
An Experimental Evaluation of
Ground Decision Procedures ?

(Submitted for Publication, January 25, 2003)

Leonardo de Moura and Harald Rueß

SRI International
Computer Science Laboratory

333 Ravenswood Avenue
Menlo Park, CA 94025, USA

{demoura, ruess}@csl.sri.com
phone +1 650 859-6136, fax +1 650 859-2844

Abstract. There is a large variety of algorithms for ground decision
procedures, but their differences, in particular in terms of experimen-
tal performance, are not well studied. We develop maps of the behavior
of ground decision procedures by comparing the performance of a va-
riety of technologies on benchmark suites with differing characteristics.
Based on these experimental results, we discuss relative strengths and
shortcomings of different systems.

1 Introduction

Decision procedures are an enabling technology for a growing number of appli-
cations of automated deduction in hardware and software verification, planning,
bounded model checking, and other search problems. In solving these problems,
decision procedures are used to decide the validity of propositional constraints
such as

z = f(x− y) ∧ x = z + y → −y = −(x− f(f(z))) .

This formula is in the combination of linear arithmetic and an uninterpreted
function symbol f . Since all variables are considered to be universally quantified,
they can be treated as (Skolem) constants, and hence we say that the formula
is ground.

Solving propositional formulas with thousands of variables and hundreds of
thousands of literals, as required by many applications, is a challenging problem.
Over the last couple of years, many different algorithms, heuristics, and tools
have been developed in addressing this challenge. Most of these approaches either
use extensions of binary decision diagrams [1], or an equisatisfiable reduction of
propositional constraint formulas to propositional logic, which is solved using
? Funded by SRI International, by NSF Grants CCR-0082560, EIA-0224465, and CCR-

0326540, DARPA/AFRL-WPAFB Contract F33615-01-C-1908, and NASA Contract
B0906005.



2

a Davis-Putnam [2] search procedure. Their differences, especially in terms of
experimental performance, are not well studied.

Ultimately, it is our goal to develop comprehensive maps of the behavior of
ground decision procedures by comparing the performance of a variety of tech-
nologies on benchmark suites with differing characteristics, and the study in
this paper is an essential first step towards this goal of comprehensive bench-
markmarking. We have been collecting a number of existing benchmarks for
ground decision procedures and applied them to the CVC/CVCLite [3], ICS [4],
UCLID [5], MathSAT [6], Simplify [7], and SVC [8] systems. This required devel-
oping translators from the various benchmark formats to the input languages of
the systems under consideration. For the diversity of the algorithms underlying
ground decision procedures, we only measure runtimes. We analyze the compu-
tational characteristics of each system on each of the benchmarks, and expose
specific strengths and weaknesses of the systems under consideration.

Since such an endeavor should ultimately develop into a cooperative ongoing
activity across the field, our main emphasis in conducting these experiments is
not only on reproducibility but also on reusability and extendibility of our ex-
perimental setup. In particular, all benchmarks and all translators we developed
for converting input formats, and all experimental results are publicly available
at http://www.csl.sri.com/users/demoura/gdb-benchmarks.html.

This paper is structured as follows. In Section 2 we include a brief overview
on the landscape of different methods for ground decision procedures, and in
Section 3 we describe the decision procedures, benchmarks, and our experimental
setup. Section 4 contains our experimental results by pairwise comparing the
behavior of decision procedures on each benchmark set, and in Section 5 and 6
we summarize some general observations from these experiments and provide
final conclusions.

2 Ground Decision Procedures

We consider ground decision procedures (GDP) for deciding propositional sat-
isfiability for formulas with literals drawn from a given constraint theory T .
GDPs are usually obtained as extensions of decision procedures for the satisfi-
ability problem of conjunctions of constraints in T . For example, satisfiability
for a conjunction of equations and disequations over terms in U is decidable in
O(n log(n)) using congruence closure [9]. Conjunctions of constraints in rational
linear arithmetic are solvable in polynomial time, although many algorithms such
as Simplex have exponential worst-case behavior. In the theory D of difference
logic, arithmetic constraints are restricted to constraints of the form x − y ≤ c
with c a constant. An O(n3) algorithm for the conjunction of such constraints
is obtained by searching, using the Bellman-Ford algorithm, for negative-weight
cycles in the graph with variables as nodes and an edge of weight c from x to y
for each such constraints. For individual theories T i with decidable satisfiability
problems, the union of all T i’s is often decided using a Nelson-Oppen [10] or a
Shostak-like [11,12] combination algorithm.

http://www.csl.sri.com/users/demoura/gdb-benchmarks.html


3

ICS ulimit -s 30000; ics problem-name.ics

UCLID uclid problem-name.ucl sat 0 zchaff

CVC cvc +sat < problem-name.cvc

CVC Lite cvcl +sat fast < problem-name.cvc

SVC svc problem-name.svc

Simplify Simplify problem-name.smp

Math-SAT mathsat linux problem-name.ms -bj math -heuristic SatzHeur

Table 1. Command line options used to execute GDPs.

Given a procedure for deciding satisfiability of conjunctions of constraints in
T it is straightforward to decide propositional combinations of constraints in T
by transforming the formula into disjunctive normal form, but this is often pro-
hibitively expensive. Better alternatives are to extend binary decision diagrams
to include constraints instead of variables (e.g. difference decision diagrams), or
to reduce the propositional constraint problem to a purely propositional problem
by encoding the semantics of constraints in terms of added propositional con-
straints (see, for example, Theorem 1 in [13]). Algorithms based on this latter
approach are characterized by the eagerness or laziness with which constraints
are added.

In eager approaches to constructing a GDP from a decision procedure for T ,
propositional constraints formulas are transformed into equisatisfiable proposi-
tional formulas. In this way, Ackermann [14] obtains a GDP for the theory U
by adding all possible instances of the congruence axiom and renaming unin-
terpreted subterms with fresh variables. In the worst case, the number of such
axioms is proportional to the square of the length of the given formula. Other the-
ories such as S-expressions or arrays can be encoded using the reductions given
by Nelson and Oppen [10]. Variations of Ackermann’s trick have been used, for
example, by Shostak [15] for arithmetic reasoning in the presence of uninter-
preted function symbols, and various reductions of the satisfiability problem of
Boolean formulas over the theory of equality with uninterpreted function sym-
bols to propositional SAT problems have recently been described [16], [17], [18].
In a similar vein, an eager reduction to propositional logic works for constraints
in difference logic [19].

In contrast, lazy approaches introduce part of the semantics of constraints
on demand [13], [20], [6], [21]. Let φ be the formula whose satisfiability is being
checked, and let L be an injective map from fresh propositional variables to the
atomic subformulas of φ such that L−1[φ] is a propositional formula. We can use
a propositional SAT solver to check that L−1[φ] is satisfiable, but the resulting
truth assignment, say l1∧ . . .∧ ln, might be spurious, that is L[l1∧ . . .∧ ln] might
not be ground-satisfiable. If that is the case, we can repeat the search with
the added lemma clause (¬l1 ∨ . . . ∨ ¬ln) and invoke the SAT solver on (¬l1 ∨
. . .∨¬ln)∧L−1[φ]. This ensures that the next satisfying assignment returned is
different from the previous assignment that was found to be ground-unsatisfiable.
In such an offline integration, a SAT solver and a constraint solver can be used
as black boxes. In contrast, in an online integration the search for satisfying



4

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

nu
m

be
r 

of
 v

ar
ia

bl
es

(a) Math-SAT suite

 0

 20

 40

 60

 80

 100

 120

nu
m

be
r 

of
 v

ar
ia

bl
es

(b) UCLID suite

 0
 200
 400
 600
 800

 1000
 1200
 1400

nu
m

be
r 

of
 v

ar
ia

bl
es

(c) SAL suite

 0

 100

 200

 300

 400

 500

 600

nu
m

be
r 

of
 v

ar
ia

bl
es

(d) SEP suite

Fig. 1. Number of boolean (dark gray) and non-boolean (light gray) variables
in each problem.

assignments of the SAT solver is synchronized with constructing a corresponding
logical context of the theory-specific constraint solver. In this way, inconsistencies
detected by the constraint solver may trigger backtracking in the search for
satisfying propositional assignments. An effective online integration can not be
obtained with a black-box decision procedures but requires the constraint solver
to process constraints incrementally and to be backtrackable in that not only
the a current logical context is maintained but also contexts corresponding to
backtracking points in the search for satisfying assignments. The basic refinement
loop in the lazy integration is usually accelerated by considering negations of
minimal inconsistent sets of constraints or “good” over-approximations thereof.
These so-called explanations are either obtained from an explicitly generated
proof object or by tracking dependencies of facts generated during constraint
solver runs.

3 Experimental Setup

We describe the setup of our experiments including the participating systems,
the benchmarks and their main characteristics, and the organization of the ex-
periments itself. This setup has been chosen before conducting any experiments.

3.1 Systems.

The systems participating in this study implement a wide range of different
satisfiability techniques as described in Section 2. All these GDPs are freely
available and distributed, and in each case we have been using the latest version
(as of January 10, 2004). We provide short descriptions in alphabetical order.



5

The Cooperating Validity Checker (CVC 1.0a) [3] is a GDP for the combination
of theories including linear real arithmetic A, uninterpreted function symbols U ,
functional arrays, and inductive datatypes. Propositional reasoning is obtained
by means of a lazy, online integration of the zChaff SAT solver and a constraint
solver based on a Shostak-like [11] combination, and explanations are obtained as
axioms of proof trees. We also consider the successor system CVC Lite (version
1.0.1), whose architecture is similar to the one of CVC, but it uses a home-
grown SAT solver for realizinig a tighter integration between SAT and constraint
solving.

The Integrated Canonizer and Solver (ICS 2.0) [4] is a GDP for the combination
of theories including linear real arithmetic A, uninterpreted function symbols
U , functional arrays, S-expressions, products and coproducts, and bitvectors.
It realizes a lazy, online integration of a non-clausal SAT solver with an incre-
mental, backtrackable constraint engine based on a Shostak [11] combination.
Explanations are generated and maintained using a simple tracking mechanism.

UCLID (version 1.0) is a GDP for the combination of difference logic and un-
interpreted function symbols. It uses an eager transformation to SAT problems,
which are solved using zChaff [5]. The use of other theories such as lambda ex-
pressions and arrays is restricted in order to eliminate them in preprocessing
steps.

Math-SAT [6] is a GDP for linear arithmetic based on a black-box constraint
solver, which is used to detect inconsistencies in constraints corresponding to
partial Boolean assignments in an offline manner. The constraint engine uses a
Bellman-Ford algorithm for difference logic constraints and a Simplex algorithm
for more general constraints.

Simplify [7] is a GDP for linear arithmetic A, uninterpreted functions U ,
and arrays based on the Nelson-Oppen combination. Simplify uses home-grown
SAT solving techniques, which do not incorporate many efficiency improvements
found in modern SAT solvers. However, Simplify goes beyond the other systems
considered here in that it includes heuristic extensions for quantifier reasoning,
but this feature is not tested here.

Stanford Validity Checker (SVC 1.1) [8] decides propositional formulas with un-
interpreted function symbols U , rational linear arithmetic A, arrays, and bitvec-
tors. The combination of constraints is decided using a Shostak-like combination
extended with binary decision diagrams.

3.2 Benchmark suites

We have included into this study freely distributed benchmark suites for GDPs
with constraints in A and U and combinations thereof. These problems range



6

from standard timed automata examples to equivalence checking for micropro-
cessors and the study of fault-tolerant algorithms. For the time being we do not
separate satisfiable and unsatisfiable instances. Since some of the benchmarks
are distributed in clausal and other in non-clausal form, it is difficult to provide
measures on the difficulty of these problems, but Figure 1 contains the num-
ber of variables for each benchmark problem. The dark gray bars represents the
number of boolean and the light gray bars the number of non-boolean variables.

The Math-SAT benchmark suite (http://dit.unitn.it/~rseba/Mathsat.
html) is composed of timed automata verification problems. The problems are
distributed only in clausal normal form and arithmetic is restricted to coefficients
in {−1, 0, 1}. This benchmark format also includes extra-logical search hints for
the Math-SAT system. This suite comprises 280 problems, 159 of which are
in the difference logic fragment. The size of the ASCII representation of these
problems ranges from 4Kb to 26Mb. As can be seen in Figure 1(a) most of the
variables are boolean.1

Benchmark suite Sat Unsat Unsolved

Math-Sat 37 224 19
UCLID 0 36 2
SAL 21 167 29
SEP 9 8 0

Table 2. Classification.

The UCLID benchmark suite (http://www-2.cs.cmu.edu/~uclid) is derived
from processor and cache coherence protocol verifications. This suite is dis-
tributed in the SVC input format. In particular, propositional structures are
non-clausal and constraints include uninterpreted functions U and difference
constraints D. Altogether there are 38 problems, the size of the ASCII repre-
sentation ranges from 4Kb to 450Kb, and the majority of the literals are non-
boolean (Figure 1(b)).

The SAL benchmark suite (http://www.csl.sri.com/users/demoura/
gdb-benchmarks.html) is derived from bounded model checking of timed au-
tomata and linear hybrid systems, and from test-case generation for embedded
controllers. The problems are represented in non-clausal form, and constraints
are in full linear arithmetic. This suite contains 217 problems, 110 of which are
in the difference logic fragment, the size of the ASCII representation of these
problems ranges from 1Kb to 300Kb. Most of the boolean variables are used to
encode control flow (Figure 1(c)).
1 We suspect that many boolean variables have been introduced through conversion

to CNF.

http://dit.unitn.it/~rseba/Mathsat.html
http://dit.unitn.it/~rseba/Mathsat.html
http://www-2.cs.cmu.edu/~uclid
http://www.csl.sri.com/users/demoura/gdb-benchmarks.html
http://www.csl.sri.com/users/demoura/gdb-benchmarks.html


7

ICS UCLID CVC CVC Lite SVC Simplify Math-SAT
Math-SAT timeout 0 3 0 19 50 91 52
suite aborts 22 21 58 61 39 0 0
UCLID timeout 4 2 0 9 5 24 n/a
suite aborts 4 0 14 9 0 0 n/a
SAL timeout 1 36 1 115 87 99 n/a
suite aborts 29 4 64 7 4 4 n/a
SEP timeout 0 0 0 1 1 0 n/a
suite aborts 0 1 1 1 0 0 n/a

Table 3. Number of timeouts and aborts for each system.

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

ICS

U
C

LI
D

timeout
aborts

(a)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

ICS

C
V

C

timeout
aborts

(b)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

ICS

SV
C

timeout
aborts

(c)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

ICS

M
at

h-
SA

T

timeout
aborts

(d)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

UCLID

C
V

C

timeout
aborts

(e)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

UCLID

SV
C

timeout
aborts

(f)

Fig. 2. Runtimes (in seconds) on Math-SAT benchmarks.

The SEP benchmark suite (http://iew3.technion.ac.il/~ofers/
smtlib-local/index.html) is derived from symbolic simulation of hard-
ware designs, timed automata systems, and scheduling problems. The problems
are represented in non-clausal form, and constraints in difference logic. This
suite includes only 17 problems, the size of the ASCII representation of these
problems ranges from 1.5Kb to 450Kb.

We developed various translators from the input format used in each bench-
mark suite to the input format accepted by each GDP described on the previous
section, but Math-SAT. We did not implement a translator to the Math-SAT
format because it only accepts formulas in the CNF format, and a translation
to CNF would destroy the structural information contained in the original for-
mulas. In addition, no specifics are provided for generating hints for Math-SAT.
In developing these translators, we have been careful to preserve the structural
information, and we used all the information available to use available language

http://iew3.technion.ac.il/~ofers/smtlib-local/index.html
http://iew3.technion.ac.il/~ofers/smtlib-local/index.html


8

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

UCLID

M
at

h-
SA

T

timeout
aborts

(a)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

CVC

SV
C

timeout
aborts

(b)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

CVC

M
at

h-
SA

T

timeout
aborts

(c)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

SVC

M
at

h-
SA

T

timeout
aborts

(d)

Fig. 3. Runtimes (in seconds) on the Math-SAT benchmarks (cont.)

features useful for the underlying search mechanisms.2 The Math-SAT search
hints, however, are ignored in the translation, since this extra-logical informa-
tion is meaningless for all the other tools.

3.3 Setup

All experiments were performed on machines with 1GHz Pentium III processor
256Kb of cache and 512Mb of RAM, running Red Hat Linux 7.3. Although these
machines are now outdated, we were able to set aside 4 machines with identical
configuration for our experiments, thereby avoiding error-prone adjustment of
performance numbers. We considered an instance of a GDP to timeout if it took
more than 3600 secs. Each GDP was constrained to 450Mb of RAM for the
data area, and 40Mb of RAM for the stack area. We say a GDP aborts when it
runs out of memory or crashes for other reasons. With these timing and memory
constraints running all benchmarks suites requires more than 30 CPU days.

For the diversity of the input languages and the algorithms underlying
the GDPs, we do not include any machine-independent and implementation-
independent measures. Instead, we restrict ourselves to reporting the user time
of each process as reported by Unix. In this way, we are measuring only the
systems as implemented, and observations from these experiments about the
underlying algorithms can only be made rather indirectly.
2 We have also been contemplating a malicious approach for producing worst-possible

translations, but decided against it in such an early stage of benchmarking.



9

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

ICS

U
C

LI
D

timeout
aborts

(a)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

ICS

C
V

C

timeout
aborts

(b)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

ICS

SV
C

timeout
aborts

(c)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

UCLID

C
V

C

timeout
aborts

(d)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

UCLID

SV
C

timeout
aborts

(e)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

CVC

SV
C

timeout
aborts

(f)

Fig. 4. Runtimes (in seconds) on the UCLID benchmarks.

With the notable exception of CVC Lite, all GDPs under consideration were
obtained in binary format from their respective web sites. The CVC Lite bi-
nary was obtained using g++ 3.2.1 and configured in optimized mode. Table 1
contains the command line options used to execute each GDP. 3

4 Experimental Results

Table 2 shows the number of satisfiable and unsatisfiable problems4 for each
benchmark, and a problem has been classified “Unsolved” when none of the
GDPs could solve it within the time and memory requirements. The scatter
graphs in

– Figures 2 and 3 include the results of running CVC, ICS, UCLID, MathSAT,
and SVC on the Math-SAT benchmarks,

– Figure 4 contains the runtimes of CVC, ICS, SVC, UCLID on the UCLID
benchmarks, and

– Figure 5) reports on our results of running CVC, ICS, SVC, and UCLID on
the SAL benchmarks

3 In [20] the depth first search heuristic (option -dfs) is reported to produce the
best overall results for CVC, but we did not use it because this flag causes CVC to
produce many incorrect results.

4 For validity checkers, satisfiable and unsatisfiable should be read as invalid and valid
instances respectively.



10

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

ICS

U
C

LI
D

timeout
aborts

(a)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

ICS

C
V

C

timeout
aborts

(b)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

ICS

SV
C

timeout
aborts

(c)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

UCLID

C
V

C

timeout
aborts

(d)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

UCLID

SV
C

timeout
aborts

(e)

 1000

 100

 10

 1

 0.1

 0.01
 1000 100 10 1 0.1 0.01

CVC

SV
C

timeout
aborts

(f)

Fig. 5. Runtimes (in seconds) on the SAL benchmarks.

using the experimental setup as described in Section 3. Points above (below) the
diagonal correspond to examples where the system on the x (y) axis is faster
than the other; points one division above are an order of magnitude faster; a
scatter that is shallower (steeper) than the diagonal indicates the performance
of the system on the x (y) axis deteriorates relative to the other as problem size
increases; points on the right (top) edge indicate the x (y) axis system timed out
or aborted. Multiplicities of dots for timeouts and aborts are resolved in Table 3.

For lack of space, the plots for Simplify and CVC Lite are not included
here. Simplify performed poorly in all benchmarks except SEP, and does not
seem to be competitive with newer GDP implementations. In the case of CVC
Lite, its predecessor system CVC demonstrated over-all superior behavior. Also,
the SEP suite did not prove to distinguish well between various systems, as all
but one problem could be solved by all systems in a fraction of a second. All
these omitted plots are available at http://www.csl.sri.com/users/demoura/
gdb-benchmarks.html.

Figures 2 and 3 compare ICS, UCLID, CVC, SVC and Math-SAT on the
Math-SAT suite. The plots comparing UCLID contain only the problems in
the difference logic fragment supported by UCLID. The results show that the
overall performance of ICS is better than those of UCLID, CVC and SVC on
most problems of this suite.

With the exception of Math-SAT (which was applied only to its own bench-
mark set), every other system failed on at least several problems—mainly due
to exhaustion of the memory limit. Also, the Math-SAT problems proved to be
a non-trivial test on parsers as SVC’s parser crashed on several bigger problems

http://www.csl.sri.com/users/demoura/gdb-benchmarks.html
http://www.csl.sri.com/users/demoura/gdb-benchmarks.html


11

(see Table 1). The performance of SVC is affected by the size of the problems
and the CNF format used (Figure 3(d)) on this suite, since its search heuris-
tics are heavily dependent on the propositional structure of the formula. On the
other hand, the performance of the non-clausal SAT solver of ICS is not quite
as heavily impacted by this special format. In fact, ICS is the only GDP which
solves all problems solved by Math-SAT (Figure 2(d)), and it also solved sev-
eral problems not solved by Math-SAT, even though search hints were used by
Math-SAT. UCLID performs better than CVC and SVC on most of the bigger
problems (Figures 2(e) and 2(f)).

Figure 4 compares ICS, UCLID, CVC, and SVC on the UCLID benchmarks.
What is surprising here is that SVC is competitive with UCLID on UCLID’s
own benchmarks (Figure 4(e)). Also, the overall performance of SVC is superior
to its predecessor CVC system (Figure 4(f)). ICS does not perform particularly
well on this benchmark set in that it exhausts the given memory limit for many
of the larger examples.

Figure 5 compares ICS, UCLID, CVC, and SVC on the SAL benchmarks.
ICS performs better than UCLID on all examples (Figure 5(a)), and its overall
performance is better than CVC (Figure 5(b)). ICS, UCLID and CVC fail on
several problems due lack of memory. Although the overall performance of CVC
seems better than UCLID, the latter managed to solve several problems where
CVC failed (Figure 5(d)).

5 Observations and Research Questions

As has been mentioned in Section 3, the results produced in our experiments
measure mainly implementations of GDPs. Nevertheless, we try to formulate
some more general observations about algorithmic strengths and weaknesses
from these experiments, which should be helpful in studying and improving
GDPs.

Insufficient constraint propagation in lazy integrations. The eager UCLID system
usually outperforms lazy systems such as ICS, CVC, and Math-SAT on problems
which require extensive constraint propagation. This seems to be due to the fact
that the underlying lazy integration algorithms only propagate inconsistencies
detected by the constraint solver, but they do not propagate constraints implied
by the current logical context. Suppose a hypothetical problem which contains
the atoms {x = y, y = z, x = z}, and during the search the atoms x = y and
y = z are assigned to true, then the atom x = z could be assigned to true
by constraint propagation (transitivity), but none of the existing lazy provers
propagates this inference. In contrast, these kinds of propagations are performed
in eager integrations, since the unit-clause rule of Davis-Putnam like SAT solvers
assumes the job of propagating constraints.

Arithmetical constraints in the eager approach. On arithmetic-intensive prob-
lems, UCLID usually performs worse than other GDPs with dedicated arithmetic



12

constraint solvers. In particular, UCLID’s performance is heavily affected by the
size of constants. One of the approaches used by UCLID to reduce difference logic
to propositional logic [19] constructs a graph where each node represents an in-
teger variable, and a weighted edge represents a difference constraint. Starting
from this graph, a clause is created for each negative cycle. We believe several
irrelevant clauses are generated in this process. We say a clause is irrelevant
when it cannot be falsified during the search due to, for instance, the presence
of other constraints. In several examples, UCLID consumed all memory in the
translation to propositional logic. For instance, the problem abz5-900 was eas-
ily solved by ICS and Simplify using less than 40Mb, but UCLID consumed all
memory during the translation to propositional logic.

Performance vs. expressiveness. The version of UCLID we have been using is
restricted to separation logic, but other systems with support for full arithmetic
seem to be competitive even when problems are restricted to this domain. The
goal should be a fully general system that reliably does the special cases (re-
stricted theories, bounded instances) at least as well as specialized systems.

Blind search problem in lazy solvers. The problems in the UCLID suite are
mainly composed of non-boolean variables (Figure 1), so almost all atoms are
constraints, and the lazy constraint solvers introduce a fresh boolean variable
for each distinct constraint. This process produces an underconstrained formula
which contains several propositional variables which occurs only once. Thus, the
begin of the search is completely chaotic, and arbitrary, since from the point of
view of the SAT solving engine any assignment will satisfy the apparently easy
and underconstrained formula. We say the SAT engine starts an almost blind
search, where the successful search heuristics developed by the SAT community
are hardly useful. Our hypothesis is corroborated by the Math-SAT and SAL
suites, where several boolean variables are used to encode the control flow and
finite domains. In this case, although the SAT engine does not know the hid-
den relationships between the freshly added boolean variables, it is guided by
the control flow exposed by the boolean variables. This hypothesis also helps
explaining why SVC performs better than ICS and CVC on the UCLID suite,
simply because SVC uses specialized heuristics based on the structure of the
formula.

Memory Usage. Math-SAT and Simplify are the systems using the least amount
of memory. In contrast, CVC often aborts by running out of memory instead
of running up its time limits. A similar phenomenon can be observed with ICS.
We have traced this deficiency back to imprecise generation of explanations for
pruning Boolean assignments. For instance, path compression is an optimiza-
tion commonly used on congruence closure algorithms, however it produces less
precise explanations. Better tradeoffs between the accuracy of the generated ex-
planations and the cost for computing them are needed. Another problem in
systems such as ICS and CVC is the maintenance of information to perform
backtracking. Math-SAT is a non-backtrackable system, so it does not suffer



13

from this problem, at the cost of having to restart from scratch every time an
inconsistency is detected.

Loss of Structural Information. When developing the translators for these ex-
periments, we noticed that the performance of most solvers heavily depends on
the way problems are encoded. For instance, the repetitive application of the
transformation F [t] =⇒ F [x] ∧ x = t with t a term occurring in F , and x
a fresh variable, transforms many easy problems into very hard problems for
UCLID, CVC and CVC Lite.

6 Conclusions

Our performance study demonstrates that recently developed translation-based
GDPs—eager or lazy—well advance the state-of-the-art. However, this study also
exposes some specific weaknesses for each of the GDP tools under consideration.
Handling of arithmetic needs to be improved for eager systems, whereas lazy
systems can be considerably improved by a tighter integration of constraint
propagation, specialized search heuristics, and the generation of more precise
explanations. A main impediment for future improvements in the field of GDPs,
however, is not necessarily a lack of new algorithms in the field, but rather the
limited availability of meaningful benchmarks. Ideally, these benchmarks are
distributed in a form close to the problem description (e.g. not necessarily in
clausal normal form). A collaborative effort across the field of GDPs is needed
here.

References

1. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions in Computers 8 (1986) 677–691

2. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM 7 (1960) 201–215

3. Stump, A., Barrett, C.W., Dill, D.L.: CVC: a cooperating validity checker. In:
Proc. of CAV’02. Volume 2404 of LNCS. (2002)

4. Filliâtre, J.C., Owre, S., Rueß, H., Shankar, N.: ICS: Integrated Canonization and
Solving. In: Proc. of CAV’01. Volume 2102 of LNCS. (2001)

5. Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a
logic of counter arithmetic with lambda expressions and uninterpreted functions.
In: Proc. of CAV’02. Volume 2404 of LNCS. (2002)

6. Audemard, G., Bertoli, P., Cimatti, A., Kornilowicz, A., Sebastiani, R.: A SAT
based approach for solving formulas over boolean and linear mathematical propo-
sitions. In: Proc. of CADE’02. (2002)

7. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program check-
ing. Technical Report HPL-2003-148, HP Labs (2003)

8. Barrett, C., Dill, D., Levitt, J.: Validity checking for combinations of theories with
equality. LNCS 1166 (1996) 187–201

9. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpressions
problem. Journal of the ACM 27 (1980) 758–771



14

10. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems 1 (1979) 245–257

11. Shostak, R.E.: Deciding combinations of theories. Journal of the ACM 31 (1984)
1–12

12. Shankar, N., Rueß, H.: Combining Shostak theories. In: Proc. of RTA’02. Volume
2378 of LNCS. (2002)

13. de Moura, L., Rueß, H., Sorea, M.: Lazy theorem proving for bounded model
checking over infinite domains. In: Proc. of CADE’02. Volume 2392 of LNCS.
(2002)

14. Ackermann, W.: Solvable cases of the decision problem. Studies in Logic and the
Foundation of Mathematics (1954)

15. Shostak, R.E.: Deciding linear inequalities by computing loop residues. Journal of
the ACM 28 (1981) 769–779

16. Goel, A., Sajid, K., Zhou, H., Aziz, A.: BDD based procedures for a theory of
equality with uninterpreted functions. LNCS 1427 (1998) 244–255

17. Pnueli, A., Rodeh, Y., Shtrichman, O., Siegel, M.: Deciding equality formulas by
small domains instantiations. LNCS 1633 (1999) 455–469

18. Bryant, R.E., German, S., Velev, M.N.: Exploiting positive equality in a logic of
equality with uninterpreted functions. LNCS 1633 (1999) 470–482

19. Strichman, O., Seshia, S.A., Bryant, R.E.: Reducing linear inequalities to propo-
sitional formulas. In: Proc. of CAV’02. Volume 2404 of LNCS. (2002)

20. Barrett, C.W., Dill, D.L., Stump, A.: Checking satisfiability of first-order formulas
by incremental translation to SAT. In: Proc. of CAV’02. Volume 2404 of LNCS.
(2002)

21. Joshi, R., Ou, X., Saxe, J.B.: Theorem proving using lazy proof explication. In:
Proc. of CAV’03. Volume 2725 of LNCS. (2003)


