
Invited paper presented at the CAV Workshop Fun With Formal Methods, St.
Petersburg, Russia, 13 July 2013.

The Ontological Argument in PVS∗

John Rushby
Computer Science Laboratory

SRI International, Menlo Park CA USA

Abstract

The Ontological Argument, an 11th Century proof of the existence of God,
is a good candidate for Fun With Formal Methods as nearly everyone finds the
topic interesting. We formalize the Argument in PVS and verify its correct-
ness. The formalization raises delicate questions in formal logic and provides
an opportunity to show how these are handled, soundly and efficiently, by the
predicatively-subtyped higher-order logic of PVS and its mechanized support.
The simplicity of the Argument, coupled to its bold conclusion, raise interest-
ing issues on the interpretation and application of formal methods in the real
world.

1 Introduction

The Ontological Argument is a proof of the existence of God. This is a topic that
almost everyone, believer and unbeliever alike, finds deeply interesting. Formulation
and verification of the Argument in a mechanized theorem prover is therefore an
excellent candidate for Fun With Formal Methods. Furthermore, the formalization
raises subtle issues in mathematical logic and thereby serves as a useful pedagog-
ical vehicle to introduce students to these issues and how they are resolved in a
mechanized system such as PVS.

Bertrand Russell observed “The Argument does not, to a modern mind, seem
very convincing, but it is easier to feel that it must be fallacious than it is to find out
precisely where the fallacy lies.” He also reported earlier exclaiming “Great God in
Boots! The Ontological Argument is sound!” Since PVS joins Russell in assuring
us that the Argument is sound, but most will agree that its conclusion is troubling,1

we are moved to examine its premises and the interpretation of its conclusion with
special care and interest. Formal methods are often advocated in the assurance of

∗This research was supported by SRI International.
1This is not about atheism: many of those who have analyzed and criticized the Ontological

Argument were devout believers; rather, the question is whether something as ineffable as the
existence of God can be subject to a merely a priori demonstration.

1



Thu‘ even the fool is convinced that something than which nothing
greater can be conceived is in the understanding, since when he hears
this, he understands it; and whatever is understood is in the
understanding. And certainly that than which a greater cannot be
conceived cannot be in the understanding alone. For if it is in the
understanding alone, it can be conceived to exist in reality also, which
is greater. Thu‘ if that than which a greater cannot be conceived is in
the understanding alone, then that than which a greater cannot be
conceived is itself that than which a greater can be conceived. But surely
this cannot be. Thu‘ without doubt something than which a greater
cannot be conceived exists, both in the understanding and in reality.

Figure 1: The Ontological Argument from Anselm’s Proslogion II
(translation by William Mann, quoted from [15])

critical systems, where the larger framework of argument in support of certification
is generally referred to as a Safety or Assurance Case [4, 20]. A question that then
often arises is “what is the difference between a formal verification and an assurance
case?” to which part of the answer is that formal verification provides assurance that
its conclusion follows logically from its premises, while the (rest of the) assurance
case examines the credibility of the premises and the real-world interpretation of
the formal conclusion. Thus, the Ontological Argument provides a paradigmatic
illustration of this difference between formal verification and a complete assurance
case.

The Ontological Argument was first formulated in the year 1078 by St. Anselm
of Canterbury in his Proslogion, and it has been an object of study and dispute
ever since. Many of the great philosophers and logicians have written on the topic,
including Aquinas, Descartes, Leibniz, Hume, Kant (who gave it the name we use
today), and Gödel [15].2 An English translation of the original presentation appears
in Figure 1.

More recently, Oppenheimer and Zalta made a careful study of the logic used in
the Ontological Argument and gave a formalized proof (by hand) [12]. Later, they
mechanically verified the Argument using the Prover9 first-order theorem prover
[14], from whose computations they extracted a simplified form of the argument,
though the validity of their mechanization is disputed [6].

In this paper, I formally verify the Ontological Argument in the PVS verification
system [17]. My formulation is based directly on Oppenheimer and Zalta’s informal
presentation, but its rendition in the higher-order, predicatively subtyped, logic of

2I am not a philosopher and am not familiar with the primary sources, so I cite just the secondary
sources I found useful.

2



PVS raises interesting topics concerning definite descriptions, existence of constants,
and quantification over possibly empty types.

The following section introduces some necessary preliminaries—in particular,
the formalization of definite descriptions—and is followed in Section 3 by the for-
malization and verification of the Ontological Argument itself. Section 4 discusses
the interpretation of the formal specification and relates this to similar questions in
assessment of formal verifications in support of arguments for safety or security.

2 Preliminaries

A modern rendition of Anselm’s argument is given in the following section as Figure
2 on page 8. Our goal is to formalize and verify this in PVS. Inspection of the
Argument in Figure 2 shows that it revolves about “the greatest thing.” In logic,
an expression of the form “the such and such,” or more formally “the x such that
P (x)” is called a definite description. Early in the history of formal logic there was
much debate about how to render definite descriptions formally and how to deal
with expressions containing definite descriptions when there is no “such and such.”
The canonical example of such a non-referring definite description is “the present
King of France” and the larger problem concerns the status of expressions such as
“the present King of France is bald”: is this true, false, or inadmissible? If either of
the first two alternatives is chosen, then what about “the present King of France is
not bald” (does it negate the previous valuation?).

Russell in 1905 gave a treatment for definite descriptions that is widely, though
not universally, accepted today. He argued that “the present King of France is bald”
should be interpreted as the conjunction of the following three claims.

1. There exists an x that is the present King of France,

2. Every x, y that is a present King of France satisfy x = y
(i.e., the present King of France, if it exists, is unique),

3. Every x that is a present King of France, is bald.

In this reading, we see that “the present King of France is bald” is false, since the
first of the three conjuncts is false; for the same reason, “the present King of France
is not bald” also is false.

We would like to refine this rather contextual reading into one that is more
compositional, so we seek a way to represent the definite description standing alone.
Russell used the notation ιx:P (x) for the definite description “the x such that P (x),”
where P is some predicate, and required it to satisfy the first of the three conjuncts
above, that is: P (ιx:P (x)) (i.e., ιx:P (x) is a witness to ∃x:P (x)), with the second
conjunct as a side condition.

3



A compositional reading of “the present King of France is bald” could then have
the form ∀y: (y = ιx:P (x)) ⊃ Q(y), where P is the predicate “is the present King
of France,” and Q is the predicate “is bald”. A more succinct alternative (when
ιx:P (x) is well-defined and unique) would be Q(ιx:P (x)). We now have to decide
what to do when, as here, ιx:P (x) fails to denote (i.e., there is no x such that P (x)),
or the side condition fails (i.e., there is more than one such x). One resolution is to
say that expressions such as Q(ιx:P (x)) are inadmissible unless there is a unique x
such that P (x), and the issue then becomes one of enforcing such side conditions.

Now that we understand the general issue, let us see how this is handled in
PVS. PVS is a higher-order logic (that is to say, functions can take functions as
arguments and return them as values, and quantification can extend over functions).
Higher-order logics require a typing discipline to ensure consistency, and PVS en-
riches the standard “simple” type theory of higher-order logic by allowing dependent
types and predicate subtypes (it also supports structural subtypes). Typechecking
in PVS is undecidable in general (i.e., it requires theorem proving), but the unde-
cidable constructions are few and their impact is local, so the majority of its type-
checking is algorithmic. When a circumstance is encountered that is algorithmically
undecidable, the PVS typechecker attaches a proof obligation called a Typecheck
Correctness Condition (TCC) to the theory concerned and no development involv-
ing that theory is considered complete (by the PVS tools) unless all its TCCs have
been discharged. One circumstance that causes a TCC to be generated is when a
term of one type is supplied where a subtype is expected (e.g., in x/y where x and
y are numbers, y is expected to be in the subtype of numbers that are nonzero);
another is when a type that may be empty is supplied where a nonempty type is
required. Predicate subtypes allow much of a specification to be embedded in its
types; this avoids cluttering the main development with side conditions and makes
information available in a way that an automated theorem prover can easily locate
and use. See [22] for several examples illustrating the utility of predicate subtypes.

In higher-logic, predicates are just functions with range type Boolean (written as
bool in PVS), and sets are identified with predicates, with setof[T] and pred[T]
simply being different names for the same type, namely [T -> bool]; similarly,
member(x, A) and A(x) are synonyms in PVS. It is easy to specify the higher-
order predicates empty?, nonempty?, and singleton? (by convention, predicates
in PVS generally have names ending in ?) that indicate whether a set is empty,
nonempty, or has exactly one member. A predicate name enclosed in parentheses
denotes the corresponding subtype, so that (nonempty?) and (singleton?) specify
those subtypes (of sets) that are nonempty, or singletons. Definite descriptions are
then specified as a function the(P), where P is required to be of the singleton
subtype, whose range type is (P); any use of this function will generate a TCC that
requires singleton?(P) to be proved for the argument P. In PVS, these concepts
are specified as follows.

4



Russell [T: TYPE]: THEORY
BEGIN

x, y: VAR T
A: VAR setof[T]

empty?(A): bool = (FORALL x: NOT A(x))

nonempty?(A): bool = NOT empty?(A)

singleton?(A): bool = (EXISTS (x:(A)): (FORALL (y:(A)): x = y))

the(P: (singleton?)): (P)

END Russell

This formal specification should be self-explanatory (one of the design goals of PVS
is that it should closely correspond to mathematical vernacular). Observe the use
of predicate subtyping in the definition of singleton?: the construction EXISTS
(x:(A)): ... means, “there exists an x of type T satisfying the predicate A(x) such
that . . . ” More interestingly, the declaration of the says that it takes a singleton set
P as its argument and returns a member of that set as its value. Observe that this is
not a definition for the (i.e., there is no = introducing a “body” for the function, in
the way there is for empty? etc.); it merely specifies its type. Of course, the typing
constraints are such that there is only one possible interpretation for the function
and this provides an implicit definition.

When we typecheck the theory Russell, PVS reports that is has generated a
TCC which, on inspection, is the following (% symbols introduce comments in PVS).

TCC
% Existence TCC generated (at line 14, column 2) for

% the(P: (singleton?)): (P)

the_TCC1: OBLIGATION EXISTS (x: [P: (singleton?) -> (P)]): TRUE;

The explanation for this TCC is that our declaration for the is asserting existence
of a constant (i.e., a function) of the higher type [P: (singleton?) -> (P)] and
we need to be sure this type is nonempty, otherwise we have an inconsistency. (An
example of an empty function type is one whose domain is empty but whose range is
nonempty; observe that the function type whose domain and range are both empty
is not itself empty: it has the empty function as a member.) Intuitively, it seems
easy to discharge this TCC: the set P is a singleton and therefore nonempty, so
any function that returns a member of this set will demonstrate nonemptiness of
the type. The difficulty in constructing this proof is that we need a name for “a
member of this set” and that is closely related to what we are trying to specify.

5



This reasoning is on the right track, however. Definite descriptions are closely
related to “choice functions”; given a nonempty set, a choice function returns some
member of the set. We can specify this as follows.

choose(P: (nonempty?)): (P)

Observe that this declaration is the same as the, except its domain is merely required
to be nonempty? rather than singleton?. Given this declaration, we can discharge
the TCC1 by the following PVS proof commands.

Proof Script
(inst + "LAMBDA (A: (singleton?)): choose(A)")
(grind)

The first of these instantiates the variable x in the TCC by the function

LAMBDA (A: (singleton?)): choose(A),

and the second invokes one of PVS’s more powerful general-purpose proof strategies.
This discharges the TCC from the definition of the, but the invocation of choose

introduces one of its own.
TCC

% Existence TCC generated (at line 10, column 2) for
% choose(p: (nonempty?)): (p)

choose_TCC1: OBLIGATION EXISTS (x: [p: (nonempty?) -> (p)]): TRUE;

This poses the same difficulty as the TCC for the, namely the problem of con-
structing a name for the function that provides an existential witness that this
function type is nonempty. We overcome this difficulty in a similar way to that used
before: we regress to a more primitive kind of choice function.

Hilbert defined a function he called ε and that we will call epsilon that is a
choice function for general (i.e., possibly empty) sets: if its set argument is nonempty,
it returns a member of that set; otherwise, it returns some arbitrary value of the
base type for the set. Of course, the base type must be nonempty, and we can
ensure this by defining epsilon within a theory whose parameter is required to be
nonempty, as follows.

epsilons [T: NONEMPTY_TYPE]: THEORY
BEGIN

x: VAR T
p: VAR setof[T]

epsilon(p): T

epsilon_ax: AXIOM (EXISTS x: p(x)) => p(epsilon(p))

END epsilons

6



Because T is known to be nonempty, the definition of epsilon does not require
a TCC to establish nonemptiness of its function type [setof[T] -> T]; however,
whenever the epsilons theory is used, a TCC will be generated if necessary to
establish nonemptiness of the instantiation for its type parameter.

We can now discharge choose TCC1 by the following proof.

Proof Script
(then (inst + "LAMBDA (A: (nonempty?)): epsilon(A)") (grind))
(then (rewrite "epsilon_ax[T]") (grind))

The first line tells PVS to use the specified instantiation, then apply grind to
any subgoals. The instantiation causes a TCC to be generated within the proof
to ensure A(epsilon[T](A)) (this is due to the range type specified for choose);
grind alone cannot prove this, so the next line instructs the prover to rewrite with
epsilon ax[T], followed by another grind to clean up.

We have now succeeded in specifying definite descriptions in PVS as the func-
tion the, and have discharged all its attendant TCCs. Along the way, we have also
defined the independently useful choice functions choose and epsilon. This might
all seem a moderately difficult endeavor before we even get to the Ontological Argu-
ment itself but, in fact, all this work has already been done and is incorporated in
the PVS “Prelude,” which is a standard library of PVS specifications and theorems
that is built into the system. The epsilons theory is one of those supplied in the
Prelude, and the definitions we presented in the theory Russell are actually just
part of a Prelude theory called sets. Large tracts of logic are defined in the Prelude,
and many other branches of mathematics are formalized in other PVS libraries that
are available from the website http://pvs.csl.sri.com.

Before we leave the topic of definite descriptions, there is a related issue that
needs to be explained. In classical first-order logic, all quantification ranges over
some domain of discourse and all terms used in instantiations or generalizations
are assumed to be in this domain. Of course, definite descriptions challenge this
assumption because they may fail to denote. For example, starting from the identity
X = X, where X is some constant, we can obtain the theorem (∃a: a = X) by
existential generalization. If X abbreviates “the present King of France,” then we
have just proved that there is a King of France!

There have been attempts to construct variants of first-order logic that address
this difficulty; they are called “Free Logics” (because they are logics “free of exis-
tence assumptions. . . ” [11]). Free Logics generally introduce an explicit “existence”
predicate E! (not to be confused with ∃!, which is used for uniqueness) and ad-
just the quantifier rules appropriately. Oppenheimer and Zalta’s examination of the
logic of the Ontological Argument [12] uses a Free Logic to manage complications
due to possibly nondenoting definite descriptions. However, no first-order theorem
prover automates Free Logic, nor provides definite descriptions, so Oppenheimer and
Zalta’s computational exploration with Prover9 uses classical first-order logic [14]

7



and these delicate issues are dealt with informally outside the system, and beyond
the reach of automated checking. Oppenheimer and Zalta’s examination of the de-
ductions performed by Prover9 showed that very little of their formalization was
actually used and they were then able to produce a much reduced formalization
that Prover9 still found adequate. This led them to believe they had discovered a
simplification to the original Argument that “not only brings out the beauty of the
logic inherent in the argument, but also clearly shows how it constitutes an early
example of a ‘diagonal argument’ used to establish a positive conclusion rather than
a paradox.” Garbacz [6] disputes this claim and observes that the simplifications
flow from introduction of a constant (God) that is defined by a definite description;
in the absence of definedness checks, this asserts existence of the definite description
and bypasses the premises otherwise needed to establish that fact.

In PVS, these issues of definedness, existence of constants, and quantification
over possibly empty domains are addressed soundly by its logic and enforced by its
automation. Quantification in PVS is over types, which may be empty: universal
quantification over an empty type yields TRUE, and existential quantification yields
FALSE (these are standard rules of higher-order logic). And as we saw in construction
of the definite description and choice functions in PVS, TCCs are generated as
necessary to ensure that terms denote and that constants are not asserted for empty
types.

3 The Ontological Argument in PVS

A modern rendition of Anselm’s Ontological Argument is shown in Figure 2. Our
goal is to formalize and verify this in PVS.

1. We can conceive of something than which there is no greater

2. If that thing exists only in the mind and not in reality, then we can conceive
of a greater thing—namely, something that does exist in reality

3. Therefore either the greatest thing exists in reality or it is not the greatest
thing

4. Therefore the greatest thing necessarily exists in reality

5. That’s God!

Figure 2: Modern Rendition of The Ontological Argument

The first step is to formalize the opening line “We can conceive of something
than which there is no greater.” This clearly requires some base type of “things”

8



or, as we prefer, beings and an ordering relation > on this type. The claim then
is that we can conceive of a maximal element under this ordering. There are two
issues here: the properties required of > to ensure there is a maximal element, and
the notion “can conceive of.”

Perhaps surprisingly, Oppenheimer and Zalta discovered that > does not need
to be a true ordering relation, it merely needs to have a property they call “con-
nectedness,” defined by

∀x, y: x > y ∨ y > x ∨ x = y.

This property is also called trichotomy, and is defined under the related name
trichotomous? in the PVS Prelude. Next, we define the set greatest comprising
all beings that are maximal under this relation (i.e., the set of just those beings
than which there is no greater); it could have many members, or be empty, or be a
singleton. These considerations lead to the initial PVS specification shown below.

ontological: THEORY
BEGIN

beings: TYPE

x, y: VAR beings

>: (trichotomous?[beings])

greatest: setof[beings] = { x | NOT EXISTS y: y>x }

END ontological

This specification should be self-explanatory; the only novelty is use of set no-
tation to define greatest. This is merely a syntactic variation on the notation we
have seen before: the following specification would be entirely equivalent.

Alternative
greatest(x): bool = NOT EXISTS y: y>x

Typechecking this specification generates a TCC requiring us to establish that
the type asserted for the function > is nonempty.

TCC
% Existence TCC generated (at line 8, column 0) for

% >: (trichotomous?[beings])

greaterp_TCC1: OBLIGATION EXISTS (x: (trichotomous?[beings])): TRUE;

This is easily discharged by exhibiting the relation that relates everything to every-
thing.

9



Proof Script
(inst + "LAMBDA (x,y: beings): TRUE")

Next, we want to specify that we “can conceive of” “the greatest,” where the
latter is a definite description that can be written in PVS as the(greatest). Op-
penheimer and Zalta introduce a predicate C to represent “can conceive of” but this
seems unnecessary: merely establishing that the(greatest) is well-defined seems
sufficient.

The set greatest comprises just those beings than which there is no greater; as
we noted before, this set could have many members, or be empty, or be a singleton.
If we simply append mention of the(greatest) to the PVS specification shown
above, PVS will force us to prove a TCC to establish that greatest is, in fact, a
singleton. Nothing specified so far requires this to be true. Oppenheimer and Zalta
introduce a Premise 1 at this point which, purged of its mention of the predicate
C, would be expressed in PVS as follows.

Alternative
Premise_1: AXIOM EXISTS x: NOT EXISTS y: y > x

This is equivalent to asserting nonemptiness of greatest and we consider it more
perspicuous to state it in this way, as the axiom P1 in the following continuation of
the PVS specification given above.

P1: AXIOM nonempty?(greatest)

P1a: LEMMA singleton?(greatest)

the_greatest: beings = the(greatest)

The lemma P1a is easily proved from P1 by expanding definitions, and applying
information recorded in predicate subtypes (including, crucially, trichotomy of >).
Given P1a, it is trivial to discharge the TCC arising from the definite description
defining the greatest.

We now turn to the next line of the Ontological Argument, which makes ref-
erence to things (or beings) that exist “in reality.” We cannot use the existential
quantifier ∃ for this purpose because that has purely logical import (i.e., whether
some value in the domain of quantification has a specified property). Oppenheimer
and Zalta use the existence predicate E! of Free Logic for this purpose in their infor-
mal examination [12], and an uninterpreted predicate Ex1 in Prover9 [14]. We also
introduce an uninterpreted predicate for this purpose, but name it really exists.
We use this to formalize the part of the argument that states that if the(greatest)
does not really exist, then there is a greater thing (intuitively, something that
does really exist). Oppenheimer and Zalta state this directly as their Premise 2,
which would be rendered in PVS as follows.

10



Alternative
Premise_2: AXIOM (NOT really_exists(x)) => EXISTS y: (y > x)

However, for reasons that are explained in Section 4, we prefer to use a stronger
premise, which we break into two parts: one axiom that asserts there is some being
that really exists, and another that asserts that beings that really exist are
> than those that do not (this is essentially the formulation used by Barnes [2]).
With these axioms, we can prove the conclusion of the Argument, namely, that
the(greatest) really exists

someone: AXIOM EXISTS x: really_exists(x)

reality_trumps: AXIOM (really_exists(x) AND NOT really_exists(y)) => x>y

God_exists: THEOREM really_exists(the(greatest))

The proof of this THEOREM, which incorporates steps 3 and 4 of the Argument in
Figure 2, is just ten routine steps in PVS: cite the axioms, expand definitions, and
use predicate subtypes.

Although PVS has now verified the theorem God exists, we need to be sure
all its TCCs and lemmas have been discharged. We can check this with the PVS
Proof Chain Checker, which reports that the verification is, indeed, complete and
generates the following list of dependencies.

Proof Chain
ontological.God_exists has been PROVED.

The proof chain for God_exists is COMPLETE.

God_exists depends on the following proved theorems:
ontological.God_exists_TCC1
ontological.P1a
ontological.greaterp_TCC1

God_exists depends on the following axioms:
ontological.P1
ontological.reality_trumps
ontological.someone

God_exists depends on the following definitions:
ontological.greatest
orders.trichotomous?
sets.empty?
sets.member
sets.nonempty?
sets.singleton?

11



Before we declare victory, there is one more item to attend to. We have used three
axioms, and these could have introduced inconsistencies that render the verification
nugatory. PVS guarantees the soundness of constructively defined specifications
(i.e., those without axioms; technically, it guarantees “conservative extension”), so
one way to verify consistency of specifications with axioms is to exhibit a construc-
tively defined specification that provides a model for the axioms. This is mechanized
in PVS using its facilities for theory interpretations as show below.

interpretation: THEORY
BEGIN

IMPORTING ontological {{
beings := nat,
> := <,
really_exists := LAMBDA (x: nat): x<4

}} AS model

END interpretation

The importing clause supplies constructive interpretations to the uninterpreted
types and constants of the ontological theory. Specifically, we interpret beings
by the natural numbers (nat in PVS), the > ordering on beings by the < order on
natural numbers (so the(greatest) is the number 0 in this interpretation), and
really exists by the predicate “less than 4.” Typechecking a specification such
as this causes PVS to generate a TCC for each axiom of the source theory that
requires us to prove that its interpretation is a theorem of the interpreted theory.

TCCs
% Mapped-axiom TCC generated (at line 56, column 10) for

% ontological
% beings := nat,
% > := restrict[[real, real], [nat, nat], boolean](<),
% really_exists := LAMBDA (x: nat): x < 4

model_P1_TCC1: OBLIGATION nonempty?[nat](greatest);

% Mapped-axiom TCC generated (at line 56, column 10) for
% ontological
% beings := nat,
% > := restrict[[real, real], [nat, nat], boolean](<),
% really_exists := LAMBDA (x: nat): x < 4

model_someone_TCC1: OBLIGATION EXISTS (x: nat): x < 4;

...continued

12



TCCs
...continuation

% Mapped-axiom TCC generated (at line 56, column 10) for
% ontological
% beings := nat,
% > := restrict[[real, real], [nat, nat], boolean](<),
% really_exists := LAMBDA (x: nat): x < 4

model_reality_trumps_TCC1: OBLIGATION
FORALL (x, y: nat): (x < 4 AND NOT y < 4) => x < y;

These are all easy to prove, and their proof chains indicate no further dependen-
cies.

We have now completed our formal verification of the Ontological Argument in
PVS, apart from Step 5 of the informal presentation. We regard that step as a
question of interpretation rather than verification and postpone it to the discussion
in the following section.

4 Discussion

PVS has verified the theorem labeled God exists, but does this purely formal
demonstration really carry the import intuitively associated with that claim? Reg-
ulators deciding whether to certify an aircraft face similar challenges: does formal
verification of the correctness of an item of software really substantiate or contribute
to the claim for safety of the aircraft subsystem concerned? In both cases, there are
three items that require further consideration before we make the leap from a for-
mal demonstration to a conclusion about the real world: does the formally verified
theorem really support the interpretation that corresponds to the real-world conclu-
sion we wish to draw, are the premises and axioms used in the verification true in
the real world, and does the whole formal construction truly represent the informal
argument to which we are hoping to bring the benefit of mechanized analysis?

For the first of these, in the case of the Ontological Argument, we need to
ask whether the PVS formula really exists(the(greatest)) truly represents
the claim “God exists.” There are two parts here: is the formal description
the(greatest) equivalent to God, and does really exist mean that this being
really exists? Some treatments of the Ontological Argument begin by asserting that
God is that than which there is no greater (a variant is that God is that being with
all perfections) and the contribution of the Argument is to establish that this being
really exists, but this just pushes the question whether the(greatest) is equivalent
to God from interpretation of the conclusion to veracity of the premises.

Since my concern here is with logic and formal verification, rather than theology,
I will merely aver that the formal term the(greatest) does seem to me to bear

13



the interpretation “that than which there is none greater,” and refer the reader to
philosophical texts for discussion on whether that can further be interpreted as God
(rather than, say, the Neo Platonic “One,” or Spinoza’s “God or Nature”). When
certifying aircraft, we probably do not want to defer the question of interpretation
to philosophers or theologians, but aircraft and their systems are indisputably real-
world artifacts and the question then largely devolves to what we know about the
relevant system and its environment (that is, its epistemology [21]). I will return to
this topic later.

Next, we need to consider interpretation of the predicate really exists. In the
PVS specification this is an uninterpreted predicate and so it can carry any meaning,
consistent with constraints that may be imposed by axioms. Here, the relevant
axioms are someone and reality trumps, which are fairly innocuous: they are
certainly consistent with the intended interpretation, but surely do not characterize
it strongly or uniquely.3 Notice that if we were to impose additional axioms to
constrain the interpretation of really exists, our verification would be unaffected
(unless they render the specification inconsistent), because nothing compels us to
cite the additional axioms. Only if we weaken the axiomatization of really exists
so that someone and reality trumps are no longer derivable will our verification
(possibly) run into trouble—and we would not do this because these two properties
are surely required to be true in the intended interpretation.

However, as we mentioned in Section 3, Oppenheimer and Zalta did actually
use a weaker specification in their Premise 2 (weaker in that it is implied by our
axioms but not vice-versa). A rather shocking fact, which seems to have first been
noticed by Garbacz [6], is that Premise 2 renders the Argument circular! To see
this, we can relabel the PVS rendition Premise 2 as a COROLLARY, place it after the
THEOREM God exists, and then prove it using only God exists, the definition of
greatest, and trichotomy of >. We leave it as an exercise for the reader to prove
that God exists can also be proved from Premise 2.

Arguably, Premise 2 more closely represents the original form of the Argu-
ment than our axioms someone and reality trumps, so this circularity casts grave
doubt on the merit of the Argument in its standard formulation. I do not be-
lieve my formulation is vulnerable to this source of doubt and, based on the
considerations of the previous paragraphs, my opinion is that the PVS theorem
really exists(the(greatest)) is consonant with its intuitive interpretation, but
does not compel it.

Next, we need to consider whether the axioms employed in our PVS formaliza-
tion are true in the intended interpretation. We have already considered someone
and reality trumps as they relate to really exists, so it remains to consider

3On the other hand, they are not vacuous: perverse interpretations such as really exists

means “is colored blue” are surely blocked by reality trumps.

14



reality trumps as it relates to the relation >, the requirement that this relation is
trichotomous, and the AXIOM P1.

It is, perhaps, surprising to note that the specification does not require > to be
transitive, and so it is not an ordering relation in any standard sense (the weak-
est kind of ordering is a preorder, which is a relation that is both reflexive and
transitive). If we temporarily ignore the trichotomy requirement, the set defined as
greatest simply specifies the set of elements “than which there are none greater”
with respect to a relation > that we are reading as “greater than” but that is un-
interpreted and unconstrained. We could think of members of greatest as “gods”
with respect to the > relation; this set of “gods” could be empty or nonempty. The
axiom P1 specifies that it is nonempty, so we can think of it as asserting that there
is at least one “god.” The constraint that > is trichotomous then (implicitly) re-
stricts the set to be a singleton, so that there is a unique “god” (which is therefore
God). That is, P1 essentially asserts “there is a god” and trichotomy of > makes it
unique. The axiom reality trumps then (implicitly) asserts that this unique god
really exists. Thus, we see that the axioms and constraints of the PVS speci-
fication, although they seem innocuous, effectively encode the conclusion that we
wish to draw (yet without being formally circular). In a sense, this must be true of
any deductive demonstration, because deduction does not create new knowledge—it
merely reveals what is implicit in the assumptions—but the directness (i.e., “near
circularity”) with which this applies to the Ontological Argument may come as a
surprise.

Many of the classical objections to the Ontological Argument center on the prop-
erties and interpretation ascribed to the > relation. One of the earliest objections
was raised by Anselm’s contemporary Gaunilo, who used the strategy of Anselm’s
argument to deduce the (absurd) existence of “the most perfect island.” That is, he
interpreted beings as islands, and > as “more perfect than.” Gaunilo’s objection
can be refuted by noting that P1 is surely false for his interpretation of >: there is
no reason to think there are any maximally perfect islands, for we can always add
one more palm tree.

Since Gaunilo’s objection is blocked by P1, a plausible response would be to deny
that P1 is an acceptable premise. I am sympathetic to this objection because, as
we saw in the paragraphs above, P1 comes very close to assuming what we want to
prove.

The next target for objection is trichotomy of >: this says that for any two
(distinct) beings, one is > than the other. One objection is that some great-making
attributes may be mutually incompatible [7]: examples are beings that are “perfectly
just” and “perfectly merciful” (the first entails delivering exactly the “right amount”
of punishment, while the latter may deliver less than is deserved). I believe there
are really two objections here. The first is that it is surely difficult to rank justice
and mercy: which is > than the other, a just being or a merciful one? This actually

15



is not a problem; the terminology “greater than” may seduce us into thinking that >
must be antisymmetric (which is true of any ordering stronger than a preorder), but
this constraint is not present in the PVS formalization: it is perfectly acceptable to
have both mercy > justice and justice > mercy (trichotomy requires at least one of
these, but it does not prohibit both, and having both does not imply equality). The
second objection is that a truly great being must surely be both just and merciful,
and these are incompatible. This may be a problem for theologians, but is entirely
independent of our formulation of the Ontological Argument and therefore not a
strong challenge to it.

To summarize this discussion: the axioms and constraints used in the PVS
formalization of the Ontological Argument seem consistent with the intended inter-
pretation, as does its conclusion, but they do not compel that interpretation. In
fact, the model that we used to demonstrate consistency of the axioms provides an
interpretation quite different than that intended by Anselm. It seems to me that this
weakens our confidence that the Argument has much value, but it is important to
note that similar observations about a formal verification used in support of safety
claims for an assurance case would not pose the same challenge to its value. The
reason is that in formally verifying properties of systems, our axioms and constraints
specify a model of the system and its environment, and our verified conclusion states
some property of the model. If we can satisfy ourselves that the axioms and con-
straints are true for the real system, and that the conclusion does correspond to a
property we care about in the real system, then we have accomplished something
useful. It does not matter that there may be other interpretations for our axioms
and constraints, and that our verified conclusion may carry a different import under
those interpretations; all we need to care about is the fidelity of the modeling to
the system under examination. The Ontological Argument is different, and in this
sense is not a good paradigm for assurance or safety cases, because its very purpose
is to compel belief in one interpretation.4

Thus, although we have formally verified the Ontological Argument, our ex-
amination of its formal premises and conclusion raise doubts about its value: the
argument is close to circular (and, indeed, is circular in a closely related formal-
ization that is arguably closer to the original), and it does not compel belief in the
intended interpretation.

One response would be to challenge the entire basis for our formalization. For
example, there is much discussion in the philosophical literature about the way

4It can be argued that in a safety case, we do wish to compel one interpretation for the term
“safety.” Each theorem in a safety case will verify some property and we need to satisfy ourselves
that the interpretation of each verified property is a contribution to safety, as intuitively understood.
That seems fairly easy. The difficulty is to persuade ourselves that the conjunction of all the verified
properties gives a “complete” account of safety for the system concerned; that is, that it compels
the intended interpretation of safety.

16



“existence” (which we represent as really exists) is used in the Ontological Ar-
gument. In particular, Kant denied that existence is a predicate. Those who use Free
Logics would refute this, and there is much recent work on representing statements
about fictional characters in formal logic, but there is opportunity to challenge our
verification (and the Argument itself) on these grounds.

Anselm actually gave a second version of his Argument that used necessary,
rather than simple, existence and this version has been studied, by Gödel among
others, using modal logic to represent necessity. It is straightforward to embed
modal logics within PVS ([19] does this for propositional linear temporal logic), so a
modest exercise for motivated readers is to represent Gödel’s form of the Ontological
Argument in PVS.5

Another objection could be that the PVS formalization dispenses with the predi-
cate C of Oppenheimer and Zalta’s formulation; they use this to represent something
being “in the understanding” as this expression is used the original form of the ar-
gument. The issue is that understanding the definite description may not be the
same as conceiving that there is an object that exemplifies the property. In a later
paper Oppenheimer and Zalta [13] use a much more elaborate treatment that dis-
tinguishes encoding and exemplifying a property. They propose a weakened form of
their Premise 1, from which only a weakened form of the conclusion can be derived.

5 Conclusion

We have presented a formalization and verification of the Ontological Argument in
PVS; along the way, we encountered definite descriptions and choice functions, and
saw how PVS maintains soundness for these in the presence of possibly empty types.
We established that our rendition of the argument is verified by PVS, and that the
axioms we employed are consistent, and we considered their plausibility and the
interpretation of the conclusion. We saw that the argument is very close to circular
and that slight variants truly are circular, and we also saw that although the formal
conclusion is consistent with the intended interpretation, it does not compel it.

These issues are all germane to any formal verification undertaken for the pur-
pose of assurance in some larger context, but the Ontological Argument illustrates
them in a particularly vivid manner that makes it a suitable and “fun” example for
pedagogical purposes.

In the context of philosophy, we note that there are several university depart-
ments that espouse “computational philosophy” as a research area or degree subject
(e.g., Pavia, Oxford), and there are conference series on the topic (e.g., the “AISB
Symposium on Computing and Philosophy”), and there is also a rather more radical

5In August 2013, Benzmüller and Woltzenlogel-Paleo announced that they have formalized and
verified Gödel’s version in several automated verification systems [3]. They use a quantified modal
logic, which requires a more complex embedding than the PVS embedding of propositional LTL.

17



proposal for a “computational metaphysics” [5]. Since it builds so directly on the
prior work of Oppenheimer and Zalta, the present paper makes only a minor contri-
bution to these endeavors (though it does illustrate why they should prefer to use
a full verification system rather than a simple first order prover), but I hope that it
provides a basis that others might extend to formal analyses of more philosophical
interest. For example, there are numerous semi-formal presentations of the Ontolog-
ical Argument that all differ slightly from each other (e.g., several are given in [15],
and also see [18,23]) and it could be interesting to reformulate them in uniform me-
chanically checked renditions to see whether the differences are of any significance.
In addition, there are formulations, such as those of Gödel and Plantinga, that use
modal logic to derive the necessary existence of God (recall the footnote on page
17).

There are several classical objections to the Ontological Argument, of which
I have mentioned only Gaunilo’s. A recent paper by Millican [8] describes eight
others and presents a reformulation that is claimed to refute all except Gaunilo’s,
and to reveal the one true and novel “fatal flaw” in the Argument. There are several
ripostes, and counter-ripostes to this (e.g., [9, 10, 16]) and it could be interesting to
formalize and verify these arguments and reformulations.

Finally, we could turn to the mechanically assisted investigation other metaphys-
ical topics that have a strong logical component. Avicenna’s proof of the “Necessary
Existent” would be an interesting candidate for mechanized verification: this is older
than Anselm’s Ontological Argument and in some ways more interesting: it seems
less of a logical “trick” and closer to what some would regard as a true source of
belief [1].

Acknowledgments

I am grateful to Sam Owre (who, along with Shankar, is its main developer) for
discussions on several finer points of the logic and implementation of PVS, and to
Ed Zalta for showing that modern tools can be applied to old problems and for his
stimulating and candid discussion of some of the issues in the formalization by him
and Oppenheimer.

References

[1] Peter Adamson. By All Means Necessary: Avicenna on God. History of Philos-
ophy without any gaps, Podcast, 2013. http://www.historyofphilosophy.
net/avicenna-god.

[2] Jonathan Barnes. The Ontological Argument. Macmillan, London, UK, 1972.

18



[3] Christoph Benzmüller and Bruno Woltzenlogel-Paleo. Formalization,
Mechanization and Automation of Gödel’s Proof of God’s Existence.
arXiv.org, 2013. http://arxiv.org/abs/1308.4526 and https://github.
com/FormalTheology/GoedelGod.

[4] Peter Bishop, Robin Bloomfield, and Sofia Guerra. The future of goal-based as-
surance cases. In DSN Workshop on Assurance Cases: Best Practices, Possible
Obstacles, and Future Opportunities, Florence, Italy, July 2004.

[5] Branden Fitelson and Edward N. Zalta. Steps toward a computational meta-
physics. Journal of Philosophical Logic, 36(2):227–247, 2007.

[6] Pawe l Garbacz. Prover9’s simplifications explained away. Australasian Jour-
nal of Philosophy, 90(3):585–592, 2012.

[7] Kenneth Einar Himma. Ontological argument. In James Fieser and Bradley
Dowden, editors, Internet Encyclopedia of Philosophy. April 2005.

[8] Peter Millican. The one fatal flaw in Anselm’s argument. Mind, 2004. 437–476.

[9] Peter Millican. Ontological arguments and the superiority of existence: Reply
to Nagasawa. Mind, 116(464):1041–1054, 2007.

[10] Yujin Nagasawa. Millican on the Ontological Argument. Mind, 116(464):1027–
1040, 2007.

[11] John Nolt. Free logic. In Edward N. Zalta, editor, The Stanford Encyclopedia
of Philosophy. Spring 2011 edition.

[12] Paul E. Oppenheimer and Edward N. Zalta. On the logic of the Ontologi-
cal Argument. Philosophical Perspectives, 5:509–529, 1991. Reprinted in The
Philosopher’s Annual: 1991, Volume XIV (1993): 255–275.

[13] Paul E. Oppenheimer and Edward N. Zalta. Reflections on the logic of the
Ontological Argument. Studia Neoartistotelica, 4(1):28–35, 2007.

[14] Paul E. Oppenheimer and Edward N. Zalta. A computationally-discovered
simplification of the Ontological Argument. Australasian Journal of Philosophy,
89(2):333–349, 2011.

[15] Graham Oppy. Ontological arguments. In Edward N. Zalta, editor, The Stan-
ford Encyclopedia of Philosophy. Winter 2012 edition.

[16] Graham Oppy. More than one flaw: Reply to Millican. Sophia, 46(3):295–304,
2007.

19



[17] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal
verification for fault-tolerant architectures: Prolegomena to the design of PVS.
IEEE Transactions on Software Engineering, 21(2):107–125, February 1995.
PVS home page: http://pvs.csl.sri.com.

[18] Garrel Pottinger. A formal analysis of the Ontological Argument. American
Philosophical Quarterly, 20(1):37–46, 1983.

[19] John Rushby. Formal verification of McMillan’s compositional assume-
guarantee rule. Technical report, Computer Science Laboratory, SRI Inter-
national, Menlo Park, CA, September 2001.

[20] John Rushby. New challenges in certification for aircraft software. In Sanjoy
Baruah and Sebastian Fischmeister, editors, Proceedings of the Ninth ACM
International Conference On Embedded Software: EMSOFT, pages 211–218,
Association for Computing Machinery, Taipei, Taiwan, 2011.

[21] John Rushby. Logic and epistemology in safety cases. In SafeComp 2013:
Proceedings of the 32nd International Conference on Computer Safety, Relia-
bility, and Security, number 8153 in Lecture Notes in Computer Science, pages
1–7, Springer-Verlag, Toulouse, France, September 2013.

[22] John Rushby, Sam Owre, and N. Shankar. Subtypes for specifications: Predi-
cate subtyping in PVS. IEEE Transactions on Software Engineering, 24(9):709–
720, September 1998.

[23] Jordan Howard Sobel. Logic and Theism: Arguments for and Against Beliefs
in God. Cambridge, 2003.

20



Appendix: The complete PVS Specification

The PVS specification and proof are available for download (as a PVS dump file))
at http://www.csl.sri.com/users/rushby/abstracts/fwfm13.

ontological: THEORY
BEGIN

beings: TYPE

x, y: VAR beings

>: (trichotomous?[beings])

greatest: SETOF[beings] = { x | NOT EXISTS y: y>x }

P1: AXIOM nonempty?(greatest)

P1a: LEMMA singleton?(greatest)

really_exists(x): bool

someone: AXIOM EXISTS x: really_exists(x)

reality_trumps: AXIOM (really_exists(x) AND NOT really_exists(y)) => x>y

God_exists: THEOREM really_exists(the(greatest))

P2: COROLLARY (NOT really_exists(x)) => EXISTS y: (y > x)

END ontological

interpretation: THEORY
BEGIN

IMPORTING ontological {{
beings := nat,
> := <,
really_exists := LAMBDA (x: nat): x<4

}}
AS model

END interpretation

21


