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Abstract

Our laboratory began building tools to support formal methods in the 1970’s
and we expect to continue doing so for many years to come. Currently, our most
widely used tool is the PVS verification system, but we also provide the ICS decision
procedures and the SAL model checking toolkit. The latest versions of all these
tools offer state-of-the-art capabilities and performance, and are freely available for
noncommercial research purposes from http://formalware.csl.sri.com.

Some of our users have told us they are perplexed by the range of tools we offer
and do not know which is best for their purposes; others have said they are worried
that the arrival of our newer tools may signal a weakened commitment to the older
ones; still others say they hesitate to adopt the newer tools because their initial
incarnations offered only modest capabilities and they wondered where we plan to
take them, while others have questions about our licensing terms.

This document attempts to answer these questions: we explain the role that each
tool plays within our overall strategy, the synergies between them, and their current
capabilities. We then describe the new capabilities that we are developing and using
in-house and that will soon be made available in new releases of our tools; finally,
we describe directions we expect to explore in future and our plans for existing and
new tools.

January 2004 update: includes SAL 2.1 and the witness model checker.

October 2004 update: includes SAL 2.2 and 2.3, and previews SAL 2.4 with the
new explicit state model checker.


http://formalware.csl.sri.com

Contents

1 Introduction: PVS, ICS and SAL 1
1.1 PVS . e 1
1.2 ICS. . . e 1
1.3 SAL . . . . 2

2 Evolution and Current Capabilities 3
2.1 PVS e e 3
2.2 ICS. . . . e 6
2.3 SAL . . 9
2.4 Availability and Licensing . . . . . . . ... ... oL 13

3 Current Developments and Future Plans 14
3.1 PVS e 14
3.2 ICS . . . e 15
3.3 SAL . . 18

4 Conclusion 20

ii



1 Introduction: PVS, ICS and SAL

In this section, we outline the three tools that we provide for mechanized support
of formal methods, and describe the role that each plays within our overall vision.
Each of the tools has its own website where you will find full documentation and
download instructions, and all of our tools and papers can be accessed through our
top-level website at http://formalware.csl.sri.com.

1.1 PVS

PVS (see http://pvs.csl.sri.com) is a classical “verification system”: that is, it
provides a specification language in which mathematical theories and conjectures
about them can be specified, together with an interactive theorem prover that is
used to discharge the conjectures. Although the PVS specification language pro-
vides many constructs that are familiar and useful to computer scientists, such as
records, datatypes, and tabular specification of cases, and although it generally is
used to formulate and examine topics in computer science (e.g., algorithms, circuits,
architectures, or languages), its specification language is just a particularly rich and
expressive logic and it provides no built-in status or support for computational sys-
tems. In particular, there are no built-in notions of “state,” “state variable,” or
“assignment.” Such computational notions must be modeled explicitly (e.g., by en-
coding the semantics of state machines and their transition relations) or indirectly
(e.g., as recursive functions). In this way PVS differs from SAL, which is specialized
to the specification of computational systems and does have notions of state and
state transition built in.

Because it is not committed to specific notions of computation, PVS can be used
to model a wide variety of computational phenomena as well as purely mathematical
and logical constructions—indeed, some people use it for teaching logic.

1.2 ICS

One of the distinctive features of PVS is its use of decision procedures for a combina-
tion of theories including linear arithmetic over integers and reals and equality with
uninterpreted functions. For some kinds of formal analysis, such as consistency and
completeness checking in tabular specifications, these decision procedures provide
all the automation that is required and several groups use PVS just to gain access
to this capability. However, PVS is a rather monolithic system and it is not partic-
ularly easy to access its components, nor to interface other tools to it. Accordingly,
we developed ICS (the name stands for “Integrated Canonizer/Solver”) to satisfy
the need for “embedded deduction.”

ICS (see http://ics.csl.sri.com) decides a superset of the theories decided by
PVS and does so with much higher performance and based on more recent theoretical
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insights. Furthermore, ICS integrates a SAT solver with the decision procedures in a
revolutionary new way and can decide propositionally complex formulas over decided
terms. ICS routinely decides formulas having hundreds of thousands of variables and
constraints in a few seconds and also is fully competitive as a pure SAT solver and as
a pure decision procedure (i.e., for conjunctions of terms). ICS is distributed as a C
library and can be embedded using a small amount of “glue logic” into applications
written in almost any language. There is also a simple interactive text interface to
ICS for those who wish to experiment with its capabilities in this way. ICS provides
the deductive core for bounded model checking and automated k-induction in the
SAL toolkit and PVS will soon offer the option of substituting ICS for its “legacy”
decision procedures.

1.3 SAL

It may be possible to apply much more specialized and automated methods of
analysis and deduction if something is known about the class of problems be-
ing considered. So whereas a PVS theory could be about anything, SAL (see
http://sal.csl.sri.com) is dedicated to analysis of computational systems speci-
fied as transition relations—and it provides a toolkit of powerful methods specialized
to that application. Also, whereas PVS is a monolithic and somewhat closed system,
SAL (the name stands for Symbolic Analysis Laboratory) is an open environment
to which it is easy to attach new components or to interface other systems.

The core of SAL is its language, which is designed for the modular specification
of (nondeterministic) state machines by means of transition relations. Unlike the
languages that provide front ends to model checkers, SAL does not restrict specifica-
tions to finite state constructions, and instead provides a rich type system similar to
that of PVS. The SAL language is defined as an XML DTD and is intended to serve
as a common intermediate representation for many concrete languages and analysis
tools. Some tools examine a SAL specification and deliver an analysis (e.g., a model
checker may produce a counterexample), others operate as SAL-to-SAL transform-
ers (e.g., a slicer), while others may perform more complex transformations (e.g.,
an abstractor may take a SAL specification for an infinite state system and a SAL
description of an invariant for that system discovered by some other tool, and return
the SAL specification for a finite-state abstraction that can then be analyzed by a
model checker).

The current collection of SAL tools includes a translator from a textual syn-
tax into the XML representation, a lightweight well-formedness checker, a deadlock
checker, and five model checkers: one performs explicit state exploration, a second
does symbolic model checking using BDDs, the third does bounded model check-
ing using a SAT solver, the fourth does “infinite bounded” model checking (that
is bounded model checking for systems defined over possibly infinite data such as
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integers) using decision procedures, while the fifth does “witness” model checking.
There is also an interactive simulator that uses the capabilities of the symbolic
model checker so that the user can say “take me forward to a state satisfying this
property.” The first four model checkers use linear temporal logic (LTL) as their
assertion language, while the Witness model checker uses computation tree logic
(CTL). The bounded model checker can use several different SAT solvers in addi-
tion to that of ICS, and the infinite bounded model checker can use several different
decision procedures in addition to ICS. (We use this capability to benchmark the
performance of ICS against its competitors.) Both the bounded model checkers are
also able to perform proof by k-induction. All five model checkers deliver state-of-
the-art performance and the capabilities of the infinite bounded and witness model
checkers are unique. Soon to be released is a full typechecker for SAL. We ex-
pect that we and others will soon release translators into SAL from other popular
modeling languages.

2 Evolution and Current Capabilities

The previous section has outlined the essential characteristics of our three tools:
PVS for wide-spectrum specification and interactive theorem proving, SAL for au-
tomated analysis of state machines, and ICS for embedded deduction. ICS provides
a deductive core for both PVS and SAL. In this section we describe more about the
tools, their evolution, and their current state.

2.1 PVS

We began development of PVS in 1990 and publicly released it in April 1993
[ORSvH95]. The specification language of PVS is higher-order logic extended with
predicate and dependent types, and a theory (cf. module) system. Its type construc-
tors include functions, tuples, records, recursive datatypes (e.g., lists and trees) and
enumerations (which are degenerate datatypes); sets are represented by their char-
acteristic predicates. Functions (which include predicates and relations) may be
defined constructively or axiomatically; the constructive mechanisms include sim-
ple, recursive, and (for relations) inductive definitions. Theories may be packaged in
libraries. The built in “prelude” library includes 150 theories and 9 datatypes and
provides 350 definitions, 76 axioms, and 760 proved theorems for concepts ranging
from real and integer arithmetic, the ordinals up to gg, through various kinds of
induction, to p-calculus and computation tree logic (CTL). Libraries distributed
with PVS provide finite sets and bitvectors (originally developed by NASA), while
user-contributed libraries provide many additional theories. Particularly notable
are 17 substantial libraries developed and maintained by NASA Langley Research



Center that formalize much foundational mathematics including analysis and graph
theory.

The PVS theorem prover is interactive, based on a sequent calculus presentation.
A graphical representation is available to help navigate large proof trees. Proofs can
be saved as scripts and rerun either automatically, or in a single-step mode. While
the basic proof commands are built-in, most are programmed as strategies in a
Lisp-like language and can be augmented by users without risk of compromising
soundness, which rests only on the basic commands. As well as the basic rules of
logic, the built-in commands provide very powerful capabilities including decision
procedures for ground (unquantified) integer and real linear arithmetic, automatic
rewriting, and BDD-based propositional simplification and symbolic model check-
ing. The power of its automation and, in particular, its use of decision procedures, is
one of the characteristics that distinguished PVS from contemporaneous verification
systems based on higher-order logics such as HOL and NuPRL, while the richness
of its specification language and its support for interactive proof development dis-
tinguished it from other highly-automated systems such as ACL2. Indeed, one of
the intellectual motivations behind PVS has been to explore synergies between an
expressive logic and powerful proof automation.

PVS 2, which was released in 1995, added several capabilities to PVS but, more
significantly, much of the implementation of the system was revised for this release.
The reimplementation streamlined many internal data structures and algorithms for
improved performance and ease of maintenance and enhancement. When consid-
ering the past and future evolution of our tools, it is important to appreciate that
these are very large and complex software systems founded on sophisticated mathe-
matics and that experience in their construction and use often stimulates new ideas
and suggests better ways to do things—that is why this is a research activity. Unlike
groups that have dissolved after just a few years, we have had the opportunity to
learn from experience and to revise our ideas and to reimplement our software in
the light of lessons we have learned and feedback from users.

PVS 2 also added a “batch” mode of operation; in conjunction with a large (and
continuously growing) suite of benchmark specifications and proofs, this allows us
to perform extensive validation and regression tests on new and modified versions
of PVS. The validation suite includes all the major PVS libraries known to us and
amounts to over 500 Mb of material.

Predicate subtypes are one of the most attractive features of the PVS specifica-
tion language [ROS98]: they allow a predicate to be associated with a type (e.g., the
type of even numbers is the subtype of the integers associated with the predicate “is
divisible by two”). Predicate subtypes allow much of a specification to be embedded
in its types, which contributes to clarity and economy in specification, and it also
makes information available to the theorem prover in a manner that enhances au-
tomation. Some questions of type-correctness become undecidable in the presence



of predicate subtypes, and PVS generates proof obligations called Type Correctness
Conditions (TCCs) that must be discharged to ensure type-correctness. PVS 2 en-
riched support for predicate subtypes by adding judgments, which can inform the
typechecker of certain typing relationships (e.g., that the sum of two even numbers
is even) and generate a single TCC that subsumes many others, and conversions,
which are the logical analog of casts in programming languages (e.g., indicating how
a set of even numbers may be interpreted as a set of integers).

A major new capability added in PVS 2 (actually, in 2.3) was evaluation
[Sha02b]. Many PVS constructions (e.g., simple and recursive definitions, and quan-
tification over bounded types) can be evaluated by direct execution when applied
to concrete values. The PVS evaluator provides this capability by compiling suit-
able PVS constructions into Lisp (the implementation environment used by PVS).
The compilation performs extensive static analysis so that variables are updated
in place (i.e., destructively) whenever it is safe to do so, thereby overcoming the
performance penalty associated with most implementations of purely applicative
languages: compiled PVS executes at about half the speed of unoptimized C. The
evaluator can be used to explore specifications prior to undertaking proof, or in
parallel with proof (so that, for example, execution of the PVS specification for a
processor can replace the traditional hand-crafted simulator), and it allows PVS
to be used as an implementation language. This avoids the difficulty traditionally
associated with “code proof” due to the discontinuity at the interface between the
purely logical specification and the imperative program, and it also opens the door
to “computational reflection,” whereby proof procedures formally verified in PVS
can be used to augment the prover. The mechanisms that the evaluator uses to
associate Lisp functions with PVS functions can also be used to provide semantic
attachments that allow PVS to be used in rapid prototyping or to drive external sys-
tems (e.g., graphics) [CORT01]. These capabilities have been significantly extended
and exploited by researchers at NASA and NIA [Mun03].

PVS was the first system to provide an integration of theorem proving and
model checking [RSS95]: in 1995, a BDD-based decision procedure for p-calculus
over finite types was added to the basic proof commands of PVS, and the typechecker
was augmented to keep track of finite types. The standard resources of PVS then
extend this to CTL model checking. PVS 2 added automated abstraction, which uses
theorem proving to calculate the image of a specification under a given abstraction
function [SS99]. Typically, the target of the abstraction is finite state so that model
checking may be used to discharge proof goals.

Similar to the way in which a decision procedure for finite p-calculus is provided
by an external BDD package, PVS 2.3 also adds a decision procedure for the very
powerful logic called WS1S using the Mona library [OR00]. The external WS1S and
pu-calculus decision procedures differ from those in the PVS core in that they are
used only to discharge the leaf nodes of a proof: if they fail to discharge a proof



goal, they do not return further goals from which the proof may proceed (though
the WS1S procedure can return counterexamples).

PVS 3, which was released in December 2002, added theory interpretations to
the PVS language [OS01]. These may be used to establish an “implementation”
relationship between theories, and also to demonstrate consistency of axiomatically-
specified theories. A related capability allows theories to be supplied as parameters
to other theories. Co-inductive definitions and co-tuples were also added to this
version of PVS, in anticipation of full support for co-algebraic constructions. PVS
3.2, to be released in early 2004, also allows the theorem prover to switch between
its standard “legacy” decision procedures and those of ICS.

PVS has a large and complex implementation; the core system is implemented in
Common Lisp while its interface uses Emacs and is written in Emacs Lisp. Graphical
displays use Tcl/TK, while the theorem prover uses an external BDD and model
checking package implemented in C and external decision procedures (including ICS)
implemented in a variety of languages. PVS binary distributions are available for
Sun Solaris and for RedHat Linux systems (it also seems to work for other Linux
distributions and for FreeBSD and Debian, although we do not guarantee this).!

PVS is a mature and reliable system with many users; several of the modifica-
tions and enhancements made to PVS were in response to suggestions and feedback
received from users. PVS is available from http://pvs.csl.sri.com; the current
version is 3.1. Release or announcement notes describing the changes and enhance-
ments made in each version and release (back to 2.3 in September 1999) can be
found by following the http://pvs.csl.sri.com/new.html link. We are currently
documenting its APIs to assist users who wish to interface PVS with other systems.

2.2 ICS

Decision procedures are valuable in interactive theorem provers because they raise
the level of human interaction to one of giving strategic direction rather than manag-
ing tactical details. True decision procedures (as opposed to heuristics) are necessary
to support a good mental model of the capabilities of the system, and to encourage
perspicuous specifications (because specifications do not need to be distorted to fit
the heuristics of the prover).

There are many decidable theories of importance in computer science applica-
tions (e.g., real and integer arithmetic, bitvectors, datatypes, equality with function
symbols) and the goal is to decide the combination of these theories. This should
be accomplished by combining decision procedures for the individual theories in a
modular manner. Two general methods are known for combining decision proce-
dures. The method of Nelson and Oppen imposes few restrictions on its component

1We have only RedHat systems locally; our distribution licenses for Allegro Common Lisp are
for versions that support Solaris 2.7, 2.8 and 2.9 and Linux x86, Kernel 2.x, and glibc 2.1.
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theories and their decision procedures, but yields relatively low performance because
the separate decision procedures do not share much state and communicate only by
propagating newly discovered equalities back and forth. The combination method
of Shostak, on the other hand, requires that its component theories are canonizable
and solvable, and achieves high performance by tightly integrating these components
through an efficient data structure for congruence closure. Most theories of practical
interest are canonizable and solvable.

The decision procedures in PVS employ Shostak’s method and, indeed, are based
on his original Lisp code from the early 1980s that was previously used in the
STP and EHDM verification systems that preceded PVS. Over the years, we have
discovered and corrected flaws in the theoretical basis of Shostak’s method and in
its implementation. These developments culminate in papers that give the definitive
presentation of Shostak’s corrected method and the proofs that it is sound, complete,
and terminating [RS01,SR02,Sha02a]. The core argument has been formally verified
in PVS [FS02].

ICS employs these theoretical insights and new implementations of the individual
decision procedures to provide similar capabilities to the PVS decision procedures,
but with far greater performance, in a standalone package suitable for embedded
deduction. ICS Version 1 was released in June 2002 and built on experience gained
with an unreleased prototype of the previous year [FORSO01].

An experimental combination of ICS with the Chaff SAT solver produced very
attractive performance for large propositional combinations of terms over the theo-
ries decided by ICS but it became clear that for really high performance the decision
procedure and SAT solver would need to be more tightly integrated and each would
need to be customized to operate in partnership with the other [dMRO02]. There-
fore, we developed our own SAT solver for this purpose and obtained a substantial
increase in performance. The SAT solver was included in ICS Version 1.1 (released
in March 2003), whose API was enlarged to give access to the new services.

Benchmarking indicates that a significant factor in the overall performance of a
decision procedure/SAT solver combination is the quality of the “explain” function
that the decision procedures use to generate constraints (we call them “lemmas on
demand”) that prune the search space explored by the SAT solver. Theoretical
considerations suggest that the best explain function would use dependency infor-
mation from the “proof objects” that decision procedures can generate to justify
their decisions.

Availability of the early versions of ICS allowed us to explore “infinite bounded
model checking” in SAL and to contemplate new applications such as test case
generation. Both of these require the decision procedure to examine satisfiability
in addition to validity /unsatisfiability and to return a satisfying instance for those
formulas that are satisfiable. Accordingly, ICS was substantially redeveloped to yield
ICS Version 2, which uses dependency information in explanations and provides



instances for satisfiable formulas. The constituent decision procedures were also
reworked, particularly the real arithmetic procedure, which uses a new variation
on the Simplex algorithm and is of extremely high performance. New theoretical
insights relax the requirement for solvable theories in a Shostak integration and this
allows some elements of nonlinear real arithmetic to be added in a principled way;
ICS 2.0 provides only modest capability of this kind, but we plan to extend it in
future releases.

The theories decided by ICS 2.0 comprise ground (i.e., unquantified) real and in-
teger linear arithmetic with an incomplete extension to the nonlinear cases, equality
with uninterpreted function symbols, products (i.e., tuples) and co-products (i.e.,
disjoint sums), propositional calculus and propositional sets, and restricted forms
of lambda calculus, bitvectors, and arrays. The interface to ICS supports “online”
construction and querying of a logical context: that is, formulas can be asserted
and retracted in an incremental manner and checked for validity, satisfiability, or
unsatisfiability. A model or satisfying assignment can be generated for valid and
satisfiable contexts.

ICS 2.0 was released in November 2003. Its core decision procedures are imple-
mented in Objective CAML while its SAT solver is implemented in C++; binary
distributions are available for Linux (we develop it on RedHat 7.3), Sun Solaris (we
develop it on Version 2.7) and Mac OS X. It also runs on Windows under Cygwin
but we have not yet sorted out the licensing issues for that version. ICS appears as
a C library so that it can be linked to applications written in a variety of languages;
we also provide a simple text interface.

ICS is fast and scalable: on modest contexts of the kind that arise during in-
teractive theorem proving (e.g., PVS subgoals), it decides several thousand the-
orems a second, and for large examples of the kind that arise during automated
verification and computational biology, it routinely decides formulas whose rep-
resentation is several megabytes in size in some tens of seconds. ICS has sev-
eral competitors; these include SVC (http://chicory.stanford.edu/sSvVC/), CVC
(http://verify.stanford.edu/CVC/), and CVC Lite (http://verify.stanford.
edu/CVCL/), all from Stanford, and UCLID (http://www-2.cs.cmu.edu/ uclid/)
from CMU. The Stanford systems have similar architectures to ICS (i.e., they in-
tegrate separate decision procedures for their constituent theories), but UCLID is
completely different in that it encodes all its theories into propositional calculus
and uses off-the-shelf SAT solvers for the final search. ICS decides more theories
and has a richer interface than these other systems (in particular, it supports incre-
mental assertion and retraction) and on our benchmarks it is usually faster—often
much faster. A comprehensive benchmarking of these decision procedures was pub-
lished in 2004 [dMRO4] (the benchmarks, translators, and detailed results are avail-
able at http://www.csl.sri.com/users/demoura/gdp-benchmarks.html), and a
competition has been introduced by the Conference on Automated Verification
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(see http://www.csl.sri.com/users/demoura/smt-comp/). As a standalone SAT
solver, ICS is comparable in performance to zChaff (when the time taken to clausify
is taken into account).

2.3 SAL

Powerful new methods for automated analysis and verification have emerged since
PVS was first developed: symbolic and bounded model checking, predicate ab-
straction (whose inventors used PVS for the first implementation [SG97]), invariant
generation, and so on. These methods are specialized to specifications of certain
kinds of computational systems—typically state machines expressed as transition
relations. It is perfectly feasible to incorporate some of these methods as general
proof procedures in PVS (as is done for model checking [RSS95] and predicate ab-
straction [SS99]), but more automation is possible when the specification is known
to describe a state machine in a particular way. Again, it is perfectly feasible to
define a stereotypical style for specifying state machines within PVS and to develop
tools that recognize such specifications and provide special-purpose automation for
them: InVeSt [BLO9S8] does this.

However, we considered that there are advantages to defining a language specifi-
cally for state machines; we also wished to explore a style of analysis that combines
the capabilities of many different tools within an architecture that is more open
and modular than PVS. The idea behind the SAL architecture is that many tools
can cooperate in an analysis by iteratively transforming or enriching a common
representation of the specification under examination and its related artifacts: an
abstractor, for example, may transform a state machine into a simpler one that
preserves certain properties, while a reachability analyzer may enrich the state ma-
chine with a description of its reachable states, and a model checker may construct
a representation of a counterexample that a test case generator may later transform
into a concrete test case. The core of SAL, therefore, is its language for representing
state machines and their properties and related artifacts. The requirements we set
for this language were that it should be sufficiently rich that it can express different
styles of description and thereby serve as an intermediate representation for specifi-
cations originally written in other languages, sufficiently attractive that people will
want to write in it directly, and sufficiently parsimonious that analysis tools are not
burdened by unnecessary linguistic complexities.

The core SAL language supports the specification of transition relations (i.e.,
nondeterministic state machines), either as guarded commands or as (SMV-style)
invariant definitions, or a combination of the two. SAL transition relations are
packaged in parameterized modules that can be composed both synchronously and
asynchronously. Unlike most other state machine notations, SAL is not restricted
to finite data types: it supports reals, integers, and subtypes of these—in fact, it
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supports a full type system similar to that of PVS. As in PVS, certain subtype
applications may generate proof obligations (TCCs); however, those TCCs that
concern state variables need only be shown to be invariants, rather than statically
valid. Also, unlike other similar notations, SAL does not rely on simple static rules
(e.g., orderings on the state variables) to exclude combinational loops but generates
TCCs for this purpose. These and other attributes of the SAL language provide
flexibility and richness of expression beyond that available in other state machine
languages and make it fairly easy to translate into SAL, but correspondingly rather
difficult to translate out of SAL into more impoverished languages.

We originally intended to analyze SAL specifications using model checking tools
developed by others. However, our initial experiments [BGLT00] revealed that pro-
viding a symbolic model checker for full SAL (restricted to finite state) via trans-
lation to SMV (for example) is difficult: the amount of translation required from
guarded commands into SMV is such that one may as well extend the translation
a little and invoke the basic machinery of symbolic model checking directly. The
VIS symbolic model checker and its intermediate language BLIF-MV pose similar
problems as targets for translation from SAL. No other well-supported symbolic
model checkers were available at the time, and no bounded model checkers were
publicly available at all. Furthermore, Murg, our preferred explicit-state reachabil-
ity analyzer, which does provide guarded commands, had ceased to be supported.
Moreover, we realized that the decision-procedure/SAT solver integration in ICS
could provide a new kind of model checking (namely, bounded model checking for
infinite-state systems, which we call infinite bounded model checking), and that
certain applications of model checking (e.g., test case generation) would be real-
ized most powerfully if one could extend the model checker interface. For all these
reasons, we decided to develop our own model checkers for SAL.

The current SAL toolset provides explicit state, symbolic, bounded, infinite
bounded, and witness model checkers for SAL. Explicit state model checking (some-
times called “on the fly” model checking) is provided by SAL 1.0, which was released
in July 2002. SAL 1.0 is not simply a model checker, but rather a generic environ-
ment for state space exploration: it provides a rich API that allows many different
kinds of analysis to be programmed as simple scripts (in the Scheme programming
language) over this API. For example, a script to model check safety properties by
breadth first search is just 43 lines of Scheme. The main script supplied with SAL
1.0 performs Linear Temporal Logic (LTL) model checking by breadth-, depth, or
iterative-deepening depth-first search, with or without hash compaction (cf. “super-
trace” in Spin); others check for deadlocks, perform simulation, and draw a picture
of the statespace. Users can modify the scripts or write their own to perform tar-
geted search, or search-space reductions based on symmetry or partial orders. The
underlying state space exploration engine is quite efficient, and the Biichi automata
construction uses state of the art methods.

10



Explicit state model checkers receive less attention than symbolic and bounded
model checkers but they do have certain advantages. First, their performance de-
pends on the size of the statespace, not the transition relation: there are examples
whose transition relation is so large that a symbolic model checker cannot even build
the BDD that represents it, but whose state space (particularly under symmetry or
other reductions) is quite small and can be completely explored by an explicit state
model checker. Second, an explicit state model checker can always do something:
even when a state space is huge or is highly complex (e.g., with linked list data struc-
tures), an explicit state model checker can perform complete exploration to some
depth and will often find bugs that are not found by random simulation. The SAL
explicit state model checker can explore even infinite state systems to a specified
depth. Finally, it is easy to extract highly informative counterexamples to invalid
properties from an explicit state model checker.

However, explicit state model checkers are overwhelmed by large state spaces:
the practical limit is typically a few tens of millions of states. Symbolic and bounded
model checking will sometimes succeed on problems that are beyond the reach of an
explicit state model checker, and are often much faster even on problems that are
within its scope. Symbolic and bounded model checking for SAL are provided by
SAL 2.0, which was released in November 2003 (SAL 1.0 continues to be available,
but all its capabilities will eventually be integrated in SAL 2.x). All these model
checkers use LTL as their assertion language (via Biichi automata constructions),
with optimizations for the common special cases. The SAL symbolic and bounded
model checkers use common front end procedures that “compile” SAL down to flat-
tened representations as BDDs or satisfiability problems. These procedures perform
extensive optimizations including partial evaluation, common subexpression elimi-
nation, and cone of influence reduction (i.e., slicing).

The SAL symbolic model checker uses CUDD (see http://vlsi.colorado.edu/
“fabio/CUDD) as its BDD package. This is the same package used by NuSMV (see
http://nusmv.irst.itc.it/) and the performance of the SAL symbolic model
checker is comparable to that of NuSMV.

Unless it runs out of resources, the SAL symbolic model checker will either
verify a property or (for LTL formulas) produce a counterexample. The SAL
bounded model checkers are specialized to finding counterexamples, but also are
able to attempt verification of safety properties using k-induction [dMRS03]. The
basic bounded model checker for SAL handles only finite state systems and uses
propositional SAT solving. It is possible to select either GRASP (see http://
sat.inesc-id.pt/"~jpms/grasp/), zChaff (see http://www.ee.princeton.edu/
“chaff/zchaff.php), or ICS as the SAT solver; ICS usually provides the best
performance in this application. The infinite bounded model checker for SAL can
handle infinite state systems defined over the reals, integers, or other theories inter-
preted by its underlying decision procedure [dMRS02]. It is possible to select either
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SVC, CVC, CVC Lite, UCLID (see the links provided earlier), or ICS as the deci-
sion procedure; again, ICS usually provides the best performance in this application
(and note that some of the other decision procedures do not support all the theories
of ICS).

The modular construction of SAL 2.0 allows additional tools to be constructed
quite readily. Other SAL tools built in this way and available in SAL 2.0 include a
lightweight well-formedness checker (the full typechecker will be available soon), a
slicer, a “pathfinder” that generates random paths by bounded model checking, and
an interactive simulator based on the symbolic model checker. Unlike a traditional
simulator, the SAL simulator has the power of the symbolic and bounded model
checkers at its disposal and can be instructed, for example, to search all paths from
its current state to one leading to a state in which some given property is true.

Experience with SAL 1.0 led to some improvements in the design of the SAL
language that are incorporated in SAL 2.0.

SAL 2.1, which was released in January 2004, added the Witness Model Checker
to the repertoire of SAL model-checking tools. Witness model checking [SS03]is
a new approach that operates by explicitly constructing evidence in the form of
witnesses (for true properties) and counterexamples (for false ones). The witness
model checker works on full CTL, so that its evidence has the form of tree-like
structures (possibly with loops). The version of the model checker released in SAL
2.1 prints representative paths for some properties; the next release will include
a capability to browse paths interactively. The witness model checker operates
symbolically using the infrastructure of the symbolic model checker. Although the
witness model checker uses CTL and the other model checkers use LTL, the SAL
tools automatically convert formulas in the intersection of these two languages into
the form needed by the model checker concerned (thus, an LTL G property will
be interpreted as CTL AG for the witness model checker, and vice-versa for the
other model checkers). On formulas in this intersection, the witness model checker
typically operates at about half the speed of the symbolic model checker.

SAL 2.2, which was released in April 2004, provided numerous small enhance-
ments and bug fixes, and added the tool 1t12buchi, which draws a visual repre-
sentation of the Biichi automaton corresponding to a named property in a SAL
file.

SAL 2.3, which was released in July 2003, provided several performance enhance-
ments for the symbolic and bounded model checkers. The symbolic model checker
was updated to use the latest version of the CUDD BDDD package (CUDD 2.4.0),
and several options were added to allow more control over dynamic reordering of
the BDDs, and over the partitioning of the transition relation. Prioritized traver-
sal [FKZ100] was also added as an option: this divides the frontier in the symbolic
forward image computation into pieces and uses a variety of strategies to prioritize
the order in which the image computation is pushed forward on the separate pieces.
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Prioritized traversal is very effective for finding deep bugs in very large models.
The symbolic model checker is also now able to examine all the properties in a file
(or, optionally, just those that are invariants) in a single invocation. In the case of
invariants, it first computes the reachable states (which may be expensive), and is
then able to analyze each property in neglible time.

SAL 2.4, which will be released in late 2004 (but is already available for alpha
testing—contact us if you would like access to a pre-release copy) provides a high-
performace explicit state model checker. This is not only much faster than the
explicit state model checker of SAL 1.0, but it also operates on the full SAL 2
language and provides optimizations for symmetry reduction. The symbolic model
checker has additional strategies for prioritized traversal, and the user can provide
Scheme predicates to control BDD wvariable reordering. The perfomance of the
bounded model checker has been significantly improved, and it is now able to use the
siege (see http://www.cs.sfu.ca/ loryan/personal) and BerkMin (see http:
//eigold.tripod.com/BerkMin.html) SAT solvers.

2.4 Availability and Licensing

Binary distributions of our tools are freely available for noncommercial research
purposes, but under a license that preserves our commercial opportunities. Source
code is also available for noncommercial research purposes, but the licensing con-
ditions are a little more strict. Please visit http://formalware.csl.sri.com for
download instructions. To discuss commercial evaluation or licensing opportunities,
please contact Rushby@csl.sri.com.

We are committed to the continued development and support of our tools, and
to their free availability for noncommercial research purposes. However, SRI is a
not-for-profit research institute with neither an endowment nor philanthropic bene-
factors; all of our research is funded through grants, contracts, and licenses. The
climate for research funding has changed considerably in the past few years: many
major research laboratories have closed, downsized, or undergone drastic changes of
focus; several major tools for formal methods are no longer actively developed, others
never got beyond their first release. We do not intend to share these fates. Fortu-
nately, the technology of formal methods, as embodied in our tools, has now achieved
sufficient power, automation, and speed that it is feasible to imagine it delivering
value to real engineers—perhaps by generating test cases for Simulink/Stateflow or
model checking a UML design. Our licensing terms are intended to ensure that
we are able to develop commercial opportunities of these kinds that will help us
stay in business. We hope that all our users see the benefits to this and therefore
tolerate the minor inconvenience of clicking to acknowledge our licensing terms (for
binary distributions) or signing an agreement (for source code). Note that users

13


http://www.cs.sfu.ca/~loryan/personal
http://eigold.tripod.com/BerkMin.html
http://eigold.tripod.com/BerkMin.html
http://formalware.csl.sri.com

who have existing licenses do not need new ones and that the we have not changed
the arrangements for PVS.

Where we consider it appropriate, we do release material in open source form and
we host the QPQ repository for deductive software (see http://www.qpq.org). The
PVS Prelude was one of the first items added to QPQ and we may later contribute
more of the system.

3 Current Developments and Future Plans

The current releases of PVS (Version 3.1), ICS (version 2.0), and SAL (Version
2.1) provide very powerful capabilities. However, we continue to research new ways
to provide effective support for formal methods and are developing several new
capabilities that will be released in the next few months and years. In this section,
we outline some of the research directions that we pursuing and the new tools and
capabilities that we expect to release in the near future.

3.1 PVS

Our plans for PVS are to fully realize its existing capabilities by improving some
features and enhancing its interfaces. We also plan some extensions to the PVS
language and to the prover.

The PVS evaluator compiles a large fragment of PVS into executable Lisp code.
The evaluator in current versions of PVS provides an effective proof of concept
but has some limitations that are being removed by a reimplementation that will
be included in a forthcoming release. The reimplemented evaluator can handle
parameterized theories and performs more exact static analysis. The resulting code
executes faster, is cognizant of its TCCs to ensure soundness, and can be used in
proofs.

Several groups have integrated other tools with PVS (e.g., Maple [ADG101]), but
the process has been difficult and has often required our help. We are in the process
of better documenting the interfaces to PVS that can be used by external tools, and
the methods for using PVS as a backend to other tools. We will also describe how
to add new primitive rules to the prover (i.e., how the WS1S and model-check rules
are provided) and will document the API used by the PVS strategy language to
give access to terms. We expect the revised evaluator and extended documentation
to be released with a version of PVS in 2005.

In the longer term, we plan to provide an XML representation for specifications
and proofs; PVS will be able to import and export these and the structured rep-
resentation should make them easier for other tools to process. We also plan to
specify the API used by the strategy language in PVS itself, then use the evaluation
capability of PVS to allow strategies to be written as PVS functions over this API
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specification. We call this capability “PVS in PVS” and believe that it will greatly
simplify the development of strategies and improve their documentation. It will also
allow strategies to be typechecked and opens the door to computational reflection,
whereby evaluation of verified PVS functions can be used to extend the prover in
an assuredly sound manner.

Also in the longer term, we plan to extend the PVS language to allow polymor-
phism. This will be provided first at the declaration level, and later at the expression
level. We also plan to add functors: in conjunction with co-tuples, which are al-
ready present, these will provide full support for co-algebras and co-datatypes. (We
previously tried a different approach to co-datatypes and co-algebraic constructions
but withdrew it after some experimentation in favor of this method).

These longer term plans are currently unfunded, but we hope it may be possible
to undertake them within the next couple of years. We have also developed a the-
oretical basis for integrating structural subtyping (the kind used in object-oriented
programming languages) with the predicate subtyping of PVS, but do not currently
plan to implement this.

The current version of PVS can use ICS as its decision procedure but makes only
modest use of its capabilities. During 2005, we plan to extend the proof commands
in PVS to use the full capabilities of ICS (e.g., its integration with propositional
SAT, and its ability to produce proof objects and counterexamples). As ICS is
itself extended (e.g., with quantifier elimination), its new capabilities will also made
available in PVS. We have also developed a very effective decision procedure for
nonlinear real arithmetic [Tiw03a] that is used in our work on hybrid systems. We
plan to make this available in PVS, either directly, or by incorporating its capabilities
in ICS.

3.2 ICS

Our benchmarks indicate that ICS has the highest performance of decision proce-
dures in its class [IMRO04]; it also has the richest interface and decides the largest
collection of theories. We plan to further increase the speed of ICS, the number and
character of the theories that it decides, and the range of its capabilities.

ICS integrates classical decision procedures with a SAT solver; its current per-
formance derives in large part from optimizing each component to cooperate with
the other. Our measurements indicate that further performance improvements can
be achieved with even tighter integration. For example, one of the ways in which
SAT solvers achieve high performance is by using the unit clause rule to propagate
constraints, but this is hampered if constraints known to the decision procedure
are made available to the SAT solver only infrequently. We have had some success
with an adaptive strategy that changes the frequency of interaction as search times
increase, but for the longer term we intend to explore ways for making propagation
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more efficient by increasing the information shared between the decision procedure
and SAT solver.

The overall performance of ICS is very sensitive to the quality of the “explana-
tions” (of unsatisfiability) that the decision procedures return to the SAT solver.
The explanations currently generated contain redundancies that reduce their effec-
tiveness. It is possible to prune the explanations after they are generated but this
incurs its own cost and pays off only on large examples. Again, we have had some
success with an adaptive strategy that prunes when certain thresholds are exceeded,
but for the longer term we are exploring new ideas for the direct generation of parsi-
monious explanations. We will also consider adding the capability to generate proof
objects.

For bounded integer arithmetic, we have found that the SAT solver operating on
a bitvector encoding is more efficient than the arithmetic decision procedures. This
is in part due to improved constraint propagation as mentioned above, and in part
due to the fact that case analysis is often required—and this is performed by the
SAT solver. We intend to generalize the SAT solver to a finite domain solver; when
the decision procedure discovers that a variable is constrained to a finite range, so
responsibility for managing its constraints will shift to the finite domain solver.

In model checking, we desire a counterexample when a property violation is
detected. ICS has the ability to produce satisfying instances, and the SAL infinite
bounded model checker uses this to provide counterexamples. To provide the most
information, these counterexamples are expressed in terms of constraints. However,
for applications such as metric planning and test case generation it is necessary to
construct concrete instances from the constraints. The data structures of ICS make
it possible to extract the least or the greatest (and hence a middle) value satisfying
given sets of constraints and we intend to extend ICS and SAL so that it is easy to
produce such concrete satisfying instances. We will extend the XML representation
used in SAL to incorporate additional artifacts such as counterexamples and test
cases.

The implementation of ICS is designed for research and development convenience
rather than raw performance: the SAT solver is written in C++ while the decision
procedure is in OCaml; as the optimum algorithmic strategies become clear, we
will move to a more efficient implementation. As we develop its algorithms and
implementation and continue to benchmark its performance, we are confident that
ICS performance will steadily improve and remain well ahead of its competitors.

The SAL infinite bounded model checker can use a number of decision proce-
dures and provides a convenient way to benchmark their performance on this type
of application. We intend to develop representative examples from SAL and a va-
riety of other application areas and to cooperate with other groups in establishing
reliable performance benchmarks for decision procedures, similar to what the SAT
community has done.
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In addition to increasing its speed, we intend to expand the number of theo-
ries that ICS decides. Planned and possible extensions include several arithmetic
theories, such as interval arithmetic, complex numbers, nonlinear arithmetic, mod-
ular arithmetic, solvable Diophantine equations, and continued fractions. There are
a couple of research challenges here. First, several of these theories are not dis-
joint (i.e., they share constants and function symbols) so the standard methods for
combining decision procedures do not apply. Second, some of these theories (e.g.,
nonlinear arithmetic) have very high complexity and are usually implemented in an
incomplete manner. This is not a problem in interactive applications (e.g., in PVS
it just means that some true subgoals are not discharged automatically and require
interactive guidance) nor in applications such as automated abstraction (where in-
completeness results only in the abstraction being coarser than necessary), but for
infinite bounded model checking in SAL, for example, it can result in invalid coun-
terexamples, which may be unacceptable to users. Experimentation is needed to
discover how best to manage incomplete decision procedures in different application
contexts.

Possible extensions to nonarithmetic theories include general datatypes (cur-
rently only functors built up from product and co-product are supported), finite
fields, and decidable or partially decidable fragments of graph theory, pointers,
quaternions, and elliptic curves. We may also contemplate incorporation of user-
provided decision procedures, or synthesis of decision procedures for user-provided
theories. Some of these might not be Shostak theories, so the method of combin-
ing decision procedures may be extended to incorporate the method of Nelson and
Oppen.

ICS decides ground, that is to say unquantified, theories. An extension to quan-
tified theories will be highly attractive for many applications. Unfortunately, while
the combination of decidable ground theories is decidable, this may not be so for
quantified theories: for example, the combination of quantified integer linear arith-
metic (Presburger arithmetic) with equality over uninterpreted function symbols is
undecidable. However, although the full combination is undecidable, the circum-
stances that trigger incompleteness are sharply defined and quite rare in practice.
We experimented with a prototype quantifier elimination procedure in previous ver-
sions of PVS and plan to build on this experience to add quantifier elimination
to ICS. As mentioned earlier, incomplete procedures are adequate for some appli-
cations but problematic to others and experimentation is needed to find the best
approach.

ICS provides deductive capability that can be embedded in other applications
(such as compilers or planners). Many of these applications will employ full first or
higher order logic, and will have some method for defining functions and supplying
axioms or lemmas. Although we do not intend to extend ICS into a complete
prover, we do plan to provide capabilities that reduce the amount of “glue logic”
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that application developers will need to write to adapt ICS to their domain. These
include Skolemization, rewriting (which can automate expansion of definitions and
application of lemmas), and proof search. The matching used in rewriting and
unification used in proof search will both be extended to operate modulo the decided
theories of ICS.

3.3 SAL

The most urgently required addition to the SAL toolkit is a full typechecker. The
lightweight typechecker that is currently available operates like the typechecker of
a programming language: it checks that functions and operators are applied to
arguments of the correct types, but it does not perform the deeper checks needed
to ensure soundness (some of which require generation and proof of TCCs). We
expect to release the full SAL typechecker in early 2005; it is implemented in a
modified version of the PVS Lisp environment and uses many well-tried and tested
mechanisms from PVS.

The full typechecker will generate auxiliary SAL files containing TCCs that must
be discharged to ensure full type correctness of its parent context. There must be
some mechanism that keeps track of the relationship between parent contexts and
their TCCs, checks that they are current, and monitors the status of proofs (rather
like the Proofchain Analyzer in PVS). We anticipate adding additional tools to SAL
that will generate other auxiliary files containing abstractions, invariants, analysis
results, and so on. We refer to the mechanism that manages the association between
these different tools and the various files and types of information that pass between
them as the SAL Tool Bus. Tools attach to the tool bus by publishing the types of
the information they consume and produce and the logical relations between these.
The latter have the character of proof rules. For example, if a SAL specification is
associated with an “ok” output from the typechecker and all its TCCs are associated
with “proved” outputs from a proof tool, then the specification is considered “fully
typechecked.” The tool bus performs evidence management using these proof rules
(e.g., backward chaining can be used to bring an analysis up to date when an
underlying file is changed).

We expect to release a preliminary version of the tool bus at the same time
as the full typechecker in early 2005, but we also expect its capabilities to evolve
considerably in later releases and that the concepts of tool bus and of evidence
management will provide powerful organizing principles.

Once the tool bus is available, we plan to provide a tool for predicate and
data abstraction based on that in PVS [SS99] and one for invariant generation
and strengthening based on fixed point calculations [TRSS01] and another based on
model checking methods [BGL100]. We will also provide a translator from SAL to
PVS. We expect these tools to become available during 2005.
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We have developed a very powerful method for analysis of hybrid systems by
automated construction of conservative discrete abstractions [TK02, Tiw03b]. This
method has successfully analyzed systems that are significantly larger (have more
continuous variables) than other methods [GTT03]. The systems are specified in
an extension to SAL that we call “HybridSAL.” We plan to make this extension to
SAL and its associated method of hybrid abstraction available in 2005. We will also
make available a similar extension for timed systems [Sor(2]. As well as additions
to the SAL language, we will also identify sublanguages and provide tools that are
specialized to these. For example, we believe it is feasible to construct a translator
to NuSMYV for the SAL sublanguage that excludes guarded commands.

We encourage others to develop translators to SAL from their preferred input
notation. The Veritech project at The Technion (see http://www.cs.technion.ac.
il/Labs/ssdl/research/veritech/) has developed translators from several nota-
tions into their own core language and we anticipate a translator from that into SAL.
We ourselves are developing a translator from the Simulink/Stateflow notation of
Matlab into SAL; we have a formal semantics for a well-behaved subset of Stateflow
and a translator from that subset to SAL. We anticipate enlarging the translation
to include a subset of Simulink once HybridSAL is available.

In addition to analysis of hybrid systems specified in Simulink/Stateflow, we are
interested in automated generation of test cases for them. It is well known that unit
test cases can be constructed from the counterexamples produced by model check-
ers. Infinite bounded model checking is ideal for this (because it handles arithmetic
constraints properly and is specialized to the generation of counterexamples). The
infinite bounded model checker generates symbolic counterexamples and the trans-
lation of these into concrete test cases can be accomplished elegantly through the
interaction of several tools attached to the SAL Tool Bus. We believe it is possible
to generate more efficient test sets by augmenting the interface to the SAL infinite
bounded model checker so that it generates “tours” rather than single traces.

Test generation above the unit level (e.g., integration tests) requires synthesis
of a reactive test program rather than construction of test inputs, while hardware-
in-the-loop tests require consideration of the plant as a hybrid system. We plan
to approach these problems though construction of a general tool for controller
synthesis in SAL.

Although our tools are among the most powerful available, the raw problems
for which analysis is desired are often too large to be processed directly: hardware
designs may have thousands of latches where a few hundred is the limit for model
checking, and hybrid systems may have hundreds of continuous variables where a few
tens is the limit for hybrid abstraction. We regard the problem of model extraction
as one of the most interesting and challenging facing practical application of formal
methods and we plan to develop effective methods for doing this based on various
kinds of slicing and automated assume-guarantee reasoning. In hybrid systems, for
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example, a particular property may depend strongly on only a few variables and all
others may be assumed (and later guaranteed) to be bounded in value or change of
value.

4 Conclusion

We hope this overview of our three tools, PVS, ICS, and SAL, clarifies the relation-
ships and synergies between them. Each tool serves a different purpose: PVS is for
interactive theorem proving over a wide range of application domains; SAL is for
automated analysis of computational systems specified as transition relations; and
ICS is for embedded deduction. However, there are strong links between them: ICS
provides a deductive core for both PVS and SAL; PVS and SAL share similar type
systems and a translator from SAL to PVS will soon be forthcoming so that a single
analysis can draw on the capabilities of both tools. The forthcoming SAL Tool Bus
will provide an open environment in which to manage large analyses that call on
the capabilities of many tools.

All three tools represent the state of the art in their respective fields. PVS
provides a massive range of capabilities and an environment for interactive theorem
proving that most users find highly productive. SAL provides an attractive modeling
language and is alone among model checking environments in supporting all four
kinds of model checker (explicit, symbolic, bounded, and infinite-bounded). Its
symbolic and bounded model checkers provide state-of-the-art performance, while its
infinite bounded model checker is unique. Among decision procedures for embedded
deduction, ICS has the richest interface, decides the largest class of theories, and
delivers the highest performance.

We are committed to the maintenance and continued development of all three
tools. The model checkers of SAL will soon be augmented by tools for predicate,
data, and hybrid abstraction, and the performance and capabilities of ICS will
continue to grow.

The longer term evolution of our tools will be guided by our experience in using
them and by feedback from you, our users. We hope this document encourages,
perhaps even excites, current and new users, and inspires you to experiment with
some of our newer tools and with the newer capabilities of older ones. We are always
interested to hear of your experiences, good and bad, with our tools and to receive
feedback and suggestions for improving them.
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