nEmaiona

Technical Report SRI-CSL-08-XX e February 2008

Separation and Integration in MILS
(The MILS Constitution)

John Rushby

Computer Science Laboratory
SRI International
Menlo Park CA 94025 USA

This report was not released at the time because | considered it unfinished.
However, a copy seems to have “escaped” and as of January 2021 it has
33 citations, so | thought | may as well make it belatedly available myself.

This research was performed under a subcontract to Raytheon Corporation, spon-
sored by the US Air Force Research Laboratory.

Computer Science Laboratory e 333 Ravenswood Ave. e Menlo Park, CA 94025 e (650) 326-6200 e Facsimile: (650) 859-2844

This document is formatted for two-sided printing with a binding: even-
numbered pages should appear on the left and odd-numbered pages on the
right when opened as a double-page spread. This page is the back of the
title page.

Abstract

We describe the MILS approach to design, construction, integration, and
evaluation of secure systems. The crucial feature of the MILS approach is
that it separates the problems of enforcing security policy from those of
securely sharing resources. MILS design proceeds in two steps: first, we
develop a logical security policy architecture in which the system is decon-
structed into interacting components in such a way that the trusted compo-
nents are as simple as possible; second, we allocate components of the policy
architecture to resources that are securely shared through mechanisms for
logical separation.

MILS identifies certain standard resources such as processors, networks,
consoles, and file systems and publishes protection profiles for their logical
separation; a COTS marketplace is developing that provides components
evaluated to these profiles. Standard protection profiles and a marketplace
for evaluated policy components (such as guards and filters) are also an-
ticipated. Top-down design of a MILS system pays attention to existing
protection profiles and strives to target these where appropriate. MILS con-
struction can then incorporate COTS products evaluated to these protection
profiles.

MILS integration takes COTS and bespoke policy components and allo-
cates them to physical resources that may be shared using COTS and be-
spoke components for separation in a way that is faithful to the original pol-
icy architecture. Security assurance and evaluation in MILS are assembled
in the same way. That is so say, MILS security assurance is compositional:
assurance for an overall system is derived from that of its components, inte-
grated according to the specific policy architecture and resource allocation
of the system concerned.

Compositional design and assurance for a system property such as secu-
rity is a radical innovation; we outline the justification for the MILS approach
to accomplishing this.

Contents

1 Introduction 1
2 Separation 2
2.1 The Policy Level 3
2.1.1 Trusted Systems Software 6
2.1.2 Communications Ports 6
2.1.3 Unidirectional Communications and Control Channels 8
2.1.4 Imperfect Communications Channels 10

2.1.5 Policy-Level Architecture Diagrams and Their
Interpretation oo oL 13
2.2 The Resource-Sharing Level 14
2.2.1 Techniques for Separation 16
2.2.2 Separation Kernels 17
2.2.3 Resource-Sharing Example 19
2.2.4 MILS Protection Profiles and Products 20
3 Integration 21
3.1 Interactions among Policy Components. 23
3.2 Interactions between Policy and Resource-Sharing Components 25
3.3 Interactions among Resource-Sharing Components 25
4 Conclusion 26

List of Figures

0 ~J O Ui W N -

— = = O
o = O

End-To-End Encryption Controller
End-To-End Encryption Controller with Systems Software . .
Deconstructed Encryption Controller
Communications Ports 0oL
Unidirectional Low-to-High Channel
Low-to-High Data Channel with Control Channel
Trusted Components for Unidirectional Low-to-High Channel 10

© 00 J U =~ W

Control Channels 11
Policy Architecture with Imperfect Channels 12
Imperfect Channel and Protocol Adjunct 13
Idealized and Securely Shared Communication Resources . . 15

Encryption Controller Implementation Using Separation Kernel 20

ii

A Note on the Subtitle

I was struck by a simile used by Kevin Driscoll of Honeywell: he likened a
system architecture to the U.S. Constitution. The Constitution is not a law:
it tells you what laws you can make. In the same way, MILS is not a system
design: it tells you what designs may be considered MILS.

The U.S. Constitution has other merits: it is short and inspirational. In
several meetings on MILS it has become clear that not all participants share
the same understanding of MILS—there is a need for a definitive, consensus
account of MILS in a form that is short and, ideally, inspirational. Hence,
this document; it is certainly short. Determination of other merits is left to
the reader.

Acknowledgments

I owe a particular debt of gratitude to Rance DeLong who reintroduced me
to computer security after I had been absent for a while, and acted as my
friend and guide in the world of MILS. I am also grateful for the support
and patience of Carolyn Boettcher, our project manager at Raytheon, and to
Wilmar Safire and Dilia Rodriguez, our managers at the Air Force Research
Laboratory, and their predecessors Jahn Luke and Todd Reinhardt.

Several participants in the Real Time and Embedded Systems forum of
the Open Group (where MILS and its protection profiles are reviewed) helped
form my understanding of MILS and provided critical review of presentations
based on drafts of the material given here. I particularly benefited by input
from Joseph Bergmann of the Open Group, Ben Calloni of Lockheed Martin,
Michael McEvilley of Mitre, Gordon Uchenick of OIS, and Mark Vanfleet of
NSA.

iii

v

1 Introduction

Security has several interpretations and encompasses many subsidiary and
constituent notions. For example, multilevel secure systems manage infor-
mation of different classification levels where the security requirement is that
information must not flow “downward” in classification level; on the other
hand, guard systems are interposed between a highly classified information
source and a more lowly classified destination precisely so that information
can flow downward, provided certain data fields are reviewed, removed, or
modified. Other systems must ensure that certain operations are performed
only with proper authorization, while others are concerned with separation
of duties (so that performing one action may remove the ability to perform
certain others).

The precise interpretation of security for a given system is called its
security policy. A secure system must not only satisfy its policy, it must be
provided with strong assurance that it does so. Assurance is generally more
credible and less expensive to develop when systems are small and simple,
and when their policies are simple. For large, complex systems and policies,
it is often effective to decompose the system into components (and possibly
then into subcomponents, and so on recursively) that are smaller and simpler
than the overall system, and whose local security policies are simpler than
the overall one.

The MILS! approach to security advocates vigorous, logical decomposi-
tion as the first step in secure system design. The idea is to isolate security-
critical functionality into components that are as small and simple as pos-
sible, and whose security policies are likewise as simple as possible. The
decomposition is logical, or virtual, in that it is unconcerned with the phys-
ical realization of components.

Implementation of components is considered in a separate, second step,
where it may be decided that some of the components identified in the first
step should be implemented as physically distinct subsystems, while others
may share physical subsystems. Shared subsystems introduce the possibil-
ity of interference between logically distinct components; interference can
include propagation of faults and leakage of information. MILS addresses
these concerns by requiring that shared subsystems implement rigorous sep-
aration (similar to partitioning in avionics), which guarantees that sharing
of resources is undetectable to logically distinct components.

IMILS was originally an acronym for Multiple Independent Levels of Security, but is
now best considered simply a name for the approach to secure systems described here.

MILS is characterized by this two-level approach to secure system design:
a first or “upper” or, the term we prefer, policy level that decomposes the
system into logical components, and a second, “lower,” or resource-sharing
level that allocates these components to physical subsystems. This approach
differs from other security architectures (e.g., security kernels), where there
is generally but a single level and policy is enforced by the same mechanisms
that manage resource sharing. As noted earlier, security is seldom identified
with a single, simple policy; the two-level approach of MILS was introduced
as a rational way to organize the multiple cooperating components and sub-
policies that realize a complete secure system.

A second element to MILS is cultivation of a COTS market for compo-
nents; policy components are likely to be specific to the particular system
concerned (though generic “guards” could be attractive) but resource sharing
components have broad utility. A MILS implementation is then an integra-
tion of trusted COTS resource sharing components supporting a combination
of trusted and untrusted policy-level components. The former are likely to
be small bespoke implementations, while the latter may employ commodity
COTS software.

Of course, a MILS system needs to provide assurance that this design
and implementation strategy and, in particular, the separate subpolicies of
its logical components and the resource-sharing properties of its physical
subsystems, “add up” or compose to guarantee the security policy required
of the overall system. This is the problem of integration assurance for MILS.

The following sections describe the MILS approach to these issues in
more detail. The two levels in the MILS approach to design are each con-
cerned with “separation”: the policy level decomposes or separates the over-
all system and its policy into simpler components and policies, while the
resource-sharing level virtualizes or separates shared resources so that they
provide secure implementation platforms for the components generated at
the first level. Section 2 addresses these two forms of separation; Section
3 then focuses on the issue of integration and composition, while Section 4
summarizes and outlines future work.

2 Separation

The two steps in MILS development correspond to classical pol-
icy/mechanism separation. MILS takes this further and advocates sepa-
ration or decomposition of policy into simpler subpolicies, because a secure
system seldom requires a single, simple security policy. Separation of func-

tions and policies can result in trusted components that are simpler, and
trusted with respect to simpler policies, than a monolithic system. Assurance
is a dominant cost in secure system development, and simple components
and policies can drastically reduce assurance costs. The “mechanisms” of
MILS correspond to its resource-sharing level and separation is also employed
here—in fact, it is the basic function of a resource-sharing component to vir-
tualize its resource into separate subresources that operate independently.
We explore these facets of separation in the following subsections.

2.1 The Policy Level

Consider a very simple secure system: a controller for end-to-end encryption.
Such a system takes in cleartext message packets from one (“red”) network,
encrypts their contents, and sends the encrypted packets out on another
(“black”) network. Packets comprise a header, which contains destination
and other routing information, and data. Only the data part is encrypted
because the switches in the black network have to read and process the
headers so they can correctly route the packets to their destinations.

red black
side side
encryption

Figure 1: End-To-End Encryption Controller

The internal structure of an encryption controller is sketched in Figure
1. There must be some software that handles the reception of packets from
the red network; most likely, this will include a full handler for the com-
munications protocol used on that network. This “red side” software will
split the header information from the data and will send the header directly
to the corresponding “black side” software while the data is sent via an
encryption function. The black side software reassembles the header and
encrypted data into a packet and sends it out on the black network. The
security policy for this system is that unencrypted data must never go out
over the black network. In practice the security policy would also include
requirements that cryptographic keys never appear in the clear and other

issues concerned with key management (see, for example [10]); we will ignore
these to keep the exposition as simple and focused as possible.

If the encryption controller is implemented as traditional software run-
ning in a single processor as suggested by Figure 1, then satisfaction of the
security policy depends on all of that software, and so it is shown shaded
to indicate that it is trusted and must be provided with credible assurance.
Furthermore, all the other software running in the processor, including the
operating system and its utilities, must be trusted and assured, as indicated
in Figure 2.

red black
side side
encryption
network el
utilities

stacks

compiler runtime

operating system

Figure 2: End-To-End Encryption Controller with Systems Software

Assurance that the system satisfies the security policy will require ex-
amination of all this software to be sure that there are no accidental or
malicious mechanisms that could allow unencrypted data to reach the black
side, where it could then be transmitted on the network. Malicious mech-
anisms could pass data through unexpected channels and could use clever
encodings, so assurance would most likely have to specify exactly what each
element of software is intended to perform, and to provide evidence that
it does it correctly. Thus, assurance for a relatively simple property of a
relatively simple system ends up requiring evidence for full correctness of an
operating system, protocol stacks, and application software.

Now suppose that instead of a single monolithic implementation, we
envisage the system as comprising four separate components connected by
specific communications paths as shown in Figure 3.

Y

bypass

minimal runtime

Y

] red black >

operating system operating system
A

Y

crypto

hardware

Figure 3: Deconstructed Encryption Controller

Immediately, the assurance task becomes greatly simplified. There is no
direct communication path between the red and black components. The
absence of this direct path is a crucial element in the design indicated by
Figure 3. The only paths from red to black are through the crypto and
the bypass components and we can derive subsidiary security policies for
these components: the crypto must encrypt everything that leaves on its
outgoing channel, and the bypass must ensure that only information that
“looks like” valid protocol headers is passed from red to black (and only at
low bandwidth). The protocol handlers and other software in the red and
black components can be completely untrusted.

The functionality of the bypass can be extremely simple: it may not
even need to pass actual headers, just the destination and other essential
information, since the true header will be constructed by the black protocol
handler. Hence, the bypass can be extremely simple, and its assurance would
seem entirely feasible. The crypto component may be quite sophisticated,
but it is likely to be a standard component whose assurance draws on long
experience and well-attested capabilities.

Figure 3 represents a policy architecture for the encryption controller.
Construction of such an architecture is the first step in a MILS design; the
goal should be to allocate functions to the components of a conceptually
distributed architecture in such a way that the functionality of trusted com-
ponents is as simple as possible, and the security policies with respect to
which they are trusted are also as simple as possible. In the second step of
a MILS design, we will allocate some of these conceptually separate compo-
nents to shared resources in a way that preserves the security assumptions
of the policy architecture. The following subsections elaborate some of these
assumptions, and their caveats.

2.1.1 Trusted Systems Software

The simplicity of the bypass and the standardized nature of the crypto
will both be compromised if they depend on a complex operating system or
other supporting software. Hence, we require that trusted components such
as these depend only on very simple environments that can be provided with
strong assurance. Typically, these environments will be the “bare metal”
(either real, virtual, or paravirtual) of a well-known processor, or such bare
metal plus a minimal runtime (MRT) that supplies, for example, a sim-
ple C library with malloc and other essentials. These elements are shown
explicitly in Figure 3, and are shaded to indicate that they are trusted. As-
surance for the bare metal and/or MRT will be with respect to a policy of
functional correctness: this may be difficult and expensive but is a reusable
artifact that exacts a one-time cost. Since the red and black components
are untrusted, they may incorporate arbitrary software, including ordinary
operating systems and utilities.

2.1.2 Communications Ports

The presence of a channel from one component to another needs to be inter-
preted carefully. We elaborate the interpretation of components and chan-
nels in Subsection 2.1.5, but first try to convey the intuition. The intuitive
interpretation of a policy-level decomposition diagram such as Figure 3 is
that the components (i.e., boxes) behave like separate computer systems,
and the channels (i.e., arrows) are like physical point-to-point communica-
tions links, but are strictly unidirectional. Thus, a channel does not indicate
arbitrary information flow to the state of a component, but the ability to
read from or write into specific control registers, buffers or, the more abstract
term that we prefer, port.

Y

bypass [

— red black (—

Y

crypto [

Figure 4: Communications Ports

Each channel is associated with a port, portrayed as a small square in
Figure 4. A port is a read-only extension to the state of the component that
is the destination of the channel; the port can be both read and written by
the component that is the source of the channel. (It is obviously possible
to create a dual interpretation where the port is located in the state of the
destination component and functions as a write-only extension to the state
of the source; it is a matter of personal preference exactly how this is done,
but the arrangement chosen has the advantage that it is possible for the
source to perform operations such as incrementing the value of a variable in
a port.)

The requirement for ports, or some other localization of the interpre-
tation of a channel is obvious: if the channel from bypass to black were
interpreted to allow black to read anywhere in the memory of bypass, then
it could read the temporary buffers holding information just received from
red, thereby bypassing the bypass and rendering it unable to perform its
trusted function.

2.1.3 Unidirectional Communications and Control Channels

Just as the absence of communications channels is often crucial to policy ar-
chitectures, so is their strictly unidirectional character. For example, “cross-
domain solutions” often require low-to-high flows, such as that shown in
isolated form in Figure 5. We need to be sure that any implementation
of this channel truly is unidirectional, even when the untrusted source and
destination components do their best to subvert it (subversion that allows
unmediated high to low flows is obviously unsecure). As this is a concern
about implementation, a case can be made that it should be addressed at
the resource-sharing level of MILS, and that the policy level should focus on
achieving security with logically separated components and idealized unidi-
rectional communications.

low high

(unclassified) (secret)

Figure 5: Unidirectional Low-to-High Channel

The problem is that certain implementation strategies require introduc-
tion of a trusted policy-level component and this should be recognized in the
policy architecture. If 1low and high are partitions in a shared processor and
the data channel is implemented in its separation kernel, then assurance that
it is unidirectional will be provided with the kernel and does not obtrude
to the policy level. But if the channel uses external wires, then we must ei-
ther provide assurance for the corresponding software and hardware drivers,
thereby elevating the source and destination components to trusted status
and inviting their further decomposition, or else we must interpose a trusted
“data diode” in the wire. Suitable data diode devices have been developed
(e.g., using optical transducers [14]). These implementation strategies do
obtrude to the policy level and suggest that, as with many system design
problems, there may be some iteration back and forth between the policy
and resource-sharing levels during evolution of a MILS design.

Unidirectional channels raise another issue that is definitely the province
of the policy level. This is the possible need to introduce control channels
in the opposite direction to data channels. In Figure 5, for example, the
low component may supply data to high at a rate faster than the latter
can process it. Thus, high must have some means to signal to low when it
is ready and when it is not ready to receive data, or else the channel must

be allowed to become lossy, or worse (e.g., prone to data corruption). In a
weak implementation, the low component might simply overwrite data in
the port of the channel to high; if the timing is unlucky, high could then
read corrupted data (e.g., part of one transmission, incompletely overwritten
by a later one that is still in progress). A more sophisticated channel would
implement the port as a wait-free, lock-free atomic register (e.g., Simpson’s
four-slot construction [24]): this guarantees that high always receives the
most recent complete data sent by low, but data will be lost if low sends it
at a rate faster than high can handle. This can be acceptable when the data
is, for example, a stream of constantly updated sensor samples (provided
these are absolute values rather than deltas on previous values—lost samples
introduce permanent value errors in the latter case). To guarantee no loss of
data we must either synchronize execution of the low and high components
(e.g., a time-triggered implementation), so the former sends and the latter
receives and processes some fixed amount of data in each “frame,”? or we
must provide a control channel in the reverse direction as shown in Figure
6, where we use a dashed arrow to indicate the control channel.

low high

(unclassified) [~~~ (secret)

Figure 6: Low-to-High Data Channel with Control Channel

An unmediated control channel can become a path for unsecure informa-
tion flow. To limit this, we need a trusted filter in the control channel, and
this probably needs to correlate acknowledgments against transmissions, so
it will also need access to the low-to-high channel as shown in Figure 7. As
that figure suggests, the monitor for the control channel and a diode for
the data channel may be available in a single component, such as the NRL
“Network Pump” [11]. Note that in some policy architectures, ensuring that
control channels also are unidirectional may be a significant concern.

The need for data diodes to ensure unidirectional channels is an
implementation-level issue that rises to the policy level; the need for control
channels and their possible mediation is, however, a policy-level concern.
Thus, for the encryption controller of Figure 8, it is likely that each requires
a corresponding control channel and these are shown in the more complete

2The synchronous approach is often preferred in embedded systems, because control
channels can provide new paths for failure propagation [12].

“‘network pump’’

data diode .
low L | high
(unclassified) | | Y~ ——1 | (secret)

Figure 7: Trusted Components for Unidirectional Low-to-High Channel

policy architecture of Figure 8 (for simplicity, we have omitted explicit de-
piction of the ports). We anticipate that the implementation will ensure all
the channels are unidirectional; hence, no new policy-level components are
needed to ensure this.

The bypass and crypto are trusted mediators in the information flows
between red and black; thus, the presence of control channels does not
require new mediators, but these existing ones must be cognizant of the new
channels. Note the importance of the assumption that these channels are
unidirectional. If the control channels were not unidirectional, they could
subvert the architecture: for example, the bypass might not monitor its
control channels for “reverse flow” and might allow unmediated red to black
information flow via this unanticipated route. Suitably enhanced bypass
and crypto components could cope with perverse control channels, but this
would have to be considered in their local security policies. Hence, security
of the policy architecture of Figure 8, and the precise local policies of its
trusted components, is contingent on assumptions about the unidirectional
character of the implementations of its control channels.

2.1.4 Imperfect Communications Channels

Figures 3 and 8 indicate only the presence or absence of channels between
components, and their directions; they do not indicate their properties, such
as whether they are susceptible to loss, error, tampering, or eavesdropping.
By default, channels are assumed to be free of these defects and it is the re-
sponsibility of the implementation level to discharge this assumption. How-
ever, some policy architectures may not require such strong assumptions,
and others may prefer to deal with imperfections at the architecture level
(rather as the assumption of unidirectional channels can be discharged at
either the policy or implementation level). Hence, each channel in a policy
architecture should be annotated with its assumed properties if these are
other than “perfection.”

10

- bypass

— red black —

- crypto

Figure 8: Control Channels

These annotations are necessary because the properties of imperfect
channels can affect the policies and implementations of components—and
even the feasibility of the whole design. For example, the entire rationale for
Figure 3 is vitiated if the channel from red to crypto is vulnerable to eaves-
dropping. It might seem that eavesdropping on the red-to-bypass channel
is less threatening since the headers will be revealed anyway in the output
from black—but this neglects the fact that red is untrusted and cannot
therefore be relied on to send only headers and not data over the channel
to the bypass. We conclude that these channels must not be vulnerable to
eavesdropping (an assumption that must be discharged at the implementa-
tion level, or through the context of the system’s deployment); on the other
hand, it does no harm if the channels from bypass and crypto to black are
subject to eavesdropping.

A different issue arises if the channels between red and bypass are unreli-
able ones that can lose, change, duplicate, or reorder headers or their control
information. These attributes do not directly compromise the security pol-
icy, but they would reduce the functional effectiveness of the device (since
headers would no longer be reliably associated with their bodies). Hence, we
might introduce a protocol on the red-to-bypass channel to ensure reliable
communication, as portrayed in Figure 9 (there would probably need to be
corresponding protocols on other channels, too).

11

unreliable channels
1o}
T T T T T T T 5 -~~~ =~-=-- |
! ¢ bypass ;
1 »o—- |
1 |
1 |
1 |
1 |
| |
v Y.
protocol
— red black |
[} l
! |
! |
! I
! I
! I
| |
| |
| |
T crypto -~ }

Figure 9: Policy Architecture with Imperfect Channels

A new problem is that the bypass now contains software for managing
this protocol and is no longer the minimally simple component desired for
credible assurance. The available design choices are either to push this issue
down to the implementation level, or to offload the bypass protocol han-
dler to a separate adjunct as shown in Figure 10.> Note that the “local”
channels between the adjunct and the bypass are assumed to be reliable:
such error-free channels are feasible when the components concerned are, for
example, implemented in partitions of the same processor, and the channels
are memory-to-memory transfers performed by the separation kernel.

3Note that Figure 10 shows the red protocol handler remaining in that component
rather than being offloaded to a separate adjunct. This is because both red and its
protocol handler are untrusted (with respect to security). Note, however, that although
untrusted functionalities may be combined in a single component, trusted ones should
not be. Thus, if the bypass adjunct were trusted (for some policy), it would still be
sensible to separate it from the trusted bypass as these two components would be trusted
for different purposes and the assurance of two simple components with respect to their
individual policies will be more credible than that for a more complicated single component
with multiple policies.

12

unreliable channels g

——————— £:S la- - .- - ——— -
E 28 bypass !
| |
| |
| |
| |
| |

|
l |
! |
Y Y.

protocol
— red black —

A A
! I
! I
! I
! I
! I
! I
: |
| |
L ™ crypto < |

Figure 10: Imperfect Channel and Protocol Adjunct

2.1.5 Policy-Level Architecture Diagrams and Their
Interpretation

The properties of a specific MILS system derive from the policies enforced
by its trusted components and the context established by its architecture.
A MILS policy architecture diagram such as Figure 4 has a precise inter-
pretation. The formal definition of this interpretation is deferred to another
document [5], but we sketch its basis here.

1. The components (boxes) in a MILS policy architecture are (possibly
nondeterministic) state machines whose states are mappings from sub-
sets of a global address space A to values from a global set V.

2. The local address space of component P is a subset Ap of A that is
disjoint from the local address spaces of all other components.

3. A channel (arrow) ¢ with source component P and destination com-
ponent Q # P in a MILS policy architecture is identified with a port
that is a subset A, of the local address space of P that is disjoint from
all other ports.

13

4. The transition relation 7, of component P has read access to its local
address space plus all those ports with destination P; it has write
access to just its local address space.

Read access and write access are defined in [5]; read access is particu-
larly tricky to specify correctly (see, for example, [22, Section 2.1]).

Observe that channels are modeled by shared state; the restrictions
on read and write access ensure these are unidirectional. Implicitly,
channels are free of imperfections such as message loss. If imperfect
channels are required, it is usual to interpose a new component that
models the types of imperfections required, although these can also be
modeled as transitions affecting the port of the source component.

5. The transition relation of the complete architecture is the asynchronous
composition (i.e., the disjunction) of the transition relations of its com-
ponents.

The formal security policy model sketched above can be shown to be
consistent with other similar models, such as intransitive noninterference
[22] and GWVr2 [7]. This model provides the assumptions for the policy
architecture level of MILS and the requirements for the resource-sharing
level, which is described next.

2.2 The Resource-Sharing Level

A MILS policy architecture is an abstract construction: its guiding principle
is that the trusted components should have simple functionalities and simple
security policies. To achieve this, we assume that splitting a larger compo-
nent into several smaller subcomponents imposes no cost in acquisition or
performance, and we likewise assume that communications between compo-
nents are free and generally unidirectional, secure, and reliable (caveats were
discussed in Sections 2.1.3 and 2.1.4).

The task of the MILS implementation level is to discharge not only the
assumptions on which the security of the policy architecture depends, but
also those about cost and performance. The latter concerns are addressed
through resource sharing, and the former by doing this in a way that guar-
antees separation.

Separation means satisfaction of the model sketched in Section 2.1.5 and
its item 4 in particular. That item requires that the behavior of a component
depends only on its local state and the ports of incoming communications
channels, and that it modifies nothing but its own local state. Ports are the

14

only interfaces to components in this model, and channels and their ports
provide the only means for communication and interaction among compo-
nents. If there were no channels, each component would function entirely
independently (that was the original interpretation for the security policy
of separation, while the richer security policy that includes communications
was called channel control [19,22]). As noted earlier, separation is similar
to partitioning in avionics [23], and this provides the useful noun partition
for the instantiation of a component within a shared resource.

/
\

wasAsqns yromyou Suruonnied

\
j

Figure 11: Idealized and Securely Shared Communication Resources

To allocate the components and communications channels of a MILS pol-
icy architecture to shared resources, we first need to identify those that can
be physically collocated and those that have similar functionality. We may
then consider implementing those functionally similar collocated components
as partitions in a shared resource that provides the functionality concerned.
For example, several components that provide filesystem services could share
the resources of a “partitioning filesystem,” while components that present
information to a human operator could share the screen area of a single
“partitioning console subsystem.” It is not only components and their inter-
connections that can share resources: a collection of channels could be routed

15

through a shared wire or network using VPN-like capabilities provided by a
“partitioning communication or network subsystem” as suggested in Figure
11. Totally disparate components can share a processor partitioned by a sep-
aration kernel: each component is then implemented as a bespoke program
running in its own partition.

2.2.1 Techniques for Separation

There are several ways to ensure separation and a single system may em-
ploy more than one technique (an early example that used several is the
Distributed Secure System [15]).

The most basic technique is spatial separation, which corresponds to the
direct implementation of a policy architecture without resource sharing: each
component is implemented in a physically separate resource and channels are
implemented as dedicated point-to-point communications lines. Physical
separation is seldom feasible for a complete architecture, but it can be an
attractive option for certain components.

Temporal separation allows different components to share the same phys-
ical resource, but not at the same time. The resource is dedicated to one
component for a period, then scrubbed clean and allocated to another com-
ponent and so on. This approach is also known as “periods processing” and
was used for mainframes in the 1960s and later; in a MILS context, it is a
useful option for workstations and CPU servers.

Cryptographic separation employs encryption and digital signatures or
checksums to enforce read and write protection. It is difficult to perform
operations on data protected in this way, so cryptographic separation is
most useful when data needs merely to be stored or moved from one place
to another—hence, it is particularly suitable for partitioning filesystems and
communications.

Programs sharing a processor resource sometimes can be shown to sat-
isfy the requirements for separation using static program analysis or other
kinds of formal verification. Such analysis may be able to guarantee that
no information flows from one program to another except through channels
specified in the policy architecture. Analysis of this kind is feasible only
when all programs that share the processor are available for examination
beforehand and it is therefore unsuited to dynamic systems, or those that
use proprietary software. However, this approach can be effective in limited
environments such as smartcards.

When some of the programs sharing a processor resource are unknown
or untrusted we can turn to a separation kernel. The kernel element in this

16

name is intended to suggest that its functionality is similar to that of an
operating system kernel, while the separation element identifies the security
policy that it enforces—that is, provision of isolated partitions corresponding
to each of the components in the MILS architecture concerned, and the
communications channels that connect them.

2.2.2 Separation Kernels

A separation kernel is generally used in cases where it is impossible to analyze
the software that will reside in some of its partitions. Such untrusted software
may contain malicious code that attacks other partitions or the separation
kernel itself, or that conspires covertly to communicate data contrary to the
policy architecture. The kernel of a commodity operating system usually
cannot represent this kind of security policy and cannot provide adequate
protection, still less assurance of protection, against this kind of attack. A
separation kernel is therefore stripped of extraneous function and dedicated
to providing just the protection and assurance needed to enforce (part of)
a MILS policy architecture. Its limited function allows a separation kernel
to be very small (a few thousand lines of code), to deliver high performance
(hundreds of thousands of partition switches per second), and to come with
strong assurance that it achieves its purpose. A separation kernel is similar
to the “partitioning kernels” used in integrated modular avionics (IMA), but
is more aggressively minimized (an avionics kernel will typically be upwards
of ten thousand lines of code).

A separation kernel uses the protection mechanisms of its processor—
i.e., its supervisor modes and memory management unit (MMU)—to create
partitions whose client software is constrained to specified areas of mem-
ory. (It is interesting to observe that a kernel uses spatial separation for
memory, and temporal separation for the CPU registers.) The environment
perceived by the clients of a separation kernel may be a simulated copy of
a full processor (a virtual machine), a simplified copy (a paravirtual ma-
chine), or an interface of the kind presented by conventional or real-time
operating systems (e.g., ARINC 653 for avionics [2]). Full virtual machines
allow untrusted partitions to run off the shelf software, including commodity
operating systems such as Windows.

Until recently, true virtualization was expensive (in terms of performance
and the amount of code required) on some processor families; paravirtualiza-
tion reduces the cost but requires modifications to client operating systems,
which is generally feasible only for those whose source code is available. In-
novations in processor design have made full virtualization affordable, but

17

other infelicities (driven by the needs of the commodity marketplace) con-
tinue to pose difficulties. In particular, caches provide fairly high bandwidth
channels for covert information flow (an untrusted partition at “high” secu-
rity level empties the cache to signal a 1 and leaves it alone to signal a 0;
a subsequent untrusted “low” partition can measure memory performance
and estimate the bit value) and these are exacerbated in multicore designs
where some of the caches are shared. Processor temperature (which can
be driven up by intensive computation) and power states can also provide
covert channels.

Memory-mapped I/O allows device registers to be allocated to specific
partitions; the kernel can field external interrupts from devices and imme-
diately route them to the relevant partition for handling.* A separation
kernel is minimized using techniques such as this: all non-separation func-
tions are expelled from the kernel and delegated to specific partitions. Some
of these functions (e.g., device drivers, shared network stacks, sophisticated
scheduling) may need to be trusted, but a separation kernel applies the
MILS philosophy that it is better to create several simple functions, each
responsible for a single aspect of security, than a monolith responsible for
many.

In addition to enforcing the separation of partitions, the separation kernel
also provides their inter-partition communication (IPC) channels as specified
by the policy architecture. The IPC interface and mechanism may range
from simple mailboxes to page mapping (swapping a region of memory from
the address space of the source to that of the destination).

A separation kernel also is responsible for scheduling partitions for ex-
ecution. Scheduling must be done in a way that minimizes covert channel
bandwidth (an untrusted “high” security partition can indicate a 0 or 1
bit through its choice of when it relinquishes the CPU) while maximizing
whatever measure of performance is important to the overall application
(these measures are very different in embedded real-time vs. interactive ap-
plications, for example). Minimization of covert channels generally requires
static scheduling, while performance often favors dynamic scheduling (e.g.,
rate monotonic or earliest deadline first); a combination is possible where
groups of partitions with similar security attributes are given a static group
schedule whose allocation to individual partitions may be determined dy-
namically.

4Devices that can initiate DMA transfers are problematic because their memory ac-
cesses bypass the protections of the MMU; forthcoming processor designs remedy this
deficiency.

18

The virtual or paravirtual machine interface presented by a separation
kernel is attractive for untrusted partitions because it allows them to run
commodity operating systems and software, but it is rather an austere foun-
dation for the software of trusted partitions. Hence, these partitions will
often employ a minimal runtime (MRT) library that provides functions for
managing local memory (malloc etc.), scheduling, and accessing IPC. The
MRT must generally be trusted and assured for full functional correctness.

2.2.3 Resource-Sharing Example

Returning to the policy architecture of the encryption controller shown in
Figure 4, we see that several implementation strategies are possible. We
could use four separate processors connected by wires (spatial separation),
or four separate partitions in a single processor shared using a separation
kernel, or some combination of these. A plausible choice is for the crypto to
be a self-contained hardware device, while red, black, and bypass share a
single processor. The red and black components are untrusted, so we need
to use a separation kernel (as opposed to program analysis) to ensure that
they cannot conspire to communicate plaintext data directly from one to the
other. The crypto device will need a device driver and other support soft-
ware and this will be trusted software located in a partition of its own. We
thus arrive at the implementation structure portrayed in Figure 12 (control
channels are omitted in the interests of readability).

The untrusted red and black software resides in partitions that may
contain arbitrary support software, such as a full runtime library or operat-
ing system; the trusted bypass software resides in a partition that provides
a trusted minimal runtime; the trusted device drivers and support software
for the crypto reside in a fourth partition, where the kernel will vector inter-
rupts from the crypto device and also provide access to its device registers
(indicated in Figure 12 by arrows between the crypto device and its device
driver partition). Device drivers and network stacks for the incoming and
outgoing networks are located in the red and black partitions, respectively.

The separation kernel provides the channels between red, bypass, black,
and the device partition for the crypto (indicated in the Figure 12 by in-
ternal arrows). The separation kernel must ensure that these channels are
truly unidirectional, provide exactly the geometry of connectivity indicated
in the policy architecture of Figure 4, and interpret the ports correctly.

19

red

runtime or
operating system

bypass

black

minimal runtime

runtime or
operating system

device driver

for crypto

7

7

]

v

separation kernel

v

crypto h/w

Figure 12: Encryption Controller Implementation Using Separation Kernel

2.2.4 MILS Protection Profiles and Products

Pure top-down functional and policy decomposition might yield few compo-
nents sufficiently similar to share any resource but a partitioned processor;
however, a repertoire of partitioned resources available off the shelf would
provide an incentive to adjust top-down decomposition to target available
products, where these are suitable.

Several DoD programs are working in concert to encourage development
of broadly useful off the shelf components and the growth of a commercial
marketplace for these. The means of encouragement is through development
and approval of Protection Profiles® for a useful variety of shared resources
such as the partitioned filesystems, console subsystems, communication and
network subsystems, and separation kernels alluded to earlier. A protection
profile for high robustness separation kernels has already been approved [9].

Figure 11 sketched a partitioning network subsystem in which secure
multiplexing/demultiplexing of many communication channels onto a single
network is performed by the trusted components of a partitioning network
subsystem (probably using cryptographic separation). In practice, these

®The Common Criteria for Information Technology Security Evaluation [4] specialize
their general requirements to specific classes of systems and components through Protection
Profiles (PP) to Security Targets (ST), and finally to Targets of Evaluation (TOE).

20

components are most likely to be implemented as trusted software that runs
in one partition of a separation kernel.

A partitioning network subsystem allows a network resource to be shared
just as a separation kernel allows a processor resource to be shared; in this
sense the network subsystem is a first-class MILS resource-sharing compo-
nent, just like a separation kernel. On the other hand, the network subsys-
tem is trusted software that runs in a partition provided by a separation
kernel, and in this sense it is subordinate to the kernel. Some discussions of
MILS [26] refer to components such as a trusted network subsystem as MILS
middleware, as distinct from the separation kernel below it and the appli-
cation software above it. In my view, the middleware sobriquet is perfectly
acceptable, provided it is understood that this refers to an implementation
strategy, and that the logical role of a network subsystem is identical to that
of a separation kernel: each is a component at the resource-sharing level of
MILS, responsible for sharing a particular kind of resource.

Implementation strategies for MILS resource sharing components may
select from a range of options. For example, a secure filesystem could be
implemented as a middleware service running in one of the partitions in a
separation kernel (possibly structured internally using analytic separation),
or as a standalone component (possibly using a separation kernel) dedicated
to that function . It is because of this range of implementation options
that we insist that the policy architecture is the interface between the upper
and lower levels of a MILS design, and that the responsibility of the lower
level is the sharing of logical resources. If a resource such as a filesystem is
actually synthesized from still lower resources (e.g., a separation kernel, and
a disk shared with cryptographic separation), then the MILS approach can
be applied recursively to this subsystem [18].

3 Integration

The MILS approach to design proceeds in two stages: policy-level decom-
position followed by implementation of the resulting abstract policy archi-
tecture on concrete, generally shared, resources. In principle, each system
development could proceed in a purely top-down fashion, developing its own
policy components and its own shared resources. The costs of such system
developments will be considerable, particularly when high levels of assur-
ance are required, so reuse becomes very attractive—and this is cultivated
in MILS through development and approval of protection profiles and prod-
ucts evaluated to these. Currently, these are all at the resource-sharing level,

21

but protection profiles for policy-level components such as a generic guard,
network pump, and authentication services seem entirely feasible.

Given protection profiles for a variety of MILS components, and a COTS
marketplace for evaluated products compliant to these, most MILS system
developments will deviate from a pure top-down approach to one that at-
tempts to target existing components where these are suitable. The imple-
mentation of a MILS policy architecture is then constructed by integrating
some bespoke components and some existing components. The develop-
ers will hope to assemble the assurance and evaluation argument for the
full system similarly—Dby integrating the separate arguments for its bespoke
components and those of its pre-evaluated components.

This is an instance of compositional assurance, and it is a radical step for
any certification or evaluation regime. Most regimes evaluate only complete
systems (the FAA, for example, certifies only airplanes, engines, and pro-
pellers) and provide no way to evaluate a component apart from its deploy-
ment in a specific system, and no way to assemble component or subsystem
evaluations to provide (much of) the evaluation of a larger system.

The reason for this is that failures of complex systems, and often the most
dangerous failures, are seldom due to faults in individual components but
to flaws in the interactions of several (individually “correct”) components.
Typically, an unanticipated event provokes unanticipated and undesired in-
teractions (see, for example, almost any accident report, such as that for
Ariane Flight 501 [16]). By insisting on a complete system, the evaluators
can examine possible interactions in the specific context of the given system.
In contrast, component-level evaluations, and compositions of these, have to
consider all possible interactions in configurations as yet unanticipated.

Now, by a happy coincidence, security is all about eliminating unde-
sired interactions, and the genius of MILS is that it focuses on ensuring
this precisely at the level of logical components. Thus, if we have a MILS
policy architecture in which, for example, a guard is interposed in a chan-
nel from a component at a high security level to one at a lower level, we
can be sure that any MILS-compliant system will ensure that this guard
is in place and there are no other channels nor means of interaction be-
tween the high and low components—and this will remain true no matter
what (MILS-compliant) resource sharing is employed and no matter what
the larger (MILS-compliant) context is for this three-component subsystem.

A MILS system has two kinds of components, corresponding to the two
levels of a MILS system development. These are policy components such as
the bypass and crypto in the encryption controller example, and resource-
sharing components such as separation kernels and partitioning communi-

22

cations and filesystems. When we compose a system from these two kinds of
components, we must consider the three kinds of pairwise interactions among
them: policy/policy, policy/resource sharing, and resource sharing/resource
sharing. The following subsections consider these in turn.

3.1 Interactions among Policy Components

A MILS policy architecture diagram such as Figure 4 describes only the ge-
ometry of interactions among its components; a full policy architecture re-
quires specifications for the local security policies of its trusted components,
and specification of the overall security policy that the system is required to
satisfy.

A subsequent document will provide a worked example, but the informal
local security policy of the crypto is that everything that leaves its output
port is encrypted, and the informal local policy of the bypass is that it
passes plaintext at very low bandwidth and only when it has the syntactic
and semantic form of plausible message headers. The required security policy
for the overall system is that “very little” information derived from the data
parts of incoming red packets should be present in the clear in outgoing
black packets.

I think it is reasonable to believe that suitably elaborated specifications
of these local policies, combined with the interpretation of the policy archi-
tecture diagram sketched in Section 2.1.5, can deliver a credible argument
that this architecture delivers the required security policy—at least to the
level of “Medium Assurance” as this is understood in the U.S.A., that is,
approximately Evaluation Assurance Level (EAL) 4 or 5 of the Common
Criteria.

Higher assurance levels require formal methods of reasoning. Formal
specifications for components often take the form

e Component A guarantees property P if its environment ensures prop-
erty Q.

When components interact, they provide the environment for each other, so
we may have

e Component A guarantees P if its environment ensures (), and
e Component B guarantees () if its environment ensures P.

Under suitable assumptions it is then sound to conclude that the composition
of A and B (often written A||B) guarantees the conjunction P A Q.

23

In a MILS architecture, the environment of a component consists of the
other components that are sources of channels whose destination is the com-
ponent under consideration. The “suitable assumptions” under which this
assume-guarantee rule for compositional reasoning is sound are primarily
that components interact only through the explicitly given computational
mechanisms (i.e., no hidden or unexpected channels for interaction), and
this is exactly what MILS guarantees.

In the case of the encryption controller, we know nothing about black
except that its environment is bypass and crypto; we will have suitable spec-
ifications for bypass and crypto, and both of these have red (about which
we know nothing) as their environment.® Formal compositional reasoning
about this example would be challenging (especially if we sought measures
for leakage bandwidth) but I believe that it is feasible.

Fortunately, although many MILS architectures will be more complex
than this, the arguments for their security will be simpler because they
depend primarily on assigning security levels to information flows [20]. In-
formation flow is generally formalized in terms of noninterference [6] and
there are several known difficulties that might seem to pose complications
here—namely, that noninterference does not compose and is not preserved
under refinement [13]. These difficulties are consequences of the fact that
noninterference is not what computer scientists call a “property” (that is,
a predicate on—i.e., a subset of—the traces of a state machine): it is in-
stead a higher-order concept (that is, a predicate on predicates of traces).
Furthermore, it is crucial to the MILS policy architectures that flows are in-
transitive, whereas standard noninterference is transitive [22]. If flows were
transitive, then the channels from red to bypass and from bypass to black
in the encryption controller would (by transitivity) allow a direct channel
from red to black, which vitiates the whole design.

Now, the only information flow behavior that can be enforced by a pol-
icy component is a property (more particularly, a safety property [21]) and
it turns out that there is a compositional characterization of these flows in
terms of a reformulation of intransitive noninterference [25]. It seems likely
that compositional analysis for many MILS policy architectures can be con-
structed on this foundation. Indeed, tools that perform information flow
analysis on AADL specifications that closely resemble MILS policy architec-

5The full example would need to consider the control channels in the reverse direction;
this would make the argument appear circular (as it is in the A||B definition), but it
remains sound.

24

tures are already under construction [8,28], and formal underpinnings for
these can probably be provided along these lines.

3.2 Interactions between Policy and Resource-Sharing
Components

I noted earlier that Section 2.1.5 specifies a model for the assumptions of
the MILS policy architecture level, and the requirements for the resource-
sharing level. Thus, the desired interaction between the policy and resource-
sharing levels is that the resource-sharing level should precisely implement
the policy architecture. That is, the combined behavior of the components
of the policy level, implemented on the resource-sharing level, should be
identical to that of the policy architecture executing in an idealized manner
where each component is its own separate resource. This is a property called
composability: the policy architecture behaves the same on its own as when
it is composed with (i.e., runs on) the resource-sharing components.

If all the components of the policy architecture were well behaved, then
composability simply means that resource sharing does not “get in the way.”
However, untrusted policy components might attempt to subvert the archi-
tecture by creating covert channels, or might attempt to crash the resource-
sharing component that hosts them. Hence, the resource-sharing level must
definitely “get in the way” of misbehaving policy-level components: its task
is to enforce the policy-level architecture independently of the cooperation
of the policy-level components.

Although composability is described as a relation between given policy
and resource sharing components, in practice resource sharing components
will implement a stronger property that ensures they are composable with
any policy components, including faulty or malicious ones. This is similar to
the standard verification requirements on separation kernels (nonbypassable,
tamperproof, and correct, sometimes extended and abbreviated NEAT [26]).

3.3 Interactions among Resource-Sharing Components

If we implement a fragment of a policy architecture on a separation kernel
and another fragment on a partitioning filesystem, each of these resource-
sharing components is required to be composable with the fragment that it
implements. It is natural to expect that the combination of the two compo-
nents will be jointly composable with the combined fragments. Symbolically,
this is

e composable(A) and composable(B) yields composable(A+B)

25

where 4+ denotes composition of resource-sharing components. We call this
requirement additive composability.

Compositional assurance and evaluation for MILS is based on the prop-
erties sketched above: compositionality for policy components, and additive
composability for resource sharing components. Subsequent reports will de-
velop the mathematical foundations for these and establish their soundness,
but they are no more than formalizations of a reasonable intuition, which is
summarized in the slogan (due to Rance DeLong) “composability makes the
system safe for compositional reasoning.”

4 Conclusion

I have described the MILS approach to secure systems design and assurance.
The essential feature of MILS is separation of the issues of policy enforcement
and resource sharing: the former is tackled in the first step of MILS design
and results in an abstract policy architecture, while the latter is tackled in
a second step that implements the architecture on suitable resource-sharing
components.

The goal at the policy architecture step is to decompose functions so
that the components that need to be trusted are as simple as possible and
trusted with respect to simple local policies. The policy architecture assumes
that components are isolated state machines that communicate only over
known, unidirectional channels, and that subdividing functions to simplify
the trusted components exacts little cost in performance or acquisition. The
components at the resource-sharing level must discharge these assumptions:
that is, they must allow many policy-level components to share physical
resources in a manner that is both secure, efficient, and cost-effective.

Assurance in MILS is developed compositionally: that is, the assurance
for the full system is derived from that of its components and its architecture.
As with design, assurance in MILS takes place in two main steps. In one step,
the local security policies of the trusted policy-level components are shown,
under the constraints of the architecture, to deliver the security policy of
the full system; this is a property called compositionality. Subsidiary to
this step, the implementations of the trusted components must be shown to
enforce their local security policies. In the other major step, resource-sharing
components must be shown, individually and collectively, to deliver and
enforce the architectural assumptions of the policy level; this is a property
called additive composability. 1 have sketched the basis for the mathematical

26

model in which these processes can be formalized; the formalization will be
developed in a subsequent report.

MILS assurance and evaluation is performed within the basic framework
of the Common Criteria [4], although it should be noted that the Common
Criteria do not sanction compositional evaluation of the kind advocated here.
System developments are encouraged and aided to use the MILS approach
through sponsored development and approval of common criteria protection
profiles for necessary and useful components, and stimulation of a COTS
marketplace for products compliant to these. The protection profile for
high-assurance separation kernels has already been approved [9]and several
others are under construction.

These protection profiles began their development prior to the approach
to compositional assurance presented here. An issue that requires atten-
tion is compatibility between these protection profiles and our proposed ap-
proach to compositional assurance. Compositional assurance requires that
assurance for components delivers certain claims: compositionality for pol-
icy components and additive composability for resource-sharing components.
We need to check that current protection profiles deliver these claims, to sug-
gest modifications if not, and to provide guidelines for future profiles.

It is unlikely that extensive revision to existing profiles will be needed
because the approach and requirements described here really do little more
than codify the intuition that underlies MILS. For the same reason, there
is no conflict between the account of MILS given here and other accounts
such as [3,26]; the difference is one of emphasis. The account here is fo-
cused on the framework for assurance in MILS, whereas earlier accounts
were more concerned with the mechanisms of MILS implementation. Simi-
larly, there is little conflict between MILS and some other recent approaches
to secure system development, such as the High Assurance Platform (HAP)
program: MILS cultivates a marketplace of resource-sharing components,
whereas HAP provides a specific platform, but both adhere (implicitly at
least) to the two-stage approach to secure system design.

Compositional assurance and evaluation, as pioneered by MILS, is an
exciting and radical advance in certification practice. Success here could
have widespread impact, beginning with integrated modular avionics (IMA),
which have a very similar architectural basis but a very weakly compositional
approach to certification [17], and proceeding to other fields such as medical
devices, where the demand for “plug and play” interoperability [27] requires
exactly this capability.

27

References

1]

2]

[10]

[11]

Marshall D. Abrams and Harold J. Podell, editors. Tutorial: Computer
and Network Security. IEEE Computer Society Press, 1986.

ARINC Specification 653: Avionics Application Software Standard In-
terface. Aeronautical Radio, Inc., Annapolis, MD, January 1997. Pre-
pared by the Airlines Electronic Engineering Committee.

Jim Alves-Foss, W. Scott Harrison, Paul Oman, and Carol Taylor. The
MILS architecture for high-assurance embedded systems. International
Journal of Embedded Systems, 2(3/4):239-247, 2006.

Common Criteria for Information Technology Security Fvalua-
tion, September 2006/7. Version 3.1, available at http://www.
commoncriteriaportal.org/thecc.html.

Rance DeLong, John Rushby, and N. Shankar. A MILS formal security
model, 2008. Forthcoming.

J. A. Goguen and J. Meseguer. Security policies and security models.
In Proceedings of the Symposium on Security and Privacy, pages 11-20,
IEEE Computer Society, Oakland, CA, April 1982.

David Greve, Matthew Wilding, Raymond Richards, and W. Mark Van-
fleet. Formalizing security policies for dynamic and distributed systems.
Unpublished, September 2004.

Jorgen Hansson. OSATE plugin for security analysis. Available at http:
//la.sei.cmu.edu/aadlinfosite/0SATE1.2.4Download.html, Jan-
uary 2008. See also http://www.sei.cmu.edu/news-at-sei/
features/2008/01/01-feature-2008-01.html.

U.S. Government Protection Profile for Separation Kernels in Environ-
ments Requiring High Robustness. Information Assurance Directorate,
National Security Agency, Fort George G. Meade, MD 20755-6000, June
2007. Version 1.03.

Security Supplement to the Software Communications Architecture
Specification, November 2001. Report MSRC-5000 SEC V1.1, available
at http://sca. jpeojtrs.mil/home.asp.

Myong H. Kang, Ira S. Moskowitz, and Stanley Chincheck. The Pump:
A decade of covert fun. In Proceedings of the Twenty-First Annual Com-

28

[12]

[13]

[14]

puter Security Applications Conference, pages 352-360, IEEE Computer
Society, Tucson, AZ, December 2005. Invited “Classic Paper” presen-
tation.

Hermann Kopetz. Elementary versus composite interfaces in dis-
tributed real-time systems. In The Fourth International Symposium on
Autonomous Decentralized Systems, IEEE Computer Society, Tokyo,
Japan, March 1999.

Daryl McCullough. Specifications for multi-level security and a hook-
up property. In Proceedings of the Symposium on Security and Privacy,
pages 161-166, IEEE Computer Society, Oakland, CA, April 1987.

Validated Product—Owl Computing Technologies Data Diode Network
Interface Card Version 4. NIAP CCEVS, February 2007. Available at
http://www.niap-ccevs.org/cc-scheme/st/index.cfm/vid/10208.

Brian Randell and John Rushby. Distributed secure systems: Then and
now. In Proceedings of the Twenty-Third Annual Computer Security
Applications Conference, pages 177-198, IEEE Computer Society, Mi-
ami Beach, FL, December 2007. Invited “Classic Paper” presentation.

ARIANE 5: Flight 501 Fuilure. Report by the Inquiry Board,
July 1996. Available via http://en.wikipedia.org/wiki/Ariane_5_
Flight_501.

DO-297: Integrated Modular Avionics (IMA) Development Guidance
and Certification Considerations. Requirements and Technical Con-

cepts for Aviation, Washington, DC, November 2005. Also issued as
EUROCAE ED-124 (2007).

Jeffrey Choi Robinson and Jim Alves-Foss. A high assurance MLS file
server. ACM Operating Systems Review, 41(1):45-53, January 2007.

John Rushby. The design and verification of secure systems. In Fighth
ACM Symposium on Operating System Principles, pages 1221, Asilo-
mar, CA, December 1981. (ACM Operating Systems Review, Vol. 15,
No. 5).

John Rushby. Networks are systems. In Proceedings of the Depart-
ment of Defense Computer Security Center Invitational Workshop on
Network Security, pages 7-24 to 7-37, Publ. by Department of Defense

29

[28]

Computer Security Center, New Orleans, LA, March 1985. (Reprinted
in [1, pp. 300-316)).

John Rushby. Kernels for safety? In T. Anderson, editor, Safe and
Secure Computing Systems, chapter 13, pages 210-220. Blackwell Scien-
tific Publications, 1989. (Proceedings of a Symposium held in Glasgow,
October 1986).

John Rushby. Noninterference, transitivity, and channel-control secu-
rity policies. Technical Report SRI-CSL-92-2, Computer Science Labo-
ratory, SRI International, Menlo Park, CA, December 1992.

John Rushby. Partitioning for avionics architectures: Require-
ments, mechanisms, and assurance. NASA Contractor Re-
port CR-1999-209347, NASA Langley Research Center, June
1999. Available at http://www.csl.sri.com/~rushby/abstracts/
partitioning, and http://techreports.larc.nasa.gov/ltrs/PDF/
1999/ cr/NASA-99-cr209347 . pdf; also issued by the FAA.

H. R. Simpson. Four-slot fully asynchronous communication mecha-
nism. IEE Proceedings, Part E: Computers and Digital Techniques,
137(1):17-30, January 1990.

Ron van der Meyden. What, indeed, is intransitive noninterference?
(extended abstract). In Proc. 12th European Symposium on Research
in Computer Security (ESORICS), Volume 4734 of Springer-Verlag Lec-
ture Notes in Computer Science, pages 235-250, Dresden, Germany,
September 2007.

W. Mark Vanfleet, Jahn A. Luke, R. William Beckwith, Carol
Taylor, Ben Calloni, and Gordon Uchenick. MILS: Architec-
ture for high-assurance embedded computing. Crosstalk, August
2005. Available at http://www.stsc.hill.af.mil/crosstalk/2005/
08/0508Vanfleet_etal.html.

Susan F. Whitehead and Julian M. Goldman. Getting connected for
patient safety: How medical device “plug-and-play” interoperability
can make a difference. Patient Safety and Quality Healthcare, Jan-
uary/February 2008. Available at http://www.psgh.com/janfeb08/
connected.html.

WW Technology Group. EDICT Tool Suite. Available at http://
wwtechnology.com/products/EdictCore.htm, March 2008.

30

