
A Brief Overview of PVS

Sam Owre and Natarajan Shankar?

Computer Science Laboratory,
SRI International

Abstract. PVS is now 15 years old, and has been extensively used in re-
search, industry, and teaching. The system is very expressive, with unique
features such as predicate subtypes, recursive and corecursive datatypes,
inductive and coinductive definitions, judgements, conversions, tables,
and theory interpretations. The prover supports a combination of deci-
sion procedures, automatic simplification, rewriting, ground evaluation,
random test case generation, induction, model checking, predicate ab-
straction, MONA, BDDs, and user-defined proof strategies. In this paper
we give a very brief overview of the features of PVS, some illustrative
examples, and a summary of the libraries and PVS applications.

1 Introduction

PVS is a verification system [17], combining language expressiveness with auto-
mated tools. The language is based on higher-order logic, and is strongly typed.
The language includes types and terms such as: numbers, records, tuples, func-
tions, quantifiers, and recursive definitions. Full predicate subtype is supported,
which makes typechecking undecidable. For example, division is defined such
that the second argument is nonzero, where nonzero is defined:

nonzero_real: TYPE = {r: real | r /= 0}

Note that this means PVS is total; partiality is only supported via subtyping.
Dependent types for records, tuples, and function types is also supported. Here
is a record type (introduced with [# #]) representing a finite sequence, where
the seq is an array with domain depending on the length.

finseq: TYPE = [# length: nat, seq: [below[length] -> T] #]

Beyond this, the PVS language has structural subtypes (i.e., a record that
adds new fields to a given record), dependent types for record, tuple, and func-
tions, recursive and corecursive datatypes, inductive and coinductive definitions,
theory interpretations, and theories as parameters, conversions, and judgements
that provide control over the generation of proof obligations. Specifications are

? This material is based on work performed at SRI and supported by the National
Science Foundation under Grants No. CCR-ITR-0326540 and CCR-ITR-0325808.



2 Sam Owre and Natarajan Shankar

given as collections of parameterized theories, which consist of declarations and
formulas, and are organized by means of importings.

The PVS prover is interactive, but with a large amount of automation built
in. It is closely integrated with the typechecker, and features a combination of
decision procedures, BDDs, automatic simplification, rewriting, and induction.
There are also rules for ground evaluation, random test case generation [11],
model checking, predicate abstraction, and MONA. The prover may be extended
with user-defined proof strategies.

PVS has been used as a platform for integration. It has a rich API, making it
relatively easy to add new proof rules and integrate with other systems. Examples
of this include the model checker, Duration Calculus [19], MONA [12], Maple [1],
Ag [14], and Yices. The system is normally used through a customized Emacs
interface, though it is possible to run it standalone (PVSio does this). PVS is
open source, and is available at http://pvs.csl.sri.com. PVS is a part of
SRI’s Formal Methods Program [6].

In the following sections we will describe a basic example, give a brief descrip-
tion of some more advanced examples, describe some of the available libraries,
and finally describe some of the applications.

2 PVS Examples

Ordered Insertion Ordered binary trees are a fundamental data structure used to
represent more abstract data structures such as sets, multisets, and associative
arrays. The basic idea is that the values in the nodes are totally ordered, and
the values of the nodes on the left are less than the current node, which in turn
is less than those on the right. The first step is to define a binary tree. In PVS,
this can be specified using a datatype.

binary_tree[T: TYPE]: DATATYPE BEGIN

leaf: leaf?

node(val: T, left, right: binary_tree): node?

END binary_tree

A binary tree is constructed from the leaf and node constructors; the node
constructor takes three arguments, and has accessors val, left, and right,
and recognizers leaf? and node?. This is all parameterized by the type T. To
reference a binary tree where the type T is int, simply type binary tree[int].

When this is typechecked by PVS, theories are created that include many
axioms such as extensionality and induction, and various mapping and reduction
combinators [17].

The theory of ordered binary trees is parameterized with a type and a total
ordering, an ordered? predicate is defined, and an insert operation specified.
The main theorem states that if a tree is ordered, then the tree obtained after
inserting an element is also ordered. This is naturally an inductive argument.
In the actual specification available at http://pvs.csl.sri.com/examples/



A Brief Overview of PVS 3

datatypes/datatypes.dmp a helper lemma is used to make the induction eas-
ier. The proof then is quite simple; both lemmas use induct-and-rewrite!,
including the helper lemma as a rewrite rule in the proof of the main lemma.

Inductive and Coinductive Definitions. PVS provides a mechanism for defining
inductive and coinductive definitions. A simple example of an inductive definition
is the transitive closure of an arbitrary relation R.

TC(R)(x, y): INDUCTIVE bool =

R(x, y) OR (EXISTS z: R(x, z) AND TC(R)(z, y))

This is simply a least fixedpoint with respect to a given domain of elements and
a set of rules, which is well-defined if the rules are monotonic, by the well known
Knaster-Tarski theorem. Under these conditions the greatest fixedpoint also ex-
ists and corresponds to coinductive definitions. Inductive and coinductive defi-
nitions have induction principles, and both must satisfy additional constraints
to guarantee that they are well defined.

Corecursive Datatypes. The ordered binary tree example is based on an induc-
tively defined datatype, which is defined inductively and describes an algebra,
as described by Jacobs and Rutten [7]. It is also possible to define codatatypes,
corresponding to coalgebras. The simplest codatatype is the stream:

stream[T: TYPE]: CODATATYPE BEGIN

cons(first:T, rest:stream): cons? END stream

This describes an infinite stream. Instead of induction, properties of coalgebras
are generally proved using bisimulation, which is automatically generated for
codatatypes, as induction is for datatypes.

colist[T: TYPE]: CODATATYPE BEGIN

null: null?

cons(first: T, rest: colist): cons?

END colist

The colist example abovce looks like the list datatype, but includes both finite
and infinite lists. This is often useful in specifications; for example, to describe a
machine that may run forever, or may halt after some steps. Without coalgebras,
the usual approaches are to model halting as stuttering, or to model it as a union
type—both of which have various drawbacks.

Theory Interpretations. PVS has support for interpreting one theory in terms of
another. This allows uninterpreted types and constants to be interpreted, and
the axioms of the uninterpreted theory are translated into proof obligations,
thus guaranteeing soundness. Theory interpretations are primarily used for re-
finement and to prove consistency for an axiomatically defined theory. PVS
theory interpretations are described in the theory interpretations report [17].



4 Sam Owre and Natarajan Shankar

Model Checking and Predicate Abstraction. PVS includes an integrated model
checker that is based on the µ-calculus.1. To use the model checker, a finite
transition system must be defined with an initial predicate and a transition
relation. The PVS prelude provides CTL temporal operators, as well as several
definitions of fairness. Examples making use of the model checker may be found
in the report [13], which also describes the PVS table construct in some detail.

Model checking requires finite (and usually small) domains, but real systems
are generally not finite. Thus in order to apply model checking to a system one
must first map it to a finite abstraction. One powerful technique for doing this
semi-automatically is predicate abstraction [16], which has been integrated into
the PVS theorem prover as the abstract rule.

Ground Evaluation and PVSio. PVS is primarily a specification language, but
it is possible to recognize an executable subset, and hence to actually run PVS.
This is efficiently done with the ground evaluator, described in [18, 5].

César Muñoz has extended the ground evaluator with PVSio [10], which in-
cludes a predefined library of imperative programming language features such
as side effects, unbounded loops, input/output operations, floating point arith-
metic, exception handling, pretty printing, and parsing. The PVSio library is
implemented via semantic attachments. PVSio is now a part of the PVS distri-
bution.

3 PVS Libraries and Applications

PVS has an extensive set of libraries available. To begin with, there is the
prelude—a preloaded set of theories defining many concepts, ranging from booleans
through relations, functions, sets, numbers, lists, CTL, bit-vectors, and equiv-
alence classes (see the prelude report [17] for details). The PVS distribution
includes extensions of the basic finite sets and bit-vector theories given in the
prelude.

NASA Langley has been working with PVS for many years, and has de-
veloped extensive libraries, available at http://shemesh.larc.nasa.gov/fm/
fm-pvs.html. This includes libraries for algebra, analysis, calculus, complex
numbers, graphs/digraphs, number theory, orders, series, trigonometric func-
tions, and vectors. They have also contributed the Manip and Field packages,
which make it easier to do numeric reasoning.

PVS has been used for applications in teaching, research, and industry. For-
mal specification and verification are inherently difficult, so the focus tends to
be on applications with high cost of failure, or critical to life or national security.
Thus most applications are to requirements [2, 8], hardware [9], safety-critical
applications [3], and security [15]

1 See Chapter 7 of Model Checking [4] for an introduction to the µ-calculus.



A Brief Overview of PVS 5

4 Conclusions and Future Work

PVS contains several features that we have omitted from this brief introduc-
tion. PVS is still under active maintenance and development. We have many
features we hope to add in the future, including polymorphism, reflection, proof
generation, faster rewriting and simplification, a declarative proof mode, coun-
terexamples, proof search and other target languages for the ground evaluator.

[1] A. Adams, M. Dunstan, H. Gottliebsen, T. Kelsey, U. Martin, and S. Owre. Computer
algebra meets automated theorem proving: Integrating Maple and PVS. In R. J. Boulton and
P. B. Jackson, editors, TPHOLs 2001, volume 2152 of LNCS, pages 27–42, Edinburgh,
Scotland, September 2001. Springer-Verlag.

[2] Myla Archer. TAME: Using PVS strategies for special-purpose theorem proving. Annals of
Mathematics and Artificial Intelligence, 29(1–4):139–181, 2000.

[3] V. Carreño and C. Muñoz. Aircraft trajectory modeling and alerting algorithm verification.
In M. Aagaard and J. Harrison, editors, TPHOLs 2000, volume 1869 of LNCS, pages 90–105,
Portland, OR, August 2000. Springer-Verlag.

[4] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 1999.
[5] J. Crow, S. Owre, J. Rushby, N. Shankar, and D. Stringer-Calvert. Evaluating, testing, and

animating PVS specifications. Technical report, Computer Science Laboratory, SRI
International, Menlo Park, CA, March 2001. Available from
http://www.csl.sri.com/users/rushby/abstracts/attachments.

[6] Formal Methods Program. Formal methods roadmap: PVS, ICS, and SAL. Technical Report
SRI-CSL-03-05, Computer Science Laboratory, SRI International, Menlo Park, CA, October
2003. Available at http://fm.csl.sri.com/doc/roadmap03.

[7] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS Bulletin,
62:222–259, 1997.

[8] T. Kim, D. Stringer-Calvert, and S. Cha. Formal verification of functional properties of an
SCR-style software requirements specification using PVS. In J.-P. Katoen and P. Stevens,
editors, TACAS 2002, volume 2280 of LNCS, pages 205–220, Grenoble, France, April 2002.
Springer-Verlag.

[9] Steven P. Miller and Mandayam Srivas. Formal verification of the AAMP5 microprocessor: A
case study in the industrial use of formal methods. In WIFT ’95: Workshop on
Industrial-Strength Formal Specification Techniques, pages 2–16, Boca Raton, FL, 1995.
IEEE Computer Society.

[10] César Muñoz. Rapid Prototyping in PVS. National Institute of Aerospace, Hampton, VA,
2003. Available from http://research.nianet.org/∼munoz/PVSio/.

[11] Sam Owre. Random testing in PVS. In Workshop on Automated Formal Methods (AFM),
Seattle, WA, August 2006. Available at http://fm.csl.sri.com/AFM06/papers/5-Owre.pdf.

[12] Sam Owre and Harald Rueß. Integrating WS1S with PVS. In E. A. Emerson and A. P. Sistla,
editors, CAV ’2000, volume 1855 of LNCS, pages 548–551, Chicago, IL, July 2000.
Springer-Verlag.

[13] Sam Owre, John Rushby, and Natarajan Shankar. Analyzing tabular and state-transition
specifications in PVS. Technical Report SRI-CSL-95-12, Computer Science Laboratory, SRI
International, Menlo Park, CA, July 1995. Available, with specification files, at
http://www.csl.sri.com/csl-95-12.html. Also published as NASA Contractor Report 201729.

[14] Carlos López Pombo, Sam Owre, and Natarajan Shankar. A semantic embedding of the Ag
dynamic logic in PVS. Technical Report SRI-CSL-02-04, Computer Science Laboratory, SRI
International, Menlo Park, CA, October 2004.

[15] John Rushby. A separation kernel formal security policy in PVS. Technical note, Computer
Science Laboratory, SRI International, Menlo Park, CA, March 2004.

[16] Hassen Säıdi and Susanne Graf. Construction of abstract state graphs with PVS. In Orna
Grumberg, editor, CAV ’97, volume 1254 of LNCS, pages 72–83, Haifa, Israel, June 1997.
Springer-Verlag.

[17] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS System Guide, PVS
Language Reference, PVS Prover Guide, PVS Prelude Library, Abstract Datatypes in PVS,
and Theory Interpretations in PVS. Computer Science Laboratory, SRI International, Menlo
Park, CA, 1999. Available at http://pvs.csl.sri.com/documentation.shtml.

[18] Natarajan Shankar. Static analysis for safe destructive updates in a functional language. In
A. Pettorossi, editor, 11th International Workshop on Logic-based Program Synthesis and
Transformation (LOPSTR 01), LNCS, pages 1–24. Springer-Verlag, 2002. Available at
ftp://ftp.csl.sri.com/pub/users/shankar/lopstr01.pdf.

[19] Jens U. Skakkebæk and N. Shankar. A Duration Calculus proof checker: Using PVS as a
semantic framework. Technical Report SRI-CSL-93-10, Computer Science Laboratory, SRI
International, Menlo Park, CA, December 1993.


