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By their very nature, loss of control accidents are unanticipated and rare, and their
precursors are rare also. Onboard systems to detect and mitigate these precursors must
work—and work correctly—when required but must not introduce new malfunctions or
unintended functions. How can we provide assurance that software invoked in such rare
and unanticipated circumstances is fit for certification?

We argue that software systems such as these are but an extreme example of general
trends that undermine much of the standards-based approach to software assurance used
in aircraft certification. These trends include component-based software, complex inte-
gration, continuous modification, and load- and run-time adaptation. We propose that
safety cases based on explicit goals, evidence, and argument provide a firmer foundation
for assurance, and a framework within which it is possible to address the rare and the
unexpected. Specifically, we propose that just as methods to prevent loss of control move
certain software adaptation processes to runtime, so should some of the assurance and ver-
ification processes move to runtime also. The paper outlines a technical approach to such
“just-in-time certification.”

I. Introduction

The assurance activities that underpin certification strive to consider the behavior of the complete, finished
system (e.g., a commercial aircraft) in all its interactions with its environment. The consideration extends

to undesired and unintended interactions, such as those involving failures, upsets, and improper operator
inputs; the ideal is to consider all behaviors and interactions within a defined “envelope” that is intended to
encompass all plausible exigencies, and to establish that the system always remains safe.

We are interested in cases where this ideal breaks down. These may be due to dire circumstances that
were not anticipated or were deliberately excluded from the safe envelope (e.g., massive mechanical damage,
or improbable upsets), or faults in the design and assurance activities (e.g., a software error). We assume a
“never give up” philosophy under which the onboard control software attempts to maintain safe operation
in these unanticipated conditions, and to return the system to its safe envelope. By definition, the control
software is operating outside its certified envelope in these circumstances, and we are interested in what
design and assurance methods might, nonetheless, contribute usefully to an extended notion of certification.

During an unanticipated excursion, the control software is necessarily improvising its behavior at runtime:
this is true even if it operates algorithmically, since its application to unanticipated circumstances is an
improvisation, but we expect that in general there will be elements of adaptation driven by search and by
learning in the software’s response to the unanticipated circumstances. Since behavior is synthesized at
runtime, it seems that support for assurance and certification must also operate at runtime—in the form of
runtime monitors, for example.

Traditional methods for certification provide little guidance on how these runtime extensions to assurance
might be organized and justified. We suggest that the emerging framework of a “safety case” provides a
better context in which to develop this guidance and that it can contribute directly to the construction
of suitable monitors. We describe the idea of a safety case in the following section, and contrast it with
traditional methods of certification. In the section after that, we describe how monitors may be derived
from a safety case, and in the final section we offer suggestions for more further development of these rather
speculative proposals.
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II. Certification and Safety Cases

Certification is a judgement that deploying a given system in a given context will not pose unacceptable
risks of adverse consequences. The intellectual foundation for certification rests on three elements: claims,
evidence, and argument. The claims identify the adverse consequences to be considered and the degree of risk
considered acceptable; evidence comprises the results of analyses, reviews, and tests; the argument makes
the case, based on the evidence, that the claims are satisfied.

The traditional approach to certification may be called “standards based” and largely requires (or strongly
recommends) that system development follows prescribed processes (e.g., DO-178B1 for airborne software)
and generates specified evidence (e.g., MC/DC tests2). The standards-based approach focuses on evidence:
the claims and the argument are largely implicit. Thus, it is not immediately clear whether the evidence from
MC/DC testing is intended to support an argument for adequate testing, or one for high-quality requirements,
or one for absence of unintended function. Standards-based certification can be very effective in fields
where change is relatively slow, so that extensive experience can support the efficacy of the recommended
processes and evidence. Software for commercial aircraft is a paradigmatic example—though even here the
recommendations have progressed at roughly ten-year intervals from DO-178A3 to the current DO-178B1

and on to DO-178C, which is in development: the progression reflects technological change in methods for
software development and assurance, and in the context of its use (notably, the transitions to fly-by-wire
and to integrated modular avionics).

Standards-based certification is less appropriate when rapid innovation leads to systems that are very
different to those anticipated in the standard, and it can inhibit the introduction of new assurance methods
that provide novel kinds of evidence. As noted in the introduction, adaptive software that attempts to
maintain safe control in unexpected circumstances is an innovation outside the expectations of standards
and guidelines such as DO-178B, so we must either force an unnatural fit to the standard, or look elsewhere
for guidance.

Adaptive software is not the only innovation that strains current approaches and standards for certifica-
tion, or whose deployment is impeded by them. The design and construction of modern aircraft are massively
outsourced, and this extends to their software. Software from different suppliers is assembled as “integrated
modular avionics” (IMA) and we might hope that certification could be assembled in the same way: each
software component would be pre-certified for its local function and these would be composed to yield the
certification of the aggregate. Recent advisory circulars on reusable software components4 and guidelines
on integrated modular avionics5 make some provision for taking the certification products for a software
component from one aircraft certification into another, but they fall a long way short of endorsing a compo-
sitional approach to certification in which components can be separately certified and systems using these
need not reexamine their content. Other innovations that pose challenges to traditional certification include
product families (where we would like certification of a modified design to require effort commensurate with
the extent of the modification), and highly customized configurations of software (so that the exact software
instantiation for a particular aircraft may not be determined until boot time). An even larger challenge is
posed by the development of systems-of-systems that are larger than a single aircraft. Next-Generation Air
Traffic Control, where the software of different aircraft will interact to operate as a distributed system for
maintaining separation without the ground-based supervision employed today, is an example. Such systems
of systems are not only challenging innovations in themselves, but they expose existing systems to the stresses
of “software aging,” where software in a system remains constant while the environment in which it operates
undergoes change,6 thereby introducing new hazards that were not considered in the original design.

An emerging alternative to standards-based certification is known as a “safety case”.7 In a safety case,
the claims, evidence, and argument for assurance are presented explicitly and are evaluated by the certifying
authority or some delegated third party. The exact form of the safety case is a matter for negotiation
by the parties involved, but must generally conform to a given outline (e.g.,8,9). The advantage of the
safety-case approach is that it focuses on the specifics of the system under consideration, and hence can
tailor the methods of assurance appropriately (for this reason, it is sometimes referred to as a goal-based
approach to assurance). The idea that certification should be based on explicit goal-based argumentation
began in the UK (following inquiries into several disasters in the petro-chemical industry), and is becoming
widely accepted—for example, it is a principal recommendation of a recent report by the National Research
Council.10

Although it is not couched in these terms, the upper levels of assurance for aircraft safety, already have
much in common with the notion of a safety case. The system-level arguments and certification evidence
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for aircraft safety are based on various kinds of system and safety analysis such as hazard analysis, failure
modes and effects analysis, and fault tree analysis (e.g.,11,12), and these penetrate down into subsystems
and the top-level requirements for the software. Below the top level, however, software assurance currently
focuses less on safety and more on correctness, as portrayed in Figure 1. Thus Conmy13 and Amey and
Hilton14 argue that DO-178B is about software correctness, not system safety (“there is no relation of the
software to the system hazards, the developer can only state that the whole box has been tested to level A”)
and Ankrum and Kromholz15 find no clear link between desired system properties and many of the evidence
artifacts required by DO-178B. However, although DO-178B and other guidelines are often cited in the “Plan
for Software Aspects of Certification” they are not mandatory and alternative “means of compliance” may
be proposed.

safety

verification

correctness

safety goal system rqts

software rqts

code

software specs

system specs

validation

Figure 1. Safety vs. Correctness in Software Certification

A safety-case approach would likely cause safety
analysis to penetrate deeper into the software de-
sign and would refocus software assurance on safety
rather than correctness. By regarding adaptive soft-
ware as a system, a safety case would focus on
the specific hazards this system may introduce, and
their mitigations, not on “correctness” of its learn-
ing or adaptive mechanisms, such as neural nets.

A safety case is hierarchical with (sub)claims at
one level serving as evidence at a higher level. Du-
ally, the argument that supports a claim will gener-
ally be contingent on assumptions that must be dis-
charged as further subclaims. In the following sec-
tion, we suggest that assumptions and other claims
derived from a safety case serve as useful properties
to be monitored at runtime.

III. Runtime Monitoring for the Unexpected

One of the first steps in dealing with the unexpected is to recognize when the system is outside its
expected envelope. Runtime monitoring against the assumptions and claims of a safety case is one way to
do this. Furthermore, generation of the monitors can sometimes be automated, as we now describe.

The claims and arguments of a safety case will often be expressed in natural language and evaluated
by human judgment. But for software there is increasing interest in formal methods, aided by the rapid
adoption of model-based design. Model-based design substitutes executable models for many of the later steps
of software development that were traditionally undertaken in natural language and documented as low-level
requirements and specifications. Models lend themselves to examination by simulation and execution, but
these suffer from the same disadvantages as software testing: they examine only a fraction of the possible
scenarios. By analyzing models using symbolic methods, it is often possible to explore their properties
for all scenarios. The benefit of symbolic analysis is analagous to the comparison between the universal
demonstration that (x− y)× (x + y) = (x2 − y2) and experiments for specific values of x and y. In software
analysis, these symbolic approaches are known as formal methods, and they include techniques such as static
analysis, model checking, and theorem proving. Automation of these techniques has become quite effective
of late, as seen in tools such as the Simulink Design Verifier.

There is a particular topic in formal methods known as Runtime Verification, whose technology provides
methods for automated synthesis of monitors for formally specified properties.16 Given properties specified
in a language such as Eagle or RuleR,17 the methods of runtime verification can automatically generate
an efficient (and provably correct) monitor that will raise an alarm as soon as the property is violated. To
make effective use of this capability, we need a suitable source of properties to monitor.

One obvious source for properties is the requirement specification for the software concerned. The problem
with this choice is that these requirements are generally at the unit level and the software is often robustly
correct at this level (due to the effectiveness of standards-based practices such as those of DO-178B). That is
to say, there may be problems present at the system level, but individual software units will still be operating
correctly according to their unit-level requirements.
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A recent in-flight incident illustrates this topic. It concerns an Airbus A340-642, registration G-VATL,
which suffered a fuel emergency on 8 February 2005.18 The plane was over Europe on a flight from Hong
Kong to London when two engines flamed out. The crew found that the tanks supplying those engines
were empty and those for the other two engines were very low. They declared an emergency and landed at
Amsterdam. The subsequent investigation reported that two Fuel Control Monitoring Computers (FCMCs)
are responsible for pumping fuel between the tanks on this type of airplane. The two FCMCs cross-compare
and the “healthiest” one drives the outputs to the data bus. In this case, both FCMCs had known faults
(but complied with the minimum capabilities required for flight); unfortunately, one of the faults in the one
judged healthiest was the inability to drive the data bus. Thus, although it gave correct commands to the
fuel pumps (there was plenty of fuel distributed in other tanks), these were never received. Backup systems
were not invoked because the FCMCs indicated that not both were failed. Monitoring low-level requirements
for the FCMCs would not detect this problem, since faulty requirements were the root of the problem.

This example illustrates that there is unlikely to be much benefit in monitoring requirements at or below
the unit level: not only is critical software generally correct with respect to this level of specification, but
larger problems may not be manifested at this level. Instead, we need to monitor properties that more
directly relate to the safe functioning of the system, and that are more likely to be violated when problems
are present.

The claims and assumptions of a safety case can provide exactly these properties. One of the assumptions
in a safety case for the FCMCs would likely be that commanding a pump causes it to operate, and a
monitor for this property would have detected the malfunction. In all likelihood, there are many other safety
properties suitable for monitoring in this system (e.g., those concerning the acceptable distribution of fuel
among the different tanks, or minimum levels in the tanks feeding the engines).

Not all assumptions can be verified at runtime. For example, another in-flight incident due to software
occurred to a Boeing 777, registration 9M-MRG, near Perth, Australia, on 1 August 2005.19 The air data
inertial reference unit (ADIRU) performed a restart in circumstances where two of its accelerometers were
faulty—whereas the restart algorithm assumed at most one accelerometer would be faulty. The outcome
was a series of wild excursions as the autopilot responded to essentially random inputs from its ADIRU.
It is not always feasible to detect faulty components (if it were, fault tolerance would be easy), so direct
assumption monitoring might not have been feasible in this case, but monitors for higher-level claims in
the safety case (e.g., concerning plausible rates of change in air data) could have identified the arrival of
unexpected circumstances.

An alternative to monitoring assumptions and properties that are explicit in the requirements or in
the safety case is to monitor for properties learned by “experience”: that is, we check that the system is
behaving “as usual.” This idea has its roots in methods for intrusion detection in computer security,20 which
were subsequently refined to detect infections by computer viruses. An activated virus causes a program to
change its behavior—as does an activated fault or violated assumption; hence, it is plausible that methods
for detecting anomalies caused by viruses may also detect manifestations of a developing problem.

Most modern methods for anomaly detection work by constructing a model of the normal behavior of the
software, in terms, for example, of the invariants that it maintains, or the execution paths that it follows.
A program’s execution paths can represented, crudely but compactly, as a set of digraphs on monitored
control points (i.e., the set of all pairs of monitored control points—which are often system calls—that are
encountered consecutively). The program is monitored in execution and an anomaly alarm is raised whenever
execution departs from the recorded model.

One way to generate models is by recording the behavior of the software during test. Flight software is
subjected to very thorough testing (e.g., MC/DC coverage in the case of DO-178B Level A) so that models
generated from tests should be very accurate, and not contaminated by faulty behaviors due to activated
bugs or violated assumptions—for if those were to arise in test, they would be detected and fixed. The
dynamic analyzer Daikon21 can synthesize invariants from behavior observed in test, and digraphs or other
compact representations of observed control flow can be constructed by monitoring test executions. By these
means, we can build models that allow runtime monitoring to detect when software behavior departs from
that observed during test. Such a departure may indicate an unexpected scenario, or simply an untested
one. If the latter is considered the more likely, then merely logging the anomaly, rather than initiating more
drastic action, may be the most suitable response.
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IV. Further Prospects

There is extensive prior work on runtime monitoring for assurance and for error detection and recovery
(e.g.,22,23). The main novelty in the approach proposed here is use of a safety case as the source of monitored
properties.

Runtime monitoring of safety properties related to a safety case can provide potent evidence to support
the case. Such runtime evidence is most useful in adaptive systems that attempt to maintain safe control in
unanticipated circumstances that are beyond those considered in the standard design and pre-deployment
assurance of the system. Assurance delivered by runtime monitoring can therefore contribute to certification
of systems that follow a “never give up” strategy, in the spirit of autonomic and resilient systems.24

Unanticipated circumstances and violation of assumptions may cause even certified software to fail.
Monitoring for assumptions—also derived from a safety case—and for anomalies—which may be regarded
as departures from behaviors encountered in test—can give early warning that problems are at hand, while
monitoring for safety properties can give assurance that those problems are being contained or, dually, that
they are not and that further recovery should be attempted.

A loss of control event will likely trigger many safety alarms and possibly inappropriate subsystem
mitigations taken in ignorance of the system-level problem. For example, on 12 May 1997, hard-coded
anomaly detection and mitigation caused the display system (EFIS) of American Airlines Flight 903 (an
Airbus A300) to go blank: the indicated roll rate of more than 40 degrees/second was considered implausible,
and so a bus reset was performed. In fact, the pilots were attempting recovery from a major upset and the
roll rate was real; the loss of all instruments at this critical time jeopardized the recovery.

Although we have focussed on runtime monitoring, related techniques from the field of formal methods
could also support system-level recovery and the related tasks of diagnosis and mitigation. The component
whose monitor raises an alarm may not be the source of the fault. Given some symptoms in the form of
alarms from software health monitors, fault diagnosis is the problem of identifying the source and nature
of the fault. Early approaches to fault diagnosis in physical systems used rule-based “expert systems” but
these proved fragile and modern methods are based on model-based reasoning “from first principles”.25

The idea of model-based diagnosis is to perturb a model of the system until the modeled behavior
matches that observed. The diagnosis is then derived from the perturbation. Models can range from simple
graphs representing connectivity among components to interacting state machines. Models are perturbed
by replacing the standard model of a component by one that is faulty; each component is generally provided
with a set of fault models that may range from very specific kinds of fault to a generic “something’s wrong,”
which may be represented by a fully nondeterministic state machine, or communication of a distinguished
“bad” data value. The preferred diagnosis is generally one that accounts for the observed symptoms with
the smallest number of postulated faults. Calculation of a diagnosis is performed using techniques related
to those used in formal methods.26

Much of the research in diagnosis is concerned with making exactly the correct identification of the un-
derlying fault. However, although there may be many possible faults, the number of possible reconfigurations
or other mitigating actions may be rather few. For the case of jet engines, which were the target of NASA’s
Faultfinder system,27 there are just four possible actions: do nothing, reduce power, shut the engine down,
or discharge its fire extinguisher. There is no point in performing diagnosis to greater precision than that
required to identify the appropriate mitigation.28

In loss of control events it may be that no component has suffered a fault; rather it may be that some
component has been taken outside its assumed operating envelope by a major upset. Although this may
not be considered a fault, recovery may best be organized as if it were: diagnose the component whose
assumptions have been violated, then seek a reconfiguration that either does not require this assumption, or
that has a control function that can reduce and ultimately eliminate the violation. Meanwhile, manage the
secondary alarms that are consequences of this one.

Just as we argue that runtime monitoring is performed most effectively against properties derived from
a system-level safety case, so we suggest that diagnosis and mitigation will best be performed at the system
level also. Safety critical systems such as airplanes already contain massive, well-designed redundancy to
protect against anticipated hardware faults, and it will often be possible to invoke this so that safe operation
may continue in the presence of unanticipated events or software faults. For example, in the case of the
777 ADIRU problem, we could switch the autopilot to a different source of air data. Even when redundant
components have identical designs and are running identical software, their internal state and sensor inputs
are likely to differ slightly. Hence, the circumstances that provoke failure in one component (e.g., two faulty
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accelerometers) may not be present in another, and the same assumptions and the same software that has
failed in one component may continue to operate perfectly well in the other. Alternatively, we may be able
to switch to backup software (e.g., adaptive control) that does not require the violated assumption.

Diagnosis at the system level may involve a number of steps (e.g., to see if the symptoms persist when
various components are reset or shut down) and mitigation may also require several steps rather than a
simple reconfiguration. In these cases, we need to synthesize a multi-step program of action and the appro-
priate framework for doing this is supervisory controller synthesis, introduced by Ramadge and Wonham.29

Controller synthesis can be formulated as a game between the controller and its environment: the controller
seeks a strategy to maintain or achieve a given property no matter how the environment behaves. Simple in-
stances, such as when the system is deterministic with respect to the inputs and the task is to find a sequence
of inputs that places the system in some specific state, can be reduced to AI planning. In more complicated
cases, the controller must really be a strategy that reacts to the environment rather than a simple sequence
or a schedule. In this situation, the controller synthesis problem can be solved using techniques related to
those used in formal methods.30

The advantage of a formal, model-based approach to mitigation is that it can consider multiple possible
diagnoses and calculate the best overall response. The model can also be cognizant of system-level safety
properties, so that we can be sure that an action that seems reasonable at the local level does not have adverse
consequences at a higher level (as in the case of American Flight 903). Above all, correctness of the formally
synthesized approach is guaranteed, relative to the model. Thus, assurance and certification can focus on
the models employed, unlike more heuristic methods whose behavior must be determined experimentally.

It is likely that mitigations undertaken at the system level will require participation by the human
operators (e.g., to power-cycle a subsystem or to switch to a backup system). In these cases it will be
important that the recovery and mitigation procedures communicate effectively with the operators so that
they understand the possible states of the system, the available courses of action, and the reasons behind
those recommended. One way to do this is to include an explicit representation of the information available
to the operators as part of the model that drives the search for diagnosis and mitigations. Previous work
has shown how pilots’ mental models can be represented and used in formal analysis to help avoid mode
confusion and other forms of automation surprise, and to guide selection of information presented to the
pilots.31

In summary, the combination of a safety case with runtime monitors derived from the assumptions and
claims of the case, yields a plausible method for certifying adaptive systems that attempt to operate safely in
the presence of unexpected events. We hope the techniques outlined here will contribute to the assurance and
certification of systems for Integrated Vehicle Health Management or, more provocatively, to “just-in-time
certification.”
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