
'

&

$

%

Higher-Order Functions and Recursive Types in PVS



'

&

$

%

Higher-Order functions and Recursive Types
in PVS

Sam Owre

owre@csl.sri.com

URL: http://www.csl.sri.com/˜owre/

Computer Science Laboratory

SRI International

Menlo Park, CA

1



'

&

$

%

Higher Order Logic

2



'

&

$

%

Overview

• Variables and quantification in first-order logic range

over ordinary datatypes such as numbers, and functions

and predicates are fixed (constants).

• Higher order logic allows variables to range over

functions and predicates as well.

• Higher order logic requires strong typing for

consistency, otherwise, we could define R(x) = ¬x(x),
and derive R(R) = ¬R(R).

• Higher order logic can express a number of interesting

concepts and datatypes that are not expressible within

first-order logic.

3



'

&

$

%

Higher Order Summation

hsummation : THEORY

BEGIN

n: VAR nat

f : VAR [nat -> nat]

hsum(f)(n): RECURSIVE nat =

(IF n = 0 THEN f(0) ELSE f(n-1) + hsum(f)(n - 1) ENDIF)

MEASURE n

hsum_id: LEMMA hsum(id)(n+1) = (n * (n+1))/2
.
.
.

hsum id proved by induct-and-simplify.

4



'

&

$

%

Variations on Summation

square(n): nat = n*n

sum_of_squares: LEMMA

6 * hsum(square)(n+1) = n * (n + 1) * (2*n + 1)

cube(n): nat = n*n*n

sum_of_cubes: LEMMA

4 * hsum(cube)(n+1) = n*n*(n+1)*(n+1)

END hsummation

Both lemmas proved by induct-and-simplify.

5



'

&

$

%

Parametric Summation

Theory parameters can also be used for schematic

definition.

psummation [f : [nat -> nat] ] : THEORY

BEGIN

n: VAR nat

psum(n): RECURSIVE nat =

(IF n = 0 THEN f(0) ELSE f(n-1) + psum(n - 1) ENDIF)

MEASURE n

END psummation

6



'

&

$

%

Using Parametric Summation

The parametric theory can be imported either with specific

parameters or generically.

check_psummation: THEORY

BEGIN

IMPORTING psummation

n : VAR nat

check: LEMMA psum[id[nat]](n + 1) = (n * (n + 1))/2

END check_psummation

check proved by induct-and-simplify.

7



'

&

$

%

Induction in Higher Order Logic

p: VAR [nat -> bool]

nat_induction: LEMMA

(p(0) AND (FORALL j: p(j) IMPLIES p(j+1)))

IMPLIES (FORALL i: p(i))

nat induction is derived from well-founded induction, as are

other variants like structural recursion, measure induction.

8



'

&

$

%

Higher-Order Specification: Functions

functions [D, R: TYPE]: THEORY

BEGIN

f, g: VAR [D -> R]

x, x1, x2: VAR D

extensionality_postulate: POSTULATE

(FORALL (x: D): f(x) = g(x)) IFF f = g

congruence: POSTULATE f = g AND x1 = x2 IMPLIES f(x1) = g(x2)

eta: LEMMA (LAMBDA (x: D): f(x)) = f

injective?(f): bool =

(FORALL x1, x2: (f(x1) = f(x2) => (x1 = x2)))

surjective?(f): bool = (FORALL y: (EXISTS x: f(x) = y))

bijective?(f): bool = injective?(f) & surjective?(f)

.

.

.

END functions

9



'

&

$

%

Sets are Predicates

sets [T: TYPE]: THEORY

BEGIN

set: TYPE = [t -> bool]

x, y: VAR T

a, b, c: VAR set

member(x, a): bool = a(x)

empty?(a): bool = (FORALL x: NOT member(x, a))

emptyset: set = {x | false}

subset?(a, b): bool = (FORALL x: member(x, a) => member(x, b))

union(a, b): set = {x | member(x, a) OR member(x, b)}
.
.
.

END sets

10



'

&

$

%

Useful Higher Order Datatypes: Finite Sets

Finite sets: Predicate subtypes of sets that have an

injective map to some initial segment of nat.

finite_sets_def[T: TYPE]: THEORY

BEGIN

x, y, z: VAR T

S: VAR set[T]

N: VAR nat

is_finite(S): bool = (EXISTS N, (f: [(S) -> below[N]]):

injective?(f))

finite_set: TYPE = (is_finite) CONTAINING emptyset[T]

.

.

.

END finite_sets_def

11



'

&

$

%

Recursive Datatypes

12



'

&

$

%

Overview

• Recursive datatypes like lists, stacks, queues, binary

trees, and abstract syntax trees, are commonly used in

specification.

• Manual axiomatizations for datatypes can be

error-prone.

• Verification systems should (and many do)

automatically generate datatype theories.

• The PVS DATATYPE construct introduces recursive

datatypes that are freely generated by given

constructors, including lists, binary trees, abstract

syntax trees, but excluding bags and queues.

• The PVS proof checker automates various datatype

simplifications.

13



'

&

$

%

The list Datatype

The type list is parametric in its element type T.

There are two constructors null and cons with

corresponding recognizers null? and cons?.

cons has two fields corresponding to the accessors car of

type T and cdr which is recursively of type list[T].

list[T: TYPE] : DATATYPE

BEGIN

null: null?

cons (car: T, cdr: list): cons?

END list

14



'

&

$

%

Binary Trees

Parametic in value type T.

Constructors: leaf and node.

Recognizers: leaf? and node?.

node accessors: val, left, and right.

binary_tree[T: TYPE] : DATATYPE

BEGIN

leaf: leaf?

node(val: T, left: binary_tree, right: binary_tree): node?

END binary_tree

15



'

&

$

%

Theories Axiomatizing Binary Trees

The binary tree declaration generates three theories

axiomatizing the binary tree data structure:

• binary tree adt: Declares the constructors, accessors,

and recognizers, and contains the basic axioms for

extensionality and induction, and some basic operators.

• binary tree adt map: Defines map operations over the

datatype.

• binary tree adt reduce: Defines a recursion scheme

over the datatype.

Datatype axioms are already built into the relevant proof

rules, but the defined operations are useful.

16



'

&

$

%

binary_tree_adt[T: TYPE]: THEORY

BEGIN

binary_tree: TYPE

leaf?, node?: [binary_tree -> boolean]

leaf: (leaf?)

node: [[T, binary_tree, binary_tree] -> (node?)]

val: [(node?) -> T]

left: [(node?) -> binary_tree]

right: [(node?) -> binary_tree]

.

.

.

END binary_tree_adt

Predicate subtyping is used to precisely type constructor

terms and avoid misapplied accessors.

17



'

&

$

%

An Extensionality Axiom per Constructor

Extensionality states that a node is uniquely determined by

its accessor fields.

binary_tree_node_extensionality: AXIOM

(FORALL (node?_var: (node?)),

(node?_var2: (node?)):

val(node?_var) = val(node?_var2)

AND left(node?_var) = left(node?_var2)

AND right(node?_var) = right(node?_var2)

IMPLIES node?_var = node?_var2)

18



'

&

$

%

Accessor/Constructor Axioms

Asserts that val(node(v, A, B)) = v.

binary_tree_val_node: AXIOM

(FORALL (node1_var: T), (node2_var: binary_tree),

(node3_var: binary_tree):

val(node(node1_var, node2_var, node3_var)) = node1_var)

19



'

&

$

%

An Induction Axiom

Conclude FORALL A: p(A) from p(leaf) and

p(A) ∧ p(B) ⊃ p(node(v, A, B)).

binary_tree_induction: AXIOM

(FORALL (p: [binary_tree -> boolean]):

p(leaf)

AND

(FORALL (node1_var: T), (node2_var: binary_tree),

(node3_var: binary_tree):

p(node2_var) AND p(node3_var)

IMPLIES p(node(node1_var, node2_var, node3_var)))

IMPLIES (FORALL (binary_tree_var: binary_tree):

p(binary_tree_var)))

20



'

&

$

%

Pattern-matching Branching

The CASES construct is used to branch on the outermost

constructor of a datatype expression.

We implicitly assume the disjointness of (node?) and

(leaf?):

CASES leaf OF

leaf : u,

node(a, y, z) : v(a, y, z)

ENDCASES

= u

CASES node(b, w, x) OF

leaf : u,

node(a, y, z) : v(a, y, z)

ENDCASES

= v(b, w, x)

21



'

&

$

%

Useful Generated Combinators

reduce_nat(leaf?_fun:nat, node?_fun:[[T, nat, nat] -> nat]):

[binary_tree -> nat] = ...

every(p: PRED[T])(a: binary_tree): boolean = ...

some(p: PRED[T])(a: binary_tree): boolean = ...

subterm(x, y: binary_tree): boolean = ...

map(f: [T -> T1])(a: binary_tree[T]): binary_tree[T1] = ...

22



'

&

$

%

Ordered Binary Trees

Ordered binary trees can be introduced by a theory that is

parametric in the value type as well as the ordering relation.

The ordering relation is subtyped to be a total order.

total_order?(<=): bool = partial_order?(<=) & dichotomous?(<=)

obt [T : TYPE, <= : (total_order?[T])] : THEORY

BEGIN

IMPORTING binary_tree[T]

A, B, C: VAR binary_tree

x, y, z: VAR T

pp: VAR pred[T]

i, j, k: VAR nat

.

.

.

END obt

23



'

&

$

%

The size Function

The number of nodes in a binary tree can be computed by

the size function which is defined using reduce nat.

size(A) : nat =

reduce_nat(0, (LAMBDA x, i, j: i + j + 1))(A)

24



'

&

$

%

The Ordering Predicate

Recursively checks that the left and right subtrees are

ordered, and that the left (right) subtree values lie below

(above) the root value.

ordered?(A) : RECURSIVE bool =

(IF node?(A)

THEN (every((LAMBDA y: y<=val(A)), left(A)) AND

every((LAMBDA y: val(A)<=y), right(A)) AND

ordered?(left(A)) AND

ordered?(right(A)))

ELSE TRUE

ENDIF)

MEASURE size

25



'

&

$

%

Insertion

Compares x against root value and recursively inserts into

the left or right subtree.

insert(x, A): RECURSIVE binary_tree[T] =

(CASES A OF

leaf: node(x, leaf, leaf),

node(y, B, C): (IF x<=y THEN node(y, insert(x, B), C)

ELSE node(y, B, insert(x, C))

ENDIF)

ENDCASES)

MEASURE (LAMBDA x, A: size(A))

26



'

&

$

%

Insertion Property

The following is a very simple property of insert.

ordered?_insert_step: LEMMA

pp(x) AND every(pp, A) IMPLIES every(pp, insert(x, A))

Proved by induct-and-simplify

27



'

&

$

%

Orderedness of insert

ordered?_insert: THEOREM

ordered?(A) IMPLIES ordered?(insert(x, A))

is proved by the 4-step PVS proof

(""

(induct-and-simplify "A" :rewrites "ordered?_insert_step")

(rewrite "ordered?_insert_step")

(typepred "obt.<=")

(grind :if-match all))

28



'

&

$

%

Mutually Recursive Datatypes

PVS does not directly support mutually recursive datatypes.

These can be defined as subdatatypes (e.g., term, expr) of

a single datatype.

arith: DATATYPE WITH SUBTYPES expr, term

BEGIN

num(n:int): num? :term

sum(t1:term,t2:term): sum? :term

% ...

eq(t1: term, t2: term): eq? :expr

ift(e: expr, t1: term, t2: term): ift? :term

% ...

END arith

29



'

&

$

%

Summary

• The PVS datatype mechanism succinctly captures a

large class of useful datatypes by exploiting predicate

subtypes and higher-order types.

• Datatype simplifications are built into the primitive

inference mechanisms of PVS.

• This makes it possible to define powerful and flexible

high-level strategies.

• The PVS datatype is loosely inspired by the

Boyer-Moore Shell principle.

• Other systems HOL [Melham89, Gunter93] and Isabelle

[Paulson] have similar datatype mechanisms as a

provably conservative extension of the base logic.

30


