Draft Technical Note of June 20 1986

The Bell and La Padula Security Model

John Rushby
Computer Science Laboratory
SRI International
Menlo Park CA 94025 USA

Abstract

A precise description is given of the Bell and La Padula security model
using modern notation. The development faithfully follows that of the original
presentation [1,2]. The paper is intended to provide a basis for more exact,
formal, and scientific discussion of the model than has been the case heretofore.

1 Introduction

In order to study the problem of computer security with any rigor, it is first necessary
to have a precise formal description of what is meant by “security” in the context of
a computer system. Such security models provide a foundation for the development
of techniques for specifying and verifying the security of computer systems.

Two of the earliest security models, and by far the most influential, were those
developed at the Mitre Corporation by Bell and La Padula [2] and at SRI Inter-
national by Feiertag, Levitt and Robinson [5]. Each of these models has served
as a basis for verifying the security properties of real systems and the SRI model
provided a foundation for the development of an automatic tool for checking the
security of specifications written in the SPECIAL specification language [4].

The security model developed by Bell and La Padula appears considerably dif-
ferent from that due to Feiertag, Levitt and Robinson; it is an interesting and
important question, therefore, to enquire to what extent the differences are merely
notational, and to what extent they address fundamentally different aspects of the
security modeling problem.

Comparison of the two models is greatly complicated by the fact that they use
different mathematical formalisms: Bell and La Padula use the language of General
Systems Theory introduced by Mesarovié¢ [10], while Feiertag, Levitt and Robinson
use a more conventional finite-state machine model [7]. In order to facilitate com-
parison of the substance of the two models, it seems necessary that both should
first be expressed within the same formalism. Since most readers find the language

of General Systems Theory to be rather more complex and much less familiar than
elementary automata theory, I have chosen to reformulate the Bell and La Padula
model within the SRI formalism. The purpose of the present report is to document
this reformulation. It is my intention to present the work of Bell and La Padula as
accurately as possible, subject to the constraints of presenting their work within a
different notational framework than that originally employed. I have tried to avoid
“improving” Bell and La Padula’s work; where I have been unable to suppress the
desire to do so, I have interpolated my own observations in footnotes or in sections
labeled as “commentary.”

The technical development presented here is closely based upon that given in the
Appendix to Reference [2]—which I believe to be the definitive statement of the Bell
and La Padula model. T have also used material from a series of earlier reports [1]
where it seems illuminating to do so.

2 Preliminaries

The main difference between the formulation of security given by Bell and La
Padula [2] and that to be developed here concerns the choice of a formal model for
the notion of “computer system.” The model used by Feiertag, Levitt and Robinson,
and which is the one to be used here also, is a conventional finite-state automaton
model. That is to say, a system is regarded as comprising sets of users (or sub-
jects), states, commands (i.e., inputs), and outputs. “Interpreter functions” supply
the identity of the next state, and the output produced, when a given user invokes
a given command in a particular state. This system model implicitly determines
an association between the sequences of commands applied to the machine and the
sequences of outputs produced as a result. On the other hand, General Systems
Theory, as used by The Bell and La Padula, directly identifies the notion of system
with the association between input and output sequences; interpreter functions are
not present.

The Bell and La Padula model also differs from that of Feiertag, Levitt and
Robinson by including notions of a hierarchical object structure and of “discre-
tionary” security. The first of these is rather specific to the Multics system which
was the intended application of the model and has been omitted from my treatment.
Discretionary security (in the form of an access control matrix) can easily be added
to any security model and is omitted from the present treatment.

3 Definitions

We use a slightly embellished Mealy-type automaton as our model for computer
systems. That is, a system (or machine) M is composed of

a set S of states, with an initial state sg € S,

1

a set U of users (or subjects in security parlance),

a set C of commands (or operations), and
e a set O of outputs,

together with the functions next and out:
e next: SxUxC — S,
eout: SxUxC— 0.

If the system is in state s when the user u invokes operation ¢, then the value
out(s,u,c) will be output and the next state of the system will be next(s, u, c). Pairs
of the form (u,c) € U x C are called actions.

We derive a function nextk:

e nextx: S x (UxC)*— S
(the natural extension of next to sequences of actions) by the equations

nextx(s,A) = s,and

nextx(s, o (u,c)) = next(nextx(s,a),u,c),

where A denotes the empty string and o denotes string concatenation.

The intuition here is that the machine starts off in the initial state sg and is
presented with a sequence a € (U x C)* of actions. This causes the machine to
progress through a sequence of states, eventually reaching the state nextx(sg,).

The system state is not directly visible to the outside world; all that can be
observed are the outputs returned in response to the actions presented as inputs.
Although the system state is not directly visible or accessible, it records all the
information necessary to determine the subsequent behavior of the system. The SRI
security model [4-6,12] defines security directly in terms of the relationship between
input actions and outputs (basically it states that input actions from highly classified
users must have no effect on the outputs subsequently returned to users of lower
classification). From this definition it is possible to elaborate the model to address
the internal interactions between actions and the system state. Bell and La Padula’s
model, on the other hand, identifies security with these internal interactions right
from the start. In order to do this, the internal structure of the system state must be
modeled in more detail and in this regard the notion of an “object” is fundamental

!The distinction between users and subjects is irrelevant to the construction of the model—both
terms are simply names for members of the abstract set U. The distinction is important, however,
when we consider interpretations of the model.

to the Bell and La Padula model. Basically, the system state is regarded as a record
of the “values” currently “stored” within the objects of the system, together with a
record of the type of “access” that each user is currently permitted to each object.
We say that the association between object names and values constitutes the value
state of the system, while the record of the types of access permitted between each
subject and object constitutes the protection state.

The partitioning of the system state into a value component and a protection
component is mirrored by the partitioning of the command set C into operations,
which can change the value state but not the protection state, and rules which can
change the protection state but not the value state. (It is, of course, possible to
consider commands which change both the value and the protection state, but we
will not do so.)

The two fundamental types of “access” that can occur between subjects and
objects are termed observation and alteration. Bell and La Padula define the first as
the “extraction of information” from an object, and the second as the “insertion of
information” into an object. No formal definition of these concepts is provided by
Bell and La Padula; interpretation of the model depends on the reader’s intuitive
understanding of the names used to describe them.

The distinction between the value and protection state components of
the general system state is not made by Bell and La Padula, nor
is that between operations and rules. Their exposition concentrates
solely on the protection state of the system—they use the simple term
“state” where I use “protection state”; they use the term “rule” in the
same sense as here, but do not admit the dual notion of “operation.”

Based on these two primitive types of access, four more elaborate ones can be
constructed. These are known as w,r,a, and e access, respectively:

: write access permits both observation and alteration,

: read access permits observation but not alteration,

: append access permits alteration, but not observation, and
: execute access permits neither observation nor alteration.

o I g

In order to model formally this internal structure of the system state we introduce
e a set N of object names,

e a set V of object values,

e the set A= {w,r a,e} of access types,

and also the functions contents and current-access-set:

e contents: S x N — V,
e current-access-set : S — P(U x N x A)

(where P denotes powerset) with the interpretation that contents(s,n) returns the
value of object n in state s, while current-access-set(s) returns the set of all triples
(u,m,) such that subject u has access type = to object n in state s. Observe that
contents captures the idea of the value state, while current-access-set embodies the
protection state of the system.?

Although execute access permits neither observation nor alteration, the
name suggests that execute access is intended to indicate the right
to execute an object as a program, and is therefore to be distin-
guished from the mere absence of both observation and alteration
access. However, this is not the case. Bell and La Padula state
specifically [2, footnote to page 11]: “this abstract notion of ‘execute’
access is not what is typically implemented (enforced) by computer
hardware since the results of execution reflect the contents and thus
constitute ‘observation’ of the executed element.”

There is an unstated assumption concerning the current-access-set that
is fundamental to the interpretation of their model. This assump-
tion, which I call the Object Monitor Assumption, is that the system
“hardware” enforces restrictions on user’s access to objects in accor-
dance with the permissions recorded in the current-access-set. That
is to say, the protection state controls access to the value state. Since
rules do not access the value state, the Object Monitor Assumption
is embodied in the following three constraints on the behavior of op-
erations. These constraints (which are easily formalized) can also
be regarded as supplying interpretation to the informal notions of
“observation” and “alteration” rights.

1. The output of an operation may only depend on the values of
objects to which the user who executes the operation has obser-
vation rights.

2. An operation may only change the values of objects to which
the user who executes the operation has alteration rights.

3. The new values assigned to objects as a result of executing an
operation may only depend on the values of objects to which
the user who executes the operation has observation rights.

2Actually, current-access-set embodies only part of the protection state of the system—
additional components are introduced later in order to record subject clearances and object
classifications.

Most of the definitions that follow hinge on the distinction between observation
and alteration access—whereas the current-access-set is expressed in terms of w, r,
a, and e access. Consequently, it is convenient to define functions observe and alter
that extract observation and alteration access from the derived forms. (Bell and
La Padula did not adopt this approach, but stated their definitions in terms of the
basic current-access-set function.) Thus, we introduce functions alter, and observe:

e alter: S — P(U x N), and
e observe: S — P(U x N)

with the definitions:

observe(s) def {(u,n) | (u,n,w) or (u,n,r) € current-access-set(s)}, and

alter(s) e {(u,n) | (u,n,w) or (u,n,a) € current-access-set(s)}.
That is, observe(s) returns the set of all subject-object pairs (u, n) for which subject
u has observation rights to object n in state s, while alter(s) returns the set of all
pairs for which subject u has alteration rights to object n in state s.

The final step in the basic development is to assign a notion of “clearance” to
users and “classification” to objects. Both clearances and classifications are modeled
by a partially ordered set of “security levels.”3 Bell and La Padula distinguish a
user’s clearance from the security level at which he currently chooses to operate.
Whereas a user’s clearance is fixed, his current level is recorded in the system state.
Similarly, the classifications of objects are also recorded in the system state.

These ideas can be formalized in terms of

e aset L of security levels, partially ordered by a relation > (pronounced “dom-
inates”),

and functions
e clearance : U — L,
e current-level : S x U — L, and
e classification : S x N — L.

The intended interpretation is that [; > ls if and only if users with clearance [y
are allowed access to information with classification l5. The clearance of user u is
denoted by clearance(u), while current-level(s,u) denotes his current level in state

3This is sufficient to encompass both the standard hierarchy of military classifications (UNCLAS-
SIFIED, CONFIDENTIAL, SECRET, TOP SECRET) as well as “need-to-know” compartments (see [3,
Chapter 5]).

s, and classification(s,n) denotes the classification of object n in state s. Naturally,
we require that a user’s clearance always dominates his current level:

clearance(u) > current-level(s, u),Vu € U and Vs € S.

As noted earlier, the commands of the system are divided into those that
change the protection state (now enlarged to contain the functions current-level
and classification as well as current-access-set) but not the value state (which com-
mands we call rules), and those that change the value state but not the protection
state (which commands we call operations). It proves convenient to further subdi-
vide the set of rules into those that change the current security levels of subjects
or the classifications of objects, and those that do not (which latter group we call
tranquil rules). 4

e An operation is a command op € C such that, Vs € S, Vu,v € U, and Vn € N:

current-access-set(next(s, u,op)) = current-access-set(s),
current-level(next (s, u,op),v) = current-level(s,v),
and
classification(next(s, u,op),n) = classification(s,n).

e A rule is a command r € C such that, Vs € S, Vu,v € U, and Vn € N:

contents(next(s, u,r),n) = contents(s,n).

e A rule r € Cis tranquil if, Vs € S, Yu,v € U, and Vn € N,

current-level(next(s,u,r),v) = current-level(s,v), and

classification(next(s,u,r),n) = classification(s,n).
e A system is simple if all of its commands are either operations or rules.’

We are now ready to state Bell and La Padula’s definition of security. By analogy
with the “pen and paper” world, it is plainly necessary that users should only be
able to observe the values of objects whose classifications are dominated by their
own clearance. Thus, if user u has r or w access to object n in state s, we require
that the maximum level of u must dominate the classification of n in state 5.5 This
is called the simple security property (or ss-property for short).

“Introduction of the term “tranquility” in the sense employed here is generally attributed to
Bell and La Padula, but I can find no mention of it in reference [2], where those results that require
tranquility cite the formal statement of the property but do not give it a name.

5Tt is implicit in Bell and La Padula’s model that only simple systems are considered.

5Tt might seem more natural to require that the current level of u should dominate the classifi-
cation of n. This additional restriction is indeed imposed (but only for untrusted subjects) as part
of the x-property.

Definition 1 (Simple Security Property) A state s € S satisfies the simple
security property if Vu € U, and Vn € N:

(u,n) € observe(s) D clearance(u) > classification(s,n).

A rule r is ss-property-preserving if next(s,u,r) satisfies the ss-property whenever s
does. O

Consideration of the possibility that untrustworthy subjects might circumvent
the intent, though not the statement, of the simple security property by copying
highly classified material into objects of lower classification then led Bell and La
Padula to formulate their famous x-property (pronounced “star-property”). The
motivation for the x-property was rather well expressed by Bell and La Padula as
follows:

“The expected interpretation of the model anticipates protection of in-
formation containers rather than of the information itself. Hence a ma-
licious program (an interpretation of a subject) might pass classified
information along by putting it into an information container labeled at
a lower level than the information itself.” [2, p16]

In formulating the x-property, Bell and La Padula first divided the subjects of the
system into those that may be trusted to place information only in appropriately
labeled containers, and those that may not be so trusted. The x-property then
prohibits untrusted subjects from “writing down”—that is to say it prohibits them
from acquiring alteration rights to objects classified below their own current level.
It also prohibits untrusted subjects from reading above their current level. (Recall
that the ss-property prohibits all subjects from reading above their mazimum level
or clearance.)

Definition 2 (x-property) Let 7' C U denote the set of trusted subjects. A state
s € S satisfies the x-property if, for all untrusted subjects u € U\T (we use \ to
denote set difference) and objects n € N:

(u,n) € alter(s) DO classification(s,n) > current-level(s, u), and

>
(u,n) € observe(s) D current-level(s,u) > classification(s,n).

A rule r is x-property-preserving if next(s,u,r) satisfies the x-property whenever s
does. O

Note that it follows from these definitions that:

(u,n,a) € current-access-set(s) O classification(s,n) > current-level(s, u),

>
(u,n,r) € current-access-set(s) DO current-level(s,u) > classification(s, n),

and
(u,n,w) € current-access-set(s) DO classification(s,n) = current-level(s, u).

Also, as a simple consequence of the transitivity of >, if a state s satisfies the
*-property and v is an untrusted subject with alteration rights to object n; and
observation rights to object ns (in state s), then

classification(s, ny) > classification(s, na).

The original formulation of the x-property was somewhat different than
that given above in that it did not employ the notion of a subject’s
current-level. The formulation of the x-property given in [1, Volume
] is, Vu € T\U, and Vm,n € N:

(u,m) € observe(s) A (u,n) € alter(s)

D classification(s,n) > classification(s, m).

That is, the classification of any object to which a subject has alteration
rights must dominate that of any object to which it has observation
rights. In [1, Volume III] is was noted that if a state satisfies the *-
property as formulated above, and if an untrusted subject u has write
access to two objects simultaneously, then both those objects must
have the same classification [, say. Furthermore, the classification of
any object to which the subject has append access must dominate [,
while [itself must dominate the classification of any object to which
the subject has read access. Thus, the classification [is a pivot to
which the classifications of all other accessible objects must relate.
Accordingly, in [1, Volume III], Bell and La Padula distinguished
this classification as the “current-level” of the subject concerned and
provided the reformulation of the x-property given in Definition 2.
They reported that this formulation of the x-property considerably
simplified a number of the tests that need to be performed in any
implementation of the model.

Bell and La Padula identify “security” with the conjunction of the ss- and *-
properties.

Definition 3 (Security)

o A state is secure if it satisfies both the simple security property and the *-
property.

e A rule r is security-preserving if next(s,u,r) is secure whenever s is.

We say that a state s is reachable if s = nextx(sg,) for some action sequence
ae (UxO)*.

A system satisfies the simple security property if every reachable state satisfies
the simple security property.

A system satisfies the x-property if every reachable state satisfies the x-
property.

A system is secure if every reachable state is secure.

4 Results

In this section, we establish conditions on individual state transitions that are suf-
ficient to ensure the security of the system overall. I include all the results in the
Appendix to [2], except those relating to discretionary security. In contrast to Bell
and La Padula, I provide only informal outlines for the proofs of these results: when
presented in the formalism used here, the results are so obvious that more elaborate
proofs seem superfluous.

The first result establishes the conditions under which a system satisfies the
ss-property.

Theorem 1 (Theorem A1l of [2]) A system satisfies the ss-property if and only
if:

1. The initial state sg satisfies the ss-property, and
2. Vs,t € S, Yu,v e U, Yne N, and Vc € C,

(a) t = next(s,v,c) A (u,n) € observe(t)\observe(s)
D clearance(u) > classification(¢,n), and
(b) t =next(s,v,c) A (u,n) € observe(s)
A clearance(u) # classification(t, n)
D (u,n) & obs(t).

Proof: The proof is an elementary induction on the number of actions required to
reach each (reachable) state. The first hypothesis in the statement of the theorem
provides the basis of the induction; the second provides the inductive step. The first
part of the second hypothesis asserts that no observation right is ever added to the
protection state if it would cause the new state to violate the ss-property, while the
second part asserts that no observation right persists from one state to the next if
it would cause the new state to violate the ss-property. O

Next we establish the conditions under which a system satisfies the x-property.

10

Theorem 2 (Theorem A2 of [2]) A system satisfies the *-property if and only
if:

1. The initial state sy satisfies the x-property, and
2. Vs, t €S, YoeU, Yue U\T, ¥Yn € N, and Ve € C,

(a) t =next(s,v,c¢) A (u,n) € observe(t)\observe(s)
D current-level(t, u) > classification(¢, n),
(b) t =next(s,v,c) A (u,n) € alter(t)\alter(s)
D classification(¢,n) > current-level(t, u),
(c) t =next(s,v,¢) A (u,n) € observe(s)
A current-level(t, u) 7 classification(t,n)
D (u,n) ¢ observe(t), and
(d) t =next(s,v,¢) A (u,n) € alter(s)
A classification(t,n) > current-level(t, u)
D (u,n) ¢ alter(t).

Proof: Again, the proof is an elementary induction on the number of actions re-
quired to reach each (reachable) state and is very similar to that of the previous
theorem. The first hypothesis provides the basis for the induction while the second
provides the inductive step. The first two parts of the second hypothesis assert that
no observation or alteration rights are ever added to the protection state if they
would cause the new state to violate the x-property; the final two parts of that
hypothesis ensure that no rights persist form one state to the next if they would
cause the new state to violate the x-property. O
Combining these two results yields:

Corollary 3 (Basic Security Theorem—Corollary A1l of [2])
A system is secure if and only if it satisfies the hypotheses of both the previous
theorems. O

The hypotheses to the Basic Security Theorem are so unhelpful that
the theorem cannot serve as a basis for proving the security of real
systems. Indeed, no subsequent use of the theorem was made by Bell
and La Padula. Their motive in stating the result was merely to
establish the “inductive” nature of their definition of security in that

“it shows that the preservation of security from one state
to the next guarantees total system security” [2, p20].

Bell and La Padula contrasted the inductive nature of security with
the more complex problem of deadlock-avoidance in certain resource-
sharing systems and observed that the Basic Security Theorem es-
tablishes

11

“the relative simplicity of maintaining security: the mini-
mum check that the proposed new state is ‘secure’ is both
necessary and sufficient for full maintenance of security” [2,
p21].

Despite the modest claims made by Bell and La Padula for the Basic
Security Theorem, the result is sometimes advanced as a substantial
argument in favor of the proposition that the Bell and La Padula
security model captures the “essence” of security and is superior to
other models [8]. McLean [9] attacks this argument by establishing
an essentially identical theorem for a model that clearly violates any
reasonable notion of “security.”” In fact, it should be clear that
if ® is any effectively decidable property of the system state, then
an analogue to the Basic Security Theorem can be constructed for
that ®. In other words, and as McLean observed, the Basic Security
Theorem is a property of the finite-state system model employed (in
that states can be indexed to support proof by induction), rather
than of the particular definition given for security.

Clearly we have:

Theorem 4 (Theorem A4 of [2]) If sy satisfies the ss-property and all the rules
of the simple system M are ss-property preserving, then M satisfies the ss-property.

Proof: Immediate from the definitions of simple system, rule and ss-property-
preserving. O

And

Theorem 5 (Theorem A5 of [2]) If sy satisfies the x-property and all the rules
of the simple system M are x-property preserving, then M satisfies the x-property.

Proof: Immediate from the definitions of simple system, rule and x-property-

preserving. O
And hence

Corollary 6 (Corollary A2 of [2]) If s¢ is a secure state and all the rules of the
system M are security-preserving, then M is a secure system. O

Also

"Basically, McLean turns the x-property around (to yield what he calls the “%-property”), so
that subjects may (only) transfer information from higher to lower classification levels.

12

Theorem 7 (Theorem A7 of [2]) Let r be a tranquil rule such that, Vs €
S, and Yu € U:
observe(next (s, u,r)) D observe(s).

Then r is ss-property-preserving if, Vs € S, Vu,v € U, and Vn € N,

(v,n) € observe(next(s,u,r))\observe(s)

D clearance(v) > classification(s, n).

Proof: The result is obvious: it simply states that if a tranquil rule (i.e., one that
does not change the security levels assigned to subjects and objects) merely adds new
observation rights to those already present, and if each of those newly added rights
satisfies the conditions of the ss-property, then the rule is ss-property-preserving. O

Theorem 8 (Theorem A8 of [2]) Let r be a tranquil rule such that, Vs €
S, and Yu € U:

alter(next(s,u,r)) D alter(s), and

observe(next(s,u,r)) D observe(s)
Then r is *-property-preserving if, Vs € S, Yu € U, Yv € U\T, and Vn € N:

(v,m) € alter(next(s,u,r))\alter(s)

O classification(s,n) > current-level(s, v),
and

(v,m) € observe(next(s, u,r))\observe(s)

D current-level(s, v) > classification(s, n).

Proof: Again the result is obvious: it simply states that if a tranquil rule (i.e., one
that does not change the security levels assigned to subjects and objects) merely
adds new observation and alteration rights to those already present, and if each of
those newly added rights satisfies the conditions of the x-property, then the rule is
*-property-preserving. O

Corollary 9 (Corollary A3 of [2]) Let r be a tranquil rule such that, Vs €
S, and Yu € U:

alter(next(s,u,r)) D alter(s), and

observe(next(s,u,r)) D observe(s).

Then r is security-preserving if the conditions of the previous two theorems are
satisfied. O

13

Theorem 10 (Theorem A10 of [2]) Let r be a tranquil rule such that, Vs €
S, and u € U:
observe(next (s, u,r)) C observe(s).

Then r is ss-property-preserving. If, in addition,
alter(next(s,u,r)) C alter(s),
then r is x-property-preserving, ss-property-preserving, and security-preserving.

Proof: Yet again, this is an obvious result: it simply states that if a tranquil rule
(i.e., one that does not change the security levels assigned to subjects and objects)
merely removes observation and/or alteration rights from those already present,
then the rule is ss-property, x-property, or security-preserving as appropriate. O

5 Applications

Bell and La Padula demonstrated the application of their security model by using
the results of the previous section to establish the security of a representative class
of 11 rules. These rules were chosen to model those found in the Multics system. 1
will outline a few examples from this application (omitting rules 6 through 9 of [2],
which are concerned with discretionary security and the Multics object hierarchy).

5.1 Get-Read (rule 1 of [2])

A subject u may call the rule get-read(n) in order to acquire read access to the
object n. The rule checks that the following conditions are satisfied.

1. clearance(u) > classification(s, n).

2. If w is not a trusted subject (i.e., u € U\T), then

current-level(s, u) > classification(s,n).

If both these conditions are satisfied, the rule modifies the protection state by setting
current-access-set(s’) = current-access-set(s) U {(u,n,r)},

where s’ denotes the new system state following execution of the rule. Otherwise,
the system state is not modified.
The security of get-read follows directly from Corollary 9.

5.1.1 Get-Append, Get-Execute, Get-Write (rules 2 to 4 of [2])

These are analogous to get-read.

14

5.2 Release-Read (rule 5 of [2])

A subject u may call the rule release-read(n) in order to release its read access
right to the object n. No checks are made by the rule, which simply modifies the
protection state by setting

current-access-set(s') = current-access-set(s)\{(u,n,r)},

where s’ denotes the new system state following execution of the rule.
The security of release-read follows directly from Theorem 10.

5.2.1 Release-Execute, Release-Append, Release-Write (rule 5 of [2])

These are analogous to release-read.

5.3 Change-Subject-Current-Security-Level (rule 10 of [2])

A subject u may call Change-Subject-Current-Security-Level(l) in order to request
that its current-level be changed to [. The rule checks that the following conditions
are satisfied.

1. clearance(u) > [(i.e., a subject’s current-level may not exceed its clearance).

2. If w is an untrusted subject (i.e., u € U\T) then assigning [as the current
level of u must not cause the resulting state to violate the x-property—i.e.,
Vn € N:

(u,n) € alter(s) D classification(s,n) > [, and

(u,m) € observe(s) D [> classification(s,n).

If both these conditions are satisfied, the rule modifies the system state by setting
current-level(s’,u) = I, where s’ denotes the new system state following execution
of the rule. Otherwise, the system state is not modified.

The ss-property is independent of a subject’s current-level; hence this rule is
ss-property preserving. By its very construction, the rule is x-property preserving.
Hence it is security preserving.

Although this rule preserves security as it is defined here (i.e., as the
conjunction of the ss- and x-properties), it still provides a “leakage
channel” by which an untrustworthy subject can indirectly transfer
information from a highly classified object to one of lower classifica-
tion. This leakage channel is described by Millen and Cerniglia [11]
who attribute its discovery to P.S. Tasker of the Mitre Corporation.
Its method of operation is as follows:

15

. An untrustworthy subject (a “Trojan Horse”) with a high
current-level extracts sensitive information from an object to
which it has (legitimate) read access.

. It then encodes this information by selecting to which members
of a set of lowly classified objects it acquires (legitimate) read
access.

. The subject then releases read access to the highly classified
file and reduces its current level to that of the lowly classified
objects.

. It then observes to which of these objects it has read access
and thereby recovers the highly classified information encoded
thereby.

. Finally it writes the recovered information into an object at its
current (low) level—thereby making it available to subjects of
low clearance.

5.4 Change-Object-Security-Level (rule 11 of [2])

A subject u may call Change-Object-Security-Level(n, 1) in order to request that
the classification of object n be changed to [. The rule checks that the following

conditions are satisfied.

1. current-level(s,u) > classification(s,n) (i.e., no subject may change the clas-

sification of an object which is currently classified above its own level).

. If w is an untrusted subject (i.e., v € U\T'), then

current-level(s,u) > [and [> classification(s,n),

(i.e., untrusted subjects may not “downgrade” the classification of an object).

. Yv € U, (v,n) € observe(s) D current-level(s,v) > [(i.e., if any subject has
observation rights to the object n, then the current level of that subject must

dominate the new classification of n).

. Assigning [as the classification of n must not cause the resulting state to

violate the x-property.

If these conditions are satisfied, the rule modifies the system state by setting
classification(s’',n) = I, where s’ denotes the new system state following execution

of the rule. Otherwise, the system state is not modified.

The third condition is (more than) sufficient to ensure that this rule is ss-
property preserving. The fourth condition explicitly guarantees that it is x-property

preserving—hence the rule is security preserving.

16

Only the third and fourth conditions are necessary in order to ensure that
this rule satisfies Bell and La Padula’s definition of security—yet the
second condition is utterly essential to the preservation of any “real”
security (the first condition is more of an “integrity” constraint).

Like the previous rule, this one also provides a “leakage channel” which
allows information to flow from a highly classified object to a subject
with a lower clearance. The scenario is as follows.

1. An untrustworthy subject (a “Trojan Horse”) with a high
current-level extracts sensitive information from an object to
which it has (legitimate) read access.

2. It then encodes this information by selecting which members of
a set of lowly classified objects it will “upgrade” (i.e., raise in
security classification) from level I to a slightly higher level [5.

3. A confederate subject with a low [y clearance discovers which
objects have changed in classification from I; to lo—thereby
recovering the highly classified information which the Trojan
Horse has encoded in this way.

Another potential security flaw in this rule is described by Taylor [13].
Consider a trusted subject copying information between two objects
of the same classification—I7, say. It is possible for a second subject
to raise the classification of the source object to a level Iy, say, which is
above that of the destination object. This second subject could then
copy some [y level material into the source file, thereby turning the
trusted subject into an unwitting channel for unsecure information
flow from level I3 to level 1. ® Although a trusted subject is trusted
not to abuse its potential to cause unsecure information flow, it is
eminently possible that those who design and validate a program
which partakes of the role of a trusted subject might overlook the
possibility that the classifications of the objects it manipulates can
change beneath it.

This second channel (but not the first) can be prevented if the rule is
modified to refuse changes to the classifications of active objects—
those are objects to which some subject has current access. More
formally, an object n € N is active in state s € S if there exists
a subject u € U and an access mode x € A such that (u,n,z) €
current-access-set(s).

8In order to satisfy the conditions in the rule, both subjects must have current levels which
dominate both levels l1 to [.

17

References

1]

D. E. Bell and L. J. La Padula. Secure computer systems: Vol. [—mathematical
foundations, Vol. II-—a mathematical model, Vol. IIl—a refinement of the math-
ematical model. Technical Report MTR-2547 (three volumes), Mitre Corpora-
tion, Bedford, MA, March—-December 1973.

D. E. Bell and L. J. La Padula. Secure computer system: Unified exposition and
Multics interpretation. Technical Report ESD-TR-75-306, Mitre Corporation,
Bedford, MA, March 1976.

D. E. Denning. Cryptography and Data Security. Addison-Wesley, 1982.

R. J. Feiertag. A technique for proving specifications are multilevel secure.
Technical Report CSL-109, Computer Science Laboratory, SRI International,
Menlo Park, CA, January 1980.

R. J. Feiertag, K. N. Levitt, and L. Robinson. Proving multilevel security of
a system design. In Sizth ACM Symposium on Operating System Principles,
pages 57-65, November 1977.

J. A. Goguen and J. Meseguer. Security policies and security models. In
Proceedings of the Symposium on Security and Privacy, pages 11-20, Oakland,
CA, April 1982. IEEE Computer Society.

J. E. Hopcroft and J. D. Ullman. Formal Languages and their Relation to
Automata. Addison-Wesley, 1969.

S. B. Lipner (Moderator). Panel session: Bell/La Padula and alternative models
of security. In Proceedings of the Symposium on Security and Privacy, Oakland,
CA, April 1983. IEEE Computer Society.

J. McLean. A comment on the “basic security theorem” of Bell and La Padula.
Informal note, Naval Research Laboratory, 1983.

M. D. Mesarovié¢. A mathematical theory of general systems. In G. J. Klir,
editor, Trends in General Systems Theory. John Wiley and Sons, 1972.

J. K. Millen and C. M. Cerniglia. Computer security models. Working Paper
WP25068, Mitre Corporation, Bedford, MA, September 1983.

John Rushby. The security model of Enhanced HDM. In Proceedings 7th
DoD/NBS Computer Security Initiative Conference, pages 120-136, Gaithers-
burg, MD, September 1984.

18

[13] T. Taylor. Comparison paper between the Bell and La Padula model and the
SRI model. In Proceedings of the Symposium on Security and Privacy, pages
195-202, Oakland, CA, April 1984. IEEE Computer Society.

19

