
Draft of January 2007.

Just-in-Time Certification ∗

John Rushby
Computer Science Laboratory,

SRI International
Menlo Park CA USA

rushby@csl.sri.com

Abstract

Traditional, standards-based approaches to certification
are hugely expensive, of questionable credibility when de-
velopment is outsourced, and a barrier to innovation. This
paper is a call and a manifesto for new approaches to cer-
tification. We start by advocating a goal-based approach
in which unconditional claims delivered by formal methods
are combined with other evidence in multi-legged cases sup-
ported by Bayesian analysis. We then describe the necessity,
and the challenge, of extending this to compositional certi-
fication and outline promising directions for accomplishing
this. Finally, we consider the provocative possibility of sys-
tems in which methods of analysis traditionally used to sup-
port certification at design time are instead used for syn-
thesis and monitoring at runtime, and certification is per-
formed “just-in-time.”

1. Introduction

Certification is intended to provide stakeholders and so-
ciety at large with assurance that deploying a given sys-
tem does not pose an unacceptable risk of adverse conse-
quences. Certification is a judgment based on a body of
material that, explicitly or implicitly, consists of three el-
ements:goals, evidence, andargument. The goals identify
the adverse consequences to be considered and the degree
of risk considered tolerable; evidence comprises the results
of analyses, reviews, and tests; and the argument makes the
case, based on the evidence, that the goals are satisfied.

The traditional approach to software certification may be
called “standards based” and largely requires (or strongly
recommends) the applicant to follow prescribed processes
(e.g., DO-178B [47] for airborne software, the Common

∗ This research was supported by AFRL through a contract to Raytheon,
by NASA through a contract to Rannoch, NSF, and by SRI Interna-
tional.

Criteria for computer security [9], or IEC-61508 [32] for
programmable devices) and to develop specified evidence
(e.g., MC/DC tests [27] for DO-178B Level A). In the
standards-based approach, the goals and the argument are
largely implicit.

In some fields and countries, notably safety-critical sys-
tems in Europe, a new approach to certification is emerg-
ing that is called “goal based.” In this approach, the appli-
cant develops an “assurance case” in which the goals, evi-
dence, and argument are presented explicitly and are eval-
uated by the certifying authority or some delegated third
party. The exact form of the assurance case is a matter for
negotiation by the parties involved, but must generally con-
form to a given framework (e.g., [61]).

Standards-based certification can be very effective for
classes of systems where there is extensive experience to
support the efficacy of the prescribed methods, and where
there is relatively little innovation, so that one system in the
class is very much like another. It is less applicable to novel
circumstances and can become a barrier to innovation—not
only impeding new kinds of applications, systems, or de-
sign and implementation techniques, but also new methods
of assurance.

In Section 2, we advocate a goal-based approach to
software certification that builds on recent work on multi-
legged assurance cases [6,36], and on advances in the power
of automated formal methods of analysis. Together, we be-
lieve these advances put assurance arguments on a firmer
foundation and constitute the beginnings of a “science of
certification.”

Certification is applied to complete systems, with
scrutiny penetrating down into subsystems. However, mod-
ern business practices, such as use of COTS, outsourcing,
and continuous evolution, lessen the extent to which the sys-
tem developer and the certifier have full visibility into sub-
systems, so that a transition to compositional certification of
systems based on certified components has become urgently
desirable. Section 3 examines issues in compositional cer-
tification and proposes possible approaches. However, even

1

in this formulation, certification remains a design-time ac-
tivity based on the assumption that the system is fixed and
that all circumstances it will encounter can be anticipated
and countered in advance. Section 4 examines systems that
assemble and even synthesize their behavior at runtime and
considers the provocative possibility that certification, too,
could partly be performed “just-in-time.” Section 5 con-
cludes and offers suggestions for further research.

2. A Science of Certification

The conceptual basis for all methods of certification is
similar in principle to formal verification: for certification
we need to anticipate all possible circumstances that can
arise in the interaction of the system with its environment
and to show that none of them pose unacceptable risk of ad-
verse consequences; in formal verification we consider all
reachable states of the system in interaction with its envi-
ronment and show that none of them violates desired in-
variants (i.e., properties specified over the state variables of
the system and its environment). The spaces of “all possi-
ble circumstances” or “all reachable states” are vast, if not
infinite, and so we employ abstraction or approximation to
group similar circumstances or states together so that only
a feasibly finite number of cases need be considered. Meth-
ods of analysis used in safety-critical systems, such as haz-
ard analysis, fault tree analysis (FTA), failure modes and
effects analysis (FMEA), and guideword (HAZOP) stud-
ies, together with similar methods used in security and other
kinds of critical systems, can all be seen as abstracted or ap-
proximate means for exploring reachable states. For exam-
ple, rather than seek the exact circumstances that can pro-
duce unacceptable outcomes, we can instead search for the
broader class of circumstances that “could lead to or con-
tribute to an unplanned or undesirable event”—i.e., haz-
ards [18, Appendix 1]—and this is likely to be an easier
search, just as formal verification generally becomes easier
as invariants are strengthened. FTA, FMEA, and HAZOP
can be seen as approximate methods of reachability analy-
sis in which only certain paths are explored.

Safety analysis methods are mostly applied by hand to
the design and environment of the system as specified in
documents describing its requirements, specifications, and
assumptions. These descriptions are mostly informal, but as
industry practice moves toward model-based development,
so they become increasingly formal and it is feasible that
the methods of analysis and abstraction employed in certi-
fication can be formalized also, and assisted by automated
tools; several authors report significant progress in this di-
rection [7,33,41].

The design documents subjected to methods such as haz-
ard analysis are generally quite high level, so we need to be
sure that the lower levels of design and implementation do

not introduce new risks. In traditional certification practice,
this is done by requiring conservative design practices (e.g.,
no dynamic scheduling) and extensive processes of review
and evaluation to show that the detailed design and imple-
mentation exactly matches its specification. It is challenging
to demonstrate exact compliance between an implementa-
tion and its specification, so it is common to require several
forms of assurance: for example, conservative design prac-
tices, plus reviews, plus testing. Rational choice about how
many and which different techniques to employ, and how
much of each, is difficult because it is not obvious how the
contributions of the different techniques “add up” to reduce
uncertainty in the certification judgment. To consider this in
more detail, we need first to review uncertainty in certifica-
tion.

2.1. Uncertainties in Certification

Certification is concerned with risk, which is understood
as a combination of the severity of an adverse outcome and
its likelihood, and most certification regimes require an in-
verse relationship between these two measures. In com-
mercial aircraft, for example, catastrophic failure conditions
(“those which would prevent continued safe flight and land-
ing”) must be “extremely improbable,” which means that
they must be “so unlikely that they are not anticipated to
occur during the entire operational life of all airplanes of
one type” [17]. Likelihood of an adverse outcome is natu-
rally expressed and analyzed in terms of probabilities (un-
derstood as frequencies of occurrence in the long run), so
it is standard for certification to set goals such as10−9 per
flight hour for the probability of catastrophic failure in an
airborne system,1 or 10−4 for the probability of failure on
demand for the primary protection system of a nuclear re-
actor.

There are actually two kinds of uncertainty in certifica-
tion: one is the likelihood of adverse outcomes (e.g., the
probability of failure on demand), the other concerns the ef-
ficacy of the assurance process intended to guarantee the
required likelihood. Discussion and analysis of this second
concern requires some mathematical framework for reason-
ing about uncertainty in human judgments. There are sev-
eral such frameworks (e.g., possibility theory and fuzzy
logic, and Dempster-Shafer theory) but probability theory
is the best developed and most widely accepted and we can
use it to speak, for example, of having 95% confidence2 that

1 An explanation for this figure can be derived [37, page 37] by consid-
ering a fleet of 100 aircraft, each flying 3,000 hours per year over a life-
time of 33 years (thereby accumulating about107 flight-hours). If haz-
ard analysis reveals ten potentially catastrophic failure conditions in
each of ten systems, then the “budget” for each is about10−9 if such
a condition is not expected to occur in the lifetime of the fleet. An al-
ternative justification is obtained by projecting the historical trend of
reliability actually achieved.

2

a system achieves10−4 probability of failure on demand.
However, whereas uncertainty about adverse outcomes can
be understood in terms of frequency of occurrence, uncer-
tainty about the efficacy of assurance processes is best un-
derstood in terms of the subjective interpretation of prob-
ability. Analyzing how use of several different assurance
methods can reduce uncertainty then involves combination
of subjective probabilities.

2.2. Multi-Legged Arguments in Certification

Standards-based approaches to certification generally
distinguish different levels of criticality (e.g., Levels A to
E in DO-178B, Evaluation Assurance Levels (EAL) in the
Common Criteria, and Safety Integrity Levels (SIL) in IEC-
61508) and require different kinds and amounts of evidence
for the different levels. Different levels of criticality might
correspond to, say,10−9, 10−7, and10−5 as tolerable prob-
abilities of adverse outcomes, but do not generally state
goals for confidence in the assurance process itself. When
dealing with physical systems, where historical failure data
are available for materials and components, and very accu-
rate modeling and realistic testing methods are available for
complete systems, it is possible to calculate the probabil-
ity of system failure and separately to estimate confidence
in this calculation. With software intensive systems, how-
ever, it is not feasible to predict or measure failure rates ac-
curately beyond about10−3 (for which direct measurement
is feasible) and confidence in the assurance process is sel-
dom identified as a separate concern. Instead, the two kinds
of uncertainty are conflated and more evidence is required
for higher levels of criticality without explicit arguments re-
lating each item of evidence to the kind of uncertainty that it
addresses—the implicit argument seems simply to be “more
is better,” where “more” can refer to more evidence of a par-
ticular type, or to more different types of evidence.

Under DO-178B, for example, Level A software (the
most critical) requires more testing evidence (namely,
MC/DC coverage) than does Level B. However, when static
analysis was applied to a variety of Level A and Level B
avionics software, significant numbers of anomalies were
found (a disturbing finding in itself) and there was no dis-
cernible difference in anomaly rates between the two lev-
els [23]. On the one hand, this result is disappointing—it
suggests that thorough testing is not as effective as might
be hoped3—but on the other, it provides grounds for opti-

2 Note that this is a statement about confidence in the assurance process;
it does not concern sampling theory and is not a confidence interval.

3 Some certification experts have told me that the real benefit of MC/DC
is not increased testing but improved requirements: tests are driven
from requirements but coverage is measured on code, so MC/DC cov-
erage is possible only if the requirements are extremely detailed. In
fact, DO-178B acknowledges that test preparation can be as effective
as test execution. It is possible that some avionics suppliers use the

mism: it suggests there might be some benefit in providing
multiple forms of evidence (here, testing plus static analy-
sis).

Most standards-based methods of certification do require
multiple forms of evidence. Sometimes these address dif-
ferent facets of the argument, but often they are intended
to reinforce each other and to strengthen a particular part
of the case—for example, we may offer both testing and
code reviews to support the claim that a specification is cor-
rectly implemented. The justification for offering or requir-
ing multiple kinds of evidence is typically based on an in-
formal (and often implicit) appeal to diversity. Diversity is
the idea, or hope, that different methods (of design, imple-
mentation, or analysis) will fail independently and hence
their combination should give a multiplicative increase in
reliability or confidence. Independence of failures in mul-
tiple implementations (as assumed inn-version program-
ming) is viewed skeptically today [34], and its employment
in assurance cases should raise similar concerns. A more
principled consideration of multiple forms of evidence uses
Bayesian Belief Nets (BBNs) to evaluate what are called
“multi-legged” assurance cases [6]. Bayes theorem is the
principal tool for analyzing subjective probabilities: it al-
lows a prior assessment of probability to be updated by new
evidence to yield a rational posterior probability; BBNs al-
low this computation to be extended to complex models
([20] is an enjoyable introduction). As with all tools, BBNs
must be used with skill and care, and can yield surprising re-
sults: for example, under some combinations of prior belief,
increasing the number of failure-free tests may decrease our
confidence in the test oracle rather than increase our confi-
dence in system reliability [36].

The demand for “more” evidence is one of the reasons
why certification is so expensive. Insights from BBNs might
allow more rational choices among different methods of
analysis and more economy in their application, while also
delivering reduced uncertainty in a goal-based certification.
This topic is briefly examined in the following section.

2.3. Formal Methods and Multi-Legged Cases

Some forms of evidence confer unconditional claims: for
example, suitable static analysis delivers evidence for un-
conditional absence of run-time exceptions or arithmetic
over/underflow. The static analysis may be flawed, so its
evidence is conditional, but the claim that it supports is un-
conditional (i.e., it is of the form “x% confidence that this
property holds unconditionally,” rather than “y% confidence
that this property holds with probability z%”). Littlewood

same development process, including highly detailed requirements,
for both Level A and B code, and just test the Level A more. If this
is the case, it may not be surprising that static analysis finds similar
anomaly rates.

3

and Wright [36] (see also [35]) show that BBN analysis
is simplified, and anomalies disappear (e.g., more failure-
free tests always increase confidence in system reliability)
when one leg of a two-legged assurance argument is uncon-
ditional.

Modern highly automated formal methods, which in-
clude static analysis, can provide evidence for many un-
conditional properties (possibly contingent on assumptions
about other properties). Multi-legged arguments based on
this kind of evidence “add up” easily: they deliver the con-
junction of their individual properties as an unconditional
claim. This conjoined claim may then be combined with
other forms of evidence, such as testing and reviews, us-
ing BBNs. Furthermore, it seems plausible that when sev-
eral unconditional claims have been discharged by formal
methods, then testing can be more constructive and more
precisely targeted [22] (e.g., if static analysis can show
there are no discontinuities, then testing need only consider
continuous behavior). When testing is targeted, rather than
driven by coverage analysis, automated methods of test gen-
eration (e.g., [26]) become very effective, thereby reducing
its cost. In the limit, test generation and formal analysis can
be tightly integrated to achieve more than either alone [25].

The goal of multi-legged arguments of this kind can be
to show that the implementation is safe, rather than correct,
with respect to its specification. This should be both sim-
pler and more useful than current approaches, which (im-
plicitly) focus on correctness. Conmy [10], for example, ob-
serves that Amey and Hilton [3] argue that DO-178B is a
software correctness standard, not a system safety standard
(“there is no relation of the software to the system hazards,
the developer can only state the whole box has been tested
to level A”) and that Ankrum and Kromholz [4] found no
clear link between many of the evidence artifacts required
by DO-178B and system requirements.

In addition, modern formal methods could allow certain
strong claims to be analyzed directly on low-level specifica-
tions (e.g., hazard analysis could be performed directly on
the implementation model rather than on an informal high-
level requirement specification); this could eliminate, or at
least reduce, the work required to provide evidence that the
implementation adds no new hazards to the analyzed de-
scription.

Overall, a goal-based approach that makes extensive
use of unconditional claims delivered by automated formal
methods, and that combines these with other evidence to
form multi-legged assurance cases supported by Bayesian
analysis, could provide a more affordable, more effective,
and more scientifically principled approach to certification
than present methods.

3. Compositional Certification

The FAA certifies only airplanes, engines, and pro-
pellers; there is no provision for certifying a software com-
ponent such as an operating system separately from the cer-
tification of a specific airplane in which it is used. Recent
advisory circulars on reusable software components [19]
and guidelines on integrated modular avionics [48] make
some provision for taking the assurance case for a software
component from one airplane certification into another, but
they fall a long way short of endorsing a compositional ap-
proach to certification in which components can be sepa-
rately certified and systems using these do not need to reex-
amine their content.

The reason cited why the FAA and other certification au-
thorities consider only whole systems is that safety, for ex-
ample, is a system property, so the system must be consid-
ered in its entirety. This point is, of course, true, but does
not explain why system certification could not be largely a
compositional argument based on separately certified com-
ponents. The true reasons are surely that safety is not com-
positional under current approaches to system design and
development, and current approaches to compositional rea-
soning do not extend to issues considered in certification.

Now, computer scientists do have methods for composi-
tional reasoning about correctness (e.g., assume-guarantee
methods [14]), so why don’t these extend to certification?
There are two reasons. The first is that compositional ver-
ification of correctness assumes the integrity of the ana-
lyzed components. That is to say, in verifying a protocol,
say, composed of a sender and receiver, verification of the
sender will be performed on the basis of assumptions about
the receiver. These assumptions will include failure modes,
such as the possibility that the receiver may drop or dupli-
cate messages, or even that it will respond unpredictably.
But the assumptions will not include the possibility that a
failure in the receiver will change the program executed by
the sender, modify data in its private memory, or prevent
it from running at all. Yet if the both sender and receiver
share a processor with inadequate isolation between pro-
cesses, then it is quite possible for a malfunctioning receiver
to write into the program or data memory of the sender, or
to monopolize the CPU. Thus, certification can make use of
compositional verification only if mechanisms are present
that guarantee the integrity of the verified components and
their interfaces.

The property that must be guaranteed by these mecha-
nisms is referred to as “robust partitioning” in avionics, and
“separation” in security [49, 50]. The mechanisms them-
selves include operating system kernels, and distributed
communication systems; their construction and certification
is a specialized activity that can be performed independently
of the application systems that they support; see for example

4

the protection profile for separation kernels [30] and consid-
eration of safety-critical bus architectures [51,53].

The role of partitioning in supporting compositional cer-
tification of secure systems is being examined as part of a
“protection profile”4 being developed for component inte-
gration in the MILS architecture for secure systems [56].5

Briefly, partitioning mechanisms must providecomposabil-
ity for application software and must themselves beaddi-
tively compositional.

Composability means that properties of subsystems are
preserved under composition. Thus, the properties of an ap-
plication subsystem are unchanged when it is composed
with (i.e., runs in the environment provided by) a partition-
ing mechanism; that is, the partitioning environment does
not “get in the way.” More subtly, if many subsystems are
composed with a partitioning mechanism, then composabil-
ity ensures that no subsystem can interfere with the proper-
ties of another. Hence, composability means that properties
of subsystems are bothpreservedandguaranteedby parti-
tioning.

Partitioning creates an environment in which application
subsystems cannot interfere with one another, but they can
cooperate—for example, an air data subsystem can provide
airspeed and other sensor data to an autopilot. Partition-
ing guarantees the integrity of these subsystems, so it might
seem that we can now reason about their composition using
computer science methods for compositional verification—
and this raises the second reason why compositional verifi-
cation does not extend to certification, which is the possi-
bility of interaction through the controlled plant.

Compositional verification considers the control and data
exchanged between computational entities. But when we
contemplate the interaction between, say, a jet engine and
its thrust reverser, we realize that the engine must not de-
liver more than idle thrust when the reverser doors are un-
latched (otherwise they could be blown off). The need for
a signal between the controllers of the reverser and the en-
gine that requests idle thrust cannot be discerned by con-
sidering only the computational interactions between them.
Hence, certification of the thrust reverser in isolation must
be performed relative to a model of its plant and physical
environment, in addition to assumptions about its computa-
tional environment. Preliminary consideration of these top-
ics is reported in [52]. Plant models are likely to be hybrid
systems (i.e., state machines plus differential equations over
real-valued variables), so to support certification, composi-
tional verification needs to be extended from state machines
to hybrid systems. Modern methods for formal analysis of

4 Protection Profiles are an element in the Common Criteria for certifi-
cation of secure systems [9]; they specialize the general criteria for a
specific class of systems.

5 MILS is being employed in several DoD applications and a COTS
marketplace is developing for MILS components.

hybrid systems, in particular hybrid abstraction [58], hybrid
assume-guarantee reasoning [21], and methods for comput-
ing invariants of hybrid systems [1], suggest that this is fea-
sible, but additional work is needed to fully develop and
adapt these methods for certification.

Another area where adaptation is needed is for system-
atic avoidance of a cascading “race to the bottom” in the
case of component failures. For example, partitioning en-
sures that a faulty air data system cannot destroy the oper-
ation of the autopilot, but the autopilot does use data from
the air data system so it cannot be unaffected by its failure.
Presumably the autopilot has other sources for air data and
can still function, but possibly in a degraded manner. This
means that compositional reasoning about the air data and
autopilot combination is complicated by the need to deal
with degraded behaviors; since each component might have
m different kinds of degraded behaviors, their composition
may need to considerm2 combinations (and an exponential
number in the case ofn components). When systems mutu-
ally interact, degraded behavior by one may force another
to drop down to a degraded mode of its own, which may
trigger further degradation in the first, and so on. The expo-
nential number of fault cases, and the domino behavior of
cascading faults, can both be controlled by imposing a hi-
erarchy of degraded behavior levels. The assume-guarantee
model of compositional verification is elaborated so that as-
sumptions and guarantees distinguish normal and degraded
cases, and the degraded cases are hierarchically ordered.
Normal guarantees are at level 0, and degraded guarantees
are assigned to levels greater than zero. Internal faults are
also allocated to levels in a similar manner. The elaborated
assume-guarantee reasoning must show that if a component
has internal faults at severity leveli, and if every compo-
nent with which it interacts delivers guarantees on leveli or
better (i.e., numerically lower), then the component deliv-
ers a guarantee of leveli or better.

Future systems will be large and distributed, and may
exist in many configurations. The current certification pro-
cess that considers only complete systems is not viable for
such systems. It is of questionable credibility even for tra-
ditional systems such as commercial airplanes, where mas-
sive outsourcing, use of commercial off the shelf compo-
nents, and other modern business practices make it unlikely
that even the system integrator, let alone the external certi-
fier, has comprehensive visibility into all the components
of the complete system; see for example the recent inci-
dent reports [5, 60]. Hence, a compositional certification
framework that builds system-level assurance cases from
component-level subcases is urgently required, and I hope
the approach outlined here points in a promising direction.
I suspect that impediments to safety such as tight coupling
and high interactive complexity [42] will be manifested

5

through excessively complex mutual assumptions and guar-
antees.

4. Runtime Synthesis and Just-In-Time
Certification

Although compositional certification would represent a
great advance, it is not enough. We can imagine future
systems that assemble themselves dynamically (e.g., mo-
bile robots that form teams, then go their own way, then
form new teams to accomplish new tasks), or that drasti-
cally reconfigure (e.g., a swarm of unmanned air vehicles
that shift from operating under the control of a manned
lead plane to operating autonomously), or that find them-
selves in imperfectly characterized environments (e.g., au-
tonomous planetary rovers), or whose own components are
imperfectly characterized (e.g., bio- or nano- components).
These scenarios may seem futuristic, but hospital systems
are typically dynamic (several medical devices may be at-
tached and removed from a single patient over time), are
integrated without an overall system architecture (medical
systems focus on a local interpretation of “interoperability,”
not system-level properties), and part of the environment
(the human patient) is an imperfectly-characterized biolog-
ical system.

In all these cases, the basic precept of traditional
certification—anticipate all circumstances at design time—
is questionable. Instead, I propose that exploration of possi-
ble future circumstances should be postponed to runtime,
when their envelope may be better known, and that run-
time mechanisms should have responsibility for avoiding
adverse outcomes. I refer to this approach as runtime com-
position and the assurance cases that support it as just-in-
time certification.

In traditional design-time composition, each component
has built-in knowledge about the components with which it
interacts (e.g., the algorithm of the sender in a communi-
cation protocol is designed—and certainly verified—using
knowledge about the expected behavior of the receiver).
For runtime composition, this knowledge must be acquired
dynamically and so I propose that components make ex-
plicit models of their behavior available to other compo-
nents. Typically these models will be hybrid systems and
will include attributes of their controlled plant; the models
should be dynamic (e.g., a component that is operating in
a degraded mode will “publish” a different model than one
that is functioning normally), and conservative. The envi-
ronment of a component is then represented by the sum of
the models published by the other components with which
it interacts, plus a model of the external environment; mod-
els of the external environment could be built-in or learned
(e.g., by a component specialized to that task), and pub-
lished along with component models. Each component then

strives to discharge its goals, while avoiding behaviors that
lead to unacceptable outcomes. Notice this means that com-
ponents synthesize their behavior dynamically in the man-
ner ofcontroller synthesis, as introduced in a famous paper
by Ramage and Wonham [45].

Formally, the general synthesis problem is that of con-
structing a transition system satisfying a given temporal
logic property [16, 39]. For an open system, the transition
system is given asM(~x, ~y) with inputs~x satisfying a given
propertyQ. The solution to a synthesis problem has to be
formulated in terms of a game where the synthesized sys-
tem has a strategy for satisfying the temporal property no
matter what inputs are given by the environment. Controller
synthesis [45] is a specialization in which part of the sys-
tem, the plantT (~r, ~y), control inputs~r, and plant state~y, is
fixed, and the task is to construct a controllerR(~y, ~r) such
that R‖T |= P . The controllerR must be constructed so
that for any transition ofT , the controller generates a con-
trol input~r that maintains the temporal propertyP . The set
of states with a winning strategy for the controller are those
states satisfyingP in which for any transition ofT , there is
a transition ofR that leaves the system in a winning state.

Simple instances of the synthesis problem can be re-
duced to satisfiability—for example, when the system is de-
terministic with respect to the inputs and the task is to find
a sequence of inputs that places the system in some specific
state. Such instances include test case generation, schedul-
ing, and planning. In the more complicated case, the con-
troller must really be a strategy that reacts to the environ-
ment rather than a simple sequence or a schedule. In this
situation, the controller synthesis problem can be solved
using techniques based on model checking [44]. The ba-
sic paradigm can be extended to real-time [43] and hybrid
systems [28,38].

Calculation of a winning strategy requires a search over
a large space. Hence, the computational cost of solving a
synthesis problem is formidable, but is made feasible by
advances in mechanized deduction (notably, SMT solvers
[55], and planning, model checking, and verification tech-
niques based on these), and the power of modern proces-
sors. Alternatives to full synthesis include selection from
a number of preplanned strategies, or limited search that
seeks improvement on a safe default strategy. In robot plan-
ning, rather than synthesize a true controller that can cope
with arbitrary moves by the environment (a “contingent
plan”), it has been found effective to build a simple sched-
ule that assumes cooperative behavior by the environment,
to monitor its execution, and then replan if the environment
departs from expectations [31].

Notice that tools, or techniques, formerly used for ver-
ification, such as model checkers, are here being used for
synthesis and monitoring. Verification can build on this: if
we trust these techniques in the analysis of safety at de-

6

sign time, why not trust them to synthesize and/or mon-
itor safety at runtime? Synthesis is driven by the models
made available by interacting components, and it is these
that need to be analyzed at design time. Hence, to incor-
porate certification into this style of system interaction, we
first undertake a one-time certification of the soundness of
the deductive methods employed in synthesis and monitor-
ing; next, at design time, we demonstrate that each compo-
nent publishes models that are consistent with its actual be-
havior, given assumptions about the models of the compo-
nents with which it interacts; finally, we establish that the
delivered and assumed models are consistent across inter-
acting components, and that the composite behavior of the
interacting models satisfies the required safety (or other cer-
tification) goals. These analyses all concern models; the ac-
tual implementation is synthesized at runtime and its certi-
fication is a consequence of sound synthesis operating on
sound models. We could imagine the synthesis generating a
certificate, rather as some theorem proving techniques can
generate an independently checkable “proof object.” Such a
certificate would truly be “just-in-time certification.”

Full realization of the prospect sketched above is, of
course, some way off, but precursors to many of the ideas
and much of the approach already exist.

Synthesis of monitors and checkers is widely researched
and practiced under the nameruntime verification: see
www.runtime-verification.org . The idea that com-
ponents publish a model of their capabilities and that these
can be used to check or synthesize component interactions
is already found in the interface automata of de Alfaro and
Henzinger [12] and the assumption generation technique of
Giannakopoulou, Pasareanu, and Barringer [24].

Service Oriented Architecture (SOA) is an approach to
system composition in which components are assembled
(using deductive methods) to achieve specified goals based
on their published service descriptions [59]. Current realiza-
tions of the approach use weak models (little more than de-
scriptions of data formats and ontologies) but could evolve
using richer forms of logic and deduction into a certifiable
form of self-assembly.

Use of a dynamic model of another component’s behav-
ior is seen in recent concepts for aircraft conflict detection
and alerting [8]. Current systems, which rely on onboard
radar to detect the close approach of another aircraft, are li-
able to false alarms because the intent of the other aircraft
is unknown. Future systems will be able to access the flight
plan filed by the other aircraft, or even its current flight man-
agement and autopilot parameters. This example naturally
raises concern that an enemy aircraft might file a false flight
plan, or broadcast misleading autopilot data. In general, we
need to be concerned that faulty components may publish
incorrect models. One approach would be to trust the mod-
els only of those components that are certified to have suffi-

cient internal mechanisms (i.e., redundancy and fault toler-
ance) to publish accurate models even as they degrade, and
finally to fail cleanly. Another approach would be to vote
the models of multiple redundant components. This can be
nicely illustrated in the case of intelligent sensors.

The model published by an intelligent sensor is an inter-
val (i.e., a pair of real numbers) such that the sampled pa-
rameter is guaranteed to lie within that interval (if the sensor
is nonfaulty). The sensor can adjust the width of its interval
according to the dynamics of the sampled process and esti-
mates of its own health (e.g., a narrow interval for a good
sample, a wider one for a sample taken under difficult cir-
cumstances, and an infinite one to indicate controlled fail-
ure). In some applications, an interacting component may
trust the interval model delivered by a sensor, but in oth-
ers there may be concern that a faulty sensor could de-
liver a false interval (i.e, one on which the actual value of
the sampled parameter does not lie in the interval). In this
case, intervals from multiple sensors can be combined (us-
ing Marzullo’s fault-tolerant interval construction [40], or
the improvement due to Schmid and Schossmaier [57] that
maintains the Lipschitz condition) in ways that guarantee a
correct consensus interval from2f + 1 sensors of which as
many asf may be faulty.

Artificial Intelligence provides the largest collections of
applications driven or synthesized from models. These in-
clude model-based diagnosis [46], repair [11], and self-
configuration [62], and planning and scheduling for au-
tonomous rovers and robots [2]. We have recently been in-
volved in a project to investigate assurance for planning and
scheduling and this provides an illustration of a possible ap-
proach.

The task of a planner is to synthesize a plan for a sys-
tem operating in some environment to achieve a goal, sub-
ject to constraints called flight rules that are intended to en-
sure safety. Input to a plan generation process must specify
these elements in some way.

The system: this generally comprises several interacting
components (e.g., a camera, a radio, a navigator as
parts of a planetary rover), modeled as state machines,
or as timed or hybrid systems, with some open in-
puts. Some of these inputs (e.g., the time take to reach
a given rock) will be driven by the environment, the
others will driven by the controller synthesized by the
planner.

The environment: this describes how the external world
interacts with the system. This interaction is mani-
fested through inputs to the system and can be spec-
ified as a state machine, or as constraints on the inputs
to the system.

The goal: this is described as some state, or sequence of
states to be achieved. It can be specified as a formula

7

in a logic (e.g., Linear Temporal Logic, LTL) special-
ized for describing state sequences, or as a state ma-
chine that monitors the behavior of the system (a so-
called synchronous observer) and raises a flag when
the goal is achieved.

The flight rules: these are constraints that must be satis-
fied throughout the operation of the system. They can
be expressed as invariants on the system state (i.e.,G
properties in LTL), or as a synchronous observer that
raises a flag when a flight rule is violated.

The plan: is synthesized by the planner and its task is to
drive the system to achieve the goal, subject to uncer-
tainties introduced by the uncontrolled behavior of the
environment, while maintaining the flight rules. Plans
can range from simple sequences specifying the order
in which the system should perform certain actions,
through temporal schedules that specify the time when
actions should be performed, to an interactive control
program.

The requirement on the plan is expressed in the follow-
ing formula

system ‖ environment ‖ plan ` F (goal) ∧G(flight rules).

This says that the composite behavior of the system, en-
vironment, and plan (viewed as state machines or hybrid
systems) must eventually (theF modality in LTL) satisfy
the goal, while always (theGmodality) satisfying the flight
rules.

Our concern is to provide assurance that no plan can vi-
olate the flight rules. The AI planner does not have access
to the flight rules; instead, constraints and interlocks built
into the models of the system components, and assumptions
about the environment built into its model, are intended to
enforce the flight rules.

To verify this, we can simply remove the plan and sub-
mit the following problem to a model checker

system ‖ environment ` G(flight rules).

The model checker will supply all possible combinations
of values to the inputs left open by removal of the plan
(effectively simulating a totally nondeterministic plan). In
the applications we have been considering, the system is a
timed one, with additional resource constraints (e.g., a bat-
tery that is depleted as a function of time spent navigat-
ing, or using the radio). Real-valued resources take us out
of the domain of classical finite-state model checking, but
an infinite bounded model checker such as the one in our
SAL suite [13] can analyze such systems, and can verify
them usingk-induction; timed systems are modeled in this
framework using timeout automata [15]. Verification using
k-induction often requires helper invariants and these can
be difficult to construct; instead, we can verify preservation

of the flight rules for all plans up to a certain length by per-
forming bounded model checking of their negation to the
appropriate depth. This is stronger than asking the planner
to generate a plan that violates the flight rules because the
planner is not complete (i.e., it may sometimes fail to gener-
ate a plan where one is feasible—and may succeed in gen-
erating a plan if the inputs are perturbed slightly). Similar
methods are being used by colleagues at NASA to discover
and verify the preconditions required for crew procedures
(these are flowchart-like scripts that astronauts follow to ac-
complish certain tasks).

5. Conclusions and Suggestions For
Future Research

New methods are urgently needed for effective—and
cost-effective—certification of modern systems whose in-
novations in function, design, or construction present chal-
lenges to traditional methods. I have outlined a “scientific”
approach to certification that integrates several ideas devel-
oped by others, and suggested how it can be extended to
compositional certification of component-based systems. I
have also advocated consideration of systems whose behav-
ior is partially synthesized at runtime and argued that sound
synthesis from verified models can support “just-in-time”
certification.

A large benefit of the just-in-time approach is that it
meshes well with modern ideas of system extent: the idea
that the system boundary does not end with the hardware,
but extends into the human and societal fabric in which it is
located. Many system failures are now attributed to poorly
engineered human interactions (at both individual and soci-
etal level), and a failure to anticipate how introduction of a
new system changes the organizational context in which it
is located. A whole topic of “resilience” has emerged to fo-
cus on these topics [29].

Future work should explore these connections and op-
portunities (including the possibility of including explicit
representations of human “mental models” [54] as part of
the modeled environment). Industrial application of “scien-
tific certification” requires more powerful formal analysis
tools integrated into engineering environments such as Mat-
lab and AADL, while compositional certification requires
some worked examples and powerful automation for com-
positional verification over hybrid systems. Runtime syn-
thesis and just-in-time certification require more scalable
methods for controller synthesis. Almost all applications of
automated formal methods will benefit from more effective
techniques for invariant generation.

Acknowledgments. I am grateful to Robin Bloomfield and
Bev Littlewood and their colleagues for introducing me to
several of the topics discussed here during a visit to CSR
at City University in November 2006. Discussions with my

8

colleagues Shankar and Brian Williams were very influen-
tial, as were several stimulating meetings organized by the
HCSS working group of the NITRD.

References

[1] A. Abate and A. Tiwari. Box invariance of hybrid and
switched systems. In2nd IFAC Conf. on Analysis and De-
sign of Hybrid Systems, ADHS, pages 359–364, 2006.

[2] M. Ai-Chang et al. MAPGEN: Mixed-initiative planning and
scheduling for the Mars exploration rover mission.IEEE In-
telligent Systems, 19(1):8–12, 2004.

[3] P. Amey and A. J. Hilton. Practical experiences of safety-
and security-critical technologies.Ada User Journal, 22(1),
Mar. 2001.

[4] T. S. Ankrum and A. H. Kromholz. Structured assurance
cases: Three common standards. InHigh-Assurance Systems
Engineering Symposium (HASE’05), Heidelberg, Germany,
Mar. 2005. IEEE Computer Society.

[5] Australian Transport Safety Bureau. Boeing Co 777,
9M-MRG, Nov. 2006. Available athttp://www.
atsb.gov.au/publications/investigation_
reports/2005/AAIR/aai%r200503722.aspx .

[6] R. Bloomfield and B. Littlewood. Multi-legged arguments:
The impact of diversity upon confidence in dependability ar-
guments. InThe International Conference on Dependable
Systems and Networks, pages 25–34, San Francisco, CA,
June 2003. IEEE Computer Society.

[7] M. Bozzano and A. Villafiorita. Improving system reliabil-
ity via model checking: The FSAP/NuSMV-SA safety anal-
ysis platform. In S. Anderson, M. Felici, and B. Littlewood,
editors, SAFECOMP 2003: Proceedings of the 22nd Interna-
tional Conference on Computer Safety, Reliability, and Se-
curity, number 2788 in Lecture Notes in Computer Science,
pages 49–62, Edinburgh, Scotland, Sept. 2003. Springer-
Verlag.

[8] V. Carrẽno and C. Mũnoz. Implicit intent information for
conflict detection and alerting. InProceedings of the 23rd
Digital Avionics Systems Conference, Salt Lake City, Utah,
2004.

[9] Common Criteria for Information Technology Security Eval-
uation, Jan. 2004. Version 2.2, CCIMB-2004-01-001, 002,
003.

[10] P. Conmy. Safety Analysis of Computer Resource Manage-
ment Software. PhD thesis, Department of Computer Sci-
ence, University of York, York, UK, 2005.

[11] J. Crow and J. Rushby. Model-based reconfiguration: To-
ward an integration with diagnosis. InProceedings, AAAI-91
(Volume 2), pages 836–841, Anaheim, CA, July 1991.

[12] L. de Alfaro and T. A. Henzinger. Interface automata. In
Proceedings of the Ninth Annual Symposium on Foundations
of Software Engineering (FSE), pages 109–120. ACM Press,
2001.

[13] L. de Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar,
M. Sorea, and A. Tiwari. SAL 2. In R. Alur and D. Peled,
editors, Computer-Aided Verification, CAV ’2004, volume
3114 ofLecture Notes in Computer Science, pages 496–500,

Boston, MA, July 2004. Springer-Verlag. SAL home page:
http://sal.csl.sri.com/ .

[14] W.-P. de Roever, H. Langmaack, and A. Pnueli, editors.
Compositionality: The Significant Difference (Revised lec-
tures from International Symposium COMPOS’97), volume
1536 ofLecture Notes in Computer Science, Bad Malente,
Germany, Sept. 1997. Springer-Verlag.

[15] B. Dutertre and M. Sorea. Modeling and verification
of a fault-tolerant real-time startup protocol using calen-
dar automata. InFormal Techniques in Real-Time and
Fault-Tolerant Systems, volume 3253 ofLecture Notes in
Computer Science, Grenoble, France, Sept. 2004. Springer-
Verlag.

[16] E. A. Emerson and E. M. Clarke. Using branching time tem-
poral logic to synthesize synchronization skeletons.Science
of Computer Programming, 2:241–266, 1982.

[17] Federal Aviation Administration.System Design and Analy-
sis, June 21, 1988. Advisory Circular 25.1309-1A.

[18] Federal Aviation Administration. Order 8040.4:
Safety Risk Management, June 1998. Available at
http://www.faa.gov/library/manuals/
aviation/risk_management/ss_handbook%
/media/app_g_1200.PDF .

[19] Federal Aviation Administration.Reusable Software Com-
ponents, Dec. 7, 2004. Advisory Circular 20-148.

[20] N. Fenton and M. Neil. The jury observation fallacy and the
use of Bayesian networks to present probabilistic legal argu-
ments.Mathematics Today (Bulletin of the IMA), 36(6):180–
187, June 2000. Available athttp://www.dcs.qmul.
ac.uk/˜norman/papers/jury_fallacy.pdf .

[21] G. Frehse, Z. Han, and B. Krogh. Assume-guarantee reason-
ing for hybrid I/O-automata by over-approximation of con-
tinuous interaction. In43rd IEEE Conference on Decision
and Control (CDC 2004), volume 1, pages 479–484, At-
lantic, Bahamas, Dec. 2004.

[22] A. Galloway, R. F. Paige, N. J. Tudor, R. A. Weaver, I. Toyn,
and J. McDermid. Proof vs. testing in the context of safety
standards. In24th AIAA/IEEE Digital Avionics Systems Con-
ference, volume 2, Washington, DC, Oct. 2005.

[23] A. German. Software static code analysis lessons
learned. Crosstalk, Nov. 2003. Available at
http://www.stsc.hill.af.mil/crosstalk/
2003/11/0311German.html .

[24] D. Giannakopoulou, C. Pasareanu, and H. Barringer. As-
sumption generation for software component verification. In
Automated Software Engineering, 2002.

[25] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori,
and S. K. Rajamani. Synergy: A new algorithm for prop-
erty checking. InProceedings of the 14th Annual Sympo-
sium on Foundations of Software Engineering (FSE), pages
117–127, Portland, OR, Nov. 2006. ACM Press.

[26] G. Hamon, L. de Moura, and J. Rushby. Generating efficient
test sets with a model checker. In2nd International Confer-
ence on Software Engineering and Formal Methods (SEFM),
pages 261–270, Beijing, China, Sept. 2004. IEEE Computer
Society.

9

[27] K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and
L. K. Rierson. A practical tutorial on modified con-
dition/decision coverage. NASA Technical Memoran-
dum TM-2001-210876, NASA Langley Research Cen-
ter, Hampton, VA, May 2001. Available athttp://www.
faa.gov/certification/aircraft/av-info/
software/Research/MCD%C\%20Tutorial.pdf .

[28] T. A. Henzinger, B. Horowitz, and R. Majumdar. Rectangu-
lar hybrid games. InInternational Conference on Concur-
rency Theory, pages 320–335, 1999.

[29] E. Hollnagel, D. D. Woods, and N. Leveson, editors.Re-
silience Engineering. Ashgate, 2005.

[30] Information Assurance Directorate, National Security
Agency, Fort George G. Meade, MD 20755-6000.U.S. Gov-
ernment Protection Profile for Separation Kernels in Envi-
ronments Requiring High Robustness, July 2004. Version
0.621.

[31] F. Ingrand and F. Py. Online execution control checking for
autonomous systems. InThe 7th International Conference
on Intelligent Autonomous Systems (IAS-7), Marina del Rey,
California, USA, March 2002.

[32] International Electrotechnical Commission,, Geneva,
Switzerland. IEC 61508—Functional Safety of Electri-
cal/Electronic/Programmable Electronic safety-related sys-
tems, Mar. 2004. Seven volumes; seehttp://www.iec.
ch/zone/fsafety/fsafety_entry.htm .

[33] A. Joshi, S. Miller, M. Whalen, and M. Heimdahl. A pro-
posal for model-based safety analysis. In24th AIAA/IEEE
Digital Avionics Systems Conference, volume 2, Washing-
ton, DC, Oct. 2005.

[34] J. C. Knight and N. G. Leveson. An empirical study of fail-
ure probabilities in multi-version software. InFault Toler-
ant Computing Symposium 16, pages 165–170, Vienna, Aus-
tria, July 1986. IEEE Computer Society.

[35] B. Littlewood. The use of proof in diversity arguments.IEEE
Transactions on Software Engineering, 26(10):1022–1023,
Oct. 2000.

[36] B. Littlewood and D. Wright. The use of multi-
legged arguments to increase confidence in safety
claims for software-based systems: a study based on a
BBN analysis of an idealised example. Available at
http://www.csr.city.ac.uk/people/david.
wright/dirc/argumentsbbn.pdf , July 2005.

[37] E. Lloyd and W. Tye.Systematic Safety: Safety Assessment
of Aircraft Systems. Civil Aviation Authority, London, Eng-
land, 1982. Reprinted 1992.

[38] J. Lygeros, C. Tomlin, and S. Sastry. Controllers for reach-
ability specifications for hybrid systems.Automatica, 35(3),
March 1999.

[39] Z. Manna and P. Wolper. Synthesis of communicating pro-
cesses from temporal logic specifications.ACM Trans. Pro-
gram. Lang. Syst., 6(1):68–93, 1984.

[40] K. Marzullo. Tolerating failures of continuous-valued sen-
sors.ACM Trans. Comput. Syst., 8(4):284–304, Nov. 1990.

[41] F. Ortmeier, W. Reif, and G. Schellhorn. Formal safety anal-
ysis of a radio-based railroad crossing using deductive cause-
consequence analysis (DCCA). In5th European Depend-

able Computing Conference (EDDC), number 3463 in Lec-
ture Notes in Computer Science, pages 210–224, Budapest,
Hungary, 2005. Springer-Verlag.

[42] C. Perrow. Normal Accidents: Living with High Risk Tech-
nologies. Basic Books, New York, NY, 1984.

[43] A. Pnueli, E. Asarin, O. Maler, and J. Sifakis. Controller
synthesis for timed automata. InProc. System Structure and
Control. Elsevier, 1998.

[44] A. Pnueli and R. Rosner. On the synthesis of a reac-
tive module. InPOPL ’89: Proceedings of the 16th ACM
SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 179–190, New York, NY, USA, 1989.
ACM Press.

[45] P. J. G. Ramadge and W. M. Wonham. The control of dis-
crete event systems.Proceedings of the IEEE, 77(1):81–98,
Jan. 1989.

[46] R. Reiter. A theory of diagnosis from first principles.Artifi-
cial Intelligence, 32:57–95, 1987.

[47] Requirements and Technical Concepts for Aviation, Wash-
ington, DC.DO-178B: Software Considerations in Airborne
Systems and Equipment Certification, Dec. 1992. This doc-
ument is known as EUROCAE ED-12B in Europe.

[48] Requirements and Technical Concepts for Aviation, Wash-
ington, DC. DO-297: Integrated Modular Avionics (IMA)
Development Guidance and Certification Considerations,
Nov. 2005.

[49] J. Rushby. Critical system properties: Survey and taxonomy.
Reliability Engineering and System Safety, 43(2):189–219,
1994.

[50] J. Rushby. Partitioning for avionics architectures: Require-
ments, mechanisms, and assurance. NASA Contractor
Report CR-1999-209347, NASA Langley Research Cen-
ter, June 1999. Available athttp://www.csl.sri.
com/˜rushby/abstracts/partitioning , and
http://techreports.larc.nasa.gov/ltrs/
PDF/1999/cr/NASA-99-cr209347.pdf ; also is-
sued by the FAA.

[51] J. Rushby. Bus architectures for safety-critical embedded
systems. In T. Henzinger and C. Kirsch, editors,EMSOFT
2001: Proceedings of the First Workshop on Embedded
Software, volume 2211 ofLecture Notes in Computer Sci-
ence, pages 306–323, Lake Tahoe, CA, Oct. 2001. Springer-
Verlag.

[52] J. Rushby. Modular certification. NASA Con-
tractor Report CR-2002-212130, NASA Lang-
ley Research Center, Dec. 2002. Available at
http://techreports.larc.nasa.gov/ltrs/
PDF/2002/cr/NASA-2002-cr212130.pd%f .

[53] J. Rushby. An overview of formal verification for the time-
triggered architecture. In W. Damm and E.-R. Olderog, ed-
itors, Formal Techniques in Real-Time and Fault-Tolerant
Systems, volume 2469 ofLecture Notes in Computer Science,
pages 83–105, Oldenburg, Germany, Sept. 2002. Springer-
Verlag.

[54] J. Rushby. Using model checking to help discover
mode confusions and other automation surprises.Re-
liability Engineering and System Safety, 75(2):167–177,

10

Feb. 2002. Available athttp://www.csl.sri.com/
users/rushby/abstracts/ress02 .

[55] J. Rushby. Harnessing disruptive innovation in formal ver-
ification. In D. V. Hung and P. Pandya, editors,Fourth In-
ternational Conference on Software Engineering and For-
mal Methods (SEFM), pages 21–28, Pune, India, Sept. 2006.
IEEE Computer Society.

[56] J. Rushby and R. DeLong.Toward an Integration Protection
Profile for MILS. Computer Science Laboratory, SRI Inter-
national, Menlo Park, CA, 2007. To appear.

[57] U. Schmid and K. Schossmaier. How to reconcile fault-
tolerant interval intersection with the Lipschitz condition.
Distributed Computing, 14(2):101–111, May 2001.

[58] A. Tiwari. Abstractions for hybrid systems.Formal Methods
in Systems Design, 2007. To appear, available athttp://
www.csl.sri.com/˜tiwari/new.pdf .

[59] W. Tsai. Service-oriented system engineering: a new
paradigm. InIEEE International Workshop on Service-
Oriented Systems Engineering (SOSE) 2005, pages 3–6, Oct.
2005.

[60] UK Air Investigations Branch. S1/2005 Airbus
A340-642, G-VATL, 2005. Available at http:
//www.aaib.dft.gov.uk/cms_resources/
G-VATL_Special_Bulletin1.pdf .

[61] UK Ministry of Defence. Interim Defence Standard 00-56,
Issue 3: Safety Management Requirements for Defence Sys-
tems. Part 2: Guidance on Establishing a Means of Comply-
ing with Part 1, Dec. 2004. Available athttp://www.
dstan.mod.uk/data/00/056/02000300.pdf .

[62] B. C. Williams and P. P. Nayak. A model-based approach to
reactive self-configuring systems. InProceedings, AAAI-96,
1996.

11

