
From the 2nd IEEE International Conference on Software Engineering and Formal Methods (SEFM), Beijing, China,
September 2004, IEEE Computer Society, pp. 261–270.

Generating Efficient Test Sets with a Model Checker∗

Grégoire Hamon
Computing Science Department

Chalmers University of Technology
Göteborg, Sweden

hamon@cs.chalmers.se

Leonardo de Moura, and John Rushby
Computer Science Laboratory,

SRI International
Menlo Park CA USA

demoura|rushby@csl.sri.com

Abstract

It is well-known that counterexamples produced by
model checkers can provide a basis for automated genera-
tion of test cases. However, when this approach is used to
meet a coverage criterion, it generally results in very inef-
ficient test sets having many tests and much redundancy.
We describe an improved approach that uses model check-
ers to generate efficient test sets. Furthermore, the gener-
ation is itself efficient, and is able to reach deep regions
of the statespace. We have prototyped the approach us-
ing the model checkers of our SAL system and have ap-
plied it to model-based designs developed in Stateflow. In
one example, our method achieves complete state and tran-
sition coverage in a Stateflow model for the shift sched-
uler of a 4-speed automatic transmission with a single test
case.

1. Introduction

Automated generation of test cases is an attractive appli-
cation for mechanized formal methods: the importance of
good test cases is universally recognized, and so is the high
cost of generating them by hand. And automated test gener-
ation not only provides an easily perceived benefit, but it is
becoming practical with current technology and fits in with
established practices and workflows.

We focus on reactive systems (i.e., systems that con-
stantly interact with their environment), where a test case
is a sequence of inputs from its environment that will cause
the system under test to exhibit some behavior of interest.
To perform the tests, the system is combined with a test har-
ness that simulates its environment; the test harness initiates

∗ This research was supported in part by NASA Langley Research Cen-
ter contract NAS1-00079, by National Science Foundation grant CCR-
00-86096, by the Swedish Foundation for Strategic Research, and by
SRI International.

and engages in an interaction with the system that guides it
through the intended test case and observes its response. For
simplicity of exposition, we will assume that the test har-
ness has total control of the environment and that the sys-
tem under test is deterministic.

An effective approach to automated test generation is
based on the ability of model checkers to generate coun-
terexamples to invalid assertions: roughly speaking, to gen-
erate a test case that will exercise a behavior characterized
by a predicatep, we model check for the property “always
notp” and the counterexample to this property provides the
required test case (if there is no counterexample, then the
property is true and the proposed test case is infeasible).
This approach seems to have been first applied on an in-
dustrial scale to hardware [10] and on a more experimental
scale to software [4], although related technologies based
on state machine exploration have long been known in pro-
tocol testing [20].

Generally, individual test cases are generated as part of
a test setdesigned to achieve some desiredcoverageand
there are two measures of cost and efficiency that are of in-
terest: what is the cost togeneratea test set that achieves
the coverage target (this cost is primarily measured in CPU
time and memory, and may be considered infeasible if it
goes beyond a few hours or requires more than a few gi-
gabytes), and what is the cost toexecutethe test set that
is produced? For execution, an efficient test set is one that
minimizes the number of tests (because in executing the
tests, starting a new case can involve fairly costly initial-
ization activities such as resetting attached hardware), and
their total length (because in executing tests, each step ex-
acts some cost). Many methods based on model checking
generate very inefficient test sets: for example, they gener-
ate a separate test for each case to be covered, and the indi-
vidual tests can be long also. This paper is concerned with
methods for generating test sets that are efficient with re-
spect to both generation and execution. Section 2 introduces
our methods, which work by iteratively extending already
discovered tests so that they discharge additional goals.

1

The feasibility and cost of generating test sets are obvi-
ously dependent on the underlying model checking technol-
ogy. The worst-case complexity of model checking is linear
in the size of the reachable state space (the “state explo-
sion problem” recognizes that this size is often exponential
in some parameter of the system), but this complexity con-
cerns valid assertions, whereas for test generation we use
deliberately invalid assertions and the time to find a coun-
terexample, while obviously influenced by the size of the
statespace, is also highly sensitive to other attributes of the
system under examination, to the test cases being sought,
and to the particular technology and search strategy em-
ployed by the model checker. Any given model checking
method is very likely to run out of time or memory while
attempting to generate some of the test cases required for
coverage; Section 3 of the paper discusses the pragmatics
of model checking for the purpose of test generation.

We believe that the methods we present will be effec-
tive for many kinds of system specifications, and for many
notions of coverage, but our practical experience is with
model-based development of embedded systems. Here, ex-
ecutable models are constructed for the system and its en-
vironment and these are used to develop and validate the
system design. The model for the system then serves as the
specification for its implementation (which is often gener-
ated automatically). The model is usually represented in a
graphical form, using statecharts, flowcharts, message se-
quence charts, use diagrams, and so on. Most of our expe-
rience is with Stateflow [19], which is the combined state-
chart and flowchart notation of Matlab/Simulink, the most
widely used system for model-based design. Section 4 of
the paper describes the results of some modest experiments
we have performed using our method.

1.1. Background and terminology

Coverage is often specified with respect to thestructure
of a design representation: in this context,state coverage
means that the test set must visit every control location in
the representation, whiletransition coveragemeans that the
test set must traverse every transition between control lo-
cations. For certain safety-critical applications, a rather ex-
acting type of coverage called modified condition/decision
coverage (MC/DC) is mandated. It is usually required that
test coverage is measured and achieved on theimplementa-
tion, but that the test cases must be generated by considera-
tion of its functionalrequirements(see [12]). An approach
that is gaining popularity in model-based design is to gen-
erate test sets automatically by targeting structural cover-
age in the representation of the model: the intuition is that
if we generate tests to achieve (say) transition coverage in
the model, then that test set is very likely to come close to
achieving transition coverage in the implementation. This

approach interprets the model as representing the functional
requirements (it also serves as the oracle for evaluating test
outcomes); a variation (used for example by Motorola in its
VeriState tools1) augments the model with requirements and
test “observers” and targets structural coverage on these.

In practical terms, automated test generation proceeds by
translating the system model into the language of a model
checker, then constructing assertions whose counterexam-
ples, when “concretized” to the form required by the imple-
mentation to be tested, will provide the desired coverage.
The assertions are typically temporal logic formulas over
“trap properties” [9] that characterize when execution of the
system reaches a certain control point, takes a certain transi-
tion, or exhibits some other behavior of interest. Trap prop-
erties can be expressed in terms of state variables that are
inherent to the representation, or the translation to the lan-
guage of the model checker can introduce additional state
variables to simplify their construction. Most of the follow-
ing presentation is independent of the particular notion of
coverage that is selected and of the method for construct-
ing trap properties and their associated temporal logic as-
sertions. We will, however, speak of the individual cases in
a coverage requirement as testgoals(so the requirement to
exercise a particular transition is one of the test goals within
transition coverage).

2. Efficient tests by iterated extension

The basic problem in the standard approach to test gener-
ation by model checking is that a separate test case is gen-
erated for each test goal, leading to test sets having much
redundancy. We can illustrate this problem in the example
shown in Figure1, which presents the Stateflow specifica-
tion for a stopwatch with lap time measurement.

[sec==60] {
 sec=0;
 min=min+1;
}

[cent==100] {
 cent=0;
 sec=sec+1;
}

TIC {
 cent=cent+1;
}LAP {

 cent=0; sec=0; min=0;
 disp_cent=0; disp_sec=0;
 disp_min=0;
}

Run

Running

Lap

during:
disp_cent=cent;
disp_sec=sec;
disp_min=min;

LAPLAP

Stop

Reset

Lap_stop

LAP

START

START

START

START

Figure 1: A simple stopwatch in Stateflow

1 See www.motorola.com/eda/products/veristate/
veristate.html .

2

www.motorola.com/eda/products/veristate/veristate.html
www.motorola.com/eda/products/veristate/veristate.html

The stopwatch contains a counter represented by three
variables (min , sec , cent) and a display, also represented
as three variables (disp min , disp sec , disp cent).

The stopwatch is controlled by two command buttons,
START and LAP. The START button switches the time
counter on and off; theLAPbutton fixes the display to show
the lap time when the counter is running and resets the
counter when the counter is stopped. This behavior is mod-
eled as a statechart with four exclusive states:

• Reset : the counter is stopped. ReceivingLAP resets
the counter and the display, receivingSTARTchanges
the control to theRunning mode.

• Lap Stop : the counter is stopped. ReceivingLAP
changes to theReset mode and receivingSTART
changes to theLap mode.

• Running : the counter is running, and the display up-
dated. ReceivingSTARTchanges to theStop mode,
pressingLAP changes to theLap mode.

• Lap : the counter is running, but the display is not up-
dated, thus showing the last value it received. Receiv-
ing START changes toLap Stop mode, receiving
LAP changes to theRunning mode.

These four states are grouped by pairs inside two main
states:Run and Stop , active when the counter is count-
ing or stopped, respectively. The counter itself is specified
within theRun state as a flowchart, incrementing itscent
value every time a clockTIC is received (i.e., every 1/100s);
thesec value is incremented (andcent reset to 0) when-
evercent equals 100, and themin value is similarly incre-
mented wheneversec equals 60.

Notice that it requires a test case of length 6,000 to exer-
cise the lower right transition in the flowchart: this is where
the min variable first takes a nonzero value, following 60
sec s, each of 100cent s. Embedded systems often con-
tain counters that must be exhausted before parts of the
statespace become reachable so this is a (perhaps rather ex-
treme) example of the kind of “deep” test goal that is often
hard to discharge using model checking.

Focusing now on the statechart to the left of the figure,
if we generate a test case that begins in the initial state and
exercises the transition fromLap stop to Reset (e.g.,
the sequence of eventsSTART, LAP, START, LAP), then
this test also exercises the transitions fromReset to Run-
ning , Running to Lap , andLap to Lap stop . How-
ever, the usual approach to generating a test set to achieve
transition coverage will independently generate test cases to
exercise each of these transitions, resulting in four tests and
much redundancy. Black and Ranville [3] describe a method
for “winnowing” test sets after generation to reduce their
redundancy, while Hong et al. [16] present an algorithm
that reduces redundancy during generation. Their algorithm

will record during generation of a test case to exercise the
Lap stop to Reset transition that it has also exercised
theRunning to Lap transition and will remove the latter
transition from its set of remaining coverage goals. How-
ever, the effectiveness of this strategy depends on the order
in which the model checker tackles the coverage goals: if it
generates the test forRunning to Lap before the one for
Lap stop to Reset , then this online winnowing will be
ineffective.

A natural way to overcome this inefficiency in test sets is
to attempt toextendexisting test cases to reach uncovered
goals, rather than start each one afresh. This should not only
eliminate much redundancy from the test set, but it should
also reduce the total number of test cases required to achieve
coverage. Although conceptually straightforward, it is not
easy in practice to cause a model checker to find a coun-
terexample that extends an existing one when the only way
to interact with the model checker is through its normal in-
terfaces (where all one can do is supply it with a system
specification, an initial state, and a property). Fortunately,
several modern model checkers provide more open environ-
ments than was previously the case; in particular, they pro-
vide scriptable interfaces that permit rapid construction of
customized analysis tools.

We performed our experiments in the SAL 2 model
checking environment [6], which not only provides state-
of-the-art symbolic, bounded, infinite-bounded, and wit-
ness model checkers, but also an API that gives access to
the basic machinery of these tools and that is scriptable in
the Scheme language [17] (in fact, the model checkers are
themselves just Scheme scripts).2 Among the API functions
of SAL 2, or easily scripted extensions to these, are ones to
perform a (symbolic or bounded) model check on a given
system and property, and to continue a model check given a
previously reached state and a path to get there.

Given these API functions, it is easy to construct a script
that extends each test case to discharge as many additional
coverage goals as possible, and that starts a new test case
only when necessary. A pseudocode rendition of this script
is shown in Figure2. On completion, the variablefailures
contains the set of coverage goals for which the algorithm
was unable to generate test cases.

It might seem specious (in the most deeply nested part of
Figure2) to remove fromremainingandfailuresany goals
discharged by extending a test case—because this set con-
tains only those that were not discharged by previous at-
tempts to extend the current case. However, if the model
checker is using limited resources (e.g., bounded model
checking to depthk), a certain goal may be discharged by

2 We also use the explicit-state model checker of SAL 1, which is dis-
tinct from SAL 2, and not completely compatible with it; a future re-
lease of SAL will unify these two systems.

3

goals := the set of coverage goals
failures := empty set
while goals is nonempty do
Select and remove goal from goals
Call model checker to generate

a new test case to discharge goal
if successful then

Select and remove from goals any that
are discharged by the test case

remaining := empty set
while goals is nonempty do

Remove goal from goals
Call model checker to extend

test case to discharge goal
if successful then

remove from goals , failures , and
remaining any goals
discharged by extended test case

else add goal to remaining
endif

endwhile
goals := remaining
Output test case

else add goal to failures endif
endwhile

Figure 2: Constructing test cases by iterated extension

an extension that can be found by model checking from a
given test case, but not from its prefixes.

Although quite effective, the method of Figure2 fails to
exploit some of the power of model checking: at each step,
it selects a particular coverage goal and tries to discharge it
by generating a new test case or extending the current one.
This means that the coverage goals are explored in some
specific order that is independent of their “depth” or “diffi-
culty.”

It actually improves the speed of model checking if we
consider multiple goals in parallel: instead of picking a goal
and asking the model checker to discharge it, we can give it
the entire set of undischarged goals and ask it to discharge
any of them. That is, instead of separately model checking
the assertions “always notp,” “always notq” etc., we model
check “always not (p or q or. . .).” This will have the advan-
tage that the model checker will (probably) first discharge
shallow or easy goals and approach the deeper or more diffi-
cult goals incrementally; as noted above, it may be possible
to discharge a difficult goal by extending an already discov-
ered test case when it could not be discharged (within some
resource bound) from an initial state, or from a shorter test
case generated earlier in the process.

A further refinement is to note that as test generation pro-
ceeds, those parts of the system specification that have al-
ready been covered may become irrelevant to the coverage
goals remaining. Modern model checkers, including SAL,
generally perform some form of automatedmodel reduc-
tion that is similar to (backward) program slicing [21]. Typ-
ically, they use thecone of influence reduction[18]: the idea
is to eliminate those state variables, and those parts of the
model, that do not influence the values of the state variables
appearing in the assertion to be model checked.

If we use this capability to slice away the parts of the sys-
tem specification that become irrelevant at each step then
the specification will get smaller as the outstanding cov-
erage goals become fewer. Notice there is a virtuous cir-
cle here: slicing becomes increasingly effective as the out-
standing goals become fewer; those outstanding goals are
presumably hard to discharge (since the easy ones will be
picked off earlier), but slicing is reducing the system and
making it easier to discharge them. Recall that in Figure1
it requires a test case of length 6,000 to exercise the lower
right transition in the flowchart. There is almost no chance
that a model checker could quickly find the corresponding
counterexample while its search is cluttered with the vast
number of display and control states that are independent
of the state variables representing the clock. Once the cov-
erage goals in the statechart part of the model have been
discharged, however, all those state variables can be sliced
away, isolating the flowchart and rendering generation of
the required counterexample feasible (we present data for
this example later). Pseudocode for this refinement to the
method is shown in Figure3.

Still further improvements can be made in this approach
to generating test sets. The method of Figure3 always seeks
to extend the current test case, and if that fails it starts a
new case. But the test cases that have already been found
provide the ability to reach many states, and we may do
better to seek an extension from some intermediate point
of some previous test case, rather then start a completely
new case when the current case cannot be extended. This is
particularly so when we have already found one deep test
case that gives entry to a new part of the statespace: there
may be many coverage goals that can be discharged cheaply
by constructing several extensions to that case, whereas the
method of Figure3 would go back to the initial state once a
single extension to the test case had been completed.

Figure4 presents pseudocode for a search method that
attempts (in the nestedwhile loop) to extend the current
test case as much as possible, but when that fails it tries (in
the outerwhile loop) to extend a test from some state that
it has reached previously (these are recorded in the vari-
ableknownstates). Notice that it is not necessary to call the
model checker iteratively to search from each of theknown-
states: a model checker (at least a symbolic or bounded

4

goals := the set of coverage goals
failures := empty set
while goals is nonempty do
Call model checker to generate

a new test case to discharge some goal
if successful then

Remove from goals any that
are discharged by the test case

slice system relative to goals
while goals is nonempty do

Call model checker to extend
test case to discharge some goal

if successful then
remove from goals any

discharged by extended test case
slice system relative to goals

endif
endwhile
Output test case

else
failures := goals ;
goals := empty set

endif
endwhile

Figure 3: Searching for test cases in parallel, and slicing the
model as goals are discharged

model checker) can search from all these states in paral-
lel. This parallel search capability increases the efficiency
of test generation but might seem to conflict with our desire
for efficient test sets: the model checker might find a long
extension from a known shallow state rather than a short ex-
tension from a deeper one. To see how this is controlled, we
need to examine the attributes of different model checking
technologies, and this is the topic of the next section.

3. Finding the extensions: model check-
ing pragmatics

All model checkers (of the kind we are interested in) take
as their inputs the transition relation defining a state ma-
chine and its environment, the initial states, and an asser-
tion. The assertion is usually expressed as a temporal logic
formula but we are interested only in formulas of the kind
“always notp,” so the details of the temporal logic are not
important. And although the model checker may actually
work by encoding the assertion as a Büchi automaton, it
does little harm in this particular case to think of the model
checker as working by searching for a state that satisfiesp
and is reachable from the initial states.

goals := the set of coverage goals
knownstates := initial states
failures := empty set
while goals is nonempty do
Call model checker to extend a test

case from some state in knownstates
to discharge some goal

if successful then
Remove from goals any that

are discharged by the test case
add to knownstates those states

traversed by the current test case
slice system relative to goals
while goals is nonempty do

Call model checker to extend
test case to discharge some goal

if successful then
remove from goals any

discharged by extended test case
add to knownstates those states

traversed by current test case
slice system relative to goals

endif
endwhile
Output test case

else
failures := goals ;
goals := empty set

endif
endwhile

Figure 4: Restarting from previously discovered states
rather than initial states

The earliest model checkers used an approach now called
explicit stateexploration, and this approach is still very
competitive for certain problems. As the name suggests,
this kind of model checker uses an explicit representation
for states and enumerates the set of reachable states by for-
ward exploration until either it finds a violation of the asser-
tion (in which case a trace back to the start state provides
a counterexample), or it reaches a fixed point (i.e., has enu-
merated all the reachable states without discovering a vio-
lation, in which case the assertion is valid).

There are several strategies for exploring the reachable
states:depth first search uses the least memory and of-
ten finds counterexamples quickly, but the counterexamples
may not be minimal;breadth firstsearch, on the other hand,
requires more memory and often takes longer, but will find
the shortest counterexamples. Gargantini and Heitmeyer [9]
report that counterexamples produced by an explicit-state
model checker using depth-first search were often too long

5

to be useful as test cases. Using a translation into SAL for
the example of Figure1, SAL’s explicit-state model checker
operating in depth-first mode finds a test case for the transi-
tion at the bottom right in 25 seconds (on a 2GHz Pentium
with 1 GB of memory) after exploring 71,999 states, but
the test case is 24,001 steps long. This is 4 times the mini-
mal length because severalSTARTandLAP events are in-
terspersed between eachTIC . In breadth-first mode, on the
other hand, the model checker does not terminate in reason-
able time.3 However, if we slice the model (thereby elim-
inating STARTandLAP events), both breadth- and depth-
first search generate the minimal test case of length 6,001 in
little more than a second.

In summary, explicit-state model checking needs to use
breadth-first search to be useful for test case generation, and
the search becomes infeasible when the number of states to
be explored exceeds a few million; within this constraint, it
is capable of finding deep test cases.

For embedded systems, a common case where the reach-
able states rapidly exceed those that can be enumer-
ated by an explicit-state model checker is one where
the system takes several numerical inputs from its envi-
ronment. In one example from Heimdahl et al. [13], an
“altitude switch” takes numerical readings from three al-
timeters, one of which may be faulty, and produces a
safe consensus value. If the altimeters produce read-
ings in the range 0. . . 40,000 feet, then an explicit-state
model checker could blindly enumerate through a signif-
icant fraction of the40, 0003 (i.e., 64 trillion) combina-
tions of input values before stumbling on those that trigger
cases of interest. In practice, this simple type of prob-
lem is beyond the reach of explicit-state model check-
ers.

Symbolic model checkers, historically the second kind
to be developed, deal with this type of problem in frac-
tions of a second. A symbolic model checker represents
sets of states, and functions and relations on these, as re-
duced ordered binary decision diagrams (BDDs). This is a
compact and canonical symbolic representation on which
the image computations required for model checking can
be performed very efficiently. The performance of symbolic
model checkers is sensitive to the size and complexity of the
transition relation, and to the size of the total statespace (i.e.,
the number of bits or BDD variables needed to represent
a state), but it is less sensitive to the number of reachable
states: the symbolic representation provides a very compact
encoding for large sets of states.

Symbolic model checkers can use a variety of search
strategies and these can have dramatic impact when veri-

3 If we reduce the number ofcent s in asec from 100 to 4 (resp. 5),
then the breadth-first search terminates in 89 (resp. 165) seconds af-
ter exploring 171,133 (resp. 267,913) states; the time required is ex-
ponential in this parameter.

fying valid assertions: for example, backward search veri-
fies inductive properties in a single step. In test generation,
however, where we have deliberately invalid properties, a
symbolic model checker, whether going forward or back-
ward, must perform at least as many image computations
as there are steps in the shortest counterexample. The sym-
bolic model checker of SAL 2 can find the counterexam-
ple of length 6,000 that exercises the lower right transition
of the flowchart in Figure1 in 125 seconds (it takes another
50 seconds to actually build the counterexample) and vis-
its 107,958,013 states. If we slice the model (eliminating
STARTandLAP events), then the number of visited states
declines to 6,001 and the time decreases to 85 seconds (plus
50 to build the counterexample).

Thus a symbolic model checker can be very effective for
test case generation even when there are large numbers of
reachable states, and also for fairly deep cases. Its perfor-
mance declines when the number of BDD variables grows
above a few hundred, and when the transition relation is
large: both of these increase the time taken to perform im-
age computations, and thus reduce the depth of the test cases
that can be found in reasonable time. There is an additional
cost to systems that require many BDD variables, and this is
the time taken to find a good variable ordering (the perfor-
mance of BDD operations is very dependent on arranging
the variables in a suitable order). Heimdahl et al. [14] report
that the time taken to order the BDD variables became the
dominant factor in their larger examples, and caused them
to conclude that symbolic model checking is unattractive for
test generation. Modern model checkers such as SAL 2 al-
leviate this concern a little: they allow the variable ordering
found in one analysis to be saved and reused for others—
this amortizes the cost of variable ordering over all tests
generated (provided the one ordering is effective for them
all). The SAL 2 symbolic model checker also has a mode
where it computes the reachable states just once, and then
analyzes many safety properties against it.

Bounded model checkers, the third kind to be developed,
are specialized to generation of counterexamples (though
they can be used to perform verification byk-induction [8]).
A bounded model checker is given a depth boundk and
searches for a counterexample up to that depth (i.e., length)
by casting it as a constraint satisfaction problem: for finite
state systems, this can be represented as a propositional sat-
isfiability problem and given to a SAT solver. Modern SAT
solvers can handle problems with many thousands of vari-
ables and constraints. Each increment of 1 in the depth of
bounded model checking increases the number of variables
in the SAT problem by the number of bits needed to repre-
sent the statespace and by the number of constraints needed
to represent the transition relation: empirically, the com-
plexity of bounded model checking is strongly dependent
on the depth, and the practical limit onk is around 30–

6

50. At modest depths, however, bounded model checking
is able to handle very large statespaces and does not incur
the startup overhead of BDD ordering encountered in sym-
bolic model checking large systems (though it does have to
compute thek-fold composition of the transition relation).
It should be noted that a bounded model checker does not
necessarily generate the shortest counterexamples: it simply
finds some counterexample no longer thank. Obviously, it
will find the shortest counterexample if it is invoked itera-
tively for k = 1, 2, . . . until a counterexample is found but
most bounded model checkers do not operate incrementally,
so this kind of iteration is expensive.

Bounded model checking can be extended to infinite
state systems by solving constraint satisfaction problems
in the combination of propositional calculus and the theo-
ries of the infinite data types concerned (e.g., real and inte-
ger linear arithmetic). SAL 2 has such an “infinite bounded”
model checker; this is based on the ICS decision procedure
[5], which has the best performance of its kind for many
problems [7]. However, this model checker does not yet pro-
duce concrete counterexamples (merely symbolic ones), so
we have not used it in our test generation exercises.

Given these performance characteristics of vari-
ous model checking technologies, which is the best for
test case generation? Recall that Gargantini and Heit-
meyer [9] report dissatisfaction with unnecessarily long test
sequences produce by an explicit-state model checker op-
erating depth first, and satisfaction with a symbolic model
checker. On the other hand, Heimdahl et al. [14] report dis-
satisfaction with a symbolic model checker because of the
lengthy BDD ordering process required for large mod-
els, and satisfaction with a bounded model checker, pro-
vided it was restricted to very modest bounds (depth 5 or
so). The examples considered by Heimdahl et al. were such
that coverage could be achieved with very short tests, but
this will not generally be the case, particularly when coun-
ters are present.

Our experiments with the approaches to iterated exten-
sion described in the previous section confirm the effec-
tiveness of bounded model checking for test generation.
Furthermore, our approach minimizes its main weakness:
whereas bounded model checking to depth 5 will not dis-
charge a coverage goal that requires a test case of length 20,
and bounded model checking to depth 20 may be infeasi-
ble, iterated bounded model checking to depth 5 may find
a path to one goal, then an extension to another, and an-
other, and eventually to the goal at depth 20—because four
or five checks to depth 5 are much easier than one to depth
20.

However, bounded model checking to modest depths,
even when iterated, may be unable to exhaust a loop
counter, or to find entry to other deep parts of a statespace.
We have found that an effective combination is to use sym-

bolic model checking (with some resource bound) as the
model checker at the top of the outerwhile loop in Fig-
ure 3. This call is cheap when many easy goals remain
(the cost of BDD ordering is amortized over all calls),
and can be useful in finding a long path to a new part
of the state space when all the easy goals have been dis-
charged. As noted in the previous section, slicing can be
especially effective in this situation.

Although we have not yet performed the experiments,
we believe that using symbolic model checking in the outer
while loop in the method of Figure4 will be an even
more effective heuristic. As in Figure3, using a sym-
bolic model checker in this situation preserves the possi-
bility of finding long extensions, should these be necessary.
Equally important, the representation ofknownstatesas a
BDD for symbolic model checking is likely to be compact,
whereas its representation as SAT constraints for a bounded
model checker could be very large. We also conjecture that
explicit-state model checking may be useful for finding long
paths in heavily sliced models, but it is perhaps better to
see this as an instance of a more general approach, devel-
oped in the following paragraphs, rather than as an inde-
pendently useful combination.

All the enhancements to test generation that we have pre-
sented so far have used model checking as their sole means
for constructing test cases, but there is a natural generaliza-
tion that leads directly to an attractive integration between
model checking and other methods.

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

Figure 5: Generalization:knownstatesseeded by random
testing or other methods

In particular, the method of Figure4 uses the states in
the setknownstatesas starting points for extending known
paths into test cases for new goals. As new test cases gen-
erate paths to previously unvisited states, the method adds
these toknownstates, but it starts with this set empty. Sup-
pose instead that we initialize this set with some sampling of

7

states, and the paths to reach them, as portrayed in Figure5
(the shaded figure suggests the reachable statespace and the
three interior lines represent known paths through a sam-
pling of states). Random testing is one way to create the ini-
tial population of states and paths, and (concretized) states
and paths found by model checking abstractions of the orig-
inal system could be another (explicit-state model check-
ing in heavily sliced models would be an instance of this).
Now, given a goal represented by the solid dot in Figure
5, the method of Figure4 will start symbolic model check-
ing from all theknownstatesin parallel and is likely to find
a short extension from one of them to the desired goal. If
knownstatesis considered too large to serve as the starting
point for model checking, then some collection of the most
likely candidates can be used instead (e.g., those closest to
the goal by Hamming distance on their binary representa-
tions). Of course, if there is more than a single outstand-
ing goal, the symbolic model checker will search in paral-
lel from all knownstatesto all outstanding goals; once an
extension has been found, the bounded model checker will
seek to further extend that path; when that path is exhausted
the search will revert to the symbolic model checker of the
outer loop.

This combination of methods is actually an elaboration
of those used in two commercial tools. Ketchum (aka. For-
malVera and Magellan) from Synopsys [15] uses bounded
model checking to extend paths found by random testing
in hardware designs, while Reactis from Reactive Systems
Inc.4 uses constraint solving (similar to the technology un-
derlying infinite bounded model checking) to extend paths
found by random testing in Simulink and Stateflow models.
Neither of these tools (to our knowledge) uses model check-
ing to search toward the goal from the whole set ofknown-
states(or a large subset thereof); instead they pick a state
that is “close” (e.g., by Hamming distance) to the goal. Nei-
ther do they use the model checker to search toward all out-
standing goals simultaneously.

4. Experimental results

We have implemented the test generation method of Fig-
ure 3 as a script that runs on the API of SAL 2.5 The
SAL API is provided by a program in the Scheme lan-
guage [17] that uses external functions (mostly written in
C) to provide efficient implementations of the core model
checking algorithms. Our test generation script is thus a
small collection of function definitions in Scheme; argu-
ments to the top-level function determine whether or not
slicing is to be performed, whether initial searches from

4 Seewww.reactive-systems.com .
5 We are in the process of implementing the method of Figure4, which

requires some extensions to the API.

the start states should use symbolic or bounded model
checking (and, in the latter case, to what depth), and the
depth of bounded model checking to be used in the iter-
ated extensions. Despite all these options to support ex-
perimentation, the script is less than 100 lines long. The
script and the examples described below can be down-
loaded fromhttp://www.csl.sri.com/˜rushby/
abstracts/sefm04 , where a longer version of this pa-
per also provides extended discussion of the examples.

4.1. Stopwatch

Our first example is the Stopwatch of Figure1. We have
already reported statistics from initial experiments on this
example; here, we present data from our completed SAL
script. Our script operated on a SAL translation of Figure1
that was constructed by hand. We targeted state and transi-
tion coverage and augmented the SAL specification with a
new Boolean trap variable for each coverage goal; the trap
variable latchesTRUEwhenever its corresponding cover-
age goal is satisfied. The trap variables obviously increase
the size of the transition relation and system state that must
be represented in the model checker, but they play such a
passive role that they do not add an appreciable burden to
the model checking process.

The shortest test needed for full state and transition cov-
erage in the statechart part of Figure1 is 11 steps. When
tests are generated separately for each coverage goal, our
script produces 11 separate tests with a total length of 26.
When the optimization of Hong et al. is enabled (i.e., we
check to see whether a newly generated test happens to dis-
charge goals other than the one targeted), the test set is re-
duced to 8 tests with a total length of 20 steps. And when the
iterated extension method of Figure3 is enabled, our script
achieves coverage with a single test of between 11 and 14
steps (depending on the model checking parameters used).
When the flowchart part of Figure1 is added to the cov-
erage goals, our script generates three tests: one of length
12 that covers the statechart part of the figure, one of length
101 that exercises the rollover of thecent variable from 99
to 0, and one of length 6001 that exercises the rollover of the
sec variable from 59 to 0 (the second test is subsumed by
the third but our method does not detect this). Slicing en-
sures that the second and third tests are generated in a re-
duced model in which the variables corresponding to the
statechart part of the program have been removed, and the
generation is therefore quite efficient (e.g., it takes 84 sec-
onds to generate the third, and longest test). Slicing can be
disabled for experimental purposes; doing so in this exam-
ple increases the generation time fivefold.

8

www.reactive-systems.com
http://www.csl.sri.com/~rushby/abstracts/sefm04
http://www.csl.sri.com/~rushby/abstracts/sefm04

4.2. Shift Scheduler

Our next example is a shift scheduler for a four-speed
automatic transmission that was made available by Ford as
part of the DARPA MoBIES project.6 The Stateflow rep-
resentation of this example has 23 states and 25 transi-
tions. We converted the Stateflow component of the Mat-
lab .mdl file for this example into SAL using a proto-
type translator based on the Stateflow semantics presented
in [11] that automatically adds trap variables to latch state
and transition coverage goals. (A couple of internal names
were changed by hand as our translator does not yet han-
dle all the naming conventions of Matlab.) Several of the
inputs to this example are real numbers; we changed them
to 8-bit integers for model checking purposes. The State-
flow component of the Matlab model is not really a self-
contained unit: it has six inputsshift speed ij (these
determine when a shift from geari to j should be sched-
uled) that are not independent and are driven from a sin-
gle torque input in the larger Simulink block that sur-
rounds the Stateflow model. We do not have a translator
from Simulink to SAL so we constructed a suitable SAL
rendition for this part of the model by hand (it is just a
dozen lines of elementary SAL that tie atorque input
to the shift speed ij variables). The composition of
these two SAL modules has 288 state bits in the represen-
tation used by the model checker. (300 state bits is gener-
ally regarded as the point where model checking can be-
come difficult.) Using iterated extension, our script gener-
ated a single test in a couple of minutes that achieves full
state and transition coverage in 73 steps.

4.3. Flight Guidance System

Our final example is a model of an aircraft flight guid-
ance system developed by Rockwell Collins under con-
tract to NASA for the purpose of aiding experiments
such as this [14]. The models were originally devel-
oped in RSML; we used SAL versions kindly provided
by Jimin Gao of the University of Minnesota who is de-
veloping an RSML to SAL translator. The largest of the
examples isToyFGS05 Left , which has 576 state vari-
ables and requires 1,152 BDD variables for symbolic model
checking. The SAL version of this specification is not in-
strumented with trap variables for coverage, but the model
does contain 369 Boolean variables. We conjecture that
for the purposes of measuring performance and scaling ef-
fects, generating tests to drive these variables toTRUE
will be an effective experiment. Many of the Boolean vari-
ables have names ending inUndefined or Random
and seem to be present for error detection and not in-

6 Seevehicle.me.berkeley.edu/mobies/ .

tended to become activated. We eliminated these and
targeted the remaining 185 variables. In less than five min-
utes, our script succeeded in building a single test case of
length 44 that takes all but two of the Boolean state vari-
ables toTRUE(we separately verified that those two vari-
ables are invariantlyFALSE). Slicing is fairly effective
in this example as the model checking problem is re-
duced from 576 Boolean variables at the start to 421 at
the end, and the overall time taken is halved when slic-
ing is used.

5. Summary and future plans

We have described a method for generating efficient test
sets for model-based embedded systems by using a model
checker to extend tests discovered earlier in the process. Ex-
tending tests not only eliminates the redundancy of many
tests with similar prefixes, but it allows the model checker
incrementally to explore deeper into the statespace than
might otherwise be possible within given resource bounds,
leading to more complete coverage. Our method requires
“going under the hood” of the model checker to exploit the
capabilities of its API, but several modern model checkers
provide a suitably scriptable API. Our methods exploit the
full power of model checking to search at each step for an
extension from any known state to any uncovered goal, and
use slicing so that the complexity of the system being model
checked is reduced as the outstanding coverage goals be-
come harder to achieve. We described how the method can
be combined with others, such as random testing, that cre-
ate a preliminary “map” of known paths into the statespace.

We discussed the pragmatics of different model check-
ing techniques for this application and described prelimi-
nary experiments with the model checkers of our SAL sys-
tem. Our preliminary experiments have been modest but the
results are promising. We are in the process of negotiating
access to additional examples of industrial scale and plan
to compare the performance of our method with others re-
ported in the literature. We are also exploring efficient meth-
ods for MC/DC coverage.

Our methods use the raw power of modern model check-
ers. It is likely that analysis of the control flow of the
model under examination could target this power more ef-
ficiently, and we intend to explore this possibility. Our
methods also can use techniques based on abstraction and
counterexample-driven refinement, such as those reported
by Beyer et al. [2] (ICS, already present as part of SAL, can
be used to solve the constraint satisfaction problems), and
we intend to examine this combination.

9

vehicle.me.berkeley.edu/mobies/

References

[1] R. Alur and D. Peled, editors.Computer-Aided Verification,
CAV ’2004, volume 3114 ofLecture Notes in Computer Sci-
ence, Boston, MA, July 2004. Springer-Verlag.

[2] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and
R. Majumdar. Generating tests from counterexamples. In
26th International Conference on Software Engineering,
pages 326–335, Edinburgh, Scotland, May 2004. IEEE Com-
puter Society.

[3] P. E. Black and S. Ranville. Winnowing tests: Getting qual-
ity coverage from a model checker without quantity. In20th
AIAA/IEEE Digital Avionics Systems Conference, Daytona
Beach, FL, Oct. 2001. Available fromhttp://hissa.
nist.gov/˜black/Papers/dasc2001.html .

[4] J. Callahan, F. Schneider, and S. Easterbrook. Automated
software testing using model-checking. Technical Report
NASA-IVV-96-022, NASA Independent Verification and
Validation Facility, Fairmont, WV, Aug. 1996.

[5] L. de Moura, S. Owre, H. Rueß, J. Rushby, and N. Shankar.
The ICS decision procedures for embedded deduction. In
D. Basin and M. Rusinowitch, editors,2nd International
Joint Conference on Automated Reasoning (IJCAR), volume
3097 ofLecture Notes in Computer Science, pages 218–222,
Cork, Ireland, July 2004. Springer-Verlag.

[6] L. de Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar,
M. Sorea, and A. Tiwari. SAL 2. In Alur and Peled [1],
pages 496–500.

[7] L. de Moura and H. Rueß. An experimental evaluation of
ground decision procedures. In Alur and Peled [1], pages
162–174.

[8] L. de Moura, H. Rueß, and M. Sorea. Bounded model check-
ing and induction: From refutation to verification. In W. A.
Hunt, Jr. and F. Somenzi, editors,Computer-Aided Verifica-
tion, CAV ’2003, volume 2725 ofLecture Notes in Computer
Science, pages 14–26, Boulder, CO, July 2003. Springer-
Verlag.

[9] A. Gargantini and C. Heitmeyer. Using model checking to
generate tests from requirements specifications. In O. Nier-
strasz and M. Lemoine, editors,Software Engineering—
ESEC/FSE ’99: Seventh European Software Engineering
Conference and Seventh ACM SIGSOFT Symposium on the
Foundations of Software Engineering, volume 1687 ofLec-
ture Notes in Computer Science, pages 146–162, Toulouse,
France, Sept. 1999. Springer-Verlag.

[10] D. Geist, M. Farkas, A. Landver, Y. Lichtenstein, S. Ur, and
Y. Wolfstahl. Coverage-directed test generation using sym-
bolic techniques. In M. Srivas and A. Camilleri, editors,For-
mal Methods in Computer-Aided Design (FMCAD ’96), vol-
ume 1166 ofLecture Notes in Computer Science, pages 143–
158, Palo Alto, CA, Nov. 1996. Springer-Verlag.

[11] G. Hamon and J. Rushby. An operational semantics for
Stateflow. In M. Wermelinger and T. Margaria-Steffen, ed-
itors, Fundamental Approaches to Software Engineering:
7th International Conference (FASE), volume 2984 ofLec-
ture Notes in Computer Science, pages 229–243, Barcelona,
Spain, 2004. Springer-Verlag.

[12] K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and
L. K. Rierson. A practical tutorial on modified con-
dition/decision coverage. NASA Technical Memoran-
dum TM-2001-210876, NASA Langley Research Cen-
ter, Hampton, VA, May 2001. Available athttp://www.
faa.gov/certification/aircraft/av-info/
software/Research/MCDC%20Tutorial.pdf .

[13] M. P. Heimdahl, Y. Choi, and M. Whalen. Deviation anal-
ysis through model checking. In17th IEEE International
Conference on Automated Software Engineering (ASE’02),
pages 37–46, Edinburgh, Scotland, Sept. 2002. IEEE Com-
puter Society.

[14] M. P. Heimdahl, S. Rayadurgam, W. Visser, G. Devaraj, and
J. Gao. Auto-generating test sequences using model check-
ers: A case study. InThird International Workshop on For-
mal Approaches to Software Testing (FATES), volume 2931
of Lecture Notes in Computer Science, pages 42–59, Mon-
treal, Canada, Oct. 2003. Springer-Verlag.

[15] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano,
V. Bertacco, J. Taylor, and J. Long. Smart simulation us-
ing collaborative formal simulation engines. InInterna-
tional Conference on Computer Aided Design (ICCAD),
pages 120–126, Jan Jose, CA, Nov. 2000. Association for
Computing Machinery.

[16] H. S. Hong, S. D. Cha, I. Lee, O. Sokolsky, and H. Ural. Data
flow testing as model checking. In25th International Con-
ference on Software Engineering, pages 232–242, Portland,
OR, May 2003. IEEE Computer Society.

[17] R. Kelsey, W. Clinger, and J. R. (editors). Revised5 re-
port on the algorithmic language Scheme.Higher Order
and Symbolic Compututation, 11(1):7–105, 1998. Available
from http://www.schemers.org/Documents/
Standards/R5RS/ .

[18] R. P. Kurshan.Computer-Aided Verification of Coordinat-
ing Processes—The Automata-Theoretic Approach. Prince-
ton University Press, Princeton, NJ, 1994.

[19] The Mathworks. Stateflow and Stateflow Coder, User’s
Guide, release 13sp1 edition, Sept. 2003. Avail-
able at http://www.mathworks.com/access/
helpdesk/help/pdf_doc/stateflow/sf_ug.
pdf .

[20] H. Rudin, C. H. West, and P. Zafiropulo. Automated protocol
validation: One chain of development.Computer Networks,
2:373–380, 1978.

[21] M. Weiser. Program slicing.IEEE Transactions on Software
Engineering, 10(4):352–357, July 1984.

10

http://hissa.nist.gov/~black/Papers/dasc2001.html
http://hissa.nist.gov/~black/Papers/dasc2001.html
http://www.faa.gov/certification/aircraft/av-info/software/Research/MCDC%20Tutorial.pdf
http://www.faa.gov/certification/aircraft/av-info/software/Research/MCDC%20Tutorial.pdf
http://www.faa.gov/certification/aircraft/av-info/software/Research/MCDC%20Tutorial.pdf
http://www.schemers.org/Documents/Standards/R5RS/
http://www.schemers.org/Documents/Standards/R5RS/
http://www.mathworks.com/access/helpdesk/help/pdf_doc/stateflow/sf_ug.pdf
http://www.mathworks.com/access/helpdesk/help/pdf_doc/stateflow/sf_ug.pdf
http://www.mathworks.com/access/helpdesk/help/pdf_doc/stateflow/sf_ug.pdf

