
A Safety-Case Approach

For Certifying Adaptive Systems

John Rushby∗

SRI International, Menlo Park CA USA

Adaptive systems—those that can change their behavior at runtime—pose new chal-
lenges for certification, and particularly for traditional, standards-based methods of cer-
tification such as DO-178B. These traditional methods are effective in conservative fields
because they can establish a solid basis in experience and can incorporate the lessons
learned from previous systems. They seem likely to prove less effective in fast-moving
fields where innovation outstrips the pace at which experience can be incorporated into
standards. Argument-based safety cases offer a plausible alternative basis for certification
in these fast-moving fields.

A safety case provides an explicit statement of safety claims, a body of evidence con-
cerning the system, and an argument, based on the evidence, that the system satisfies its
claims; standards-based methods, in contrast, specify only the evidence to be produced.

A reasonable objection to safety cases is that many arguments—especially large, complex
ones—can appear plausible, yet harbor flaws. There is a need for tools that can help analyze
arguments. Some model-based design tools can do this, but generally operate at a far more
detailed level of design than is appropriate for much of safety analysis. Some interactive
theorem provers can do it, too, but they generally require notation and skills far removed
from those found in aerospace and safety engineering.

In this paper we argue that analysis tools based on recent advances in formal methods
(SMT solvers, infinite bounded model checkers, and k-induction) can provide suitable mod-
eling notations, effective analysis, and push button automation. We illustrate the approach
with a simple example based on a self-checking pair.

We further argue that monitors derived from a safety case provide a potentially certifi-
able means for entering an adaptive mode of behavior, and that monitors generated from
a formally analyzed case can be “possibly perfect,” which is a property that allows a novel
kind of reliability analysis.

I. Introduction

Adaptive controls are found in many applications to improve various system qualities, including safety and
performance. Despite potential benefits and increasing appeals to use these systems in next generation

aircraft (both unmanned and manned), adaptive systems have not moved yet into civil aviation. Historically,
new techniques seem to be adopted more slowly in civil aviation than in other industries. The adoption of
adaptive techniques conforms to this pattern, at least in part because of concerns about the perceived
unpredictability of adaptive systems, which poses a significant challenge for safety-based certification.

The operational behavior of conventional control systems (in the absence of errors) is fully determined
and known at the time of certification; and, certification is performed on a final, complete, configuration that
will not change in operation. In contrast, the operational behavior of an adaptive control system is not fully
determined or known at the time of certification because the system can alter its behavior during operation
in response to parameters that are not completely known in advance. Current regulatory standards do not
have provisions for the assurance of system aspects that are not predictable at the time of certification.
Because adaptive methods are implemented in software, we consider certification challenges for adaptive
systems from a software perspective.

∗Program Director, Computer Science Laboratory, 333 Ravenswood Avenue, Menlo Park CA 94025, Member AIAA

1 of 16

American Institute of Aeronautics and Astronautics

In the civil aviation industry, compliance with RTCA/DO-178B (“Software Considerations in Airborne
System and Equipment Certification”)1 is the primary means for obtaining regulatory approval of software.
For an adaptive control system to be used in commercial aircraft operating in civil airspace, the software
aspects of the system would have to comply with this document, or with an equivalent alternate means
of compliance. With respect to the guidance in DO-178B, adaptation presents problems especially in the
software requirements and verification activities. Completely specifying requirements and expected behaviors
and verifying them is essential under DO-178B. But because the requirements for fully adaptive systems are
intentionally incomplete (that is, some operational behavior will be learned in flight), there is no clear means
of complying with DO-178B. Training aspects of adaptation also may require additional verification beyond
the review, analysis, and testing requirements in DO-178B. Consequently, one possible prospect for adoption
of adaptive systems lies in developing an alternative framework for arguing the safety of those systems.

Within the Integrated Resilient Aircraft Control (IRAC) project in NASA’s Aviation Safety Program, a
safety-case approach is being developed for certifying software systems, including adaptive software systems.
A safety case is based on construction of explicit safety claims (also called goals), evidence, and arguments,
whereas traditional standards-based approaches such as DO-178B typically specify only the evidence to be
produced by pre-defined processes and activities. In a safety case, the claims, evidence, and arguments for
safety assurance are presented explicitly and are evaluated by the certifying authority or its designee. The
exact form of the safety case is a matter for negotiation by the parties involved, but it must generally conform
to a given outline.

An advantage of the safety-case approach is that it focuses on the specifics of the system under consider-
ation, and hence can tailor the methods of assurance appropriately (for this reason, it is sometimes referred
to as a goal-based approach to assurance). Safety cases can also support technical means for ensuring safety.
For example, the safety case can identify critical properties to be monitored at runtime. If the properties
are stated formally, then the monitors can often be synthesized automatically. In some cases, an adaptive
controller can be synthesized to guarantee the property (under suitable assumptions). Safety cases are prov-
ing particularly attractive in fast-moving fields such as medical devices, where technical innovations outpace
standards-based assurance methods. Software-enabled innovations are now bringing the same rapid pace of
change to civil aircraft systems, and adaptive controls will increase this pace.

Although it is likely that a safety case will suggest different arguments and supporting evidence for
software assurance than those that are implicit in DO-178B, the overall approach is compatible with current
civil aircraft certification where, at the top level, the applicant proposes a “Means of Compliance” and a
“Plan for Software Aspects of Certification”; often the latter will cite DO-178B and other guidelines, but
these are not mandatory.

The upper-level evidence and arguments for aircraft safety are based on various kinds of safety analysis
such as hazard analysis, failure modes and effects analysis, and fault tree analysis, and these penetrate down
into subsystems and their software. DO-178B envisages that methods for safety assurance penetrate only
to the upper levels of software development (requirements specifications), and that the goal of assurance
for the software development process is to establish that the delivered software exactly matches (is correct
with respect to) those specifications. A safety-case approach would cause safety analysis to penetrate deeper
into the software design and would refocus software assurance on safety rather than correctness. By regard-
ing adaptive software as a system that is subjected to safety analysis that examines the specific kinds of
hazards this system may introduce, a safety case will focus on these hazards and their mitigations, not on
“correctness” of the neural network or other learning or adaptive component.

Some adaptive software is intended to operate only when the aircraft is damaged, or in an unusual
attitude, or otherwise outside the envelope of its conventional controls, and therefore potentially doomed.
In these cases, a certification authority might relax its concerns about the adaptive system, but would
have extreme concern about mechanisms that activate the switch to adaptive mode. There are numerous
examples where well-intentioned recovery mechanisms have put a flight at risk (e.g., on 12 May 1997, anomaly
detection and mitigation mechanisms reset a bus on American Airlines Flight 903, an Airbus A300, because
the indicated roll rate of more than 40 degrees/second was considered implausible; in fact, the pilots were
attempting recovery from a major upset and the roll rate was real; the loss of all instruments at this critical
time jeopardized the recovery).

An attractive idea is that the switch to adaptive mode is triggered by a monitor driven from the safety
case. A sound safety case will have identified all assumptions on which safe operation of the standard
system depends, and a safe design will have ensured that these assumptions are valid (if they concern other

2 of 16

American Institute of Aeronautics and Astronautics

engineered subsystems) or trustworthy (if they concern the external environment). By monitoring these
assumptions and other claims in the safety case at runtime, it may be feasible to make a strong argument
that exceptional mode switches are made only in exceptional circumstances, when no conventional choice is
available. The strength of this argument will depend on the precision of the assumptions and claims being
monitored, and therefore on the soundness and completeness of the overall safety case and the quality and
precision of its claims.

In the next section we consider how the quality and precision of a safety case can be assessed, and the
feasibility of mechanized analysis of the arguments in a safety case. In Section III, we present a simple
example in some detail, and provide discussion and conclusions in Section IV.

II. Assessing the Quality of a Safety Case

One of the attractions to standards-based methods of assurance such as DO-178B is that they are based
on much prior experience and, in their more prescriptive interpretations, they provide strong guidance on
process and procedure and thereby help establish a quality “floor.” Conversely, although the argument in
favor of safety cases is compelling in the abstract, it is not obvious how to assess the soundness and quality
of a specific, concrete case.

There is a whole field devoted to the general concept of “argument mapping”,2 which employs visual
representations of arguments. And there are graphical notations such as GSN (Goal Structuring Notation)3

and CAE (Claims Argument Evidence)4 that are specialized to the presentation of safety cases. Tools such
as ASCE5 support these notations and allow a safety case to be developed and explored at different levels
of detail. However, these notations and tools lack automated support for tasks such as deciding whether a
safety case is adequately complete, or whether its argument is sound.

It can be argued that safety cases must reason about partially unknown or unknowable contingencies and
necessarily involve judgement—so that focus on formal concepts like completeness and soundness is beside
the point. For this reason, some proponents of safety cases look to Toulmin6 rather than classical logic in
framing cases;4 Toulmin stresses justification rather than inference. But even those who advocate Toulmin-
style justification would surely concede that whatever arguments, or parts thereof, that can be assessed
mechanically within the framework of classical logic should be so assessed, thereby preserving the precious
resource of expert judgement for the circumstances that truly require it. Furthermore, human judgement
and mechanized assessment are not antithetical: an argument derives conclusions from premises; mechanized
assessment can focus on the soundness of that argument, while judgment is applied to plausibility of the
premises.

That is to say, elements of a safety case argument can be represented in classical logic as theorems of the
form

A1, . . . , An, S ` C

where A1, . . . , An are the assumptions under which the system or design S satisfies the claim C. Mecha-
nized tools such as theorem provers and model checkers can analyze theorems of this form and provide an
inestimable benefit by helping to identify necessary assumptions. They do this be refusing to “sign off” on
a proof until all necessary assumptions have been formulated appropriately and included in the statement
of the theorem. Once we have made assumptions explicit, we can subject them to analysis in the same way
as other claims: we can ask whether they can be substantiated by subsidiary arguments and evidence, in
what circumstances might they be invalidated (cf. fault-tree analysis), and what might be the consequences
if they are false (cf. failure modes and effects analysis). In some circumstances, we may choose to monitor
them at runtime.

The challenge to providing mechanized support for safety case arguments is in finding a good match
between the forms of expression and description that are appropriate to a safety case, and those that are
tractable to automated kinds of formal analysis. In some areas of detailed system design, a good match
between engineering practice and mechanized formal analysis has been found in model based design (MBD).
In MBD, engineers develop designs using graphical tools such as Simulink/Stateflow, and can then explore
their properties using the Simulink Design Verifier,7 which is often able to prove certain properties of a
design (or exhibit a counterexample when the property is violated). Similar capabilities are available for
other MBD notations and tool chains.

The problem in applying MBD tools to safety case analysis is that their modeling notations are oriented
toward simulation and are best suited to very concrete models of the kind developed during detailed design.

3 of 16

American Institute of Aeronautics and Astronautics

A safety case will generally focus on more abstract descriptions of the system and on its interactions with
the environment. We will generally want to characterize the environment by stating assumptions, rather
than provide a model that “implements” it, and we will want to explore hazards and very general forms of
failure (as in fault tree analysis) rather than very concrete behavioral properties.

Now formal methods do provide very abstract means of expression that nonetheless support automated
reasoning: examples include uninterpreted types and functions. An uninterpreted type is just some collection
of values and an uninterpreted function is some f(x), where all that is known is x = y implies f(x) = f(y)
(and, dually, f(x) 6= f(y) implies x 6= y), and ∀x : f(x) = g(x) implies f = g. Additional properties can be
specified by axioms. The difficulty with this approach is that support for mechanized reasoning is generally
provided by an interactive theorem prover. As the name suggests, these generally require human guidance to
develop a proof—and effective guidance may demand considerable expertise. Furthermore, the specification
language supported by a theorem prover is generally based directly in logic, so that developing effective
specifications also demands considerable expertise. And the expertise required for these tasks is in logic and
theorem proving and formal methods, rather than in safety analysis, or in the subject domain of the system
concerned.

Thus, although traditional formal methods provide methods and tools that can help in assessing argu-
ments in a safety case, the character of those methods and tools renders them unlikely to win acceptance in
engineering practice. We need methods that share some of the concepts made familiar by MBD—e.g., use of
state machines—and the fully automated kinds of analysis that tools such as Design Verifier bring to MBD,
but that permit more abstract levels of description. There are tools for AADL that lean in this direction
(e.g., OSATE8 and EDICT9) but they focus on attributes that can be attached to the flows between compo-
nent. Instead, we advocate in this paper an approach based on fully automated analysis of state machines
using SMT solvers.

SMT solvers are fully automated software tools for the problem of checking Satisfiability Modulo The-
ories;10 what this means is that they can find satisfying instances—or prove there are none—to problems
involving propositional (i.e., Boolean) combinations of terms drawn from a combination of theories that
generally includes uninterpreted functions as well arithmetic, bitvectors, and arrays, records, and tuples of
these. SMT solvers partake in an annual competition that has seen dramatic improvements in performance
and capabilities over the last few years. Although SMT problems are NP-hard, good solvers routinely can
solve problems with hundreds of thousands of terms and thousands of variables in a few seconds.

SMT solvers can provide automated analysis for abstract system descriptions specified as combinations of
state machines. The simplest form of analysis checks whether a given property is true of all reachable states
of the system (i.e., is an invariant). If the property is an invariant, it can often be proved to be so using
k-induction (where k is a small integer) to generate an SMT problem; if the property is not an invariant,
a counterexample can often be generated using k-bounded model checking to generate a different SMT
problem. A tool that can generate these kinds of SMT problems is called an infinite bounded model checker
(because it solves bounded model checking problems for systems specified over possibly infinite domains—a
traditional model checker can deal only with finite state descriptions).

In the following section we illustrate this approach on a simple example.

III. Example

The purpose of this section is to illustrate use of an infinite bounded model checker to explore the
argument in support of part a simple safety case. We use the modeling notation and tools of SRI’s SAL
system (Symbolic Analysis Laboratory).11 SAL’s analysis uses SRI’s Yices tool, which is a state of the art
SMT solver.12 Both SAL and Yices are freely available from SRI.

The example considers the safety of a computer control system that employs a self-checking pair. It is
part of a larger example that is very loosely based on the architecture of the Fuel Control and Monitoring
Computers (FCMCs) of the Airbus A340-600 as described in a recent incident report.13 Presentation of the
example and its analysis exposes some fairly technical aspects of the SAL modeling and property languages
and may look more difficult than it really is. In industrial use, we would expect all these aspects to be hidden
behind a graphical modeling notation and GUI interface.

A safety case will likely be presented to an assessor as a completed argument; for pedagogical purposes,
however, we prefer here to develop the case incrementally. We begin by specifying the behavior of an ideal,
fault-free controller. Abstractly, a controller takes some sensor data as input, applies control laws, and sends

4 of 16

American Institute of Aeronautics and Astronautics

the resulting values to actuators. This computation is repeated in regular, cyclic fashion, with the sensor
inputs that arrive in one cycle being used to compute the control outputs for the next.

In SAL, we can specify this behavior at exactly this level of abstraction.

sensor_data: TYPE;

actuator_data: TYPE;

init: actuator_data;

laws(x: sensor_data): actuator_data;

ideal: MODULE =

BEGIN

INPUT

data_in: sensor_data

OUTPUT

ideal_out: actuator_data

INITIALIZATION

ideal_out = init;

TRANSITION

ideal_out’ = laws(data_in)

END;

This specification says that sensor data is an uninterpreted type, as is actuator data; furthermore, laws
is an uninterpreted function from sensor data to actuator data, and init is an uninterpreted constant of
type actuator data.

The next part of the specification introduces ideal as a state machine that takes a value data in of
type sensor data as input, and produces a value ideal out of type actuator data as output; this value is
initialized to the value init. The TRANSITION section specifies that at each cycle, the new value of ideal out
(the prime symbol indicates a new value) is calculated by applying the laws function to the previous value
of data in.

This state machine is conceptually similar to those that many engineers will have encountered in MBD
notations such as Simulink/Stateflow, but it is far more abstract. In MBD, the concern is to specify the
exact control laws, and the data representations of the input sensor data and output actuator data. But our
concern in this analysis is to examine issues in redundancy and fault coverage, so it is appropriate to treat
other issues abstractly to better focus on the ones of interest: hence we abstract away how many and what
types of data constitute the sensor data inputs and actuator outputs, and all details about the control laws.

Notice, however, that some issues concerning the control law calculation are represented here. For
example, the TRANSITION specifies that outputs are based on inputs from the previous cycle. If outputs use
inputs from the same cycle, we would have written

Illustrative asideideal_out’ = laws(data_in’)

(observe the prime on the right hand side). This issue is significant to our analysis because it affects latency
of fault detection; the particular choice made here was selected purely for pedagogical reasons.

Another design decision represented here is that the controller is stateless: that is, it is a pure function
from inputs to outputs (so in fact, it is not a state machine but a combinational circuit). A controller that
maintains internal state could be described as follows

5 of 16

American Institute of Aeronautics and Astronautics

Illustrative asidestate: TYPE;

s_init: state;

laws(s: state, x: sensor_data): control;

update(s: state, x: sensor_data): state;

modified_ideal: MODULE =

BEGIN

INPUT

data_in: sensor_data

LOCAL

s: state

OUTPUT

ideal_out: actuator_data

INITIALIZATION

s = s_init;

ideal_out = init;

TRANSITION

ideal_out’ = laws(s, data_in);

s’ = update(s, data_in);

END;

where state is the type of the internal state, update is the state update function, and both update and
laws are now functions of both the current state and sensor input. A real controller is likely to maintain
local state; we prefer to omit it here in the interests of brevity and simplicity.

We now specify a controller that is prone to errors. Unlike the ideal controller, this one can exhibit two
different behaviors: its normal behavior is just like the ideal case, but in the presence of a hardware fault, it
can assign any value except the correct one to its output.

metasignal: TYPE = {up, down};

controller: MODULE =

BEGIN

INPUT

data_in: sensor_data

OUTPUT

control_out: actuator_data,

errorflag: metasignal

INITIALIZATION

control_out = init;

errorflag = down;

TRANSITION

[

normal:

TRUE --> control_out’ = laws(data_in); errorflag’ = down;

[]

hardware_fault:

TRUE --> control_out’ IN {x: actuator_data | x /= laws(data_in)}; errorflag’ = up;

]

END;

These two different behaviors are specified by guarded commands in the TRANSITION section; the guards
are Boolean expressions that precede the --> symbols and the commands are the sequences of assignments
to their right. In each cycle, all the guards are evaluated; if any of them are true, then one of these
is selected nondeterministically, and the commands on the right of the corresponding --> are performed
atomically; if no guard evaluates to true, the module deadlocks (a special ELSE guard is available to preclude
this if required). Here, both guards are the constant TRUE, so either set of commands will be selected
nondeterministically in each cycle. The strings normal: and hardware fault: are simply labels that are
useful in interpreting the outputs from analysis. The first assignment in the hardware fault command

6 of 16

American Institute of Aeronautics and Astronautics

employs further nondeterminism: the IN construction selects an arbitrary value of the type given to the left
of the | symbol that satisfies the Boolean expression to its right; here it selects some value other than the
correct one.

Real hardware faults do not announce themselves: there is no infallible signal that indicates when a
component is behaving incorrectly. That is why designing fault tolerant systems is difficult—we have to
make inferences from behavior that we can observe and take appropriate steps. For analysis, however, it is
often useful to supply such a signal, provided it is used only for these purposes and not to endow modeled
components with magical abilities. Thus, although a Boolean variable could be used as such a signal, we
instead introduce the new type metasignal (with values up and down) to make it clear that values of this
type are to be used for analysis only. Then we add an errorflag of this type that is set up whenever an
incorrect value is being output.

We have now modeled enough behavior that we can run a small analysis as a sanity check. First we specify
monitor as a module that runs the ideal and the error-prone controller as a synchronous composition.
Inputs and outputs of the same names are automatically “wired together”; here both modules take data in
as input and will receive the same values. Next, we specify a property we wish to examine; the LEMMA
(that is simply SAL’s keyword to introduce a property or assertion) check non faulty claims that in the
monitor module, it is always the case that if the errorflag signal is down, then the output of the error-prone
controller is the same as the ideal one. SAL uses Linear Temporal Logic (LTL) as its property language; the
G operator of LTL means “always” (and => means “implies”).

monitor: MODULE = ideal || controller;

check_nonfaulty: LEMMA monitor |- G(errorflag = down => control_out = ideal_out);

We examine this claim by using the SAL infinite bounded model checker to explore it.

sal-inf-bmc selfcheck.sal check_nonfaulty -d 10

Here, sal-inf-bmc invokes the bounded model checker, selfcheck.sal is the name of the file that contains
this specification, check nonfaulty is the name of the assertion to be examined, and -d 10 instructs the
bounded model checker to explore all possible executions of length up to 10 cycles.

The model checker reports:

No counterexample between depths: [0, 10].

Total execution time: 0.05 secs

Of course, there might be counterexamples requiring longer runs, but we have some evidence the assertion
might be true, so we attempt to prove it.

sal-inf-bmc selfcheck.sal check_nonfaulty -i -d 1

The flag -i instructs the model checker to attempt proof by induction, and -d 1 sets the induction depth
to 1 (this is traditional induction; larger depths correspond to stronger forms of k-induction).

Executing k-induction with k=1

Proved.

Total execution time: 0.06 secs

We have confirmed that the outputs agree when there is no error; now we check that they disagree when
there is an error.

check_faulty: LEMMA monitor |- G(errorflag = up => control_out /= ideal_out);

This assertion is true, and is proved by induction in the same way as the previous example.
We can combine the two previous assertions into one, which is then proved by induction in the usual

way.

check_controller: LEMMA monitor |- G(errorflag = up <=> control_out /= ideal_out);

7 of 16

American Institute of Aeronautics and Astronautics

Now errorflag is an analysis artifact; it is not available in the real system, so we need to find a way
of detecting errors using values that are available. A common strategy for detecting and masking hardware
errors is to employ redundancy: given two controllers, we can cross-compare their outputs as a means of
error detection. Such an architecture is called a self-checking pair.

We continue our analysis by exploring the behavior of a self-checking pair of error-prone controllers. We
could do this by extending the model of the controller so that it is cognizant that it is one of a pair, or we
could simply attach two standard controllers to a checker component. We follow the latter course here.

checker: MODULE =

BEGIN

INPUT

con_out: actuator_data,

mon_out: actuator_data

OUTPUT

safe_out: actuator_data,

fault: boolean

INITIALIZATION

safe_out = init;

fault = FALSE;

TRANSITION

safe_out’ = con_out’;

[

disagree:

con_out’ /= mon_out’ --> fault’ = TRUE

[]

ELSE -->

]

END;

The idea is that the checker takes the outputs of two controllers (we will speak of one as the controller
and the other as the monitor) as its inputs, passes the first of these through as its own output, and
additionally latches a Boolean fault variable to TRUE if the two values ever diverge. Unlike the controllers,
the checker sets its outputs in the same cycle as it reads its inputs: this is indicated by use of primed variables
on the right hand sides of assignments; we do this simply for illustrative purposes. Notice that unlike the
errorflag metasignal, the Boolean fault variable is one that can be observed and used in the modeled
world, not merely in analysis of that world.

We now need to “wire up” a pair of controllers and a checker,

cpair: MODULE = checker

|| (RENAME control_out TO con_out, errorflag TO cerror IN controller)

|| (RENAME control_out TO mon_out, errorflag TO merror IN controller);

This design is represented graphically as part of Figure 1 (the Figure also includes other elements that
are introduced later). Components and variables that are part of the real design are in black; those that are
analysis artifacts are in red.

Our goal is that the safe out output of the checker should be trustworthy provided the fault output
is not TRUE. As a first step in exploring this, we check that fault does go TRUE if either of the errorflags
go up.

test_cpair1: LEMMA cpair |- G((cerror = up OR merror = up) => fault);

The SAL model checker finds that this assertion is false and generates a counterexample.

8 of 16

American Institute of Aeronautics and Astronautics

control_out

errorflag
data_in

data_in
control_out

errorflag

m_data

ideal

d
is
tr
ib
u
to
r

ch
ec
k
er

controller

c_data

ideal_out

safe_out

fault

commonflag

con_out

data_in

mod2

assumptions

merror

cerror

mon_out
controller
(monitor)

Figure 1. Graphical Representation of the Example Model (red indicates analysis artifacts)

9 of 16

American Institute of Aeronautics and Astronautics

Total execution time: 0.05 secs

Counterexample:

========================

Global Constraints

========================

laws(2) = actuator_data$(3);

init = actuator_data$(1);

========================

Path

========================

Step 0:

--- Input Variables (assignments) ---

--- System Variables (assignments) ---

cerror = down

fault = false

merror = down

--- Constraints ---

safe_out = actuator_data$(1);

con_out = actuator_data$(1);

mon_out = actuator_data$(1);

data_in = sensor_data$(2);

Transition Information:

(module instance at [Context: selfcheck, line(99), column(19)]

(((module instance at [Context: selfcheck, line(94), column(16)]

else transition at [Context: selfcheck, line(89), column(0)])

(module instance at [Context: selfcheck, line(95), column(58)]

(label hardware_fault

transition at [Context: selfcheck, line(42), column(2)])))

(module instance at [Context: selfcheck, line(96), column(58)]

(label hardware_fault

transition at [Context: selfcheck, line(42), column(2)]))))

Step 1:

--- Input Variables (assignments) ---

--- System Variables (assignments) ---

cerror = up

fault = false

merror = up

--- Constraints ---

safe_out = actuator_data$(4);

con_out = actuator_data$(4);

mon_out = actuator_data$(4);

We learn from the counterexample that SAL has been able to violate the assertion by causing both
controllers to be in error, but to generate the same incorrect output.

What we really need to do next is to explore assumptions about “common mode” errors in both controllers.
However, before doing that, we can at least make sure that the design behaves as expected when only one
controller is in error—note how XOR has replaced OR in the following assertion.

test_cpair2: LEMMA cpair |- G((cerror = up XOR merror = up) => fault);

This generates no counterexamples, and can be proved by induction in the usual way, thereby confirming
that problems arise only when both controllers are in error.

Before exploring assumptions, we might also want to make sure that the fault signal does indeed indicate
that one of the controllers has suffered an error.

test_cpair3: LEMMA cpair |- G(fault => (cerror = up OR merror = up));

This generates an eight-step counterexample that is a little hard to interpret. We can cause SAL to generate
the shortest counterexample by using the -it (iterative) flag.

10 of 16

American Institute of Aeronautics and Astronautics

sal-inf-bmc selfcheck.sal test_cpair3 -it

This generates a two-step counterexample, from which it can be seen (in the interests of space, we do not
include this and later counterexamples here) that the problem is that fault latches, whereas the errorflags
do not. Thus we specified the assertion incorrectly; we need to say that if the fault variable is TRUE, then
one of the errorflags was up sometime in the past. SAL does not have past-time temporal operators, but
it does have a next-state operator so we can focus on the instant where the fault variable goes from FALSE
in one state to TRUE in the next, and assert that one of the errorflags is up in that second state. This is
specified formally using the X (next state) operator of LTL as follows

test_cpair4: LEMMA cpair |- G((NOT fault AND X(fault)) => X(cerror = up OR merror = up));

This assertion is true and is proved by 2-induction (we need depth two because of the X operators).

sal-inf-bmc selfcheck.sal test_cpair4 -i -d 2

We now turn to the topic of the assumptions under which the self-checking pair provides correct fault
detection. From our examination of the assertions test cpair1 and test cpair2 we know that fault detec-
tion is correct in the presence of a single faulty controller, but can fail when both controllers suffer an
error at the same time. From the counterexample to test cpair1 we know that one specific circumstance
in which the fault detection can fail is when the erroneous controllers both generate the same bad output.
But is this the only circumstance?

We would like to state the assumption that when both controllers are in error, they produce different
outputs, then constrain examination of the design to all and only those executions that satisfy the assump-
tion. If we were examining a concrete system by testing, we would need to generate all possible test runs,
except those that violate the assumption; this might be feasible in this simple case, but becomes difficult
or impossible when assumptions are complex. An alternative would be to generate all possible inputs, then
monitor the system in execution and discard those runs where the monitor indicates violation of the as-
sumption. For analysis by model checking, we use a technique similar to the second alternative. We specify
assumptions in a monitor component that observes the behavior of the system (for this reason, such a mon-
itor is often called a synchronous observer) and raises a commonflag variable of type metasignal when
assumptions are violated. Then we modify our assertions so that they need hold only when commonflag is
down.

For this example, we specify that the assumption is violated when both controllers of a self-checking
pair are in error, but they send the same values to the actuators. In this case, commonflag is set up: note
that it latches in the up position, as we wish to exclude runs in which the assumption is ever violated.

11 of 16

American Institute of Aeronautics and Astronautics

pair_assumptions: MODULE =

BEGIN

OUTPUT

commonflag: metasignal

INPUT

data_in, c_data, m_data: sensor_data,

cerror, merror: metasignal,

con_out, mon_out: actuator_data

INITIALIZATION

commonflag = down

TRANSITION

[

assumption_violation:

(cerror’ = up AND merror’ = up AND con_out’ = mon_out’) --> commonflag’ = up;

[]

usual:

ELSE -->

]

END;

test_cpair1_a: LEMMA cpair || pair_assumptions |-

G(commonflag = down => ((cerror = up OR merror = up) => fault));

test_cpair4_a: LEMMA cpair || pair_assumptions |-

G(commonflag = down => (NOT fault AND X(fault)) => X(cerror = up OR merror = up));

We synchronously compose a self-checking pair with its assumptions and then specify test cpair1 a
by modifying the assertion test cpair1, to hold only when commonflag is down (i.e., the assumption is
satisfied). This modified assertion is valid and is proved by induction in the usual way. We also check that
the similarly modified version of test cpair4 remains valid (it does, and is proved by 2-induction).

We now need to consider whether our assumption is justified. On the one hand, it can be interpreted as a
statement about probabilities (independently faulty components are unlikely to exhibit the same behavior),
but on the other, it can be interpreted as expressing the absence of common cause errors. The latter is a
strong assumption that requires further exploration and justification.

There are several ways in which the intended independence of the two controllers in our self-checking
pair could be compromised. Some of these are outside what we can specify in our modeling framework:
for example, we should require separate power supplies for each member of the pair, lest noise or incorrect
voltages trigger similar errors in both of them. This and related physical sources of common cause errors
must be noted and considered in the safety case separately from the modeling activity performed here.
But there are some sources of common errors that can be included within our model. One of these is the
distribution of sensor data to each member of the pair. In the current model, each member of the pair
consumes data in; this is an “open” input (meaning it is not the output of any component in the model),
so it is generated by the model checker (on behalf of the “environment”) and supplied to all components
that use it. The SAL modeling framework “magically” provides this same data value to both controllers,
but in reality there will be some mechanism that collects incoming sensor data and distributes it to the two
controllers. It is often assumed that such distribution is a simple task that can give rise only to simple
errors. This is not so: weak voltages in a distribution mechanism can lead to signals intermediate between
the voltages that represent binary 0 and binary 1 digits; one receiver may interpret this as a binary 0 digit
while another receiver interprets as a binary 1 digit. Such slightly out of specification (SOS) errors (which
can also be manifest in the timing domain) are one source of Byzantine errors, which occur more often than
is generally realized and which few aircraft systems can tolerate.14

We decide that the distribution mechanism should be included in our model, and specify it as follows.

12 of 16

American Institute of Aeronautics and Astronautics

distributor: MODULE =

BEGIN

INPUT

data_in: sensor_data

OUTPUT

c_data, m_data: sensor_data

INITIALIZATION

c_data = data_in; m_data = data_in;

TRANSITION

[

distributor_ok:

TRUE --> c_data’ = data_in’; m_data’ = data_in’;

[]

distributor_bad:

TRUE --> c_data’ IN {x: sensor_data | TRUE}; m_data’ IN {y: sensor_data | TRUE};
]

END;

The distributor takes a single sensor data input and generates two outputs. In the normal case, both
the outputs are identical to the input, but in the other case they are chosen at random; the choice between
normal and error behavior is nondeterministic. We then specify a full cpair, which adds distributor to
cpair and renames the data in inputs of the controllers to “wire them up” appropriately (see Figure 1
for a graphical representation of this configuration).

full_cpair: MODULE = distributor || checker

|| (RENAME control_out TO con_out, data_in TO c_data, errorflag TO cerror IN controller)

|| (RENAME control_out TO mon_out, data_in to m_data, errorflag TO merror IN controller);

test_cpair1_x: LEMMA full_cpair || pair_assumptions |-

G(commonflag = down => ((cerror = up OR merror = up) => fault));

Model checking test cpair1 x, which is the same as test cpair1 a adjusted to this new configuration,
now generates a counterexample. Examination of the counterexample reveals the problem: it is possible for
the distributor to deliver different inputs to each controller, but errors in the controllers then cause
them to deliver the same outputs from these different inputs. Of course, it is possible that the control laws
are such that the same outputs are correctly generated for different inputs. But we can also require that the
checker compare the inputs of controller, as well as the outputs, which would provide error coverage for
this case (although we would then have to extend the distributor and correspondingly the errors that it
can introduce). We decide to record this case as an additional assumption and add it as a new clause in the
guard of the pair assumptions (which we rename to mod assumptions) as follows.

assumption_violation:

(m_data’ /= c_data’ and mon_out’ = con_out’) OR

(cerror’ = up AND merror’ = up AND con_out’ = mon_out’) --> commonflag’ = up;

With this extended assumption, we can now reexamine the two assertions that we previously proved in
the absence of the distributor: here full cpair replaces cpair and we use the suffix b rather than a to
name the assertions.

test_cpair1_b: LEMMA full_cpair || mod_assumptions |-

G(commonflag = down => ((cerror = up OR merror = up) => fault));

test_cpair4_b: LEMMA full_cpair || mod_assumptions |-

G(commonflag = down => (NOT fault AND X(fault)) => X(cerror = up OR merror = up));

Both of these are proved, by 2- and 3-induction, respectively.
These assertions merely examine the relationships between errors that are internal to the distributor

and the controllers (i.e., indicated by metasignals) and the explicit fault output of the self-checking
pair. But what we really care about is that, provided it does not signal a fault, the self-checking pair
produces the correct output for the actuators (i.e., the same output as the fault-free ideal controller). This
assertion is specified as follows.

13 of 16

American Institute of Aeronautics and Astronautics

cpair_ok: LEMMA full_cpair || mod_assumptions || ideal |-

G(commonflag = down => (NOT fault => safe_out = ideal_out));

Model checking this assertion generates a counterexample, whose examination indicates the need for another
assumption. The problem is that the distributor could provide the same, but incorrect input to both
controllers. We can exclude this by adding another clause to the assumption as follows, and renaming the
modified module mod2 assumptions.

assumption_violation:

(m_data’ = c_data’ AND m_data’ /= data_in’) OR

(m_data’ /= c_data’ and mon_out’ = con_out’) OR

(cerror’ = up AND merror’ = up AND con_out’ = mon_out’) --> commonflag’ = up;

We are now able to prove cpair ok by 1-induction.
The important point here is that we have now established that the three clauses in the guard above

represent assumptions that are necessary and sufficient to ensure that the self-checking pair either gives an
explicit fault indication or delivers the same output as an idealized component that suffers no errors. These
are strong items of information for consideration in the safety case for a self-checking pair.

IV. Discussion and Conclusion

A safety case for a system that employs a self-checking pair would be expected to include an argument
that the architecture is able to detect faults in either member of the pair and thereby prevent incorrect
outputs being sent to the actuators.

An informal argument in support of the self-checking pair would employ subsidiary claims, and provide
evidence in support of those claims; subsidiary claims would state that the members of the pair are sufficiently
isolated, are powered from separate supplies, and so on, that their faults may be considered independent.
The argument would then continue by observing that, given independence, cross-comparing the outputs of
the members of the pair will allow a faulty member to be detected. On detection, the pair will shut down,
or raise a fault flag, thereby preventing possibly erroneous values being sent to the actuators. The larger,
surrounding case will presumably describe how this loss of function is rendered safe (perhaps by invoking
yet more redundancy, or by reverting to manual control).

The details of the argument in support of the claim that cross-comparing the outputs of the two members
of the pair provides adequate fault detection would include consideration of common cause errors that could
vitiate the subclaim that faults are independent. The specific issues considered at this point will likely
depend on the experience and skill of the developers of the system and its safety case and those of the
assessors, and there has previously been no impartial, or potentially mechanizable, method for examining
the soundness or completeness of the arguments and evidence adduced.

We have argued that by describing relevant elements of the design in an abstract model based design
(MBD) notation, and by employing analysis tools that can consider all possible cases, it is possible to formal-
ize a safety argument and to provide automated support for examination of its soundness and completeness.
The traditional difficulties in applying this approach have been that MBD typically focuses on highly de-
tailed, algorithmic aspects of design, rather than the bigger picture that is needed for many aspects of
safety analysis, and its analysis tools (e.g., testing and simulation) lack the ability to consider all possible
cases. Theorem proving does have the abilities to consider all possible cases and to represent high levels of
abstraction, but traditionally has lacked suitable modeling notations and “push button” automation. New
developments in SMT solvers, bounded model checking, and k-induction, remedy these deficiencies, and pro-
vide push button automation for analysis of state machines that employ uninterpreted types and functions
for very abstract levels of specification.

We illustrated development of an abstract model for a self-checking pair using the SAL modeling notation
and Yices SMT solver. Although this notation is textual, it could clearly be presented graphically in
a Simulink/Stateflow-like manner. The analyses, both to generate counterexamples for false claims, and
proofs for valid ones, employed “push button” automation. The example illustrated systematic discovery of
three assumptions, together with demonstration that these are necessary (the absence of any one produces
a counterexample) and sufficient to prove that the self-checking pair correctly raises its fault flag in the
presence of errors, and exhibits the same behavior as an idealized fault-free component otherwise.

14 of 16

American Institute of Aeronautics and Astronautics

The three assumptions are:

1. When both members of the pair are faulty, their outputs differ.

2. When the members of the pair receive different inputs, their outputs differ.

3. When both members of the pair receive the same input, it is the correct input.

These assumptions provide direction for other parts of the safety case. The first demands exploration of
common cause errors, and also a probabilistic assessment of the likelihood of independent errors producing
the same behavior. The second can be addressed by including the inputs in the data that is cross-compared,
while the third requires consideration of the fault behavior of the mechanism that distributes sensor data to
both members of the pair.

We hope this example illustrates the potential value of the approach that we propose. It is applicable
to safety cases in general, but may be particularly useful in cases where novel behavior—e.g., adaptive
control—is triggered by monitors that are derived from the safety case, as described in the next section.

A. Application to Adaptive Systems

Adaptive systems—those that can change their behavior at runtime—pose new challenges for certification
and particularly for traditional, standards-based methods of certification. These traditional methods are
effective in slow-moving fields because they can establish a solid basis in experience and incorporate the
lessons learned from previous systems. They seem likely to prove less effective in fast-moving fields where
innovation outstrips the pace at which experience can be incorporated into standards. Argument-based
safety cases offer a plausible alternative basis for certification in these fast-moving fields.

We have outlined the general case for argument-based safety cases in earlier papers,15 but adaptive
systems pose special challenges and opportunities. Passenger aircraft with safety-critical functions that
operate adaptively all the time seem especially challenging to certify, so there is likely to be a discrete
switch to adaptive mode and this will be employed only when conventional controls are unable to cope. The
trustworthiness of the mode switch from normal to adaptive behavior is therefore particularly critical. One
attractive idea is for the mode switch to be triggered by monitoring the runtime behavior of the system
against its safety case.16,17

It is plausible to make a case that such monitoring is “possibly perfect” and to estimate its probability of
perfection. A perfect system is one that never fails; to say that a system has probability 0.999 of perfection
means that of 1,000 systems engineered in a similar way, only 1 may be expected ever to suffer a failure. This
can be contrasted with a system whose reliability is 0.999, which means this specific system may be expected
to suffer 1 failure in 1,000 demands. In recent work by Littlewood and Rushby,18 we show that in suitable
architectures, reliability of one channel and possible perfection of another are conditionally independent;
hence one channel that is 0.999 reliable and another that has 0.999 probability of perfection can together
yield a system that 0.999999 reliable. However, our analysis shows that in architectures where a monitor
can trigger alternative (e.g., adaptive) behavior, perfection of the monitor is a dominant factor. Since the
monitor is derived from the safety case, we need unusually high confidence in the case. The approach
outlined here can contribute to that confidence. Furthermore, the formal methods employed in the approach
render it feasible that monitors could be derived directly from the formal statements of assumptions that
are generated in applying the approach.

B. Conclusion

We have described how argument-based safety cases could provide a framework in which to certify novel
systems, such as those that employ adaptive controls. We focused on the circumstance where a switch to
adaptive mode is triggered by runtime monitoring of assertions derived from the safety case. This circum-
stance demands strong assurance that the assumptions and other claims of the safety case, and its supporting
argument, are sound and complete. We argued that modern formal methods employing SMT solvers can
provide this assurance and we illustrated the approach with a simple example.

This example is part of a larger case study under development to examine the architecture of the fuel
control and monitoring computers of the A340-600, based on the report of an incident in February 2005.13

In future work, we plan to examine an explicitly adaptive system.

15 of 16

American Institute of Aeronautics and Astronautics

Acknowledgments

Discussions with Kelly Hayhurst of NASA Langley Research Center, and funding through NASA Co-
operative Agreements NNX08AC64A and NNX08AY53A are gratefully acknowledged. I also appreciate
enlightening interactions on these topics with Robin Bloomfield and Bev Littlewood of City University, and
discussions on the example with Rance DeLong.

References

1Requirements and Technical Concepts for Aviation, Washington, DC, DO-178B: Software Considerations in Airborne
Systems and Equipment Certification, Dec. 1992, This document is known as EUROCAE ED-12B in Europe.

2Argument Map Wiki page, http://en.wikipedia.org/wiki/Argument_map.
3Kelly, T. P. and Weaver, R. A., “The Goal Structuring Notation—A Safety Argument Notation,” DSN Workshop on

Assurance Cases: Best Practices, Possible Obstacles, and Future Opportunities, Florence, Italy, July 2004.
4Bishop, P., Bloomfield, R., and Guerra, S., “The Future of Goal-Based Assurance Cases,” DSN Workshop on Assurance

Cases: Best Practices, Possible Obstacles, and Future Opportunities, Florence, Italy, July 2004.
5ASCE home page, http://www.adelard.com/web/hnav/ASCE/index.html.
6Toulmin, S. E., The Uses of Argument , Cambridge University Press, 2003, Updated edition (the original is dated 1958).
7Simulink Design Verifier home page, http://www.mathworks.com/sldesignverifier/.
8AADL home page, http://www.aadl.info/.
9WW Technology Group, “EDICT Tool Suite,” Available at http://wwtechnology.com/products/EdictCore.htm, March

2008.
10Rushby, J., “Harnessing Disruptive Innovation in Formal Verification,” Fourth International Conference on Software

Engineering and Formal Methods (SEFM), edited by D. V. Hung and P. Pandya, IEEE Computer Society, Pune, India, Sept.
2006, pp. 21–28.

11SAL home page, http://sal.csl.sri.com/.
12Yices home page, http://yices.csl.sri.com/.
13“Report on the incident to Airbus A340-642, registration G-VATL en-route from Hong Kong to London Heathrow on

8 February 2005,” Report 4/2007, UK Air Investigations Branch, 2007, Available at http://www.aaib.gov.uk/publications/

formal_reports/4_2007_g_vatl.cfm.
14Driscoll, K., Hall, B., Sivencrona, H., and Zumsteg, P., “Byzantine Fault Tolerance, from Theory to Reality,” SafeComp

2003: Proceedings of the 22nd International Conference on Computer Safety, Reliability, and Security, edited by S. Anderson,
M. Felici, and B. Littlewood, No. 2788 in Lecture Notes in Computer Science, Springer-Verlag, Edinburgh, Scotland, Sept.
2003, pp. 235–248.

15Rushby, J., “Just-in-Time Certification,” 12th IEEE International Conference on the Engineering of Complex Computer
Systems (ICECCS), IEEE Computer Society, Auckland, New Zealand, July 2007, pp. 15–24.

16Rushby, J., “How Do We Certify For The Unexpected?” AIAA Guidance, Navigation and Control Conference, American
Institute of Aeronautics and Astronautics, Honolulu HI, Aug. 2008, AIAA paper 2008-6799.

17Rushby, J., “Runtime Certification,” Eighth Workshop on Runtime Verification: RV08 , edited by M. Leucker, Vol. 5289
of Lecture Notes in Computer Science, Springer-Verlag, Budapest, Hungary, April 2008, pp. 21–35.

18Littlewood, B. and Rushby, J., Reasoning about the Reliability of Fault-Tolerant Systems in Which One Component is
“Possibly Perfect”, City University UK and SRI International USA, 2009, In preparation.

16 of 16

American Institute of Aeronautics and Astronautics

http://en.wikipedia.org/wiki/Argument_map
http://www.adelard.com/web/hnav/ASCE/index.html
http://www.mathworks.com/sldesignverifier/
http://www.aadl.info/
http://wwtechnology.com/products/EdictCore.htm
http://sal.csl.sri.com/
http://yices.csl.sri.com/
http://www.aaib.gov.uk/publications/formal_reports/4_2007_g_vatl.cfm
http://www.aaib.gov.uk/publications/formal_reports/4_2007_g_vatl.cfm

	Introduction
	Assessing the Quality of a Safety Case
	Example
	Discussion and Conclusion
	Application to Adaptive Systems
	Conclusion

