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Abstract. Theorem provers, model checkers, static analyzers, test gen-
erators. . . all of these and many other kinds of formal methods tools can
contribute to the analysis and development of computer systems and
software. It is already quite common to use several kinds of tools in a
loose combination: for example, we might use static analysis and then
model checking to help find and eliminate design flaws prior to undertak-
ing formal verification with a theorem prover. And some modern tools,
such as test generators, are built using model checkers, predicate abstrac-
tors, decision procedures and constraint solvers as components in tight
combination.
But we can foresee a different kind of combination where many tools
and methods are used in ad hoc combination within a single analysis.
For example, static analysis might yield invariants that enable decision
procedures to build a predicate abstraction whose reachable states are
calculated as a BDD and then concretized to yield a strong invariant for
the original system; the invariant then enables properties of the original
system to be verified by highly automated theorem proving.
This sort of combination clearly requires an integrating platform—a tool
bus—to connect the various tools together; but the capabilities required
go beyond those of platforms such as Eclipse. The entities exchanged
among clients of the bus—proofs, counterexamples, specifications, theo-
rems, counterexamples, abstractions—have logical content, and the over-
all purpose of the bus is to gather and integrate evidence for verification
or refutation.
In this paper I propose requirements for such an “evidential tool bus,”
and sketch a possible architecture.

1 Introduction

Early tools for formal methods were closed and monolithic “verification systems”
that typically provided a tightly integrated environment for a given specification
language (and sometimes an implementation language as well) together with
a theorem prover that supported interactive proof of conjectures about speci-
fications or programs. As specialized forms of analysis and deduction became
highly efficient, some of the monolithic systems began to use them as compo-
nents. For example, PVS has used an external BDD package to perform Boolean
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simplification and CTL model checking since 1995 [1], and an experimental ex-
tension uses MONA as an external procedure to decide WS1S formulas [2]. The
Prosper project developed similar connections from HOL to external deductive
components [3], and Isabelle also has capabilities of this kind [4].

Conversely, those developing tools for formal analysis of other languages
sometimes used the monolithic tools as components. For example, Adams et
al developed a tool for the Maple computer algebra system that uses PVS as a
back end [5], while the LOOP project uses PVS as a back end in verification of
Java programs [6].

Recognizing that some users desired access only to a subset of their capa-
bilities, developers of monolithic systems began to open up their interfaces, and
to make some of their components available separately. These modest adjust-
ments led to larger changes. For example, ICS [7] began as a project to make
the capabilities of the decision procedures in PVS available separately. However,
once the decision procedures were available in isolation, they were applied to
bigger problems than were encountered within an interactive proof, and much
greater performance was therefore required. At the same time, it was realized
that the decision procedures could be combined with a SAT solver to yield a
more useful set of services (i.e., the ability to decide arbitrary Boolean combina-
tions of terms in the decided theories, rather than just conjunctions) [8]. Several
groups independently recognized the utility of such procedures for Satisfiability
Modulo Theories (SMT) and explored different techniques for their construc-
tion, which are now being honed through competition [9]. Efficient SMT solvers
enabled a new class of model checkers that operate over infinite domains [10]
(so-called “infinite” bounded model checkers such as the sal-inf-bmc tool of
SAL [11]), whose capabilities were then extended from refutation to verification
by k-induction [12].

The case of SMT solvers illustrates how identification of independently useful
capabilities within monolithic tools can lead to enhancement of those capabili-
ties, which can in turn spur the development of new tools. Opening interfaces
can have a similar impact. For example, the underlying engines of the SAL
model checkers are programmed in a variety of languages, but are packaged as
foreign functions that can be called from Scheme programs. The model checkers
themselves are simply scripts written in Scheme that make use of the services
provided through these functions. Users can write their own Scheme scripts and
this has allowed a novel “witness” model checker [13] and a test generator [14]
to be developed relatively easily. Other modern model checking suites also are
extensible, although in different ways, and have open interfaces [15,16].

It is natural to ask whether the development of scriptable interfaces and
of independently useful verification components can be generalized to a “plug
and play” environment in which verification systems and model checkers are
deconstructed into components that can then be reassembled to undertake new
formal analysis tasks. By analogy with the way tools are assembled in the em-
bedded systems and hardware design fields, and with the Eclipse programming
environment, we could call this hypothesized environment a “formal tool bus.”
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2 Formal Tool Bus Scenarios

The simplest conception of a formal tool bus is one that provides a way to invoke
deductive services such as decision procedures or model checkers for endgame
purposes. By “endgame” we mean that the deductive service is given a proof
goal and either discharges it or reports failure. The model checker of PVS is
used in just this way: if the model checker succeeds in verifying the property
concerned, then PVS considers the current proof goal to be discharged; if not,
then it simply reports “unproved” and the user must think again. This is different
than the way the more tightly integrated proof services work in PVS: these
either discharge the current goal, or return a collection of simplified goals that
can separately be analyzed by further proof steps. The endgame approach is
attractive for powerful deductive services because they are generally designed
as “all or nothing” verifiers rather than as simplifiers, and it also decouples the
deductive services from the details of the proof representation (e.g., whether it
is natural deduction or sequent calculus) used by the tool that invokes it.

A tool bus for endgame purposes could be quite simple to construct: it would
support some neutral representation (e.g., in XML) for communicating deductive
queries from the “client” tools to the “server” endgame verifiers, with suitable
translators to and from the native notations of the tools concerned. In addi-
tion to syntax, the endgame verifiers would publish the semantics of the proof
queries they support and the translators could be responsible for checking these
and possibly performing suitable reductions (e.g., if a quantified formula is sent
to a tool that requires unquantified ones, the translator could either reject it,
or perhaps Skolemize it). Attaching a client or server to the bus would be a
matter of providing a suitable translator. Many classes of backend verifiers have
standard input formats (mostly due to competitions): for example, almost all
high-performance SAT and SMT solvers, first order theorem provers, and BDD
packages accept the input format defined by their respective competitions. Thus,
each class of backend verifiers could be supported by a single tool bus translator.
The internal tool bus of SAL exploits this: its bounded model checker can use
any of several SAT solvers, and its infinite bounded model checker can use any
of several SMT solvers.

A simple tool bus of this kind could be quite useful. Imagine, for example,
that we wish to support some formal analysis for the Stateflow language of the
Matlab toolset [17] (Stateflow provides a combination of statechart and flowchart
notations). An operational [18] or denotational [19] semantics for Stateflow nat-
urally supports construction of a translator from Stateflow to a traditional state
machine representation. Some elements of Stateflow are notoriously tricky—e.g.,
the “12 o’clock rule,” which uses the graphical representation of a chart to resolve
multiple enabled transitions from a junction—and are discouraged by some style
guides. The Stateflow analyzer could check whether the given chart relies on the
12 o’clock rule by submitting the conjunction of the conditions on each pair of
transitions from each junction to an endgame verifier to check for unsatisfiabil-
ity (the disjunction of all conditions on each junction should also be checked
for satisfiability). Properties of a well-defined Stateflow chart could similarly be
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checked by submitting the translated state machine, and a representation of the
property concerned, to a suitable model checker attached to the tool bus.

An obvious limitation of the simple tool bus is that it makes no provision for
any diagnostic output produced by an endgame verifier when it fails to prove
the conjecture submitted to it: e.g., the counterexample produced by a model
checker, or the satisfying assignments produced by SAT or SMT solvers (these are
equivalent to counterexamples when the solvers are applied to negated formulas).
A crude extension could return the diagnostic information in a form that is
uninterpreted by the tool bus, but that could be displayed to the human user
by the client concerned.

A more serious limitation of this simple conception of a formal tool bus
is that it imposes a dichotomy between clients and servers, and assumes that
all servers are endgame verifiers. There are several tools that perform valuable
formal analyses that use more complex relationships among their deductive sub-
components. For example, software model checkers such as Blast [20] generally
operate on a finite state representation of the given program that is constructed
by predicate abstraction [21]. The predicate abstraction can be constructed ea-
gerly using an SMT solver [22] and then analyzed with a conventional finite
state model checker, or it can be constructed and examined lazily (“on the fly”)
using a kind of explicit state model checker. If the property is not verified for
the abstracted program, then the abstract counterexample can be concretized
to see if provides a counterexample to the original program. If it does, we have
found a bug; if not, then analysis of the counterexample (e.g., using Craig In-
terpolation [23]) may suggest additional predicates that can be used to refine
the abstraction. This process of abstraction and refinement can be iterated until
verification, refutation, or exasperation is achieved.

If we desire a tool bus that can support construction of a software model
checker of the kind outlined above from more basic components, then it is clear
that we need more kinds of components that just endgame verifiers, and more
kinds of data then just conjectures and proof judgments. Now, we could obviously
extend the simple tool bus to provide these capabilities, but the passive nature
of the bus would force the components that use it to build-in a lot of knowledge
about each other. For example, the component that provides the top level of the
software model checker would need to know in detail how to name and invoke
the component that performs the predicate abstraction, while the abstraction
component would similarly need to know how to invoke the services of an SMT
solver; the tool bus would merely provide the data paths between these active
components and adds little value. Might it not be better for components to
describe the services they provide declaratively, and to let the tool bus become
an active entity that brokers interaction between components on the basis of
their declarations?

An active tool bus of this kind could resemble any of several architectures
for coordination services or distributed programming (e.g., The Information Bus
[24]). However, the data carried by a formal tool bus, and the components that
attach to it, have a special character that should be exploited: the data are
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formulas in a logic, and the components mechanize logical inferences. The tool
bus thus ties together formulas and inferences: it is a theorem prover!

3 The Tool Bus As Theorem Prover

That a tool bus should be a theorem prover is not as surprising as it may at first
seem. Verification systems and model checking environments can both be seen
as rather primitive and closed tool buses; verification systems naturally have
a theorem prover as their integrating component, but modern model checking
systems such as Cadence SMV also have a simple “proof assistant” as their top-
level integrator [25]. The tool bus as theorem prover is just an extension to these
simpler manifestations.

We envisage a formal tool bus manipulating formulas in some logic (the
“Formal Tool Bus Logic” FTL). The FTL needs to be rich enough that it can
define the kinds of entities we want to manipulate: state machines, abstractions,
counterexamples, test cases, and so on. Predicates record judgments on these
entities: e.g., M |= I (“state machine M is a Kripke model for temporal logic
formula I”). Components are viewed as oracles that can verify judgments and
construct witnesses for them. For example, a symbolic model checker may be
able to verify the judgment M |= I when the state machine M and temporal
logic formula I are of suitable kinds (e.g., finite state, and expressed in LTL,
respectively). A predicate abstractor will take a state machine M , a property I
and a set of predicates P , and return a state machine M̂ and property Î such
that

M̂ |= Î ⇒ M |= I.

Here, M̂ and Î are witnesses to a judgment that expresses what it means to be
a property-preserving abstraction.

Components publish their capabilities to the tool bus in terms of the judg-
ments they can (sometimes) verify and the witnesses they can (sometimes) con-
struct. Given some input formulas and desired judgments, the tool bus performs
simple forward and backward chaining (rather like a distributed logic program-
ming system) to find a sequence of component invocations that achieve the
desired goal. Possibly, the process could be guided by hints or scripts supplied
by tool developers or users.

The logic FTL needs to be at least as rich as that supported by any compo-
nent, and we propose the PVS logic for this purpose [26, 27]. PVS is a higher-
order logic that goes beyond that supported by HOL and Isabelle/HOL in having
dependent types and predicate subtypes (and structural subtypes in the latest
version), and rich collections of base types and type constructors (including
inductive and recursive data types). Predicate subtypes, in particular, are im-
mensely useful as they allow concise yet perspicuous specifications, and associate
judgments with formulas in a way that allows the theorem prover easily to find
those that are relevant: by looking at the types of the formulas concerned.

State machines can be specified in PVS as transition relations, but tools such
as model checkers generally require a more structured presentation such as a col-
lection of guarded commands. We envisage that FTL will augment PVS with
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several such structured presentations—for state machines, counterexamples, ab-
stractions, and so on. Many component tools will operate on these structured
presentations, but they can always be expanded out into their base form (i.e.,
their underlying semantics) by components dedicated to this purpose. Thus, a
state machine could be expanded into its base form as a transition relation so
that a theorem prover can verify some invariant, which is then made available
to an abstractor that operates on the structured state machine representation.

A large fraction of PVS can be executed very efficiently using its “ground
evaluator” (which operates by translation to Lisp, using static analysis to al-
low destructive updates where possible) [28]. This allows proof procedures and
scripts to be developed in PVS via computational reflection—for example, César
Muñoz has developed an explicit state model checker Besc in PVS that is proven
correct (in PVS) and operates with gratifying performance.1 Thus, we propose
to use PVS itself as the language in which components declare their capabilities,
and as the scripting language for the tool bus. Scripts may be used by tool de-
velopers to program some components (as with the Besc, although we envisage
the main uses to be “wrappers” and “glue logic” that adapt some externally-
written component to the needs of the tool bus), and by users to construct ad-hoc
analyses for specific purposes.

Although the tool bus functions as a theorem prover by performing sound
and automated inferencing, we do not anticipate it becoming a powerful prover
in its own right: that task can be delegated to existing theorem provers (such as
PVS) that can be attached to the bus as components.

4 Evidence Management

The formal tool bus as described so far can invoke and coordinate computations
by numerous components in the service of some analysis goal. For efficiency, the
results of component computations should be cached and reused where possible.
This requires the tool bus to employ some version management service so that
changes to files storing specifications and other entities can be detected and
cached analyses based on them invalidated.

The tool bus must then have a capability similar to the “proofchain ana-
lyzer” of PVS, which reports on the complete chain of deduction that supports
a claimed theorem (e.g., “it uses these definitions and these lemmas, of which
these ones have not been proved, and these ones have not been rechecked since
their underlying files were modified”).

But whereas in PVS, “proved” means “proved by PVS,” the tool bus in-
tegrates many components and we need to know which ones were used in a
particular analysis, and in what way: in short, we need to know the evidence
for believing a given claim. A record of which components were used, and how,
delivers rather weak evidence that rests mainly on the reputation of the compo-
nents concerned. Thus, we envisage that components should be able to construct

1 See http://research.nianet.org/~munoz/sources.html for Besc and PVSio,
which allows evaluation to be used in proof.
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“proof objects” justifying their claims. The complexity (and hence potential for
error) in most deductive software is in its highly optimized method of search:
once the right proof step has been found, it is usually fairly easy to check that it
is performed correctly. Proof objects provide a “trail” of the proof steps applied
that can be checked by a simple (and potentially verified) program.

On command, the tool bus will instruct its components to deliver their proof
objects and will be able to assemble an overall proof object that provides check-
able evidence for the claimed analysis. Thus, we speak of an “evidential” tool
bus: one that manages evidence. In an imperfect world, we may not be able to
obtain checkable proof objects, or even proofs, for some component deductions.
Thus, evidence for some steps may be recorded as “because I say so,” or “by
testing,” or “by field experience.” The evidential task of the tool bus is to as-
semble and present the evidence available: assessing the value of that evidence
is a task left to human judgment.

5 Conclusion and Prospects

We have considered requirements for a formal tool bus that integrates compo-
nents that perform the elements of formal analyses. We concluded that the tool
bus is best seen as a theorem prover in which the components act as oracles.
Components publish their capabilities in the form of proof rules, and the tool
bus invokes them as appropriate by forward and backward chaining, possibly
guided by scripts. The operation of the tool bus is similar to a distributed logic
programming environment: automatically, this allows components and elements
of the specification under analysis to be distributed (potentially across different
organizations, each responsible for some of the component tools, and some of
the specification).

The logic of the tool bus should be a rich one, so that it is capable of de-
scribing the types of all the data that it manipulates and the proof rules of its
components. It should also be executable, so that it can provide its own scripting
language. We proposed the predicatively subtyped higher order logic of PVS for
this purpose. The tool bus is integrated with version management, and manages
not only the invocation of attached components and the communication of data
among them, but also the collection of evidence for the outcomes of the analyses
performed.

We plan to construct a prototype of the evidential tool bus to connect our
PVS, SAL, and ICS tools. To be truly useful, however, a formal tool bus needs
to be a collective endeavor supported by all potential component developers and
by all who would use it to perform analyses. We hope that others will give this
proposal their consideration and will revise or replace it with one that best serves
the needs of the verification community.

Observe that the proposed evidential tool bus operates at a deliberately
coarse level of granularity. Different considerations apply inside a tightly inte-
grated component such as an SMT solver, where hundreds of millions, rather
than thousands of deductions may be performed in the course of a single analy-
sis [29]. At the other extreme, it is interesting to speculate whether an evidential
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tool bus can serve, or can be extended to serve, in support of system certification
(e.g., in support of a safety case) rather than mere analysis.
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