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Abstract

Simpson’s four-slot fully asynchronous communication mechanism allows single
reader and writer processes to access a shared memory in such a way that interference
between concurrent reads and writes is avoided, the reader always accesses the most recent
data stored by the writer, and neither process need wait for the other. In computer science
parlance, it is a means for implementing a wait-free atomic register.

We use the SAL model checking environment to examine this mechanism and show that
concurrent reads and writes are indeed noninterfering but that access to the most recently
written data requires the unattractive assumption that some of the control registers are al-
ready atomic. We exhibit counterexamples that reveal incorrect operation when the control
registers are not atomic, and also when the mechanism is modified (following a suggestion
of Simpson) so that control registers are written only when their values will be changed. We
do successfully verify the algorithm when its control registers are assumed to be atomic.

The requirement for atomic control registers is unattractive: it means that any appli-
cation that uses Simpson’s mechanism must be accompanied by separate, strong evidence
that its implementation of the control registers satisfies this requirement. We recommend
formal examination of alternative algorithms that operate under weaker assumptions.
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Chapter 1

Introduction

Embedded control systems must often move data between subsystems that do not share
a common clock. Dual-ported memory commonly provides the interface between such
subsystems. Because they do not share a clock, it is possible for one subsystem to be
reading data from the shared memory at the same time the other is updating it. Without a
protocol to ensure some kind of controlled access, it is possible that a read concurrent with
a write could obtain partially written data that appears valid but is actually incorrect, and
this could lead to incorrect and possibly unsafe operation.

One way to eliminate this danger would be to use semaphores or other locking mech-
anisms to enforce mutual exclusion on the reading and writing activities: that is, only one
of them can be in progress at any one time. The problem with this approach is that one
activity can block the other: for example, if the writer is much faster than the reader, it may
almost always seize the lock and thereby starve the reader, or delay it beyond its deadline.
Priorities, or enforced alternation, change the character of the problem, but do not eliminate
it.

As described elsewhere [Rus02], the larger problem with such locking schemes is that
they render the flow of control between componentsbidirectional. Kopetz [Kop99] defines
interfaces that involve bidirectional flow of control as “composite” and argues convincingly
that they should be eschewed in favor of “elementary” interfaces in which control flow is
unidirectional. (Data flow may be bidirectional, but the task of tolerating external failures,
and of application-independence, is greatly simplified by the unidirectionalcontrol flow of
elementary interfaces.)

The need for elementary interfaces leads to protocols for concurrent reading and writing
that do not use locks. One approach allows concurrent access to the same memory, but the
reader is able to detect if it was changed during its operation; if so, the reader may either
retry or reuse its previous data [Lam77]. An improvement over such “lock-free” protocols
are “wait-free” protocols that guarantee the reader immediate access to the most recently
written data; typically, these algorithms cause concurrent reads and writes to use different
areas of memory.
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Development and study of protocols for concurrent readers and writers has been pur-
sued separately in the real-time and computer science communities. Anderson [And01]
provides a useful summary from the computer science perspective, where the work of Lam-
port is particularly significant, not only in the development of protocols, but in defining the
problem and introducing methods for its analysis [Lam86].

The Time Triggered Architecture (TTA) [TTT01, KG94] uses the Nonblocking Write
(NBW) protocol of Kopetz and Reisinger [KR93]. Anderson [And01] observes that these
authors were “apparently unaware that Lamport had invented this algorithm 16 years ear-
lier” (referring to the algorithm of [Lam77]). In fact, there are two parts to NBW: the first
part is lock-free (and is the same as Lamport’s algorithm) but it is not wait-free; the second
part adds multiple buffers to make it wait-free (and therefore truly nonblocking). The first
wait-free construction was due to Peterson [Pet87], but it assumed atomic control registers;
an algorithm that eliminated this assumption was published by Burns and Peterson [BP87],
and counterexamples that revealed numerous flaws in that algorithm were described by
Haldar and Vidyasankar [HV92]. Correct algorithms for this problem were known in com-
puter science by the late 1980’s [Tro89]. Independently, Simpson presented a different,
and attractively simple algorithm [Sim90], and this is the one best known in the real-time
and avionics communities. It also provides the inspiration for the second part of the NBW
construction.

Because its mechanisms are fundamental, because it is widely used, and because it
inspires the crucial wait-free aspect of the NBW protocol, we provide a formal examina-
tion of Simpson’s algorithm. This algorithm has recently also been examined formally by
Henderson and Paynter [HP02]; however, they consider only mutual exclusion, and not the
additional desirable property that the reader always obtains recently written data. Further-
more, they conduct their examination by theorem proving (in PVS) whereas we note that,
apart from the data communicated, the algorithm is finite state and can be examined by
model checking. Clark [Cla00] examines several algorithms, including Simpson’s, using
Petri nets; we compare this work with ours in Chapter3.

We use the SAL model checking environment to examine Simpson’s algorithm and
show that concurrent reads and writes are indeed noninterfering but that access to the most
recently written data requires either very careful (and, we would argue, nonobvious) in-
terpretation of the algorithm, or else the unwarranted assumption that some of its control
registers are already atomic.
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Chapter 2

Simpson’s Algorithm and Its Formal
Examination

Consider two processes—a reader and a writer—that communicate via a shared memory.
The two processes and the memory are asynchronous, meaning they have no common clock
and there are no assumptions about their relative rates of operation. Periodically, the writer
has new data that it writes to the memory, and periodically the reader reads data from the
memory. Without coordination, there is the possibility that the reader accesses the memory
at the same time the writer is updating it. It is possible that the physics of memory access
are such that concurrent reading and writing can cause the reader to obtain unpredictable
values: for example, if a memory cell requires some time to “latch” the charge representing
its state, or if the data spans several locations and must be read and written in stages. For
all these reasons, it is possible that a read concurrent with a write may obtain a value that
is only “half written.” Lamport [Lam86] distinguishes several kinds of behavior that may
obtain when memory (or “registers”) are read and written concurrently.

Safe registers return the value most recently written when a read is not concurrent with
a write; when a read is concurrent with a write, they can return any value. Strictly,
Lamport requires that safe registers return a value consistent with their type—this
can always be enforced if there is some way to recognize the type; Henderson and
Paynter [HP02] argue that this behavior should be calledtypesafe, and suggest the
termpersistentbe used for the weaker assumption that a read concurrent with a write
can return absolutelyanyvalue. We will use the more traditional term, but will note
when the weaker assumption is adequate.

Regular registers return the value most recently written when a read is not concurrent with
a write; when a read is concurrent with a write, or series of writes, the read may return
the value prior to the writes, the final value written, or any of the values written by
the intermediate writes.
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Atomic registers return the value most recently written when a read is not concurrent with
a write; when a read is concurrent with a write, or series of writes, the behavior is
consistent with them occurring in some serial order. This is stronger than a regular
register in that a series of concurrent reads and writes will never cause a read to return
data older than that returned by a previous read.

The challenge, stated in computer science terms, is to find an algorithm that implements
an atomic register, using only safe registers. One plausible approach is to use two buffers
or, following Simpson’s terminology, “slots” so that the writer alternates between the two
slots, and the reader accesses whichever of them isnot the target of the current write (or of
the next write, if there is none currently active). The problem here is that if a read overlaps
multiple writes, then the second write will use the slot already being used by the reader—
thus, the algorithm must be modified so that the writer avoids the slot currently used by
the reader. Several control bits are needed to coordinate the reader and the writer in this
manner, but all proposed algorithms are vulnerable to unfortunate interleavings that cause
the reader and writer to access the same slot concurrently. It seems that additional slots
are necessary. Simpson [Sim90] describes a three-slot algorithm, but finds that it suffers
from the same vulnerabilities as the two-slot algorithm, so it looks as if at least four slots
are necessary. (A three-slot algorithm can be made to work if we allow special hardware
“compare-and-swap” instructions [CB97].)

Simpson’s four-slot algorithm arranges the slots as two pairs; we can call the pairs
left andright , and within each pair refer to thetop andbottom slots. The writer
operates on one pair, alternating between thetop andbottom slot. A control bitlatest
indicates to which pair the writer most recently wrote, and another bitindex associated
with the pair indicates which slot of the pair was most recently written; both these control
bits are written only by the writer. The reader uses a control bitreading to indicate from
which pair it is reading; it sets this equal tolatest when it begins a read; conversely the
writer chooses the opposite pair when it starts a write operation.

The intuition is that the reader always reads the slot most recently completed by the
writer; the writer finishes writing the other slot of that pair (if it is operating concurrently)
and subsequently moves to the other pair. The algorithm can be described as follows (in
generic pseudocode), where we use Booleans (rather than left-right, and top-bottom) for the
control registers.
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1item: TYPE

slot: ARRAY [boolean, boolean] OF item;
index: ARRAY [boolean] OF boolean;
latest, reading: boolean;

PROCESS writer(in: item); PROCESS reader(out: item);
wpair, windex: boolean; rpair, rindex: boolean;

BEGIN BEGIN
wpair := !reading; rpair := latest;
windex := !index[wpair]; reading := rpair;
slot[wpair][windex] := in; rindex := index[rpair];
index[wpair] := windex; out := slot[rpair][rindex];
latest := wpair; END;

END;

It is important to recognize that the individual assignment statements from concurrent
executions ofreader andwriter may interleave or overlap arbitrarily, so the choice of
the exact order in which the control variables are updated in each procedure is crucial. It is
also important to recognize that the Boolean control variables, as well as the slot registers
are assumed only to be safe—so that if the first statement ofreader occurs concurrently
with the last ofwriter , then the value read fromlatest by reader may be unrelated
to that written bywriter .

2.1 Formal Specification

We will conduct our formal examination of Simpson’s algorithm using the SALenv model
checking environment for SRI’s SAL system [BGL+00]. This is the first published investi-
gation conducted using SALenv, so it is presented in tutorial detail. The SAL language and
semantics are described in its reference manual [DHOS01], but the following description is
given in more operational terms.

The SAL notion corresponding to a process such asreader or writer is aMODULE,
within which assignments to variables are described either as (variable-wise) definitions, or
as guarded commands. The definitions within a module are executed atomically whereas
we need to allow the possibility that assignments by thereader are interleaved with those
from thewriter , so guarded commands are the appropriate construction here. Guarded
commands are given within aTRANSITION, so that a first attempt to encode thereader
might look as follows (where the guards on the guarded commands are absent for the time
being).
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2reader: MODULE
BEGIN
% variable declarations and initializations
% omitted for the present
TRANSITION

[
rpair’ = latest

[]
reading’ = rpair

[]
rindex’ = index[rpair]

[]
out’ = slot[rpair][rindex]

]
END;

Notice that the assignment statements are replaced by equations where the destination
variables are primed: this is because a SAL transition specifies the relation between values
of variables in thenew(or next) state and those in theold (or previous) state; primes indicate
values in the new state while undecorated names refer to those in the old state. Next, observe
that semicolons between assignments are replaced by the[] symbol. This indicates choice
and is needed to specify that the assignments within thereader are not performed as
a single atomic step, but may be interleaved with those of thewriter . Moreover, the
elements of the choice are not ordered: at any step, the system may choose any element for
execution. To force the execution to be sequential, we need to introduce aprogram counter
for the readerrpc and to rewrite the specification appropriately. Therpc variable has no
special significance to SAL, so we must explicitly include it in guards to select the correct
assignment, and must explicitly update its value after each step. This leads to the following
revised specification.
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reader: MODULE
BEGIN
% variable declarations and initializations
% omitted for the present
TRANSITION

[
rpc = 0 --> rpair’ = latest;

rpc’ = 1
[]

rpc = 1 --> reading’ = rpair;
rpc’ = 2

[]
rpc = 2 --> rindex’ = index[rpair];

rpc’ = 3
[]

rpc = 3 --> out’ = slot[rpair][rindex];
rpc’ = 0

]
END;

Theguardssuch asrpc = 2 are evaluated at each step; those that evaluate totrue
cause the group of assignments to the right of their arrow to be eligible for execution,
and one of those eligible groups will be selected arbitrarily and executed. Notice that the
assignments to the right of an arrow are grouped by means of semicolons.

Next, we need to indicate the types and status of the variables appearing in theTRAN-
SITION . Variables may be declared asOUTPUT, meaning they are controlled (i.e., as-
signed) by this module alone;INPUT, meaning they are observed (i.e., read) by this module
but controlled by some other module that will be composed with it;LOCAL, meaning they
are used by this module alone; orGLOBAL, meaning they are both controlled and observed
by this module and others. Here,reading is controlled byreader ; latest , slot , and
index are observed (they will be controlled by thewriter ); andrpc , out , rindex ,
andrpair are local to thereader . Hence, suitable declarations for the variables appear-
ing in our specification of thereader are the following (whereitem is a user-defined
type, containing the value 0, that we will consider later).

INPUT
latest: BOOLEAN,
index: ARRAY BOOLEAN OF BOOLEAN,
slot: ARRAY BOOLEAN OF ARRAY BOOLEAN OF item

OUTPUT
reading: BOOLEAN

LOCAL
rpair, rindex: BOOLEAN,
out: item,
rpc: [0..3]
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Notice that SAL keywords must be written in uppercase and that arrays are restricted to
single dimension, but their elements may be arrays also.

Finally, we must initialize the local and output variables. This can involve guarded
commands or, as here, be accomplished by definitions. It is important thatrpc is initial-
ized to0, but the initial values ofout , rpair , andrindex are irrelevant (because they
are assigned before they are used), so we may as well set them to0, FALSE, andFALSE,
respectively. The initial value ofreading may be important, so we initialize it nondeter-
ministically to eitherTRUEor FALSEusing a set assignment (the SALIN construct): the
SALenv model checker will then explore all choices.

INITIALIZATION
reading IN {X: BOOLEAN | TRUE};
rpair = FALSE; rindex = FALSE;
out = 0;
rpc = 0

We can now specify thewriter module in a similar manner. First we declare and
initialize the variables.

writer: MODULE =
BEGIN
INPUT

reading: BOOLEAN,
OUTPUT

latest: BOOLEAN,
index: ARRAY BOOLEAN OF BOOLEAN,
slot: ARRAY BOOLEAN OF ARRAY BOOLEAN OF item

LOCAL
wpair, windex: BOOLEAN,
wpc: [0..4]

INITIALIZATION
latest IN {X: BOOLEAN | TRUE};
wpair = FALSE; windex = FALSE;
wpc = 0;
(FORALL (i: BOOLEAN): index[i] IN {X: BOOLEAN | TRUE});
(FORALL (x, y: BOOLEAN): slot[x][y] IN {X: item | TRUE })

Observe that the variables that were input variables for thereader are outputs for the
writer , and vice versa. Observe, also, the initialization for theindex andslot arrays:
we useFORALLexpressions to iterate over the array indices, and a nondeterministic set
assignment to provide the value.

The guarded commands for the writer are derived straightforwardly from the pseu-
docode shown earlier. The exception is the assignment toslot whenwpc = 2. Here,
we need to simulate the larger environment of thewriter that produces the values it is re-
quired to write. The([] (val: item): ...) construction nondeterministically
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selects any value from the typeitem and assigns it toval . Notice how this value is as-
signed to the correct location inslot using theWITH construct; this is equivalent to the
assignmentslot’[wpair][windex] = val and was chosen simply for variety.

TRANSITION
[

wpc = 0 --> wpair’ = NOT reading;
wpc’ = 1

[]
wpc = 1 --> windex’ = NOT index[wpair];

wpc’ = 2
[]

([] (val: item):
wpc = 2 --> slot’ = slot WITH [wpair][windex] := val;

wpc’ = 3)
[]

wpc = 3 --> index’[wpair] = windex;
wpc’ = 4

[]
wpc = 4 --> latest’ = wpair;

wpc’ = 0
]

END;

Now that we have thereader and thewriter , we can compose them to yield the
full system. This is accomplished by the following specification. This indicates the asyn-
chronous composition of the two modules; by default the inputs of one are connected to the
outputs of the other by matching the names of the variables.

system: MODULE = reader [] writer;

It might now seem that we have specified the algorithm and can proceed to examine it
by model checking, but this overlooks a crucial point. Suppose the reader is at its location
rpc = 0 (where it reads the value oflatest ) while the writer is at its locationwpc
= 4 (where it assigns tolatest ). We know that thewriter has not completed its
write (because we would then havewpc = 0) but can imagine that it is somewhere in the
process of performing it. Similarly, thereader is somewhere in the process of performing
its read. Becauselatest is not assumed to be an atomic register, but merely a typesafe
one, its concurrent access by thereader and thewriter can result in thereader
obtaininganyvalue. Thus, this section of the reader should be rewritten as follows.

rpc = 0 AND wpc /= 4 --> rpair’ = latest;
rpc’ = 1

[]
([] (arb: BOOLEAN):

rpc = 0 AND wpc = 4 --> rpair’ = arb;
rpc’ = 1)
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This specifies that ifreader accesseslatest when the writer isnotconcurrently writing
it, then it obtains the value most recently written; but when the accesses are concurrent, the
reader may obtain any value.

Similar constructions are required for concurrent access toindex when rpc = 2
andwpc = 3 and toreading whenrpc = 1 andwpc = 0. Since each module now
refers to the program counter and some other local variables of the other, these need to be
changed from local to input and output variables as appropriate.

2.2 Formal Examination: Mutual Exclusion

Now that we have finally completed specification of the algorithm, we can proceed to ex-
amine it by model checking. The first property that we want to examine is what Simpson
callsdata coherence: this is the requirement that thereader should not read from a slot
that thewriter is updating concurrently. Data coherence can be interpreted as mutual
exclusion on slot access, and we use that term to refer to the property.

The reader is in the process of reading its slot whenrpc = 3 , and the
writer is similarly engaged whenwpc = 2; the reader accesses the slot at posi-
tion [rpair][rindex] while the writer uses[wpair][windex] , so we need
to be sure that wheneverwpc = 2 AND rpc = 3 then eitherwpair /= rpair or
windex /= rindex . We specify this by the following invariant.

mutex: LEMMA system |-
G((wpc = 2 AND rpc = 3) =>

(wpair /= rpair OR windex /= rindex));

SALenv uses linear temporal logic (LTL) as its assertion language, where the symbolG
stands for thealwaysmodality (often written2). Notice that some of the variables appear-
ing in this formula are local to the modules concerned. Unfortunately, SALenv assertions
cannot refer to local variables (because it is difficult to name them uniquely in complex
module constructions), so we have to modify the specifications ofreader andwriter
to make these outputs of their respective modules.

Before we can model check the specification, we need to fix theitem type. Notice that
themutex property does not depend on the values assigned to theslot variable, so the
exact range of this type is irrelevant to the property. To reduce the state space, we should
set item to be as small as possible. A suitable definition is the following, which has just
the single value0.

item: TYPE = [0..0];

We then enclose the whole specification in aCONTEXTcalledfourslot as follows.
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fourslot: CONTEXT =
BEGIN
% rest of specification
END

The complete specification is then saved in a file calledfourslot.sal that is shown in
AppendixA.

To model check themutex property, we first compile the SAL specification with the
following command.

sal-model-checker --output=check fourslot mutex

Here,fourslot is the name of theCONTEXT(and, by convention, of the file), andmutex
is the assertion to be checked. The--output=check flag causes the output file to be
namedcheck . We can then run that file with the following command.

./check --verbose

This causes SALenv to explore all possible behaviors of thesystem we have specified,
and to check themutex property at every reachable state. It produces the following output.

Checking...
verified
Number of visited states = 1248
Maximum depth = 574

Because the aspects of the algorithm examined in themutex property are accurately
represented in the SAL specification (e.g., no “downscaling” was necessary to make it finite
state), this output indicates formal verification of themutex property for Simpson’s algo-
rithm. Because this property ensures there is no concurrent access to theslot variables,
these need only have the properties of persistent registers.

2.3 Formal Examination: Freshness

Beyond the data coherence ensured by mutual exclusion, Simpson [Sim97] identifieddata
freshnessas an important requirement for his asynchronous communication mechanism.
The idea is that thereader should always return the value written by the most recent
activation of thewriter .

There is a necessary delay between thewriter writing a value in a slot and it updating
the control variables to reflect that fact. Thus, we should require only that thereader
obtain either the latest value written, or the one prior to that. To specify this, we introduce
two new output variables,current andrecent , to thewriter : current saves the
value most recently written whilerecent saves the value before that.
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([] (val: item):
wpc = 2 --> current’ = recent;

slot’ = slot WITH [wpair][windex] := val;
recent’ = val;
wpc’ = 3)

In the reader , we can then specify that the value read is equal to eitherrecent or
current —but should it be the values of these variables now or at the point when the
reader began execution? Both choices seem reasonable, so we introduce local variables
prev recent andprev current in the reader and use these to latch the values of
recent andcurrent , respectively, as thereader starts.

rpc = 0 AND wpc /= 4 --> rpair’ = latest;
prev_current’ = current;
prev_recent’ = recent;
rpc’ = 1

[]
([] (arb: BOOLEAN):

rpc = 0 AND wpc = 4 --> rpair’ = arb;
prev_current’ = current;
prev_recent’ = recent;
rpc’ = 1)

Then, we set another local variableok to record whether the value read is equal to one
of these saved values.

rpc = 3 --> out’ = slot[rpair][rindex];
ok’ = out’=recent OR out’=current

OR out’=prev_recent OR out’=prev_current;
rpc’ = 0

Our requirement is thatok is alwaysTRUE.

freshness: LEMMA system |- G(ok);

We initialize current and the other similar variables to0, and we also change the
initialization of slot so that all its locations start with0, too. We must also modify the
type of item so that it has at least one value different from0.

item: TYPE = [0..1];

We compile and model check the modified specification.

sal-model-checker --output=check fourslot freshness
./check

12



Counter example detected:
Number of visited states = 5242
Maximum depth = 13
----------------
out = 0
ok = TRUE
reading = TRUE latest = TRUE
rindex = FALSE rpair = FALSE
wpair = FALSE windex = FALSE
prev_recent = 0 prev_current = 0
recent = 0 current = 0
wpc = 0 rpc = 0
index = [true := TRUE, false := TRUE]
slot = [true := [true := 0, false := 0], false := [true := 0, false := 0]]
----------------
Transition: <[fourslot:85]>.1
wpc = 1
----------------
Transition: <[fourslot:92]>.1
wpc = 2
----------------
Transition: <[fourslot:96] with [val := 1]>.1
slot = [true := [true := 0, false := 0], false := [true := 0, false := 1]]
current = 1
wpc = 3
----------------
Transition: <[fourslot:102]>.1
index = [true := TRUE, false := FALSE]
wpc = 4
----------------
Transition: <[fourslot:105]>.1
latest = FALSE
wpc = 0
----------------
Transition: <[fourslot:85]>.1
wpc = 1
----------------
Transition: <[fourslot:92]>.1
windex = TRUE
wpc = 2
----------------
Transition: <[fourslot:96] with [val := 1]>.1
slot = [true := [true := 0, false := 0], false := [true := 1, false := 1]]
recent = 1
wpc = 3
----------------
Transition: <[fourslot:102]>.1
index = [true := TRUE, false := TRUE]
wpc = 4
----------------
Transition: <[fourslot:35] with [arb := TRUE]>.0
prev_recent = 1
prev_current = 1
rpc = 1
rpair = TRUE
----------------
Transition: <[fourslot:39]>.0
rpc = 2
----------------
Transition: <[fourslot:42]>.0
rpc = 3
rindex = TRUE
----------------
Transition: <[fourslot:50]>.0
rpc = 0
ok = FALSE
----------------
Transition: <[fourslot:35] with [arb := FALSE]>.0
out = 0
ok = FALSE
reading = TRUE latest = FALSE
rindex = TRUE rpair = FALSE
wpair = FALSE windex = TRUE
prev_recent = 1 prev_current = 1
recent = 1 current = 1
wpc = 4 rpc = 1
index = [true := TRUE, false := TRUE]
slot = [true := [true := 0, false := 0], false := [true := 1, false := 1]]
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This generates a long counterexample, so we run it again using breadth-first search and
compact trace output (the flag--detailed-trace causes local variables to be printed
in the trace, the--compact-trace prints onlydifferencesfrom one state to the next).

./check --bfs --verbose --detailed-trace --compact-trace

This produces a short counterexample, but it is rather difficult to explain. Disabling the
nondeterministic choice atwpc = 0 produces the counterexample shown above (which
has been edited, by combining lines, to make it fit on the page).

The behavior exposed by this counterexample is the following. All slots initially contain
0; thewriter executes twice and writes1 into both left-hand (say) slots but, while it is
performing the final step of its second execution (where it assigns tolatest ), thereader
executes twice. Notice that the value being assigned tolatest is the same value it has
already (indicating that thewriter has written the left-hand slots on both occasions). The
first execution ofreader gets the correct value oflatest (perhaps because thewriter
has not actually started to write the variable yet), but the second execution gets the wrong
value (perhaps because thewriter is now actually in the middle of its write). This causes
it to read from the right-hand slots, which have never been written by thewriter and still
contain their initial values.

Notice that, although it was exposed by model checking a freshness property, this coun-
terexample actually manifests violation of a more important property: that which Simp-
son callsdata sequencing. This requires that thereader should never return dataolder
than that which it has returned previously. This property is more important than freshness
because it is in the nature of asynchronous operation that thereader and thewriter
operate at different speeds, so the components that receive data from thereader must be
prepared to tolerate loss of some values (when thewriter is writing them faster than the
reader is reading) and repetition of others (when the pace of their relative progress is
reversed). What it should not expect, and may be unable to tolerate, is receiving values out
of their correct temporal sequence.

The root of the problem manifested by the counterexample is that the control registers
used in Simpson’s algorithm are not atomic, merely safe. This means that they can return
anyvalue when read and written concurrently, and this is what causes the algorithm to fail.
Notice, however, that the counterexample manifested the problem when thesamevalue was
written to a control register as it had already. Surely such a write is unnecessary, and if it
were not performed, this particular problem could not arise: there would be no concurrent
read and write (since there would be no write), and the reader would get the correct value
(since the control register already had the value required). But what if the control register
doesnot already contain the desired value? The write must then take place and surely this
provokes the same problem of concurrent reads and writes to a nonatomic register. The vital
insight that vitiates this concern is that if a safeBooleanregister is written only when the
new value isdifferentfrom the old, then it behaves as an atomic register.1 The value before

1We will later see that this insight is incorrect.
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the write may beTRUE(say), so that afterward it will beFALSE; a concurrent read can
produce any value, but there are only two choices for a Boolean register—hence, the value
obtained must be consistent with the read occurring either atomically before the write, or
atomically afterward.

Simpson possessed this insight and states [Sim90, Page 20, Section 2.3]

“The co-operative access control technique is only sound if we can rely com-
pletely on the integrity of the control variables.

. . .

“Fortunately, there is a variable type whose value is always guaranteed to be
coherent, and where reading and writing operations can be concurrent and
need not interfere with each other; this is the bit variable.

. . .

“The integrity of any fully asynchronous mechanisms rests ultimately on this
property of the bit variable. Practical implementations of such variables,
when used for control within an asynchronous mechanism, must ensure the
following:

. . .

“(b) A write operation which does not change the value must not induce any
disturbance which might cause a concurrent read to obtain an incorrect
value.”

The simplest way to ensure the absence of “any disturbance” with a “write operation which
does not change the value” is to eschew such writes: simply modify the algorithm so that
Boolean control variables are written only if they change the value of the register. Our
hope is that this modification corrects the problem identified by the counterexample. The
modified algorithm is shown below.
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3item: TYPE

slot: ARRAY [boolean, boolean] OF item;
index: ARRAY [boolean] OF boolean;
latest, reading: boolean;

PROCESS writer(in: item);
wpair, windex: boolean;

BEGIN
wpair := !reading;
windex := !index[wpair];
slot[wpair][windex] := in;
index[wpair] := windex;
IF latest /= wpair THEN latest := wpair ENDIF;

END;

PROCESS reader(out: item);
rpair, rindex: boolean;

BEGIN
rpair := latest;
IF reading /= rpair THEN reading := rpair ENDIF;
rindex := index[rpair];
out := slot[rpair][rindex];

END;

Notice that the assignmentindex[wpair] := windex in the fourth line of the
writer does not require theIF...THEN ... protection because these variables are
written only by thewriter , and windex is earlier assigned to the negation ofin-
dex[wpair] . We examine this modified algorithm in the following section.

2.4 Formal Examination: The Modified Specification

The SAL specification can be adjusted to correspond to the corrected presentation of the
algorithm given in 3 . For example, theTRANSITION for the reader is shown below
(assignments to the verification variables such asrecent , prev current have been
omitted). The full specification is given in AppendixB.
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TRANSITION
[

rpc = 0 AND wpc /= 4 -->
rpair’ = latest;
rpc’ = IF reading = rpair’ THEN 2 ELSE 1 ENDIF

[]
([] (arb: BOOLEAN):

rpc = 0 AND wpc = 4 -->
rpair’ = arb;
rpc’ = IF reading = rpair’ THEN 2 ELSE 1 ENDIF)

[]
rpc = 1 --> reading’ = rpair;

rpc’ = 2
[]

rpc = 2 AND (wpc /= 3 OR rpair /= wpair) -->
rindex’ = index[rpair];
rpc’ = 3

[]
([] (arb: BOOLEAN):

rpc = 2 AND wpc = 3 AND rpair = wpair -->
rindex’ = arb;
rpc’ = 3)

[]
rpc = 3 --> out’ = slot[rpair][rindex];

rpc’ = 0
]

END;

If we model check the revised specification with SALenv, it again reports failure. Ex-
amination of the counterexample reveals that it indicates a weakness in our specification of
freshness, rather than a true flaw in the algorithm. The problem is that a single activation
of the reader can be concurrent with multiple activations of thewriter , and the inter-
leaving can be such that the value obtained by thereader is one that was written in the
middle of the series of writes—whereas our verification variables (as used in the testok )
capture only those written at the beginning or end. Since there can be any number of writes
overlapping a read, it looks as if we need an unbounded number of verification variables to
capture these legitimate outputs by thereader . We could bound the number by limiting
the number of overlapping writes, or by putting a bound on the model checker search depth,
but these solutions seem ad hoc. Furthermore, freshness is merely a desirable property; as
explained earlier, the property that is really essential is data sequencing.

A very good way to examine this property is to cause thewriter to write consecutive
integers and then require that the reader return nondecreasing values.2 To specify this, we

2This idea is due to N. Shankar.
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first increase the range of the typeitem so that it will permit an interesting number of
different values to be written.

item: TYPE = [0..8];

Then we modify the selection of values written by thewriter so that they become
strictly increasing. This can be done as follows (where the local variableprev is used to
remember the previous value and is initialized to0).

([] (val: item):
wpc = 2 AND val > prev -->

slot’ = slot WITH [wpair][windex] := val;
prev’ = val;
wpc’ = 3)

Finally, we specify that the values obtained by thereader must be nondecreasing.

atomic: LEMMA system |- G(out’ >= out);

The expression specifies that the value ofout after the assignments in any command must
be no less than its value before. This property is a manifestation of that called “atomicity”
in the computer science literature, hence the name used in the specification. (Atomicity is
the property that any sequence of concurrent reads and writes behaves as if each had been
performed indivisibly, and all had been performed in some definite sequence.)

The state space of this model is larger than previously, so we turn on some optimiza-
tions.

sal-model-checker --output=check --optimize fourslotmodified atomic
./check --bfs --verbose --detailed-trace --compact-trace

To our astonishment, this exercise returns a counterexample.
The essence of the counterexample is as follows. Thewriter starts writing in (say)

the top left-hand slot. Thereader starts while thewriter is at wpc = 3 (i.e., in the
process of changingindex[rpair] so that the left index indicates the top slot rather
than the bottom). Because this is merely a safe register, thereader may obtain any value
for index[rpair] (at rpc = 2 ), and it obtains the new value (i.e., top) and so returns
the value most recently written by thewriter . Immediately following the completion of
this activation of thereader , a new one begins (thewriter remains atwpc = 3). At
rpc = 2 , this activation obtains the old value forindex[rpair] and so returns the
value from the slotpreviousto the one most recently written, thereby violating the data
sequencing requirement.

Whether this is a real bug or not depends on the assumptions from which one approaches
the problem. From the computer science perspective, in which the problem is formulated as
that of constructing an atomic register from merely safe registers, it is a genuine bug. The
source of the bug is the observation on Page14:
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“The vital insight that vitiates this concern is that if a safeBooleanregister is
written only when the new value isdifferent from the old, then it behaves
as an atomic register.

This insight is incorrect: it is true that a concurrent read of a safe Boolean register that
is written only when its new value is different from its old must always return the old or the
new value, but asecondconcurrent read may produce theold value when the first produced
thenewvalue. This is not the behavior of an atomic register—it is the behavior of merely a
regular register.

Simpson’s algorithm depends on atomicity of its Boolean control registers. As we have
seen, the construction suggested by Simpson (writing the control variables only when their
new value is different from their old value) is inadequate to achieve this requirement, given
only safe control registers. However, Simpson does not claim that his algorithm assumes
only that the control registers are safe. Rather, he assumes them to be atomic and his
discussion in [Sim90, Page 20, Section 2.3] (from which comes the construction that control
variables should be written only when their new value is different from their old value) can
be seen as suggestions to an implementor, rather than a complete algorithm.

Thus, to be accurate to Simpson’s intent, we should examine correctness of his al-
gorithm when the control registers are assumed to be atomic. This is undertaken in the
following section.

2.5 Formal Examination: Assuming Atomic Control Registers

If atomic control registers are assumed, we could revert to the original specification2 from
Page6. It seems useful, however, to include at least the detail that the control registers are
written only when their value will be changed. TheTRANSITION for the reader then
appears as follows. Notice that we have eliminated all the([] (arb: BOOLEAN):
...) constructions, since these are needed only to model safe registers. The full specifi-
cation is given in AppendixC.
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TRANSITION
[

rpc = 0 --> rpair’ = latest;
rpc’ = 1

[]
rpc = 1 AND reading /= rpair --> reading’ = rpair;

rpc’ = 2
[]

rpc = 1 AND reading = rpair -->
rpc’ = 2

[]
rpc = 2 --> rindex’ = index[rpair];

rpc’ = 3
[]

rpc = 3 --> out’ = slot[rpair][rindex];
rpc’ = 0

]
END;

We can model check theatomic property for this specification with the following
commands (the Unixtime command measures the CPU time used).

sal-model-checker --output=check --optimize fourslotatomic atomic
time ./check --bfs --verbose

The following results are produced.

Checking.............................................verified
Number of visited states = 427378
Maximum depth = 42
87.770u 0.410s 1:28.91 99.1% 0+0k 0+0io 605pf+0w

The timing data indicates that model checking used just over 87 seconds (on an 800 MHz
Pentium III running Red Hat Linux V7.1) to examine 427,378 states. The atomicity prop-
erty is verified for this version of the specification.
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Chapter 3

Conclusion

We have examined Simpson’s four-slot fully asynchronous communication mechanism
[Sim90] by model checking with SALenv. Simpson’s mechanism can be seen as an al-
gorithm for constructing a lock-free and wait-free atomic register from registers satisfying
weaker assumptions. Atomic registers are crucial for reliable communication of data be-
tween separately clocked components.

We showed that Simpson’s algorithm ensures mutual exclusion (i.e., the reader and
writer never access the same data slot concurrently), and hence coherence or integrity of
the data, when its registers satisfy the weakest of all assumptions: those of merely safe
registers.

However, we found that the algorithm ensures atomicity (i.e., the property that the val-
ues read are as if reads and writes do not overlap), and hence correct data sequencing, only
when its control registers are already atomic. We also found that modifying the algorithm
so that the Boolean control registers are written only when their values will be changed is
inadequate to overcome this limitation.

It seems unsatisfactory to base a construction for atomic registers on the assumption that
its control registers are already atomic. It may be that this assumption can be discharged
with careful electrical design (particularly for the modified algorithm, where the circum-
stances in which it fails may be considered to require rare electrical events). Nonetheless, it
would seem preferable to use a construction that truly requires merely safe control registers.
The algorithm of Anderson and Gouda [AG92] may satisfy this requirement.

Our formal examination used model checking (actually, explicit-state reachability anal-
ysis). For the mutual exclusion property, our modeling was exact and therefore provides true
verification of this property. For atomicity, our modeling is indirect. We identify atomicity
with the requirement that writes of strictly increasing integer values should lead to reads
whose values are nondecreasing. This requirement is certainly necessary for atomicity, but
may not be sufficient. However, Hesselink [Hes02], identifies a criterion for atomicity that
explicitly associates sequence numbers with values written and read; we can regard the in-
tegers used in our experiments as being their own sequence numbers. Thus, although we
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lack a proof, it seems very plausible that our requirement is sufficient as well as necessary.
Our model checking is compromised in that we consider sequences of no more than eight
writes, but intuitively this seems sufficient to explore all behaviors (the counterexamples
that exposed flawed assumptions were all found using only two values). Thus, we consider
our model checking of the atomicity property to provide very strong, but not conclusive,
evidence for correctness of Simpson’s algorithm with atomic control registers.

Clark [Cla00] has examined several atomic register constructions, including Simpson’s,
using Petri nets. His Petri net models are much further removed from the natural presen-
tation of the algorithms than our SALenv specifications, and the required properties are
also stated indirectly. Clark’s treatment of data freshness and sequencing derive from the
“role models” of Simpson [Sim97], which are themselves abstracted descriptions that are
not fully independent of the algorithms under examination. Clark assumes atomic control
variables and verifies the properties of data coherence (mutual exclusion), freshness, and se-
quencing. He also considers a certain model of metastability that can be seen as weakening
the assumption of atomicity on the control variables, and shows that Simpson’s algorithm
fails in this case. Clark’s work (which was not known to the author when this work was
performed) is similar to that reported here, but our examination of atomicity assumptions
on the control registers is more comprehensive, and we also consider our modeling in SAL
to be much more direct and accessible than that using Petri nets.

Henderson and Paynter [HP02] have formally verified the mutual exclusion property of
Simpson’s algorithm using theorem proving in PVS, but they have not yet examined the
atomicity property. Hesselink [Hes02] has formally verified some multi-reader atomic reg-
ister constructions (that build on single-reader constructions of the kind considered here)
using theorem proving in ACL2. Both theorem proving approaches are substantially more
complex than ours. As noted above, model checking is exact for the mutual exclusion prop-
erty and it is plausibly so for the atomicity property, so theorem proving provides additional
benefit only for the latter property, and at rather large cost. It would be interesting to see if
theorem proving can be used to justify the approximation used in model checking the atom-
icity property; if it can, this combination of theorem proving and model checking might
provide the most cost-effective approach to formal verification for this class of algorithms.

We have seen that Simpson’s algorithm can fail if its control registers are not atomic.
Although it includes suggestions for realizing atomic Boolean control registers, Simpson’s
paper does not provide an algorithm for realizing them, and the suggestion that the control
registers are written only when their value will be changed reduces but does not eliminate
the failure mode. Unless a verifiable construction for realizing Boolean control registers is
employed, Simpson’s algorithm cannot be considered verifiably correct. It requires exper-
tise in the application domain (to determine the consequences of possible loss of atomicity),
in circuit design (to determine the plausibility of the circumstances that lead to its failure),
and in safety analysis to decide whether the algorithm is fit for deployment in a particular
safety-critical context.
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Because Simpson’s algorithm is not unconditionally correct, it seems desirable to ex-
amine other atomic register constructions that share its good features (it is short and uses
few control registers) and may remove its limitations. The algorithm of Anderson and
Gouda [AG92] seems promising and it would be interesting to subject it to examination
similar to that performed here. Clark’s analysis [Cla00] found no flaws in this algorithm,
but our examination of the version given by Clark [Cla00, Figure 5.19] finds that it fails
even themutex property when the control variables are merely safe.
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Appendix A

Simpson’s Algorithm in SAL

The following presents Simpson’s algorithm, modeled in the SAL specification language.
The modeling of control variables reproduces the behavior of safe registers. Themutex
property is verified for this specification, but thefreshness property fails.

fourslot: CONTEXT =
BEGIN
item: TYPE = [0..0];

reader: MODULE =
BEGIN
INPUT

latest: BOOLEAN,
index: ARRAY BOOLEAN OF BOOLEAN,
slot: ARRAY BOOLEAN OF ARRAY BOOLEAN OF item,
recent, current: BOOLEAN,
wpair: BOOLEAN,
wpc: [0..4]

OUTPUT
reading: BOOLEAN,
rpair, rindex: BOOLEAN,
ok: BOOLEAN,
rpc: [0..3]

LOCAL
prev_recent, prev_current: item,
out: item

INITIALIZATION
reading IN X: BOOLEAN | TRUE;
rpair = FALSE; rindex = FALSE;
ok = TRUE;
prev_recent = 0; prev_current = 0;
out = 0;
rpc =0
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TRANSITION
[

rpc = 0 AND wpc /= 4 --> rpair’ = latest;
prev_current’ = current; prev_recent’ = recent;
rpc’ = 1

[]
([] (arb: BOOLEAN):
rpc = 0 AND wpc = 4 --> rpair’ = arb;

prev_current’ = current; prev_recent’ = recent;
rpc’ = 1)

[]
rpc = 1 --> reading’ = rpair;

rpc’ = 2
[]

rpc = 2 AND (wpc /= 3 OR rpair /= wpair) -->
rindex’ = index[rpair];
rpc’ = 3

[]
([] (arb: BOOLEAN):
rpc = 2 AND wpc = 3 AND rpair = wpair --> rindex’ = arb;

prev_current’ = current; prev_recent’ = recent;
rpc’ = 3)

[]
rpc = 3 --> out’ = slot[rpair][rindex];

ok’ = out’=recent OR out’=current
OR out’=prev_recent OR out’=prev_current;

rpc’ = 0
]

END;

writer: MODULE =
BEGIN
INPUT

reading: BOOLEAN,
rpc: [0..3]

OUTPUT
latest: BOOLEAN,
index: ARRAY BOOLEAN OF BOOLEAN,
slot: ARRAY BOOLEAN OF ARRAY BOOLEAN OF item,
wpair, windex: BOOLEAN,
recent, current: item,
wpc: [0..4]

INITIALIZATION
latest IN X: BOOLEAN | TRUE;
wpair = FALSE; windex = FALSE;
wpc = 0;
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(FORALL (i: BOOLEAN): index[i] IN X: BOOLEAN | TRUE);
recent = 0; current = 0;
(FORALL (x, y: BOOLEAN): slot[x][y] = 0)

TRANSITION
[

wpc = 0 AND rpc /= 1 --> wpair’ = NOT reading;
wpc’ = 1

[]
([](arb:BOOLEAN):

wpc = 0 AND rpc = 1 --> wpair’ = NOT reading;
wpc’ = 1)

[]
wpc = 1 --> windex’ = NOT index[wpair];

wpc’ = 2
[]

([] (val: item):
wpc = 2 --> recent’ = current;

slot’ = slot WITH [wpair][windex] := val;
current’ = val;
wpc’ = 3)

[]
wpc = 3 --> index’[wpair] = windex;

wpc’ = 4
[]

wpc = 4 --> latest’ = wpair;
wpc’ = 0

]
END;

system: MODULE = reader [] writer;

mutex: LEMMA system |-
G((wpc = 2 AND rpc = 3) => (wpair /= rpair OR windex /= rindex));

freshness: LEMMA system |- G(ok);

END
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Appendix B

Modified Simpson’s Algorithm in
SAL

The following presents Simpson’s algorithm, modified so that control registers are written
only when the write will change the stored value. Control variables are modeled as safe
registers. Theatomic property fails for this specification.

fourslot: CONTEXT =
BEGIN
item: TYPE = [0..1];

reader: MODULE =
BEGIN
INPUT

latest: BOOLEAN,
index: ARRAY BOOLEAN OF BOOLEAN,
slot: ARRAY BOOLEAN OF ARRAY BOOLEAN OF item,
wpair: BOOLEAN,
wpc: [0..4]

OUTPUT
reading: BOOLEAN,
rpair, rindex: BOOLEAN,
rpc: [0..3],
out: item

INITIALIZATION
reading IN X: BOOLEAN | TRUE;
rpair = FALSE; rindex = FALSE;
out = 0;
rpc =0

TRANSITION
[

rpc = 0 AND wpc /= 4 --> rpair’ = latest;
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rpc’ = IF reading = rpair’ THEN 2 ELSE 1 ENDIF
[]

([] (arb: BOOLEAN):
rpc = 0 AND wpc = 4 --> rpair’ = arb;

rpc’ = IF reading = rpair’ THEN 2 ELSE 1 ENDIF)
[]

rpc = 1 --> reading’ = rpair;
rpc’ = 2

[]
rpc = 2 AND (wpc /= 3 OR rpair /= wpair) --

> rindex’ = index[rpair];
rpc’ = 3

[]
([] (arb: BOOLEAN):
rpc = 2 AND wpc = 3 AND rpair = wpair --> rindex’ = arb;

rpc’ = 3)
[]

rpc = 3 --> out’ = slot[rpair][rindex];
rpc’ = 0

]
END;

writer: MODULE =
BEGIN
INPUT

reading: BOOLEAN,
rpc: [0..3]

OUTPUT
latest: BOOLEAN,
index: ARRAY BOOLEAN OF BOOLEAN,
slot: ARRAY BOOLEAN OF ARRAY BOOLEAN OF item,
wpair, windex: BOOLEAN,
wpc: [0..4]

LOCAL
prev: item

INITIALIZATION
latest IN X: BOOLEAN | TRUE;
wpair = FALSE; windex = FALSE;
prev = 0;
wpc = 0;
(FORALL (i: BOOLEAN): index[i] IN X: BOOLEAN | TRUE);
(FORALL (x, y: BOOLEAN): slot[x][y] = 0)

TRANSITION
[

wpc = 0 AND rpc /= 1 --> wpair’ = NOT reading;
wpc’ = 1
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[]
([](arb:BOOLEAN):

wpc = 0 AND rpc = 1 --> wpair’ = arb;
wpc’ = 1)

[]
wpc = 1 --> windex’ = NOT index[wpair];

wpc’ = 2
[]

([] (val: item):
wpc = 2 AND val > prev --> slot’ = slot WITH [wpair][windex] := val;

prev’ = val;
wpc’ = 3)

[]
wpc = 3 --> index’[wpair] = windex;

wpc’ = IF latest = wpair THEN 0 ELSE 4 ENDIF
[]

wpc = 4 --> latest’ = wpair;
wpc’ = 0

]
END;

system: MODULE = reader [] writer;

mutex: LEMMA system |-
G((wpc = 2 AND rpc = 3) => (wpair /= rpair OR windex /= rindex));

atomic: LEMMA system |- G(out’ >= out);

END
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Appendix C

Simpson’s Algorithm with Atomic
Control Registers in SAL

The following presents Simpson’s algorithm, modified so that control registers are written
only when the write will change the stored value. Control variables are modeled as atomic
registers. Theatomic property is verified for this specification.

fourslot: CONTEXT =
BEGIN
item: TYPE = [0..8];

reader: MODULE =
BEGIN
INPUT

latest: BOOLEAN,
index: ARRAY BOOLEAN OF BOOLEAN,
slot: ARRAY BOOLEAN OF ARRAY BOOLEAN OF item,
wpair: BOOLEAN,
wpc: [0..4]

OUTPUT
reading: BOOLEAN,
rpair, rindex: BOOLEAN,
rpc: [0..3],
out: item

INITIALIZATION
reading IN X: BOOLEAN | TRUE;
rpair = FALSE; rindex = FALSE;
out = 0;
rpc =0

TRANSITION
[

rpc = 0 --> rpair’ = latest;
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rpc’ = 1
[]

rpc = 1 AND reading /= rpair --> reading’ = rpair;
rpc’ = 2

[]
rpc = 1 AND reading = rpair -->

rpc’ = 2
[]

rpc = 2 --> rindex’ = index[rpair];
rpc’ = 3

[]
rpc = 3 --> out’ = slot[rpair][rindex];

rpc’ = 0
]

END;

writer: MODULE =
BEGIN
INPUT

reading: BOOLEAN,
rpc: [0..3]

OUTPUT
latest: BOOLEAN,
index: ARRAY BOOLEAN OF BOOLEAN,
slot: ARRAY BOOLEAN OF ARRAY BOOLEAN OF item,
wpair, windex: BOOLEAN,
wpc: [0..4]

LOCAL
prev: item

INITIALIZATION
latest IN X: BOOLEAN | TRUE;
wpair = FALSE; windex = FALSE;
prev = 0;
wpc = 0;
(FORALL (i: BOOLEAN): index[i] IN X: BOOLEAN | TRUE);
(FORALL (x, y: BOOLEAN): slot[x][y] = 0)

TRANSITION
[

wpc = 0 --> wpair’ = NOT reading;
wpc’ = 1

[]
wpc = 1 --> windex’ = NOT index[wpair];

wpc’ = 2
[]

([] (val: item):
wpc = 2 AND val>prev --> slot’ = slot WITH [wpair][windex] := val;
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prev’ = val;
wpc’ = 3)

[]
wpc = 3 --> index’[wpair] = windex;

wpc’ = 4
[]

wpc = 4 AND latest /= wpair --> latest’ = wpair;
wpc’ = 0

[]
wpc = 4 AND latest = wpair -->

wpc’ = 0
]

END;

system: MODULE = reader [] writer;

mutex: LEMMA system |-
G((wpc = 2 AND rpc = 3) => (wpair /= rpair OR windex /= rindex));

atomic: LEMMA system |- G(out’ >= out);

END
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