the states by local events and having a
caller that executes them in the expected order. This
particular use is much simpler to understand.

Our proposal is to limit the use of local events to the
definition of sequencing behaviors. This can be obtained
by imposing the following restrictions:

– Local events can be sent only to parallel states.
– Transitions out of parallel states are forbidden (this

is already imposed by Stateflow, see Section 3.4 for
more details).

– Loops in the broadcasting of events are forbidden
(i.e., if state A broadcasts an event to state B, B
cannot in turn broadcast an event to A).

Given these restrictions1 sending an event can really
be seen as a function call. Forbidding transitions out
of parallel states ensures that context modifications are
kept local to the destination. Forcing sending to parallel
states and forbidding loops ensures that no infinite calls
will occur. The rule for sending an event is the rule pre-
sented before. In addition to this, we need to change only
the rule for parallel execution to that shown in Figure 7.
This rule is similar to the original one, with the addition
of the state definitions in the environment, where they
are updated during execution.

This definition of local events in our opinion captures
the most interesting of their uses in Stateflow, supports
a simple semantics, and does not introduce new runtime
error or infinite loop possibilities. The Ford guidelines
for Stateflow [5] make use of local events in this exact
same way.

3.4 Additional and unsupported features

Our subset supports nearly the whole language with the
restrictions on local events presented above. The only
interesting feature still missing is the history junction
mechanism that keeps track of the configuration a state
was in before it was last exited, and re-enters it in this
configuration. Our semantics easily extends to support
this mechanism; we omitted it here for the sake of sim-
plicity. The necessary modifications are to add a history
component (a Boolean) in the state definitions to de-
termine whether they carry such junctions, and to add
rules to handle this component when entering and leav-
ing states and compositions.

Two restrictions are also imposed on transitions:
transitions out of a parallel compositions and interlevel
transitions going to a junction are forbidden. Transitions
directly out of a parallel state are already forbidden in
Stateflow, but can be simulated by taking an interlevel

1 To keep equivalence with Stateflow, we further impose that
local events can be sent only to already-visited states; this is due
to initialization problems in Stateflow itself.

8 Grégoire Hamon and John Rushby: An Operational Semantics for Stateflow

And

(tv = No) ∨ (tv = End) ∀i ∈ [0..n], e, Di, J ` sdi

Di+1→ sd′i, No

e, D0, J, tv ` And({s0 : sd0; ...; sn : sdn})
Dn+1→ And({s0 : sd′0; ...; sn : sd′n}), No

Fig. 7. Modified rule for AND compositions with local events

transition from a substate of a parallel state. The be-
havior of such transitions is quite unpredictable, and
introduces possible runtime errors (e.g., two states fire
simultaneously out of the composition to different des-
tinations). Forbidding interlevel transitions to a junc-
tion allows the semantics to be local. When taking an
interlevel transition to a state, pending actions can be
executed and the state closed before entering the desti-
nation. If the transition goes to a junction, we cannot be
sure that it is leading somewhere, and cannot close the
state before opening the destination.

3.5 Equivalence with the simulation semantics

Our language is intended to be a strict subset of State-
flow, so that tools developed for it will apply to pro-
grams designed using Mathworks’ tools—as long as the
programs are within our subset (which is checked by a
tool, see Section 3.6).

For this to succeed, the semantics we are using and
the simulation semantics of Stateflow must be equivalent
on our subset. Our semantics was conceived with this
goal in mind, precisely following Stateflow documenta-
tion but, because the simulation semantics is not formal,
it is not possible to prove this equivalence. However, our
SOS semantics is directly executable and can easily be
used to define a Stateflow interpretor whose outputs can
be compared to those from the Matlab simulator. We
have done this and systematically examined many ex-
amples; for all these examples, the traces obtained by
the two tools were the same.

3.6 Applications

Our goal was to propose a formalization of Stateflow that
provides a good foundation for construction of formal
tools for the language. The presented semantics appears
to meet this goal very well: while sometimes large, the
rules of the semantics are simple and syntax directed,
which makes them well adapted to automatic processing.

One kind of tool in which we are interested is static
analysis for detecting flaws in programs and to enforce
or enhance programming guidelines such as [5]. The pro-
posed semantics, by giving a low-level view of a pro-
gram’s execution makes it possible to detect and under-
stand causes of runtime errors (through lack of an appli-
cable rule in the semantics). We have developed such a

tool that checks for possible runtime errors and that also
detects non fatal flaws, such as possible backtracking or
reliance on the 12 o’clock rule. Having a syntax-directed
semantics allows a precise diagnosis to be given to the
user. This tool also verifies that a program lies within
the subset considered by our semantics.

We are also interested in model checking Stateflow,
which can be used to check properties of designs and
to automate test case generation. Our operational se-
mantics provides a basis for efficiently compiling State-
flow to an imperative language or to the input language
of a model checker. We have developed a translator to
the SAL language used by SRI’s model checkers [14];
the translation produces efficient code similar in size to
the Stateflow model. The SAL translation can be used
to verify properties or to detect errors through model
checking: for example, the Stopwatch of Figure 1 con-
tains a bug which the model-checker easily finds (updat-
ing the display is only done when staying at least one
instant in the Running state; if several LAP and START
events occur between two TICs, the display can show
an erroneous value). This translation is also able to in-
sert the “trap variables” used in automated test gen-
eration [8]; the manual for the sal-atg automated test
generator [9] describes experiments in test generation for
a gearbox shift-selector specified in Stateflow.

4 A Denotational Semantics for Stateflow

In recent work [7], we propose another approach to State-
flow semantics, which is denotational. Our motivation
for developing this new semantics were twofold: first, to
remove the restrictions on the language imposed by the
semantics presented here, in particular the ones on inter-
level transitions leading to junctions; second, to formal-
ize a compilation process for Stateflow. The denotational
semantics addresses both these questions.

The key to the operational semantics presented here
was to recognize that Stateflow, although looking like a
statechart notation, is in fact an imperative language,
thanks to (albeit complex) total ordering rules, and the
absence of nondeterminism. This recognition also pro-
vides the key to a denotational semantics. If Stateflow is
an imperative language, its transitions are governed by
a mechanism that can modify the control point of the
program, possibly in a non-local way. The denotational

Grégoire Hamon and John Rushby: An Operational Semantics for Stateflow 9

semantics thus considers the whole Stateflow transition
mechanism as a complex and highly specialized form of
non-local control structure. Denotational semantics for
many forms of such non-local constructions have been
given by means of continuations [17], and we use contin-
uations to describe the complete transition system for
Stateflow. The denotational treatment is able to give
a concise semantics to interlevel transitions leading to
junctions that were excluded from the operational se-
mantics in order to keep its rules tractable.

Although more recent than the semantics presented
here, the denotational semantics does not replace the
present work, but complements it in our overall goal,
which is to understand Stateflow and to design formal
tools for it. Our main purpose in designing the de-
notational semantics was to formalize the compilation
process that we use to translate Stateflow to SAL and
to imperative programs. This complements the syntax-
directed static analysis tools for Stateflow that are based
on the operational semantics presented here. Between
these two approaches, we now have a very strong basis
for developing formal tools for Stateflow.

5 Conclusion and related work

We have presented an operational semantics for the
Stateflow language. Our semantics covers virtually the
whole language, excluding only those features that are
generally discouraged in industrial applications [5]. A
formal semantics is the necessary basis for building for-
mal tools for the language. The operational approach
chosen here leads to a surprisingly simple semantics and
thus constitutes a good starting point for such develop-
ments.

5.1 Related work

Little work has directly addressed the semantics of State-
flow. A natural idea when considering Stateflow is to
evaluate work on formalization of Statecharts [10]. How-
ever, the two languages have very different semantics
(and Stateflow also includes flowcharts), so denotational
approaches proposed for Statecharts semantics do not
easily or usefully adapt to Stateflow.

A popular approach to Statecharts semantics is to
translate the language into a simpler formalism for which
a semantics is already known. This approach was fol-
lowed by Mikk et al. for Statemate [13] by translation to
hierarchical automata. Their semantics was adapted to
UML-Statecharts by Gnesi, Latella and Massink [6]. A
similar semantics was proposed for Stateflow by Tiwari,
Shankar and Rushby [18] by translation to push-down
automata. However, encoding the complex Stateflow lan-
guage constructions requires introduction of a vast num-
ber of control variables that make using the translation
by formal tools difficult.

Lüttgen, von der Beeck, and Cleaveland [11] have
proposed an SOS semantics for a subset of Statecharts.
They wanted to define a compositional semantics and
do not consider interlevel transitions. We can notice the
same effect here: although our semantics is not com-
positional (the language contains absolute reference to
states), it can be made compositional by forbidding in-
terlevel transitions. They also need to consider execution
on a micro and on a macro level, which is not necessary
here due to the completely deterministic nature of State-
flow.

The appeal of the proposed SOS semantics for State-
flow, and what makes it work, is that it exhibits the
sequential behavior of Stateflow: the language does not
have true concurrency nor any kind of nondeterminism.
Seeing Stateflow as an imperative language, the choice
for an operational approach is natural, and has the ad-
vantage of scaling well to a rich language allowing a large
subset to be considered.

A similar approach is implicit in the work of Ban-
phawatthanarak, Krogh, and Butts [1], who describe a
translator from Stateflow into the input language of the
SMV model checker. Although they do not construct an
explicit semantics, the considerations that guide their
translation are very close to ours and reflect a similar fo-
cus on the sequential nature of Stateflow execution and
the importance of accurately representing its sequencing
rules. Similar approaches can also be found in the works
of Caspi et al. [16], which points to the present work for
a formal definition of the language, and in the work of
Anton, da Costa, and Errington [4]. Finally, we have al-
ready mentioned our own work presenting a denotational
semantics for the language [7].

In future work, we plan to investigate the formaliza-
tion of the whole Simulink/Stateflow environment. One
possible direction is to combine this work with existing
work on Simulink [3].

References

1. Banphawatthanarak, C., Krogh, B.H., Butts, K.: Sym-
bolic verification of executable control specifications. In:
Proceedings of the Tenth IEEE International Symposium
on Computer Aided Control System Design, pp. 581–586.
Kohala Coast—Island of Hawai’i, HI (1999)

2. Buck, D., Rau, A.: On modelling guidelines: Flowchart
patterns for Stateflow. Softwaretechnik-Trends 21(2)
(2001)

3. Caspi, P., Curic, A., Maignan, A., Sofronis, C., Tripakis,
S.: Translating discrete-time Simulink to Lustre. In:
Third International ACM Conference on Embedded Soft-
ware, Lecture Notes in Computer Science, vol. 2855, pp.
84–99. Springer-Verlag (2003)

4. Errington, L.: FORGES: Formal synthesis of generators
for embedded systems. Tech. Rep. KES.U.05.04, Kestrel
Technology (2005)

10 Grégoire Hamon and John Rushby: An Operational Semantics for Stateflow

5. Ford: Structured analysis and design using
Matlab/Simulink/Stateflow—modeling style guide-
lines. Tech. rep., Ford Motor Company (1999). URL
http://vehicle.me.berkeley.edu/mobies/papers/

stylev242.pdf. Available at http://vehicle.me.

berkeley.edu/mobies/papers/stylev242.pdf

6. Gnesi, S., Latella, D., Massink, M.: Modular semantics
for a UML Statechart diagrams kernel and its extension
to Multicharts and branching time model checking. The
Journal of Logic and Algebraic Programming 51(1), 43–
75 (2002)

7. Hamon, G.: A denotational semantics for Stateflow. In:
EMSOFT 2005: Proceedings of the Fifth ACM Work-
shop on Embedded Software, pp. 164–172. Association
for Computing Machinery, Jersey City, NJ (2005)

8. Hamon, G., de Moura, L., Rushby, J.: Generating effi-
cient test sets with a model checker. In: 2nd Interna-
tional Conference on Software Engineering and Formal
Methods, pp. 261–270. IEEE Computer Society, Beijing,
China (2004)

9. Hamon, G., de Moura, L., Rushby, J.: Automated test
generation with SAL. Technical note, Computer Sci-
ence Laboratory, SRI International, Menlo Park, CA
(2005). Available at http://www.csl.sri.com/users/

rushby/abstracts/sal-atg

10. Harel, D.: Statecharts: A visual formalism for complex
systems. Science of Computer Programming 8(3), 231–
274 (1987)

11. Lüttgen, G., von der Beeck, M., Cleaveland, R.: A
compositional approach to Statecharts semantics. In:
D. Rosenblum (ed.) Eighth International ACM Sympo-
sium on Foundations of Software Engineering, pp. 120–
129. San Diego, California (2000)

12. The Mathworks: Stateflow and Stateflow Coder,
User’s Guide, release 13sp1 edn. (2003). Avail-
able at http://www.mathworks.com/access/helpdesk/

help/pdf doc/stateflow/sf ug.pdf

13. Mikk, E., Lakhnech, Y., Petersohn, C., Siegel, M.: On
formal semantics of Statecharts as supported by Statem-
ate. In: 2nd BCS-FACS Northern Formal Methods Work-
shop. BCS-EWIC (1997)

14. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar,
N., Sorea, M., Tiwari, A.: SAL 2. In: R. Alur, D. Peled
(eds.) Computer-Aided Verification, CAV ’2004, Lec-
ture Notes in Computer Science, vol. 3114, pp. 496–500.
Springer-Verlag, Boston, MA (2004). SAL home page:
http://sal.csl.sri.com/

15. Plotkin, G.: A structural approach to operational seman-
tics. Tech. Rep. DAIMI-FN-19, Aarhus University (1981)

16. Scaife, N., Sofronis, C., Caspi, P., Tripakis, S., Maran-
inchi, F.: Defining and translating a “safe” subset of
Simulink/Stateflow into Lustre. In: EMSOFT 2004:
Proceedings of the Fourth ACM Workshop on Embed-
ded Software, pp. 259–268. Pisa, Italy (2004)

17. Strachey, C., Wadsworth, C.P.: Continuations: A mathe-
matical semantics for handling full jumps. Higher-Order
and Symbolic Computation 13, 135–152 (2000). Origi-
nally published 1974

18. Tiwari, A., Shankar, N., Rushby, J.: Invisible formal
methods for embedded control systems. Proceedings of
the IEEE 91(1), 29–39 (2003)

A The complete semantics

We give here the complete operational semantics, with
rules for all syntactic classes of the language:

– transitions and transition lists in Figures 4 and 5.
– state definitions in Figure 8.
– OR compositions in Figures 9 and 10.
– AND compositions in Figure 6, as updated by Figure

7.

Grégoire Hamon and John Rushby: An Operational Semantics for Stateflow 11

sd-No

e, D0, J0 ` To
D1→ tv (tv = No) ∨ (tv = End) e, D1 ` A.d ↪→ D2 e, D2, J ` Ti

D3→ tv e, D3, J, tv ` C
D4→ C′, No

e, D0, J0 ` (A, C, To, Ti, J)
D4→ (A, C′, To, Ti, J), No

sd-Int-Fire

e, D0, J0 ` To
D1→ tv (tv = No) ∨ (tv = End)

e, D1 ` A.d ↪→ D2 e, D2 ` Ti
D3→ tv e, D3, J, tv ` C

D4→ C′, Fire(d, a) e, D4 ` a ↪→ D5 e, D5 ` A.x ↪→ D6

e, D0, J0 ` (A, C, To, Ti, J)
D5→ (A, C′, To, Ti, J), Fire(d, �)

sd-Fire

e, D0, J0 ` To
D1→ Fire(d, a) e, D1 ` a ↪→ D2 e, D2 ` C

D3
⇓ C′ e, D3 ` A.x ↪→ D4

e, D0, J0 ` (A, C, To, Ti, J)
D4→ (A, C′, To, Ti, J), Fire(d, �)

sd-Init

e, D0 ` A.e ↪→ D1 e, D1, p ` C
D2
⇑ C′

e, D0, p ` (A, C, To, Ti, J)
D2
⇑ (A, C′, To, Ti, J)

sd-Exit

e, D0 ` C
D1
⇓ C′ e, D1 ` A.x ↪→ D2

e, D0 ` (A, C, To, Ti, J)
D2
⇓ (A, C′, To, Ti, J)

Fig. 8. Rules for state definitions

Or-Ext-Fire

e, D0 ` a ↪→ D1 e, D1 ` sd0

D2
⇓ sd′0 e, D2, p

′ ` sd1

D3
⇑ sd′1

e, D0, J, Fire(p.s1.p′, a) ` Or(s0, p, T, SD[s0 : sd0; s1 : sd1])
D3→ Or(s1, p, T, SD[s0 : sd′0; s1 : sd′1]), No

Or-Ext-Fire-Out

¬prefix(p′, p) e, D0 ` a ↪→ D1 e, D1 ` sd
D2
⇓ sd′

e, D0, J, Fire(p′, a) ` Or(s, p, T, SD[s : sd])
D2→ Or(∅s, p, T, SD[s : sd′]), Fire(p′, �)

Or-No

(tv = No) ∨ (tv = End) e, D0, J ` sd0
D1→ sd′0, No

e, D0, J, tv ` Or(s0, p, T, SD[s0 : sd0])
D1→ Or(s, p, T, SD[s0 : sd′0]), No

Or-Int-Fire

(tv = No) ∨ (tv = End) e, D0, J ` sd0
D1→ sd′0, Fire(p

′, act) p′ = p.s1.p
′′ e, D1, p

′′ ` sd1

D2
⇑ sd′1

e, D0, J, tv ` Or(s0, p, T, SD[s0 : sd0; s1 : sd1])
D2→ Or(s1, p, T, SD[s0 : sd′0; s1 : sd′1]), No

Or-Fire

(tv = No) ∨ (tv = End) e, D0, J ` sd
D1→ sd′, Fire(p′, a) ¬prefix(p′, p)

e, D0, J, tv ` Or(s, p, T, SD[s : sd])
D1→ Or(∅s, p, T, SD[s : sd′]), Fire(p′, a)

Fig. 9. Rules for Or-compositions

12 Grégoire Hamon and John Rushby: An Operational Semantics for Stateflow

Or-Init-No-State

e, D, ∅p ` Or(∅s, p, ∅T , [])
D

⇑ Or(∅s, p, ∅T , [])

Or-Init-∅p

e, D0, J ` T
D1→ Fire(s.p, a) e, D1, p ` sd

D2
⇑ sd′ e, D2 ` a ↪→ D3

e, D0, ∅p ` Or(∅s, p0, T, SD[s : sd])
D3
⇑ Or(s, p0, T, SD[s : sd′])

Or-Init

e, D0, p ` sd
D1
⇑ sd′

e, D0, s.p ` Or(∅s, p0, T, SD[s : sd])
D1

⇑ Or(s, p0, T, SD[s : sd′])

Or-Exit

e, D0 ` sd
D1
⇓ sd′

e, D0 ` Or(s, p, T, SD[s : sd])
D1

⇓ Or(∅s, p, T, SD[s : sd′])

Fig. 10. Rules for entering and exiting Or-compositions

