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Abstract

The resources of SAL allow many kinds of systems to be modeled and analyzed. How-
ever, it requires skill and experience to exploit the capabilities of SAL to the best effect
in any given problem domain. This tutorial provides an introduction to the use of SAL in
modeling and analyzing fault-tolerant systems.

The example considered here is a simple variant on the classical one-round Oral Mes-
sages algorithm OM(1) for Byzantine agreement and will be familiar to many computer
scientists. The SAL model developed here is available for download, so that users can
repeat the analyses described, and exercises are suggested for additional experiments.
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1 Interactive Consistency and the Basic Algorithm

Interactive Consistency (also known as source congruence and Byzantine agreement) is the
problem of transferring a value from a singlesourceto multiple receiversin a way that
guarantees certain properties, even in the presence of faults [LSP82,PSL80]. One desired
property isagreement: all nonfaulty receivers should get the same value. The trivial algo-
rithm that simply sends the value directly from the source to each receiver cannot guarantee
agreement when the source is faulty (since a faulty source could send different values to
different receivers). To overcome this problem, we arrange that the source sends its value
to a set ofrelays; each relay then sends the value it obtained to each of the receivers, and
each receiver takes a majority vote over the values it obtains from the relays (see Figure
1). This algorithm is an “unrolled” variant of the one-round version of the classicalOral
Messagesalgorithm [LSP82], and it is also similar to an earlier algorithm of Davies and
Wakerly [DW78].
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Figure 1: OM(1) Algorithm

Assuming there are at least three relays, and none of them is faulty, then it is easy to see
that this algorithm ensures agreement even if the source is faulty. Of course, introduction
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of the relays means there are more components that can be faulty, and faulty relays can
corrupt the value sent by a nonfaulty source. Thus, a second desired property isvalidity:
when the source is nonfaulty, each nonfaulty receiver should obtain the value actually sent.
If we have three relays and at most one of them is faulty, then it is easy to see that validity
is guaranteed. If we have two faulty relays, however, then validity is not guaranteed with
only three relays, but it is with five. But even with five relays and only one of them faulty,
agreement is not guaranteed if the source is faulty. It is clear that the number of faults that
can be tolerated is related to the number of relays and our task is to use the model checkers
of SAL to help formulate and verify candidate relationships.

2 Modeling in SAL

Prerequisites for this tutorial are to have SAL 2 installed on your machine and to have the
SAL language manual and other SAL documentation available. All these can be obtained
from http://sal.csl.sri.com .

The SAL language [dMOS01] provides notations for specifying state machines and
their properties, while the SAL system [dMOR+04] provides model checkers and other
tools for analyzing properties of state machine specifications written in SAL. The basic unit
of specification in SAL is amodule. A module can directly specify a state machine, or it can
specify the composition of other modules. Modules can be composed either synchronously
(meaning they all operate in lockstep) or asynchronously (meaning that exactly one module
makes a move at each step).

In our example, it is natural to propose specifying the source and each of the relays and
receivers as a separate module, and we then need to consider the type of composition to
be employed. The Oral Messages algorithm is actually a synchronous algorithm [Lyn96]
and, although the term “synchronous” has different meanings in distributed algorithms and
formal methods, it is synchronous composition that is appropriate here. We think of the
algorithm as proceeding in synchronizedstages: first the source sends out its value, then
the relays collectively pass on the values obtained, and then the receivers perform their
majority vote. To coordinate this staging, we use a controller module, which plays a rôle
similar to the clock in a synchronous hardware implementation. We number the stages 1,
2, 3, and the task of the controller will be to output a variable calledpc (for “program
counter”) that tells the other modules what the current stage is.

Now a SAL module describes a state machine by specifying a transition relation on its
state variables and typically does so by defining the “new” (i.e., post-transition) values of
its local and output variables in terms of the “old” (i.e., pre-transition) values of its input,
local, and output variables (it is also possible to use new values here, provided there are
no circularities). These descriptions are generally stated as guarded commands, where the
guards trigger appropriate transitions. The values referenced in the guards are typically old
ones (though here again, it is possible to use new values). If we decide that our specifica-
tions will reference the old value ofpc in their guards, then at the time this equals 1 (and
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the source module should be active), the controller will already be setting the new value
to 2. Since we want to examine the outputs of thereceiver modules (which operate at
stage 3)after they have performed their computation, we need an additional stage (i.e., 4)
for this. If we allow the controller to count up to stage 4 and then remain there, we will need
to take care that the outputs of the receivers are latched. While this is perfectly feasible, it
is easier to allowpc to progress to the value 5 and stay there. Thus, we have derived the
following initial specification for the controller module.

Preliminaryom1: CONTEXT =
BEGIN

stage: TYPE = [1..5];

controller: MODULE =
BEGIN
OUTPUT

pc: stage
INITIALIZATION

pc = 1;
TRANSITION
[

pc <= 4 --> pc’ = pc+1
[]

ELSE -->
]
END;

The explicitELSE prevents the module deadlocking when the guard is not satisfied:
because there is no command associated with this guard, the module simply stutters (i.e.,
leaves all its state variables unchanged).

Next, we can introducen as the number of relays, andrelays as the type that indexes
these, and similarlyk as the number of receivers and their corresponding index type. We
setn andk to small values for our initial experiments.

n: NATURAL = 3;
k: NATURAL = 2;

relays: TYPE = [1..n];
receivers: TYPE = [1..k];

We now need to think about the values that the source, relays, and receivers will operate
on. We need a “correct” value, and some number of incorrect values that can be introduced
by faulty sources and relays. To achieve the full range of faulty behaviors, it seems that
a faulty source should be able to send adifferent incorrect value to each relay, and this
requiresn different values. It might seem that we need some additional incorrect values
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so that faulty relays can exhibit their full range of behaviors. It would certainly be safe
to introduce additional values for this purpose, but the performance of model checking is
very sensitive to the size of the state space, so there is a countervailing argument against
introducing additional values. A little thought will show that the way faulty relays have
their most significant impact is by tipping the majority vote in a receiver one way or the
other, and this can only be achieved if they use the same values as nonfaulty relays. Hence,
we decide against further extension to the range of values. We will however, need a special
value to indicate a missing or corrupted message. It is convenient to use 0 for this missing
value, then 1. . .n for the incorrect values, andn+1 for the correct value. We therefore
arrive at the following declarations.

vals: TYPE = [0..n+1];
missing_v: vals = 0;
correct_v: vals = n+1;

We can now give a preliminary specification for thesource module. This is activated
when thepc is 1, and sends a value to each of the relays. We use an arrays out as the
collection of values sent to the relays. In this first version of the specification, we ignore
faulty behavior.

Preliminaryrvec: TYPE = ARRAY relays OF vals;

source: MODULE =
BEGIN
OUTPUT

s_out: rvec
INPUT

pc: stage
TRANSITION
[

pc = 1 --> s_out’ = [[i:relays] correct_v]
[]

ELSE -->
]
END;

This module sends values to the output arrays out only whenpc is 1, otherwise it
leaves its state variables unchanged. The value[[i:relays] correct v] assigned
to s out is an array literal: it specifies an array whose index type isrelays and whose
value iscorrect v everywhere.

We can give a similar specification for the relays in the fault-free case. Therelay
module is parameterized by the valuei and specifies the behavior of thei ’th relay. The
relay is active only when thepc is 2, in which case it simply copies the value it received
from the sourcer in to its array of outputs (one entry for each receiver)r out .
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Preliminaryvvec: TYPE = ARRAY receivers OF vals;

relay[i: relays]: MODULE =
BEGIN
INPUT

pc: stage,
r_in: vals

OUTPUT
r_out: vvec

TRANSITION
[

pc = 2 --> r_out’ = [[p:receivers] r_in]
[]

ELSE -->
]
END;

Although we have not yet specified the receiver module, we can begin to assemble
the modules we have so far into a system. We want the synchronous composition of the
controller andsource modules, together with ann-fold synchronous composition of
relay modules.

Preliminarysystem: MODULE =
controller

|| source
|| (|| (i:relays): relay[i]);

One problem with this construction is that each instance of therelay module is driving
the outputr out , whereas only a single module is allowed to drive a variable declared as
an output. This issue is always present in synchronous constructions, and the solution is to
introduce an arrayvecs of variables and to assign the output of each module to a separate
element of the array. Hence we arrive at the following construction.

Preliminarysystem: MODULE =
controller

|| source
|| (WITH OUTPUT vecs: ARRAY relays OF vvec

(|| (i:relays): RENAME r_out TO vecs[i] IN relay[i]));

This composition is legal, but fails to “wire up” input and output variables correctly:
the output of thesource module iss out , while the input of therelay modules is
r in . Furthermore, eachrelay needs to connect itsr in to the appropriate element of
thes out array. We therefore arrive at the following construction.
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Preliminarysystem: MODULE =
controller

|| source
|| (WITH OUTPUT vecs: ARRAY relays OF vvec

WITH INPUT s_out: rvec
(|| (i:relays): RENAME r_in TO s_out[i],

r_out TO vecs[i]
IN relay[i]));

Now that we have the basic structure in place, we can consider the specification of the
receiver modules, and the modeling of faults. Because the purpose of the receivers is to
mask faults through majority voting, it seems best to turn first to the modeling of faults.

We need to decide what kinds of faults should be modeled, and where and how they
should be introduced into the specification. In analyzing algorithms for interactive consis-
tency, it is conventional to associate faults with the processors on which the algorithms run
(though more elaborate treatments also associate faults with communication links); in our
model, this would correspond to associating faults with thesource andrelay modules.
For thesource and eachrelay module, we could add a state variable that indicates
whether that module is faulty; if it is, then the behavior of the module will be adjusted in
some way. To model all possible combinations of faults, we would nondeterministically
assign values to the state variables that determine faultiness during initialization. These
“faultiness” variables could be local to each module, but it will be easier to control the
patterns of faults if they set in some central place. Also we will need to count how many
faulty modules are present (because the properties we want to model check will be of the
form “validity is achieved provided there are not too many faults”) and this will most easily
be achieved if the “faultiness” variables are the outputs of some module. These considera-
tions lead to the choice that the “faultiness” variables will be outputs of thecontroller
module, and inputs tosource andrelay modules.

In the earliest treatments of interactive consistency, all faults were considered equal
and results were stated in forms such as “to withstandr faults, at least3r + 1 nodes and
r rounds are required” [PSL80]. However, the early papers were also the first to identify
and consider the “worst possible,” orByzantinekinds of faults—namely those that behave
inconsistently (e.g., sending different values to different receivers) [LSP82, PSL80]. But
although those papers gave plausible descriptions of “Byzantine” behavior, their analysis
did not rely on these intuitions—for they were conducted withno assumptionsabout the
behavior of faulty components. Formal treatments of these analyses undertaken with theo-
rem provers similarly used no axioms about the behavior of faults [Rus92,BY92,You97].
In model checking, on the other hand, we have to assign explicit behaviors to the faulty
components. The closest we can come to Byzantine behavior is to allow faulty modules
to make nondeterministic assignments to state variables. Nondeterministic assignments in
SAL are specified by theIN construct (this is not the sameIN as used in specifying the
system composition above), so that whereas the fully deterministic assignment tos out
by a nonfaultysource is given by
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Examples_out’ = [[i:relays] correct_v]

the fully nondeterministic assignment by a faultysource is given as follows.

Examples_out’ IN {a: rvec | TRUE }

Now, fully Byzantine behavior, as modeled by totally nondeterministic assignments,
poses a difficult challenge, and no algorithm can tolerate more than a third of its com-
ponents delivering this kind of behavior, so we may also be interested in less demanding
kinds of faults. An interesting fault model of this kind is thehybrid model introduced by
Thambidurai and Park [TP88]: in addition toarbitrary (i.e., Byzantine) faults, they con-
sidermanifestandsymmetricfaults. A manifest fault is one that is reliably detected by all
nonfaulty components (e.g., a missing message or one with an incorrect checksum), while a
symmetric fault is one that is not detectable (i.e., it is a wrong rather than invalid or missing
value) but that has thesamemanifestations to all receivers. The hybrid fault model is attrac-
tive in the larger context for which the example developed here was originally developed
because that context is concerned with systems running on the Time Triggered Architecture
(TTA) [KB03], where Byzantine faults are strongly contained [BKS02] and message loss
(i.e., manifest faults) is the main concern.

We therefore modify our previous specification for thecontroller module by intro-
ducing faults as an enumerated type and output variablessf andrf that indicate the
type of fault afflicting thesource or relay modules, respectively; the fault typenone
is used to indicate a nonfaulty module. To explore all possible fault configurations, we use
fully nondeterministic assignments to initialize these variables.

Preliminaryfaults: TYPE = {arbitrary, symmetric, manifest, none };

controller: MODULE =
BEGIN
OUTPUT

pc: stage,
sf: faults,
rf: ARRAY relays OF faults

INITIALIZATION
pc = 1;
sf IN {v: faults | TRUE };
rf IN {a: ARRAY relays OF faults | TRUE };

TRANSITION
[

pc <= 4 --> pc’ = pc+1
[]

ELSE -->
]
END;
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This fault treatment is adequate, but perhaps a littletoo nondeterministic. It is well
known, and easy to check, that a one-round algorithm such as this cannot tolerate a Byzan-
tine relay when the source is also Byzantine. We will reduce the statespace if we refine
the specification ofrf to eliminate thearbitrary choice whensf has already been as-
signed thearbitrary value. Hence, we derive the following final specification for the
controller.

controller: MODULE =
BEGIN
OUTPUT

pc: stage,
sf: faults,
rf: ARRAY relays OF faults

INITIALIZATION
pc = 1;
sf IN {v: faults | TRUE };
rf IN {a: ARRAY relays OF faults |

FORALL (i:relays): sf = arbitrary => a[i] /= arbitrary };
TRANSITION
[

pc <= 4 --> pc’ = pc+1
[]

ELSE -->
]
END;

8



Thesource module can now be changed to the following specification.

source: MODULE =
BEGIN
OUTPUT

s_out: rvec
INPUT

pc: stage,
sf: faults

TRANSITION
[

pc = 1 AND (sf = none OR sf = symmetric) -->
s_out’ = [[i:relays] correct_v]

[]
pc = 1 AND sf = manifest -->

s_out’ = [[i:relays] missing_v]
[]

pc = 1 AND sf = arbitrary -->
s_out’ IN {a: rvec | TRUE }

[]
ELSE -->

]
END;

A symmetric fault has no useful interpretation for thesource module, so we treat it
the same as the nonfaulty case. For themanifest case, we send the specialmissing v
value to each of the relays and for thearbitrary case, we choose nondeterministic
values. Notice that becausemissing v andcorrect v are elements of the typevals ,
it is possible for anarbitrary faulty module to send bad values to some relays, missing
values to others, and the correct value to still others.
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Therelay modules are elaborated in a similar manner to model faulty behavior.

relay[i: relays]: MODULE =
BEGIN
INPUT

pc: stage,
r_in: vals,
rf: faults

OUTPUT
r_out: vvec

TRANSITION
[

pc = 2 AND rf = none -->
r_out’ = [[p:receivers] r_in]

[]
pc = 2 AND rf = manifest -->

r_out’ = [[p:receivers] missing_v]
[]

([] (x:vals): pc = 2 AND rf = symmetric -->
r_out’ = [[p:receivers] x])

[]
pc = 2 AND rf = arbitrary -->

r_out’ IN {a: vvec | TRUE }
[]

ELSE -->
]
END;

The novel case here is the treatment ofsymmetric faults. The idea is to chose
some arbitrary valuex , then send that to every receiver. This is specified by the([]
(x:vals): ... multicommandconstruction, which effectively creates a separate
guarded command for each valuex in the typevals . SAL operates by nondeterminis-
tically choosing one command to execute from among those whose guards are true; thus, if
pc is 2 andrf is symmetric , all instances of this command will be eligible and one will
be chosen nondeterministically.

Following these changes, we need to adjust thesystem specification to connect therf
input variable of eachrelay module with the array output by thecontroller module.
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Preliminarysystem: MODULE =
controller

|| source
|| (WITH OUTPUT vecs: ARRAY relays OF vvec

WITH INPUT s_out: rvec
WITH INPUT rf: ARRAY relays OF faults

(|| (i:relays): RENAME r_in TO s_out[i],
r_out TO vecs[i],
rf TO rf[i]

IN relay[i]));

We are now ready to specify thereceiver modules that take the values output by the
relays and subject them to a majority vote. Our immediate challenge is to specify majority
voting. There is linear-time algorithm for majority voting [BM91] that has been specified
as a recursive function in PVS and this could be translated into SAL. However, in model
checking we have finite domains—in particular, the typevals is finite—so perhaps we
can exploit this to allow simpler constructions that may be easier for the model checker to
interpret efficiently. One way to exploit the finite range ofvals is simply to count the
number of occurrences of each value: a value is the majority if its count times 2 is greater
thann.

This suggests the following specification for thereceiver module. The transition
creates a guarded command for each valuei and checks whether the number of instances
of that value in the input arrayinv satisfies the condition for being the majority value; if
it does, then the output variablevote is set to that value, otherwise (i.e., if these is no
majority) thevote is set to some fixed value (we choosemissing v ).

Preliminaryreceiver[p:receivers]: MODULE =
BEGIN
INPUT

pc: stage,
inv: rvec

OUTPUT
vote: vals

TRANSITION
[

([] (i: vals):
pc = 3 AND 2*count(inv, i) > n --> vote’ = i)

[]
ELSE --> vote’ = missing_v

]
END;

To complete this, we need to specify the functioncount . As is usual in functional
programming, this is defined in terms of a recursive helper functioncount h that uses an
accumulatoracc .
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all: TYPE = [0..n];

count_h(a: rvec, v: vals, acc: all, i: relays): all =
LET this_one: [0..1] = IF a[i]=v THEN 1 ELSE 0 ENDIF IN
IF i=1 THEN acc + this_one

ELSE count_h(a, v, acc + this_one, i-1)
ENDIF;

count(a: rvec, v: vals): all = count_h(a, v, 0, n);

We have one remaining problem with the specification of thereceiver module: the
module expects anrvec (i.e., anARRAY relays OF vals ) as input, but each relay
outputs avvec (i.e., anARRAY receivers OF vals ) and these are combined in the
system specification intovecs , an ARRAY relays OF vvec . It might seem that
a WITH INPUT... construction could be used to align these, but the problem is that
we would need to rename the elementi of the inv input variable ofreceiver[x] to
vecs[i][x] : that is to say, we need to rotate the array and SAL’sRENAMEconstruction
does not provide for this. Hence, we need to modify thereceiver module to take in the
vecs value and to extract theinv slice locally. This is done using aDEFINITION as
follows.

receiver[p:receivers]: MODULE =
BEGIN
INPUT

vecs: ARRAY relays OF vvec,
pc: stage

LOCAL
inv: rvec

OUTPUT
vote: vals

DEFINITION
inv = [[i:relays] vecs[i][p]]

TRANSITION
[

([] (i: vals):
pc = 3 AND 2*count(inv, i) > n --> vote’ = i

)
[]

ELSE --> vote’ = missing_v
]
END;
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The final step is to add the receivers in to thesystem specification as follows.

system: MODULE =
controller

|| source
|| (WITH OUTPUT vecs: ARRAY relays OF vvec

WITH INPUT s_out: rvec
WITH INPUT rf: ARRAY relays OF faults

(|| (i:relays): RENAME r_in TO s_out[i],
r_out TO vecs[i],
rf TO rf[i]

IN relay[i]))
|| (WITH OUTPUT votes: vvec

(|| (x:receivers): RENAME vote TO votes[x]
IN receiver[x]));

All we need to do now is to specify the properties we wish to examine. However, before
we get to the properties of real interest, it will be prudent to check that our specification
satisfies some elementary expected properties. The following are simplelivenessproperties
that help assure us that our specification makes some progress.1

live_0: THEOREM system |- F(pc=4);
live_1: THEOREM system |- G(F(pc=5));
live_2: THEOREM system |- F(G(pc=5));

The assertion language is not primitive to SAL but is defined by the analyzer employed.
Currently, SAL has five analyzers: these are the explicit-state, symbolic, bounded, infinite-
bounded, and witness model checkers (the first of these is provided by SAL 1, the other
four by SAL 2). The witness model checker uses Computation Tree Logic (CTL) while
the others use Linear Temporal Logic (LTL), but with the lexical conventions of CTL (i.e.,
G rather than2 for henceforth, andF rather than3 for eventually), as their assertion lan-
guage.2 LTL formulas are (implicitly) universally quantified over all traces of the system,
so that formulalive 0 asserts that in every trace, the program counter eventually gets to
4. Similarly live 1 says that from any point in any trace, the program counter eventually
gets to 5, whilelive 2 says that in any trace the program counter eventually gets to 5 and
stays there.

We will use the symbolic model checker to examine these properties. The specification
developed here is available athttp://www.csl.sri.com/˜rushby/specs/om1.

1We will see later that these properties are true for deadlocked systems, and thus provide absolutely no
assurance of progress, but they do serve to introduce the syntax.

2Actually, all the model checkers accept both CTL and LTL; those whose native assertion language is LTL
operate by attempting to translate CTL assertions into LTL, and vice versa for those whose native language is
CTL. Since CTL and LTL are incomparable, the translation attempts will sometimes report failure.
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sal : if you download this into a file calledom1.sal , you will be able to perform the
following commands.

Before using the model checker, we should make sure that the specification typechecks.

Commandsal-wfc om1

This invokes the SAL well-formedness checker,sal-wfc , on the fileom1.sal ; if the
response is anything other thanOk, you will need to understand and correct the error before
proceeding.

To check the simple properties, we use commands such as the following, which invokes
the symbolic model checker,sal-smc , on propertylive 0.

Commandsal-smc om1 live_0

If you would like to see more of what is going on, increase the verbosity level as in the
following examination oflive 1.

Commandsal-smc -v 3 om1 live_1

All of these examples should produce the answerProved in a couple of seconds.
Now we can begin to explore the properties of real interest. The first isvalidity ,

which requires that when the algorithm has completed (i.e.,pc = 4 ), and when we have
a nonfaulty source (i.e.,sf = none ), then the vote of every receiver should equal the
correct v . We want this to be true everywhere, so we use theGmodality and obtain the
following assertion.

Preliminaryvalidity: THEOREM system |-
G(pc=4 AND sf=none => FORALL (x:receivers): votes[x]=correct_v);

Now we model check it.

Commandsal-smc -v 3 om1 validity

Perhaps to our surprise, this invocation produces the resultInvalid , and a counterex-
ample. Examining the last step of the counterexample, we see that two of the relays are
manifest faulty, so that the receivers have no majority and choose the valuemissing v .
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CounterexampleStep 3:
--- System Variables (assignments) ---
inv[1][1] = 0;
inv[1][2] = 0;
inv[1][3] = 4;
inv[2][1] = 0;
inv[2][2] = 0;
inv[2][3] = 4;
pc = 4;
rf[1] = manifest;
rf[2] = manifest;
rf[3] = none;
s_out[1] = 4;
s_out[2] = 4;
s_out[3] = 4;
sf = none;
vecs[1][1] = 0;
vecs[1][2] = 0;
vecs[2][1] = 0;
vecs[2][2] = 0;
vecs[3][1] = 4;
vecs[3][2] = 4;
votes[1] = 0;
votes[2] = 0;

We obviously need to impose some restrictions on the numbers and kinds of faults that
can be present. This suggests we need a function that counts the number of faults present,
but we should also weight them in some way. We can leave the weighting parametric by
allowing thefcount function to take as an argument aweights function that maps faults
to numbers in the range 0 to 3. In addition to theweights function, the functionfcount
is supplied with an array giving the fault status of therelay s, and the fault status of the
source . It is defined in terms of a recursive helper functionfcount h in the usual way.

fc: TYPE = [0..3*(n+1)];

fcount_h(a: ARRAY relays OF faults, acc: all, i: relays,
weights: [faults -> [0..3]]): fc =

IF i=1 THEN acc + weights(a[i])
ELSE fcount_h(a, acc + weights(a[i]), i-1, weights)

ENDIF;

fcount(a: ARRAY relays OF faults, s: faults,
weights: [faults ->[0..3]]): fc =

fcount_h(a, weights(s), n, weights);

Since we know that the number of Byzantine faults that can be tolerated is less than a
third of the number of nodes, we conjecture that suitable weights will count arbitrary faults
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as 3, symmetric as 2, and manifest as 1.3 This particular mapping is defined below as the
functionwts , and then used in a revised specification of validity that requiresfcount to
be less than the number of nodes.

wts(x: faults): [0..3] =
IF x=arbitrary THEN 3

ELSIF x=symmetric THEN 2
ELSIF x=manifest THEN 1
ELSE 0

ENDIF;

validity: THEOREM system |-
G(pc=4 AND sf=none AND fcount(rf, sf, wts) < n =>

FORALL (x:receivers): votes[x]=correct_v);

Perhaps again to our surprise, this invocation produces the resultInvalid and exactly
the same counterexample as last time.

Before we investigate why this is so, let us first examine some model checking issues.
On a typical 2GHz machine, the counterexample is found in under 2 seconds. If we change
the value ofn to 4, it takes nearly 3 seconds, and for 5 it takes 31 seconds. Although these
times are quite good (the number of reachable states in then = 5 case is greater than
7×1017 or 700 quadrillion), there are several things we can do to improve them somewhat.
First, we can specify--disable-traceability : this means that counterexamples
are no longer able to indicate which transition fired at each step, but it saves many BDD
variables and it reduces the time taken in then = 5 case to 12 seconds. Then we can
specify the--backward search option, and that reduces the time to just over 1 second
(--backward without --disable-traceability takes about 8 seconds).

Command

sal-smc -v 3 --disable-traceability --backward om1 validity

Whereas disabling traceability will always speed things up, backward search is only some-
times effective (for true properties, it works best for those that are inductive).

For safety properties (i.e., simpleGproperties),boundedmodel checking is an attrac-
tive alternative to symbolic model checking when we are expecting to find a counterexample
rather than to verify the property. The SAL bounded model checker finds a counterexample
for the n = 5 case in 4 seconds without disabling traceability using the following com-
mand (which instructs it to restrict its search to counterexamples of length 3).

Commandsal-bmc -v 3 --depth=3 om1 validity

3This is a deliberately naı̈ve weighting, based on specious reasoning. One of the exercises seeks a correct
treatment.
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Having seen how to get faster counterexamples, we return to consider why we are get-
ting them. The counterexamples we have seen all have manifest faulty relays but, on reflec-
tion, we realize that we would obtain similar counterexamples if we replaced the manifest
faults by symmetric ones, and this contradicts our intuition that manifest faults should be
easier to deal with than symmetric ones (and are therefore weighted less). Further reflec-
tion exposes the problem: the algorithm makes no distinction among fault types and does
not “deal with” manifest faults at all, so they are just as potent as symmetric faults. Since
manifest faults are, by definition, detectable by all correct receivers, a suitable way to deal
with them is to removemissing v values from consideration in the majority vote. This
would eliminate our counterexamples, because themissing v values would no longer
overwhelm thecorrect v values. To achieve this, we change the guard in the receiver
from

Current([] (i: vals):
pc = 3 AND

2*count(inv, i) > n --> vote’ = i)

to the following.

Improvement([] (i: [1..n+1]):
pc = 3 AND

2*count(inv, i) > n - count(inv, missing_v) --> vote’ = i)

Observe there are two changes here: the multicommand is changed to exclude themiss-
ing v case, and the vote calculation requires a majority among only the valuesdifferentto
missing v . This modified vote is called thehybrid majority; its use changes the overall
Oral Messages algorithm to the variant introduced by Thambidurai and Park as “Algorithm
Z” [ TP88]. Observe that we are using model checking here fordesign exploration: model
checking allows us to gain insight into our algorithm and hence to improve it. This use
of model checking in the design loop is a valuable adjunct to its better-known uses for
debugging and verification [SRSP04].

With this change, the SAL model checker succeeds in verifying the validity property.
As before, the time taken to examine the property increases sharply withn, unless backward
search is used and traceability is disabled (e.g.,n = 5 requires 71 seconds).

Bounded model checking is usually employed only to look for counterexamples, but
SAL is also able to use it to perform verification byk-induction [dMRS03]. Since we know
the algorithm has three stages, it is natural to use 3-induction, and this succeeds in verifying
the property in 12 seconds using the following command.4

Commandsal-bmc -v 3 --depth=3 --induction om1 validity

4Since the algorithm takes exactly three stages, it is clear that the inability to find a counterexample by
bounded model checking to depth 3 is equivalent to verification. However, this claim depends on our intuitive
understanding of the algorithm. Induction at depth three (whose base case requires the absence of a counterex-
ample at this depth) avoids this reliance on intuition.
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Symbolic and bounded model checking use completely different methods and underly-
ing technologies (BDDs and SAT solving, respectively), so it is quite often the case that one
is much faster than the other on any particular example—and even when not, as here, it is
valuable to be able to cross-check their results.

Having gained experience with thevalidity property, it is now quite easy to specify
theagreement property as follows. This is easily verified by either symbolic or bounded
model checking for the originaln = 3 case. Larger cases are left to the exercises.

agreement: THEOREM system |-
G(pc=4 AND fcount(rf, sf, wts) < n =>

FORALL (x, y:receivers): votes[x]=votes[y]);

3 Exercises

The following exercises require changes to the specification and will help develop experi-
ence in using the SAL language and its tools. Hints are in the appendix at the back.

3.1 Exploring the Agreement Property

Examine theagreement property for increasing values ofn. You will obtain a coun-
terexample at some point. Examine the counterexample and identify the systematic source
of the problem. Modify the specification of theagreement property to exclude this case
and verify that the property is now true for values up to thatn (and beyond if your machine
is fast enough).

Theagreement property is more challenging for model checking thanvalidity .
Examine the growth of the time required to model check theagreement property asn
increases. Explore use of the different options to both the symbolic and bounded model
checkers.

3.2 Detecting Flawed Specifications and Properties

Before we draw conclusions from model checking, we need to be sure that the specifications
of the system and the properties examined really mean what we think they mean. Try
deleting theG at the front of the validity property and see what happens. How do you
explain it? Restore theGand change the antecedent of the property to something obviously
false and see what happens. How do you explain it? How can we be sure we avoid these
kinds of dangers in real life?

3.3 A Switch Module

It would preferable if the input to eachreceiver module were thervec directed to that
receiver. We saw that this is difficult to arrange because the collective output of therelay s
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is anARRAY relays OF vvec . Introduce aswitch module whose only purpose is to
“rotate” this output to anARRAY receivers of rvec so that is becomes possible to
use the preferred form of input to thereceiver s. See if you can do this without needing
to change the staging of the modules.

3.4 Precise Characterization of Fault Tolerance

The definition given for the functionwts and its relationship ton in the statements ofva-
lidity andagreement may not be optimal. Use counterexamples and verifications to
help develop intuition and sharper characterizations for the fault tolerance of this algorithm.

3.5 Improving the Algorithm

Modify the specification to represent the algorithm OMH(1) from [LR93] (which distin-
guishes a missing value from thereport of a missing value) and/or ZA(1) from [GLR95]
(which uses authentication) and develop sharp characterizations for their fault tolerance.

3.6 Link Faults

It underestimates the fault tolerance of the algorithm if a node must be counted as arbitrary
faulty when just one of its outgoing lines has a simple “stuck at” fault. Extend the model to
include link faults and develop sharp characterizations of the fault tolerance of the algorithm
in terms of combinations of link and node faults.

3.7 Liveness Properties

Modify the specification so that it obviously deadlocks. Show that the liveness properties
live 0, live 1, andlive 2 still hold. Why is this? How would you detect deadlock?
You will probably need to read the SAL documentation and maybe some papers on temporal
logic to answer this.
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References

You can obtain papers that have me as an author fromhttp://www.csl.sri.com/
˜rushby/biblio.html and can find papers by my colleagues viahttp://fm.csl.
sri.com/fmprog.html
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A Hints for Exercises

A.1 Exploring the Agreement Property

Take a look at [LR93]. A fix is to disallow manifest faults in the source.

A.2 Detecting Flawed Specifications and Properties

If we omit theG, then the assertion applies to just the initial state, wherepc=1 , so the
property is vacuously true because its antecedent is false. Similarly, restoring theG and
making the antecedent false results a property that is true for trivial reasons. Detecting
these kinds of problems is called “vacuity detection.” Suitable methods are to make sure
that the antecedent is true somewhere, but then we have to be careful about vacuity in
liveness properties (see a later question).

A.3 A Switch Module

To avoid affecting the staging, define the new values of the switch output in terms of the
new values of its inputs.

A.4 Precise Characterization of Fault Tolerance

Check out the formulas and analyses in [LR93] and [GLR95].

A.5 Improving the Algorithm

It is not necessary to model authentication directly; all that is necessary is to eliminate
those fault behaviors that authentication would prevent. Consider the modeling of nonces
in the SAL treatment of the Needham-Schroeder protocol (available athttp://www.
csl.sri.com/users/rushby/abstracts/needham03 ).

A.6 Link Faults

Take a look at [SWR02].

A.7 Liveness Properties

You can deadlock the system by removing the[] ELSE --> case from, say, therelay
module. Liveness properties are evaluated only over infinite traces. If there are no infi-
nite traces, the property is vacuously true. Usesal-deadlock-checker to check for
deadlocks.
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