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Abstract

Modal logics allow reasoning about various modes of truth: for example, what it means
for something to be possibly true, or to know that something is true as opposed to merely
believing it. This report describes embeddings of propositional and quantified modal logic
in the PVS verification system. The resources of PVS allow this to be done in an attractive
way that supports much of the standard syntax of modal logic, while providing effective
automation.

The report introduces and formally specifies and verifies several standard topics in
modal logic such as relationships between the standard modal axioms and properties of
the accessibility relation, and attributes of the Barcan Formula and its converse in both
constant and varying domains.
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1 Introduction

The motivation for modal logics is to reason about various modes of truth: for example,
what it means for something to be possibly true, or to know that something is true as op-
posed to merely believing it. The modal qualifier 2 and its dual 3 (defined as ¬2¬) are
used to indicate expressions that should be interpreted modally. All modal logics share the
same basic structure but they employ different sets of axioms and make other adjustments
according to the mode attributed to the qualifiers. For example, in an Epistemic modal
logic, where 2 is interpreted as knowledge, we will expect the formula 2P ⊃ P to hold: if
I know that something is true, then it should be true (a traditional definition of knowledge
is justified true belief). But we would not expect this formula to hold in a Doxastic logic,
where 2 is interpreted as belief. Instead, we might expect 2P ⊃ 3P to hold: if I believe P is
true, then I cannot also believe it to be false (reading 3P as ¬2¬P). There is a collection of
common formulas such as these that have standard names (the two above are called T and
D, respectively) and that are used in various combinations to axiomatize different modal
logics.

Standard modal logics are obtained by enriching either propositional logic or quanti-
fied (i.e,, first- or higher-order) logic to yield propositional and quantified modal logics,
respectively. The semantics of modal logics are derived from those of classical logics by
interpreting all expressions relative to a set of possible worlds. Thus, whereas a constant x
has some fixed interpretation in a classical logic, in a modal logic its interpretation depends
on the world w and this can be encoded or embedded in classical logic by lifting x to a
function on worlds: x(w) then denotes the interpretation of x in world w. The qualifier 2 is
interpreted as truth in all possible worlds, so 2P is ∀w : P(w), while 3P applies to some
possible worlds: ∃w : P(w). There are complexities in the details because some worlds may
not be accessible from others, and it is this that distinguishes the different modes from each
other (and is closely related to the choice of axioms such as T and D).

In the next section, I will describe more of propositional modal logic and show how this
can be embedded within PVS [8]. The embedding uses the resources of PVS in a way that
allows modal formulas to be written in their standard syntax and used in combination with
the other features of PVS (for example, its rich type system and comprehensive language
for expressions and definitions). Proofs of modal formulas use the standard capabilities of
the PVS prover and can be highly automated.

In the section following that, I describe quantified modal logic and its embedding in
PVS. This embedding is only a slight extension of that for propositional modal logic, but
the combination of modal logic and quantification has some intrinsic complexities that I
describe and illustrate. In the final section, I discuss some topics in the pragmatics of
constructing specifications in quantified modal logic, particularly the combination of modal
and classical quantifiers.
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2 Propositional Modal Logic in PVS

As mentioned in the introduction, the basic idea of the possible worlds interpretation for
propositional modal logic is that expressions of propositional logic are lifted and interpreted
relative to a possible world. Thus, a generic expression P in propositional logic must be
transformed into its lifted form l(P), which is a function that can be applied to a world w to
deliver its value l(P)(w) in that world. The lifting transformation is defined recursively over
the constructs of propositional logic: that is, for a propositional connective such as ∧, we
define how l(P ∧ Q)(w) is related to l(P)(w) and l(Q)(w), and similarly for other constructs.
This is done below.

• Constants a or variables x (these are equivalent in propositional logic), are lifted by a
valuation function V where V(a)(w) and V(x)(w) provide their values in world w.

• Negation is lifted by negating the lifted term: l(¬P)(w) is ¬l(P)(w).

• Conjunction is lifted by conjoining its lifted conjuncts: l(P ∧ Q)(w) is l(P)(w) ∧
l(Q)(w). The other binary connectives are lifted in the same way.

We then specify the modal qualifiers as follows.

• l(2P) is ∀w : l(P)(w), where w is a fresh variable.

• l(3P) is ∃w : l(P)(w), where w is a fresh variable.
(An alternative, but equivalent, interpretation is that 3P is ¬2¬P)

Finally, a modal sentence P is valid if it is true in all possible worlds; that is, ∀w : l(P)(w).
To illustrate these notions, I will use the following simple modal argument.1 This uses

an Alethic modal logic where the qualifiers are interpreted as necessity (2) and possibility
(3). Interpretation of the modal qualifiers is related to an accessibility relation on worlds
and corresponding axioms. For simplicity of exposition, I delay these topics to Section 2.3,
but the elementary treatment (i.e., without an accessibility relation) used in the subsections
before then is sound for Alethic logics (it is equivalent to the logic known as S5).

Notation: g is a constant, P is a metavariable.

Premise H1: 3g (i.e., g is possible)

Premise H2: P ⊃ 2P (i.e., that which is true is necessarily true).

Conclusion HC: g (i.e., g is true in the classical sense).

1This is actually a flawed version of Hartshorne’s rendition of Anselm’s Proslogion III argument for the
existence of God [4, Section 4.1]. The flaw is use of a variable P in H2 where the actual argument uses g.
Both forms of the premise are questionable but the one used here is worse; I employ it to illustrate aspects of
propositional modal logic and its embedding. Those interested in the actual argument are referred to [10].
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Each of these modal sentences is interpreted as the validity of its lifted form, so premise
H1 becomes ∀w : l(3g), which becomes ∀w : ∃v : l(g)(v), which becomes ∀w : ∃v :
V(g)(v), the translation shown below. The outermost quantifier is superfluous in this case.

H1: ∀w : ∃v : V(g)(v)

H2: ∀w : P(w) ⊃ (∀v : P(v))

HC: ∀w : V(g)(w)

H2 is similarly translated by recursively traversing its parse tree. We start with modal
validity of P ⊃ 2P, which becomes ∀w : l(P ⊃ 2P)(w); processing the ⊃ connective,
this becomes ∀w : l(P)(w) ⊃ l(2P)(w), and then interpretation of the 2 qualifier yields
∀w : (l(P)(w) ⊃ ∀v : l(P)(v)); lifted metavariables are themselves, so we end with the
translation shown above. HC likewise becomes ∀w : l(g)(w), which becomes ∀w : V(g)(w),
as shown above.

eg_direct: THEORY

BEGIN

worlds: TYPE+

pmlformulas: TYPE = [worlds -> bool]

pvars: TYPE+

v, w: VAR worlds

x: VAR pvars

val(x)(w): bool

g: pvars

P: VAR pmlformulas

H1: AXIOM EXISTS w: val(g)(w)

H2: AXIOM P(w) IMPLIES FORALL v: P(v)

HC: THEOREM val(g)(w)

END eg_direct

Figure 1: Direct Shallow Embedding in PVS of Propositional Example

Figure 1 presents a direct transliteration into PVS of the possible worlds interpretation
of the example argument that we constructed above. The type pmlformulas (for proposi-
tional modal logic formulas) is used for lifted formulas; its variables (such as P) function
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as metavariables of the embedded logic. The type pvars is used for propositional variables
(and constants), with val as their valuation function (cf. V in the mathematical rendition
above); g is one of these propositional constants. We then state the lifted renditions of the
premises and conclusion of the argument, exploiting the fact that PVS automatically applies
universal closure to its formulas.

PVS proves the theorem HC automatically given the two premises.

PVS proof
(grind-with-lemmas :polarity? t :lemmas ("H1" "H2"))

An alternative way to state the theorem is to use an arbitrary world “here.”

PVS fragment
here: worlds

HC_alt: THEOREM val(g)(here)

The same PVS proof as before will prove this alternative statement of the theorem.

2.1 Elementary Shallow Embedding of Propositional Modal Logic in PVS

The kind of transformation from one logic or language to another seen here is referred to as
a shallow embedding [3]. The characteristic of a shallow embedding is that it is a syntactic
transformation: the modal presentation of the example argument on page 2 is translated
into the PVS specification shown in Figure 1. It would seem, therefore, that automating
the transformation will require a syntax-to-syntax translator. Fortunately, the capabilities
of PVS allow us to accomplish the translation quite effectively within PVS itself. This is
feasible because the source language, propositional modal logic, is a logic and has much of
its syntax in common with PVS; the techniques we are about to see would be less effective
if the source were, say, a programming language.

The idea is to define the operators and connectives of the embedding of propositional
modal logic directly in their lifted form. Thus, whereas we earlier defined the lifted form
of conjunction l(P ∧ Q)(w) to be l(P)(w) ∧ l(Q)(w), here we will define a new modal
conjunction operator &m by (P&mQ)(w) = P(w)∧Q(w). PVS allows function symbols and
names to be overloaded (that is, the same symbol or name can be used for several different
functions) and types are used to resolve the correct instance. Thus, in PVS we do not need
a separate function name &m, we simply overload the existing & (whose built-in definition
is a synonym for Boolean AND).2

This is done in the theory shallow pml (for shallow propositional modal logic) shown
in Figure 2. The first few blocks of declarations are the same as in direct hart, then we
define the lifted connectives ∼, &, and => in the manner described above. Obviously, other

2Likewise ∼ is already defined as a synonym for NOT and => as a synonym for IMPLIES; for ease of human
parsing, we use symbols for the lifted operators and ASCII for the Boolean ones.
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lifted propositional connectives can be added here in a similar way, or they can be defined
in terms of those already defined. Notice that we are using symbols (e.g., &) as function
names here; the PVS Language reference specifies the symbols that may be defined in this
way [7, Figure 2.4].

elem_shallow_pml: THEORY

BEGIN

worlds: TYPE+

pmlformulas: TYPE = [worlds -> bool]

pvars: TYPE+

v, w: VAR worlds

x, y: VAR pvars

P, Q: VAR pmlformulas

val(x)(w): bool

∼(P)(w): bool = NOT P(w) ;

&(P, Q)(w): bool = P(w) AND Q(w) ;

=>(P, Q)(w): bool = P(w) IMPLIES Q(w) ;

2(P)(w): bool = FORALL v: P(v) ;

<>(P): pmlformulas = ∼ 2 ∼ P ;

|=(w, P): bool = P(w)

valid(P): bool = FORALL w: w |= P

END elem_shallow_pml

Figure 2: Elementary Shallow Embedding of Propositional Modal Logic in PVS

Next, we define the 2 qualifier of modal logic. The PVS Language reference suggests
we could use [] here (as we use <> below), but recent versions of PVS preempt this syntax
for declaration-level parameterization. However, these recent versions of PVS also allow
use of Unicode, so we simply employ the appropriate Unicode character (2, hexadecimal
code 25A1) as the name of our function. Next, we define <> (we could have used 3,
Unicode 25C7 instead) as the dual modal qualifier. We could have done this in a similar way
to 2 (but using an existential quantifier), but for variety we will instead define it in terms
of 2. Notice that no parentheses are used here (i.e., we do not need ∼(2(∼(P)))). This is
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because ∼, 2, and <> are known to be unary operators [7, Figure 7.1].3 For symmetry with
later constructions, we define w |= P to be truth of P in world w. Notice that |=, together
with & and =>, are known to PVS as binary infix operators [7, Figure 7.1], although they
must appear in prefix form when being defined. Finally, we define modal validity in the
expected way.

Now that we have a shallow embedding of propositional modal logic in PVS, we can
simply import it into a new theory where we specify the example argument in a fairly direct
way. This is shown in Figure 3; the theorem is proved automatically in the same way as
before. Notice that the modalities 2 and <> are used here in a natural way because, as noted
before, PVS treats these symbols as unary operators.

eg_elem_shallow1: THEORY

BEGIN IMPORTING elem_shallow_pml

g: pvars

P: var pmlformulas

H1: AXIOM valid(<> val(g))

H2: AXIOM valid(P => 2 P)

HC: THEOREM valid(val(g))

END eg_elem_shallow1

Figure 3: Partially Automated Shallow PVS Embedding of Propositional Example

All the formulas in Figure 3 explicitly employ the function valid to reduce validity of
modal sentences to the classical validity employed in PVS. It would be nice to automate
this and PVS provides a way to do it: we specify that valid is a CONVERSION. When a
PVS expression fails to typecheck, PVS searches for a conversion function that will make
it type-correct and applies it automatically (PVS provides commands that prettyprint the
specification with conversions applied, and these are also shown expanded in proofs). Use
of the conversion allows H2 to be written in the standard modal syntax. If we additionally
specify val as a conversion then H1 also can be written in the standard syntax. However, the
conclusion HC still requires verbose syntax: we would like to write just g. The reason we
cannot do this is that it requires application of two conversions before g becomes type cor-
rect. We can define a function validval that applies both valid and val and declare that

3My actual recommendation is to use the definition <>(P)(w): bool = EXISTS v: P(v) because it
is much easier to interpret the existential quantifier than the doubly negated universal when guiding interactive
PVS proofs.
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to be a conversion. Use of all three conversions allows us to simplify the PVS specification
of the example argument to the form shown in Figure 4.

eg_elem_shallow2: THEORY

BEGIN IMPORTING elem_shallow_pml

g: pvars

P: var pmlformulas

validval(x: pvars): bool = valid(val(x))

CONVERSION valid, val, validval

H1: AXIOM <> g

H2: AXIOM P => 2 P

HC: THEOREM g

END eg_elem_shallow2

Figure 4: More Automated Shallow PVS Embedding of Propositional Example

It will generally be more convenient to specify these conversions in the theory
elem shallow pml as they will then automatically be available wherever this is imported.
The theorem HC is proved automatically in the same way as before—for, semantically, it is
the same as the previous versions; the automation simply allows better syntax.

Notice that if PVS did not allow overloading of built-in and infix symbols, then the
middle block of definitions in Figure 2 would have to be written using standard functional
notation as follows.

PVS fragment
mneg(P)(w): bool = NOT P(w) ;

mand(P, Q)(w): bool = P(w) AND Q(w) ;

mimp(P, Q)(w): bool = P(w) IMPLIES Q(w) ;

mbox(P)(w): bool = FORALL v: P(v) ;

mdia(P): pmlformulas = mneg(mbox(mneg(P)))

The premises of the example argument would then appear like this.

PVS fragment
H1: AXIOM valid(mdia(val(g)))

H2: AXIOM valid(mimp(P, mbox(P)))

The improvement in Figure 4 is obvious.
Now that we know of shallow embeddings, it will come as no surprise that there are

deep embeddings also. I introduce these in the next subsection.
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2.2 Elementary Deep Embedding of Propositional Modal Logic in PVS

Whereas shallow embeddings work on the surface syntax of the source language, deep
embeddings are defined on its abstract syntax: we define an abstract datatype that models
this syntax, then define functions that operate on it by recursion and case analysis [3]. The
abstract syntax for propositional modal logic is specified by the PVS datatype in Figure 5.

modalformula[pvars: TYPE+]: DATATYPE

BEGIN

pvar(arg: pvars): var?

∼(arg: modalformula): not?

&(arg1: modalformula, arg2: modalformula): and?

=>(arg1: modalformula, arg2: modalformula): imp?

2(arg: modalformula): box?

END modalformula

Figure 5: PVS Datatype for Abstract Syntax of Propositional Modal Logic

This abstract datatype defines the modalformula datatype, parameterized by the
nonempty type pvars that specifies its propositional variables. We then import this into the
theory elem deep pml shown in in Figure 7 where we define validity of modalformula P
in world w, w |= P, by recursion on the structure of P. PVS ensures termination of recur-
sive definitions by generating proof obligations and the MEASURE keyword instructs PVS to
use the subterm ordering relation << in this proof obligation. The rest of the construction is
the same as in shallow pml.

We can then employ elem deep pml in the representation of the example argument
shown in Figure 6. Notice that syntactically this identical to the representation using a
shallow embedding that we saw in Figure 4.

The proof of the theorem is shown below. It installs the two premises, instantiates
one of them, then applies the standard top-level proof strategy of PVS. This is not quite
as automated as the proof using a shallow embedding but this is due to the rather weak
quantifier instantiation heuristics in PVS rather than intrinsic difficulty.

PVS proof
(lemma "H1") (lemma "H2") (inst?) (grind :polarity? t)

For the purposes described here, there is little to choose between shallow and deep
embeddings. For the remainder of this tutorial I will mostly use the shallow embedding,
because it is somewhat simpler. A deep embedding would be preferable if we wanted to
establish metalogical properties (i.e., properties about modal logic as opposed to properties
stated in modal logic).
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eg_elem_deep: THEORY

BEGIN IMPORTING elem_deep_pml

g: pvars

P: VAR modalformula

H1: AXIOM <> g

H2: AXIOM P => 2 P

HC: THEOREM g

END eg_elem_deep

Figure 6: Representation of the Propositional Example Using Deep Embedding in PVS

All our embeddings have so far implicitly assumed that all possible worlds are accessi-
ble from each other. This is an oversimplification4 that we correct in the following section.

2.3 Shallow Embedding of Full Propositional Modal Logic in PVS

The modal qualifiers allow us to speak about truth in other possible worlds: when we say
3P we are saying that there are possible worlds where P is true. But suppose there is a
structure on possible worlds and we cannot reach every possible world from every other
one; then it might be that P is true only in worlds we cannot reach, so 3P would be false
in this configuration of worlds. A full formalization of propositional modal logic uses an
accessibility relation on possible worlds and adjusts the semantics of the modal qualifiers so
they apply only to accessible worlds. In the shallow PVS embedding of Figure 2, we do this
as follows, where access is a new declaration that introduces the accessibility relation and
the definition of 2 is modified to reference this. There is no need to modify the definition of
<> if this is given in terms of 2, but if it is defined directly, it takes the form shown below.
We can make exactly analogous adjustments to the deep embedding.

PVS fragment
access(w, v): bool

2 (P)(w): bool = FORALL v: access(w, v) IMPLIES P(v) ;

<>(P)(w): bool = EXISTS v: access(w, v) AND P(v) ;

To complete our full shallow and deep PVS embeddings of propositional modal logic,
we need to parameterize the theories. Currently the type worlds, its accessibility relation

4Actually, it does correspond to a legitimate modal logic—a variant on S5—that is described later.
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elem_deep_pml: THEORY

BEGIN

worlds, pvars: TYPE+

IMPORTING modalformula[pvars]

w, v: VAR worlds

x, y: VAR pvars

P, Q: VAR modalformula

val(x)(w): bool

|=(w, P): RECURSIVE bool =

CASES P OF

pvar(x): val(x)(w),

∼(R): NOT (w |= R),

&(R, S): (w |= R) AND (w |= S),

=>(R, S): (w |= R) IMPLIES (w |= S),

2(R): FORALL v: (v |= R)

ENDCASES

MEASURE P by <<

<>(P): modalformula = ∼ 2 ∼ P ;

valid(P): bool = FORALL w: w |= P

validval(x: pvars): bool = valid(pvar(x))

CONVERSION valid, pvar, validval

END elem_deep_pml

Figure 7: Elementary Deep Embedding of Propositional Modal Logic in PVS

access, and the type pvars and its valuation function val are defined within the embed-
ding theories. We need instead to specify some or all of these these as parameters, so that
they can be defined by the theories that use the embedding. It is a matter of choice which
of these types and constants are defined as parameters, but there are some dependencies.
Certainly pvars, the type of the propositional variables, should almost certainly be a pa-
rameter. We will see a circumstance later where val, the valuation function needs to be
a parameter; its type is [pvars -> [worlds -> bool]] so this forces both pvars and
worlds to be parameters, in which case we may as well complete the parameterization by
adding access.

This is shown in Figure 8, which is a fully parameterized version of the shallow em-
bedding for full propositional modal logic. We name this modified PVS specification
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full_shallow_pml [worlds: TYPE+, access: pred[[worlds,worlds]],

pvars: TYPE+, val: [pvars -> [worlds -> bool]]]: THEORY

BEGIN

pmlformulas: TYPE = [worlds -> bool]

v, w: VAR worlds

x, y: VAR pvars

P, Q: VAR pmlformulas

∼(P)(w): bool = NOT P(w) ;

&(P, Q)(w): bool = P(w) AND Q(w) ;

=>(P, Q)(w): bool = P(w) IMPLIES Q(w) ;

2 (P)(w): bool = FORALL v: access(w, v) IMPLIES P(v) ;

<>(P)(w): bool = EXISTS v: access(w, v) AND P(v) ;

|=(w, P): bool = P(w)

valid(P): bool = FORALL w: w |= P

validval(x: pvars): bool = valid(val(x))

CONVERSION valid, val, validval

END full_shallow_pml

Figure 8: Full Shallow Embedding of Propositional Modal Logic in PVS

full shallow pml and use it in the version of the example argument shown in Figure
9. The statement of the theorem is adjusted to record the fact that it requires the accessi-
bility relation to be symmetric. The full shallow pml theory specifies valid, val, and
validval as conversions.

As in the previous version, the proof requires some manual steps to guide the quantifier
instantiation.

PVS proof
(grind-with-lemmas :lemmas ("H1" "H2"))

(inst -1 "val(g)")

(inst? -2)

(grind :polarity? t)

There is a correspondence between properties of the accessibility relation and certain
modal formulas: for example, there is a modal formula that exactly corresponds to the
accessibility relation being symmetric. We examine this topic in the next section.
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eg_full_shallow: THEORY

BEGIN

worlds, pvars: TYPE+

access: pred[[worlds, worlds]]

val(x:pvars)(w:worlds): bool

IMPORTING full_shallow_pml[worlds, access, pvars, val]

g: pvars

P: var pmlformulas

H1: AXIOM <> g

H2: AXIOM P => 2 P

HC: THEOREM symmetric?(access) => g

END eg_full_shallow

Figure 9: The Propositional Example Using an Embedding of Full Propositional Modal
Logic

2.4 Standard Axioms and Various Modal Logics

As we noted in the introduction, different modal logics apply different interpretations to the
modal qualifiers and employ different sets of axioms to characterize their properties. There
is a collection of standard axioms with single-character names that are used in various
combinations to axiomatize different modal logics. The most widely used axioms are the
following.

K: 2(P ⊃ Q) ⊃ (2P ⊃ 2Q),

T: 2P ⊃ P,

4: 2P ⊃ 22P,

B: P ⊃ 23P,

D: 2P ⊃ 3P,

5: 3P ⊃ 23P.

In addition to these axioms, there is a principle of necessitation, generally named N.
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N: if P is valid, so is 2P.

Necessitation is actually a metatheorem, true in all modal logics; it says that if P is just
plain true (i.e., without reference to a possible world), then it is true in all possible worlds.

The different modal logics incorporate different sets of axioms, which are indicated
by juxtaposing their names; thus a standard Deontic (obligation) logic uses KD, Doxastic
(belief) logic uses KD45, while Epistemic (knowledge), and Alethic (necessity) logics use
KT45, which is also known as S5.5 Elementary logics of time use KT4, which is also
known as S4, but the temporal logics in computer science such as LTL and CTL have rather
more structure (they add a next operator). Notice that K is always present: it is actually a
theorem, true in all modal logics, rather than an axiom.

It is a remarkable fact that each of the axioms above corresponds to a fairly natural
property of the accessibility relation (apart from N and K, which are always true).

T: the accessibility relation is reflexive

4: the accessibility relation is transitive

B: the accessibility relation is symmetric

D: the accessibility relation is serial

5: the accessibility relation is Euclidean

If we denote the accessibility relation by R, the serial property is ∀w : ∃v : R(w, v) while
Euclidean is ∀u, v,w : R(u, v) ∧ R(u,w) ⊃ R(v,w). A relation that is both symmetric and
Euclidean is also transitive, and a relation that is both reflexive and Euclidean is also sym-
metric and hence transitive and, therefore, an equivalence relation. Thus, the accessibility
relations of modal logics that include axioms T and 5 are equivalence relations.

Another concept that uses modal constructs is strict implication, usually written J, in
contrast to the material implication ⊃ of classical logic. We say that P strictly implies Q if
it is not possible for P to be true and Q false: that is, in an Alethic modal logic

P J Q def
= ¬3(P ∧ ¬Q).

It is a theorem of Alethic logic that strict implication is the same as necessary material
implication:

P J Q = 2(P ⊃ Q).6

5S5 differs from the modal logic introduced in Section 2.1 (where the accessibility relation was absent)
in that its worlds can be structured as several isolated cliques, whereas in the logic of the earlier section all
worlds implicitly belong to a single clique. However, the two logics have the same valid sentences and can be
considered equivalent.

6This equality is a theorem of all modal logics (i.e., it requires no axioms) but it carries the intended inter-
pretation only in Alethic logics.
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We will now add these notions to the PVS embeddings of propositional modal logic
and prove the various theorems. We use the shallow embedding for illustration, but the
deep embedding is handled similarly.

First, we define strict implication (as the infix symbol |>) and the standard modal ax-
ioms. These are shown in Figure 10, preceded by a theory that defines serial and Euclidean
relations and their properties, as these are lacking from the relations theory built in to
the PVS Prelude. All the lemmas in these theories are proved automatically, apart from the
very first, sym Euc, which requires a manual quantifier instantiation step.

Some remarks on the modal axioms seem appropriate at this point. Those that are
used in standard theories (i.e., TD45) seem appropriate to their intended interpretation; B
is more controversial, however. It looks innocuous, but it is equivalent to 32P ⊃ P, which
seems less so. Premises similar to H2 are generally justified by virtue of their similarity
to N, the principle of necessitation, which is true in all modal logics. That similarity is
superficial, however. If we invite PVS to expand N in its shallow embedding from the
theory modal axioms of Figure 10, it delivers the following

N in PVS
(FORALL u: P!1(u))

IMPLIES (FORALL w: FORALL v: access(w, v) IMPLIES P!1(v))

whereas doing the same for H2 in eg full shallow of Figure 9 delivers the following.

H2 in PVS
(FORALL w: P!1(w)

IMPLIES (FORALL v: access(w, v) IMPLIES P!1(v)))

The crucial difference in quantification (and parenthesization) is now quite evident. N says
that if P is true in every world, then it must be true in every world that is accessible from a
given world. This is obviously true (and provable). Whereas H2 says that if P is true in a
given world, it must also be true in every world that is accessible from that world. This is a
strong claim and one that seems difficult to justify in general.

This highlights another item worth noting, namely, that the deduction theorem is not
valid in modal logic. That is to say, the following (which would allow H2 to be derived
from N) is not provable (its converse is, however).

PVS fragment
% false

nondeduction: CLAIM (valid(P) IMPLIES valid(Q)) IMPLIES valid(P => Q)

Related to this is the observation that it is often necessary to be careful about which parts
of a sentence are to be interpreted modally, and which are conventional propositional logic.
Specifically, a correct statement of modal modus tollens is expressed in PVS as follows (i.e.,
two modal sentences connected propositionally),

PVS fragment
tollens: LEMMA (P => Q) IMPLIES (2∼Q => 2∼P)
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more_relations [T: TYPE]: THEORY

BEGIN

IMPORTING relations[T]

R: VAR PRED[[T, T]]

x, y, z: VAR T

serial?(R): bool = FORALL x: EXISTS y: R(x, y)

Euclidean?(R): bool = FORALL x, y, z: R(x, y) & R(x, z) => R(y, z)

sym_Euc: LEMMA symmetric?(R) AND Euclidean?(R) IMPLIES transitive?(R)

ref_Euc1: LEMMA reflexive?(R) AND Euclidean?(R) IMPLIES symmetric?(R)

ref_Euc2: LEMMA reflexive?(R) AND Euclidean?(R) IMPLIES equivalence?(R)

equiv_is_Euclidean: JUDGEMENT (equivalence?) SUBTYPE_OF (Euclidean?)

END more_relations

modal_axioms: THEORY

BEGIN

worlds, pvars: TYPE+

val: [pvars -> [worlds -> bool]]

access: pred[[worlds,worlds]]

IMPORTING full_deep_pml [worlds, access, pvars, val]

IMPORTING more_relations[worlds]

P, Q: VAR pmlformulas

% strict implication

|>(P, Q): pmlformulas = ∼<>(P & ∼Q)

strict_material: LEMMA P |> Q = 2(P => Q)

K: LEMMA 2(P => Q) IMPLIES (2P => 2Q)

N: LEMMA valid(P) IMPLIES valid(2P)

T: AXIOM 2 P => P

four: AXIOM 2 P => 2 2 P

B: AXIOM P => 2 <> P

D: AXIOM 2 P => <> P

five: AXIOM <> P => 2 <> P

END modal_axioms

Figure 10: Strict Implication and the Standard Modal Axioms in PVS
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whereas the following (i.e., a single modal sentence) is invalid.

PVS fragment
tollens_bad: CLAIM (P => Q) => (2∼Q => 2∼P)

Next, we prove that the standard modal axioms are each equivalent to a property of
the accessibility relation. We do this in two stages. First we prove that properties of the
accessibility relation entail the corresponding modal axiom. This is done in the theory
modal props shown in Figure 11. The formal specification here is a rather unsatisfactory.
What we would like to say is something like the following

Formerly not PVS
T_refl: LEMMA reflexive?(access) IMPLIES T

where we reference the name of one formula (here, T) within another formula. Unfortu-
nately, PVS does not support this,7 so we have to repeat the actual formula named by T. All
the lemmas are proved automatically, except the last two, which require manual quantifier
instantiation.

modal_props: THEORY

BEGIN

IMPORTING modal_axioms

IMPORTING more_relations[worlds]

P: VAR pmlformulas

T_refl: LEMMA reflexive?(access) IMPLIES 2 P => P

four_trans: LEMMA transitive?(access) IMPLIES 2 P => 2 2 P

B_sym: LEMMA symmetric?(access) IMPLIES P => 2 <> P

D_serial: LEMMA serial?(access) IMPLIES 2 P => <> P

five_Euc: LEMMA Euclidean?(access) IMPLIES <> P => 2 <> P

END modal_props

Figure 11: Accessibility Relation Properties and the Standard Modal Axioms in PVS

In the final stage, we prove that each of the modal axioms entails a property of the
accessibility relation (i.e., the reverse direction of the previous stage). By comparison with
the previous theory, it might seem that we would state these lemmas in a similar manner, as
shown below.

7Recent versions of PVS do support this, so T refl is now valid PVS.
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PVS fragment
refl_T: LEMMA 2 P => P IMPLIES reflexive?(access)

However there is a complication. To introduce this, note that the informal way to prove
the result is via its contrapositive: we suppose the accessibility relation is not reflexive, so
there is some world w such that NOT access(w, w). Now define the valuation function
val such that val(p)(v) = NOT v=w for some pvar p. Then w |= pvar(p) is false but
w |= 2 pvar(p) is true (because the valuation of p is true everywhere except at w and w
is not accessible from w). Thus, we contradict the antecedent and by reducto conclude that
the accessibility relation must be reflexive. This is a sound proof because 2 P => P must
be true in all models.

more_modal_props: THEORY

BEGIN

worlds, pvars: TYPE+

val: VAR [pvars -> [worlds -> bool]]

access: pred[[worlds,worlds]]

IMPORTING full_deep_pml

IMPORTING more_relations[worlds]

P: VAR modalformula[pvars]

refl_T: LEMMA (FORALL P, val:

full_deep_pml[worlds,access,pvars,val].valid(2P => P))

IMPLIES reflexive?(access)

END more_modal_props

Figure 12: Accessibility Relation Properties and the Standard Modal Axioms
(other direction) in PVS

Now the issue in constructing this proof in PVS is that we need to be able to define a
suitable valuation function during the proof: thus the function needs to be a variable. In all
our specifications so far we have defined the parameters to the embedding as uninterpreted
constants. Here, we need to keep the valuation function val as a free variable—hence,
the quantification in the specification of the formula refl T shown in Figure 12. Unlike
earlier specifications, the conversion valid cannot be applied automatically as PVS cannot
tell what theory instance is required, so we have to specify it in its qualified form, where
we state the full theory theory instance. It is likewise difficult to specify the type of P. We
cannot supply val as a parameter to its theory instance as this is a variable, so we need to
reparameterize the embedding so that modal formulas are specified separately from their
interpretation. Rather than do this for full shallow pml, we use full deep pml as it is
already structured and parameterized in this way.

19



The proof of refl T is shown below. The (lemma "pvars nonempty") is used to ac-
cess the name (x!2) of some member of pvars (since this type is specified to be nonempty).
The inst command then constructs the valuation function described above, after which
PVS can complete the proof automatically.

PVS proof
(ground)

(expand "reflexive?")

(skosimp)

(lemma "pvars_nonempty")

(skosimp)

(inst - "pvar(x!2)"

"LAMBDA (x:pvars): LAMBDA (w:worlds): NOT (x=x!2 AND w=x!1)")

(grind)

The theorems and proofs for the other modal axioms are constructed similarly, but are
sufficiently tedious challenging that they are left as exercises for the reader. Another ex-
ercise is to rework the version of the example argument in Figure 9 so that it cites modal
Axiom B instead of symmetry of the accessibility relation.

2.5 LATEX-Printing

PVS is able to typeset specifications in LATEX and thereby reproduce standard mathematical
notation. We illustrate this on the following example specification that uses strict implica-
tion.

Example Specification

|>(P, Q): pmlformulas = ∼ <>(P & ∼ Q)

H1: AXIOM g |> 2 g

H_triv: LEMMA symmetric?(access) IMPLIES (P |> 2 P) IMPLIES (<> P => P)

H2: AXIOM <> g

HC: THEOREM symmetric?(access) => g
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A LATEX-printed version of this example is shown below.

P J Q: pmlformulas def
= ¬3(P ∧ ¬Q)

H1: AXIOM g J 2g

H1 triv: LEMMA symmetric?(access) ⊃ (P J 2P) ⊃ (3P ⊃ P)

H2: AXIOM 3g

HC: THEOREM symmetric?(access) ⊃ g

The way in which PVS ASCII text is rendered in LATEX is controlled by a “substitutions”
file pvs-tex.sub. A comprehensive substitution file is provided with the PVS distribution
but it can be augmented by the user. The rendition above was generated using the following
substitutions file as augmentation. The first column in this file identifies the ASCII source
to be substituted, the second identifies the kind of PVS object it is (see the PVS documen-
tation), the third gives the size of the substitution in ems, and the final column gives the
desired LATEX substitution.

PVS LATEX substitution file

|> 2 3 {#1 \strictif #2}

|> id 1 \strictif

H1 id 2 \pvsid{H1}

H1_triv id 3 \pvsid{H1\_triv}

H2 id 2 \pvsid{H2}

IMPLIES id 3 \supset

= key 2 \defn

˜ id 1 \sim

˜ id 1 \neg

=> id 1 \supset

& id 1 \wedge

It might be considered that these substitutions are too aggressive because they fail to
distinguish those connectives that are to be interpreted modally from those that are proposi-
tional. If we remove the last three lines from the substitution file above (where the third-last
line was overriding the fourth-last), we restore this distinction and generate the following
rendition.
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P J Q: pmlformulas def
= ∼3(P & ∼Q)

H1: AXIOM g J 2g

H1 triv: LEMMA symmetric?(access) ⊃ (P J 2P) ⊃ (3P ⇒ P)

H2: AXIOM 3g

HC: THEOREM symmetric?(access) ⇒ g

We have now completed our treatment of propositional modal logic in PVS and proceed
to tackle the quantified case.

3 Quantified Modal Logic in PVS

Quantified modal logics add quantification to the propositional case. There can be inter-
actions between quantifiers and the modal qualifiers so this needs to be done with care.
For example, a standard step in modal formulations of of Anselm’s Proslogion II argu-
ment for the existence of God [4] (the “Ontological Argument,” not to be confused with
his Proslogion III argument which we used for illustration in the previous section) is to
consider “some thing x than which there is nothing greater.” This might be formulated as
¬∃y : 3(y > x), which can be read as “there is no y that is greater than x in any (accessible)
possible world.” A plausible alternative is ¬3∃y : (y > x), “in no (accessible) possible
world is there a y greater than x” and we might wonder if this is equivalent to the previous
formula. It turns out that sometimes it is and and sometimes it is not, thereby highlighting
the delicacy of combining quantified and modal reasoning.

We saw that the full semantics for propositional modal logic must recognize that pos-
sible worlds may not all be accessible from each other, and this is formalized in the acces-
sibility relation. In a similar manner, a precise semantics for quantified modal logic must
recognize that the domains of quantification may not be the same in all possible worlds.
In a constant domains semantics they are the same, whereas in a varying domains seman-
tics they may differ. Important special cases are nondecreasing and nonincreasing varying
domains where the domains behave as their names suggest across the accessibility relation
(obviously, constant domains are a special case of both of these). The two formulas con-
sidered above are equivalent if constant domains are assumed; with varying domains, the
first implies the second under nonincreasing domains and vice-versa under nondecreasing
domains.

Just as properties of the accessibility relation correspond to standard modal formulas
(e.g., symmetry corresponds to modal Axiom B), so properties of domains correspond to
standard formulas. These are the Barcan Formula

∀x : 2φ(x) ⊃ 2∀x : φ(x)
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or, equivalently, its contrapositive

3∃x : φ(x) ⊃ ∃x : 3φ(x)

and the Converse Barcan Formula

2∀x : φ(x) ⊃ ∀x : 2φ(x)

and its contrapositive equivalent

∃x : 3φ(x) ⊃ 3∃x : φ(x).

The Barcan formula characterizes nonincreasing domains, while the Converse Barcan for-
mula characterizes nondecreasing domains; the two are equivalent if the accessibility rela-
tion is symmetric (i.e., if modal Axiom B holds).

The Barcan formula and nonincreasing domains are generally regarded with suspicion:
they imply that anything that exists in a possible world also exists in the actual world, a
position known as actualism. Thus, if it is possible that a cow jumped over the moon, then
there is a specific cow in the actual world that possibly jumped over the moon. The converse
Barcan formula is less controversial.

3.1 Constant Domains

To represent these topics in PVS, we begin with constant domain semantics. We take the
full shallow embedding of Figure 8, rename pmlformulas to qmlformulas, and add the
following declarations.

PVS fragment
QT: TYPE

qmlpreds: TYPE = [QT -> qmlformulas]

PP: VAR qmlpreds

CFORALL(PP)(w): bool = FORALL (x:QT): PP(x)(w)

CEXISTS(PP)(w): bool = EXISTS (x:QT): PP(x)(w)

Here, the type QT is the “domain” over which quantification occurs. In a finished for-
malization it will be best to specify this as a parameter to the embedding theory. In classical
logic, quantification applies to predicates over the quantified type; in quantified modal logic,
everything is lifted to operate over possible worlds, so quantification applies to qmlpreds,
which are functions from the quantified type to predicates on worlds (i.e., qmlformulas).

We then specify the constant domain universal quantifier CFORALL as a function
that takes a lifted predicate of type qmlpreds and delivers a lifted Boolean of type
qmlformulas; the definition of this function is quite natural, it applies classical universal
quantification to all values of the lifted predicate in the world concerned. The corresponding
existential quantifier is specified similarly as CEXISTS.
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We can now attempt to employ these definitions by stating and proving some properties
of the Barcan formula. In a constant domain, both the Barcan formula and its converse are
true, so we can prove that the two sides of the formula are equal. What we would like to
write is the following.

Not yet PVS
Barcan: LEMMA CFORALL(2 PP) = 2 CFORALL(PP)

Unfortunately, this is incorrect. The modal qualifier 2 applies to qmlformulas and on the
left we have given it PP of type qmlpreds; what would work here is 2 PP(s) for some s.
However, CFORALL applies to qmlpreds and 2 PP(s) is of type qmlformulas; what we
need here is a function that takes an s and returns 2 PP(s). Such a function is LAMBDA s:
2 PP(s), so a correct statement of the Barcan formula is the following (the right side of
the equality was already type-correct).

PVS fragment
Barcan1: LEMMA

CFORALL (LAMBDA (s:QT): 2 PP(s)) = 2 CFORALL(PP)

The formula is proved by the commands shown below; apply-extensionality proves
two functions are equal by showing that their values are equal when applied to each element
of their domain.

PVS proof
(skosimp) (apply-extensionality :hide? t) (grind :polarity? t)

Although Barcan1 is correct, it is a little difficult to read and rather more difficult to
write. Fortunately, PVS has capabilities that considerably ease these difficulties. First is
the K conversion; this is defined in the PVS prelude as the K combinator of Combinatory
Logic (indeed, it might be less confusing if it were named K combinator). When used
as a conversion it automatically supplies the LAMBDA construction of Barcan1. Thus the
following is a valid rendering of our original formulation.

PVS fragment
CONVERSION K_conversion

Barcan: LEMMA CFORALL(2 PP) = 2 CFORALL(PP)

The second PVS capability that is useful here is its ability to use higher-order predi-
cates as “binders.” The binder corresponding to a higher-order predicate is its name with
! appended, so the binder corresponding to CFORALL is CFORALL!. Thus another way to
render the Barcan formula is the following.

PVS fragment
Barcan2: LEMMA

(CFORALL! (s:QT): 2 PP(s)) = 2 CFORALL! (s:QT): PP(s)
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The right hand side could also be written as just 2 CFORALL(PP), as it was previously.
These alternative forms are purely syntactic variations and are interpreted the same as

Barcan1 internally.
Now, it might seem that instead of saying the two sides of the Barcan formula are equal

in constant domains, we could say each implies the other, using the IFF connective as
follows.

PVS fragment
Barcan3: LEMMA CFORALL(2 PP) IFF 2 CFORALL(PP)

However, if we ask PVS to display the expanded forms (i.e., with conversions applied) of
Barcan and Barcan3, using the command M-x ppe we see they are different.

PVS PPE
Barcan: LEMMA CFORALL(LAMBDA (s: QT): 2PP(s)) = 2CFORALL(PP)

Barcan3: LEMMA

valid(CFORALL(LAMBDA (s: QT): 2PP(s))) IFF valid(2CFORALL(PP))

The reason is that all types have an equality operator, so Barcan (once conversions are
applied) is type-correct as it stands. The connective IFF, however, requires arguments of
Boolean type, so PVS searches for a conversion that will take the qmlformulas we have
provided and deliver Booleans: it finds that valid fits the bill.

We can repeat this experiment using implication as in the following two examples.

PVS fragment
Barcan4: LEMMA CFORALL(2 PP) IMPLIES 2 CFORALL(PP)

Barcan5: LEMMA CFORALL(2 PP) => 2 CFORALL(PP)

The first uses the keyword IMPLIES and the second the operator =>. These are synonyms
when given Boolean arguments, but we have overloaded => to take qmlformulas also.
Thus, when we display their expanded forms, we see they are different,

PVS PPE
Barcan4: LEMMA

valid(CFORALL(LAMBDA (s: QT): 2PP(s))) IMPLIES valid(2CFORALL(PP))

Barcan5: LEMMA valid(CFORALL(LAMBDA (s: QT): 2PP(s)) => 2CFORALL(PP))

These different formulas are all true (and provable) in constant domains but have slightly
different meanings. This raises the question: which is the correct interpretation of the
Barcan formula? Most texts on the topic are quasi-formal and do not clearly resolve (or
recognize) the different possible interpretations. My belief is that Barcan5 is the correct
reading. It is worth repeating in this context our earlier observation (page 16) that the
deduction theorem (which would relate Barcan4 and Barcan5) is not valid in modal logic.8

8Barcan4 and Barcan5 are equivalent in constant domains, but not in varying domains.
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3.2 Varying Domains

So much for constant domains; the more general treatment of quantified modal logic uses
varying domains. We can formalize this in PVS by introducing a higher order predicate
vind(w) (standing for “values in domain”) that defines the set of members of the type QT
that are defined in world w. This predicate is best specified as a parameter to the theory. We
then require that the quantifiers are restricted to just the defined values. The obvious way to
do this is the following.

PVS fragment
vind(w)(a): bool

VFORALL(PP)(w): bool = FORALL (x:QT): vind(w)(x) IMPLIES PP(x)(w)

VEXISTS(PP)(w): bool = EXISTS (x:QT): vind(w)(x) AND PP(x)(w)

However, PVS has predicate subtypes, so the following is a better way to express this.

PVS fragment
VFORALL(PP)(w): bool = FORALL (x:(vind(w))): PP(x)(w)

VEXISTS(PP)(w): bool = EXISTS (x:(vind(w))): PP(x)(w)

Here, vind(w) is a predicate and a predicate in parentheses denotes the corresponding
subtype; hence, x:(vind(w)) indicates that variable x ranges over the subtype of values
satisfying vind(w).

As we know, there are relationships between the Barcan formulas and the way domains
change across the accessibility relation. We define these as follows.

PVS fragment
fixed: AXIOM vind(w)(a)

nondecreasing: AXIOM (EXISTS w: vind(w)(a) AND access(w,v)) => vind(v)(a)

nonincreasing: AXIOM (EXISTS w: vind(w)(a) AND access(v,w)) => vind(v)(a)

The axiom fixed asserts that these varying domains are actually constant: every value is
defined in every world. The axiom nondecreasing says that new values may be added as
we move along the accessibility relation, but none are lost; nonincreasing says the opposite.

Incidentally, these two formulas would mean the same if written without explicit quan-
tification, as follows.

PVS fragment

nondecreasing_alt: AXIOM vind(w)(a) AND access(w,v) => vind(v)(a)

nonincreasing_alt: AXIOM vind(w)(a) AND access(v,w) => vind(v)(a)

Most readers will know this, but as this is a tutorial it is worth spelling it out. PVS closes
formulas by universally quantifying all free variables at the outermost level. Here, we

26



have implications where variables a and v are referenced on both sides, but w is referenced
only on the left. If we wish to explicitly quantify w in its narrowest scope, we must use
an existential, not a universal, because there is an implicit negation in the left side of an
implication. Readers who are unfamiliar with this may wish to examine these formulas
(and prove their equivalence) in the PVS prover.

The Barcan formula is equivalent to nonincreasing domains and the converse Barcan
formula to nondecreasing. In one direction, we can simply state an instance of the Barcan
formula and prove it by citing the relevant axiom on domains.

PVS fragment
% requires fixed

vBarcan_eq: LEMMA VFORALL(2 PP) = 2 VFORALL(PP)

% requires nonincreasing

vBarcan: LEMMA VFORALL (2 PP) => 2 VFORALL (PP)

% requires nondecreasing

vCBarcan: LEMMA 2 VFORALL (PP) => VFORALL (2 PP)

These are all easily proved by citing the axiom concerned and then using grind as usual.
More interesting is to prove the relationships in the other direction. We do this below.

Notice that as the Barcan formula is now part of a larger formula, we must be explicit about
the scoping of the quantification of PP (previously we could just allow PVS to close the
formula). As always, we must state the relevant formula (here, nonincreasing) rather
than just use its name.

PVS fragment
vBarcanx: LEMMA

(FORALL PP: (VFORALL (2 PP) => 2 VFORALL (PP))) IMPLIES

(FORALL v,a: (EXISTS w: vind(w)(a) AND access(v,w)) => vind(v)(a))

A proof for this is shown below. First, we use a variant of grind that performs no
quantifier instantiations. Then we supply a carefully crafted instantiation for PP that will
lead to a contradiction (we have nested LAMBDAs because the predicate is higher-order), and
then instantiate the other variables in a way that makes the contradiction manifest.

PVS proof
(grind :if-match nil)

(inst - "LAMBDA (z:QT): LAMBDA (w:worlds): NOT(z=a!1 AND w=w!1)")

(inst -1 "v!1")

(ground)

(inst -1 "w!1")

(grind)

For the Converse Barcan formula, we state the result as follows (note that we have
changed the quantification for w, v and a in illustration of the point made earlier about
quantification on the left side of implications).
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PVS fragment
vCBarcanx: LEMMA

(FORALL PP: 2 VFORALL (PP) => VFORALL (2 PP)) IMPLIES

(FORALL w, v, a: vind(w)(a) AND access(w,v) => vind(v)(a))

And the proof is shown below.

PVS proof
(grind :if-match nil)

(inst - "LAMBDA (z:QT): LAMBDA (w:worlds): NOT(z=a!1 AND w=v!1)")

(inst -1 "w!1")

(ground)

(("1" (inst - "a!1") (grind)) ("2" (grind)))

Given these results, we can prove that the Barcan and Converse Barcan are either both
valid or both false when the accessibility relation is symmetric.

PVS fragment
bothB: LEMMA symmetric?(access) IMPLIES

((FORALL PP: VFORALL (2 PP) => 2 VFORALL (PP)) IFF

(FORALL PP: 2 VFORALL (PP) => VFORALL (2 PP)))

We leave proof of this as an exercise; the basic approach is to first prove a similar result
about the nonincreasing and nondecreasing formulas (PVS can prove this automati-
cally), then use VBarcanx and VCBarcanx to extend this to the Barcan formulas (which
requires about a dozen PVS proof steps).

Our treatment of modal logic in PVS is now adequately complete. We have an embed-
ding of quantified modal logic and have seen stated and proved some of the standard results
concerning properties of the accessibility relation and of constant and varying domains. We
have seen how the capabilities of PVS allow modal formulas to be presented in a fairly
standard and attractive way. To finish, we need to discuss some of the pragmatics of using
these embeddings, including the notions of rigid versus flexible functions and predicates,
and the use of quantification in mixed classical and modal contexts.

3.3 Pragmatics of Quantified Modal Logic in PVS

Eder and Ramharter [4, page 2,819] quote Bertrand Russell as follows:

I have heard a touchy owner of a yacht to whom a guest, on first seeing it,
remarked: ‘I thought your yacht was larger than it is’; and the owner replied,
‘No, my yacht is not larger than it is’.

The issue here is that of comparing the value of an attribute of an object in one world with
its value in another possible world. Here, the guest is comparing the size of the yacht in
the actual world with its size in the world of his imagination, while the owner is rooted in
the actual world. This kind of comparison across worlds is a topic that arises quite often
and there is a method for dealing with it that I will describe in this section, along with
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some other topics that arise in the construction of more complex specifications involving
quantified modal logic.

At the beginning of this section, we saw a couple of quantified modal formulas that
purported to capture the idea of “some thing x than which there is nothing greater.” One of
them was ¬∃y : 3(y > x), which can be read as “there is no y that is greater than x in any
(accessible) possible world.” The problem with this formulation is that y may be greater
than x in some worlds, but its greatness in those worlds is exceeded by the greatness of x in
the actual world. So what we really want to compare is the greatness of x in this, the actual
world, against that of potential rivals in other possible worlds.

Eder and Ramharter propose the following definition [4, Section 4.2] for the predicate
G that recognizes maximally great things under this new interpretation. Here g(x) is the
“greatness” of x and � is an ordering (actually an uninterpreted predicate) on greatness.

Def M-God 3: Gx :↔ ∃z (z = g(x) ∧ ¬3∃y (g(y) � z))

The quantified variable z is used to capture the greatness of x in this world, so that it can be
compared to that of some y in another possible world.

Before we look at the combination of modal and quantified constructions here, it is
worth taking note of the functions and predicates involved. The greatness of a thing is
different in different worlds. It is what is called a flexible function and its lifted form will
be g(x)(w), giving the greatness of x in world w. But � is a fixed or rigid predicate: it does
not depend on the world (and so its lifted form is just itself).9 consider the quantification
appearing in this definition. The first quantifier is over greatness, whereas the second is over
things. Our PVS embedding of quantified modal logic was defined in a theory which took a
domain of quantification as a parameter. Here we have two domains, so it looks as if we may
need to extend the embedding. or find a way to combine two instances of the embedding
theory. The latter will entail the presence of two different interpretations for qmlformulas
and, depending how the parameterization is done, several other types, too. It is feasible to
resolve these issues by supplying almost all types used in the full shallow qml theory as
parameters, but it seems appropriate to first look for alternative solutions.

The whole purpose of the quantification over z is to provide a rigid value that can be
compared to flexible ones; that is, to provide a nonmodal (i.e., classical) context for evalua-
tion of modal expressions. So what we really want to write as the body of MGod3, our PVS
rendition of M-God 3, is something like the following, where z is a classical quantification
outside the modal expression. We use varying domains (i.e., VEXISTS!) for generality.

9Varying domains allow the possibility that a constant c in the domain of quantification does or does not
exist in different worlds; a possible further complication is that it may exist but denote different objects in
different worlds. Thus g(c) could change from one world to another due to either or both the flexibility of g or
of c. Fitting and Mendelsohn give details [5]. Flexible constants add complexity to the embedding but seem to
have little expressive value and we omit them (if c denotes a in some worlds and b in others, we can replace
it by ca and cb; the former always denotes a and exists in worlds where c exists and denotes a, and mutatis
mutandis for cb).
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Flawed PVS
MGod3(x): qmlformulas =

EXISTS z: (z=g(x) & ∼ <> VEXISTS! y: (g(y) > z))

There are two problems here: one is that the type of the expression quantified by z is
qmlformulas whereas classical quantification requires a Boolean expression; the other is
that MGod3(x) is declared to be of type qmlformulas, whereas the quantified expression is
delivering a Boolean. We solve both problems by recognizing that MGod3(x)(w) (i.e., the
evaluation of MGod3(x) in world w) is a Boolean and so is the modal expression quantified
by z when applied to the world w. Hence we arrive at the following formalization.

PVS fragment
modal_eandr: THEORY

BEGIN

things: TYPE+

x, y: VAR things

IMPORTING full_shallow_qml[things]

w, v: VAR worlds

greatness: TYPE+

a, b, z: VAR greatness

g(x)(w): greatness

>(a, b): bool

MGod3(x)(w): bool =

EXISTS z: (z = g(x) & ∼ <> VEXISTS! y: (g(y) > z))(w)

The theory defines greatness as an uninterpreted type; g(x)(w) is a flexible function
that gives the greatness of x in world w, and > is the rigid ordering over greatness
(although, since it is uninterpreted, nothing says it is really an ordering relation). Then we
define MGod3 in the manner described above.

But now notice that the subexpressions z = g(x) and g(y) > z in MGod3 are not
type-correct: z is of type greatness but g(x) and g(y) are functions from worlds to
greatness. The subexpressions become correct when we lift them to functions on worlds.
The K conversion of PVS does this automatically, so the following is the prettyprint-
expanded form of the definition above.

PVS PPE
MGod3(x)(w): bool =

EXISTS z:

((LAMBDA (x1: worlds[U_beings]): z = g(x)(x1)) &

∼ <>VEXISTS! y: (LAMBDA (s: worlds[U_beings]): g(y)(s) > z))(w)
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Thus, although our PVS specification for MGod3 is syntactically quite similar to Eder
and Ramharter’s definition M-God 3, we see that quite a lot of machinery, and thought, are
required to create this similarity.

If we no longer require similarity to Eder and Ramharter’s definition, then some simpler
alternatives become available, such as the following.

PVS alternative
MGod3_alt(x)(w): bool =

(∼ <> VEXISTS! y: LAMBDA (s: worlds): (g(y)(s) > g(x)(w)))(w)

Here, we exploit the fact that we have the world w available and can therefore name the
greatness of x in the current world directly as g(x)(w), thereby obviating the need for the
quantification over z. On the other hand, we have to lift the whole expression to a function
on worlds using an explicit LAMBDA.

This version of Anselm’s Ontological Argument uses three premises that Eder and
Ramharter formulate as follows.

ExUnd: ∃xGx,

PossEx: ∀x3E!x, and

Greater 5: ∀x∀y(¬E!x ∧3E!y→ ∃z (z = g(x) ∧3(g(y) � z))),

where E!x is a flexible predicate indicating that x “exists in reality.” The conclusion is the
following.

ERC: ∃x(Gx ∧ E!x).

The first two premises and the conclusion are transcribed quite directly into PVS as shown
below.

PVS fragment
ExUnd: AXIOM VEXISTS! x: MGod3(x)

re?(x)(w): bool

PossEx: AXIOM VFORALL! x: <> re?(x)

ERC: THEOREM VEXISTS! x: MGod3(x) & re?(x)

Here, re? is a flexible predicate that corresponds to E! in Eder and Ramharter’s notation.
ExUnd says that in all worlds, some greatest thing is in “the understanding” (i.e., in the

domain of quantification); PossEx says that everything exists in reality in some accessible
possible world; ERC says that in all worlds, there is some greatest thing that exists in reality.

Notice that formalization of these premises in PVS forces attention on the types. Thus,
the quantification in ExUnd is VEXISTS (i.e., modal) rather than EXISTS (i.e., classical),
which might not have been apparent in Eder and Ramharter’s notation, and similarly in
PossEx and ERC.
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Greater 5 says that if x does not exists in reality in the actual world and y does exist
in reality in some possible world, then the greatness of y in some possible world exceeds
that of x in the actual world. Greater 5 uses a similar construction to M-God 3, where
quantification over z is used to record the greatness of x in this world for comparison against
that of y in some possible world. When formalizing Greater 5 in PVS, it seems sensible to
use what we learned with MGod3 and apply the same technique. That is, we use MGod3 as
a pattern in defining a similar function M3 that specifies the expression on the right of the
implication in Greater 5 as follows.

PVS possibility
M3(x, y)(w): bool =

EXISTS z: (z=g(x) & <> (g(y) > z))(w)

Then we can use M3 in a straightforward specification of Greater 5 such as the following.

PVS possibility
Greater5: LEMMA

VFORALL! x: VFORALL! y: (∼re?(x) & <>re?(y) => M3(x, y))

But observe that M3 could equivalently be defined as follows.

PVS possibility
M3(x, y): qmlformulas =

LAMBDA w: EXISTS z: (z=g(x) & <> (g(y) > z))(w)

What we will do is employ the body of this definition directly in the specification of
Greater5 given above, thereby removing the need for M3 (but having benefited from its
consideration). This leads to the following PVS specification.

PVS fragment
Greater5: AXIOM

VFORALL! x: VFORALL! y: (∼re?(x) & <>re?(y)

=> LAMBDA w: EXISTS z: ((z=g(x) & <> (g(y) > z))(w)))

The general technique employed in these examples is to use modal constructions where
we can, then “lower” them to classical logic through application to a suitable world when
we need to use classical quantification, and to “lift” them back up again with a LAMBDAwhen
they are part of a larger modal construction. Observe that this is performed automatically
by the K conversion for the subexpressions involving z, as it was in MGod3 (and it would
also supply the LAMBDA w: had we omitted it).

Some may think it would be better if the conclusion ERC referred to the actual world,
rather than (implicitly) all possible words, and likewise ExUnd. It might seem that we could
specify this alternative version of ExUnd as follows.

Flawed PVS
here: worlds

ExUnd: AXIOM VEXISTS! x: MGod3(x)(here)
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This is incorrect, however. If we invite PVS to expand out the modal constructs with the
command (grind :if-match nil :exclude "MGod3"), we obtain the following se-
quent from this version of ExUnd.

PVS sequent
|-------

{1} EXISTS (x: (vind(w!1))): MGod3(x)(here)

We see that PVS has (correctly) required this expression to be true in all worlds, whose
Skolemized representative is w!1, and this yields an unhelpful constraint on the type
for x. A correct specification is the following (note the crucial parenthesization around
VEXISTS!), which causes x to have the more useful type (vind(here)).

PVS fragment
ExUnd: AXIOM (VEXISTS! x: MGod3(x))(here)

Similar care is required with the adjustment to ERC.
That concludes our examination of this example. Our interest in it here is purely as

an illustration of several tricky topics in the use of quantified modal logic. Those who are
interested in the argument itself, and its proof, are referred to [9].

4 Conclusions

PVS is able to embed modal logic in a way the supports its concepts and much of its standard
notation while providing the benefits of mechanized checking and automated reasoning.
Although the embedding of modal logic is fairly straightforward, checking and automation
reveal that use of the quantified logic, in particular, requires care, especially when combined
with classical quantification. Thus, readers who have studied and, perhaps, experimented
with the examples in the previous subsection may be inclined to agree with Lewis, who
writes as follows.

“Philosophy abounds in troublesome modal arguments—endlessly debated,
perennially plausible, perennially suspect. The standards of validity for modal
reasoning have long been unclear; they become clear only when we provide a
semantic analysis of modal logic by reference to possible worlds and to possi-
ble things therein. Thus insofar as we understand modal reasoning at all, we
understand it as disguised reasoning about possible beings.” [6, p. 175]

Lewis then presents a formal development written directly in terms of possible worlds.
In my opinion this goes too far: there is value in the use of modal concepts and notation.
However, formalizing modal arguments in PVS can reveal subtleties and unsuspected com-
plexities. In particular, use of conversions and overloading in PVS sometimes produces
different interpretations for apparently similar formulas, as in the different readings of the
Barcan formula, and it highlights the care needed with the formulas of Section 3.3. In my
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view, these should be seen as benefits of formalization and mechanization, not drawbacks:
the subtleties and complexities are real, and are exposed by formalization. But, because it
can be hard to get the details of modal specifications correct, I highly recommend inviting
PVS to expand them out so that (in a compromise with Lewis’ position) you can check that
their rendition in terms of possible worlds corresponds to your intent.

Benefits of the PVS mechanization of modal logic are illustrated by some published ex-
amples concerning the modal ontological argument [10, Section 4], where flawed criticism
of a valid modal argument is shown to be due to an erroneous formulation of modus tollens
(recall Section 2.4), and a first order modal construction encounters some of the difficulties
outlined here in Section 3.3.

The embedding technique used here is totally standard (see, for example Wikipedia [1]),
but PVS’s facilities for overloading, conversions, and binders support it in a particularly
attractive way. Embeddings in other verification systems are described by Benzmüller and
Woltzenlogel Paleo [2].
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