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Abstract. We present a methodology for constructing abstractions and

re�ning them by analyzing counter-examples. We also present a uniform

veri�cation method that combines abstraction, model-checking and de-
ductive veri�cation in a novel way. In particular, it allows and shows how

to use the set of reachable states of the abstract system in a deductive

proof even when the abstract model does not satisfy the speci�cation
and when it simulates the concrete system with respect to a weaker sim-

ulation notion than Milner's.

1 Introduction

Veri�cation by abstraction (e.g. [15,16,12,25,13]) is a major technique for veri-

fying in�nite-state and very large systems. This technique consists in �nding an

abstraction relation and an abstract system that simulates the concrete one and

that is amenable to algorithmic veri�cation. One then checks that the abstract

system satis�es an abstract version of the property of interest. Well established

preservation results allow then to deduce for a large class of properties that the

concrete system satis�es the concrete property, if the abstract system satis�es

the abstract one.

In order for this technique to be used more widely, automatic techniques are

needed for 1) �nding an accurate abstraction relation and 2) automatically gen-

erating an abstract property and an abstract system that simulates the concrete

one. Several papers have discussed the automatic construction of the abstract

system, e.g. [17,6,14] for in�nite-state systems. A less studied issue is that of �nd-

ing/constructing the abstract domain and the abstraction relation. The situation

is somewhat di�erent in the case of program analysis where one is interested in

rather generic properties mainly concerning run-time errors. In this case, de-

pending on the programming paradigm (imperative, functional, or logic) and

depending on the properties to be checked, several adequate abstract domains
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together with abstraction functions have been designed and extensively stud-

ied [28]. In model-checking, however, as one is interested in verifying properties

speci�c to a given system, one usually needs to generate for every system and

property a new abstract domain and abstraction relation. Therefore, it is manda-

tory to have automatic techniques assisting the user in �nding the abstraction.

In this paper, we describe an automatic abstraction technique for invariance

properties which is based on the set of atomic formulas appearing in successive

applications of the weakest (liberal) predicate transformer on the invariant to

be proved. This technique allows us to derive an abstraction function which is

then used to construct an abstract system and an abstract property. When the

property is true in the abstract system, we can conclude that the concrete system

satis�es the invariant. The question arises, however, how to proceed in case the

property is not satis�ed in the abstract system. There are three possible reasons

why the abstract systemmay not satisfy the abstract property: 1) the abstraction

function is not �ne enough to prove the property, that is, it identi�es concrete

states that should be distinguished, 2) the abstract system contains super
uous

transitions that can be safely removed, that is, without altering the fact that

it is an upper approximation and 3) the concrete system does not satisfy the

speci�cation 1. The main contributions of this paper are on one hand algorithms

for analyzing counter-examples that allow either to construct concrete counter-

examples when this is possible or to re�ne the abstraction function. On the

other hand, we present a uniform veri�cation method that combines abstraction,

model-checking and deductive veri�cation in a novel way. In particular, it allows

and shows how to use the set of reachable states of the abstract system in a

deductive proof even when it simulates the concrete system in a weaker sense

than Milner's notion of simulation.

For analyzing counter-examples, we present an algorithm that allows in many

cases to analyze an in�nite number of counter-examples at once. That is, the

algorithm can deal with counter-examples that contain unfoldings of loops and

where each time we unfold the loop we obtain a new counter-example.

Using counter-examples to re�ne abstract systems has been investigated by

a number of other researchers, e.g. [23,1,11]. Closest to our work is Clarke et al's

techniques [11]. The main di�erences are, however, that we focus on in�nite-state

systems and that our algorithms for analyzing counter-examples work backwards

while their algorithms are forward. This di�erence can lead to completely dif-

ferent abstractions. Moreover, our technique allows in many cases to do in one

step a re�nement that cannot be done in �nitely many ones using their method.

The key issue here is that our technique incorporates accelerating the analysis

of counter-examples that involve the unfolding of loops. On the other hand, we

do not consider liveness properties. Also close to our work is Namjoshi and Kur-

1 In the case of �nite-state systems only reason 1) and 3) are relevant as a least non-
deterministic abstract system exists and can always be computed, if we consider

abstraction functions which is the case here. Computing this abstract system is, in

general, not possible for in�nite-state system as incomplete decision procedures have
to be used for constructing the abstract system.
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shan's work [29] on computing �nite bisimulations/simulations of in�nite-state

systems. The main idea there is to start from a �nite set of atomic formulae

and to successively split the abstract state space induced by these formulae un-

til stabilization. However, in contrast to [8,24,21], the splitting in [29] is done

on atomic formulae instead of equivalence classes which correspond to boolean

combinations of these. A similar idea is applied in [30].

2 Preliminaries

2.1 Invariants

Given a set X of typed variables, a state over X is a type-consistent mapping

that associates with each variable x 2 X a value.

A transition system is given by a triple (�; I;R), where � is a set of states

over a set X of variables, I � � is a set of initial states, and R � �2 is the transi-

tion relation. A syntactic transition system is given by a triple (X; �(X); �(X;X0)),

whereX is a set of typed variables, �(X) is a predicate describing the set of initial

states and �(X;X0) is a predicate describing the transition relation.We associate

in the usual way a transition system with every syntactic transition system.

A computation of a transition system S = (�; I;R) is a sequence s0; � � � ; sn
such that s0 2 I and (si; si+1) 2 R, for i � n � 1. A state s 2 � is called

reachable in S, if there is a computation s0; � � � ; sn of S with sn = s. We denote

by R(S) the set of states reachable in S.

A set P � � is called an invariant of S, denoted by S j= 2P , if every state

that is reachable in S is in P . Given a set P � � of states and a relation R � �2

the weakest liberal precondition of R with respect to P , denoted by wp(R;P ) or
wpR(P ), is the set consisting of states s such that for every state s0, if (s; s0) 2 R

then s0 2 P . The precondition of R with respect to P , denoted by preR(P ), is the
pre-image of P by R. We also sometimes write pre(R)(P ) instead of preR(P ).

All the semantic notions introduced so far have their syntactic counterparts

which we assume as known. Moreover, we will tacitly interchange syntax and

semantics, e.g. predicates and sets of states etc., unless there is a necessity to

make a distinction.

2.2 Abstractions

Abstraction techniques [15,10] can be used to compute an over-approximation

of R(S). Basically, the idea consists in abstracting the considered system S

to a �nite system Sa such the concretization of R(Sa) is a super-set of R(S).

The use of abstractions techniques in the context of model-checking is well-

studied [12,25]. The theory is based on the notion of simulation (also called

L-simulation, forward-simulation,...) and on preservation results which tell us

which properties that are satis�ed by Sa are also satis�ed by S.

A drawback of this method is that the simulation notion used does not take

into account the invariance property we want to prove. To overcome this, we

proposed in [7], the following invariant-dependent simulation notion.
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De�nition 1. We say that Sa is an abstraction of S with respect to � � ���a

and P � �, denoted by S vP
� Sa, if the following conditions are satis�ed:

1. � is a total relation,
2. for every state s0; s1 2 � and sa0 2 �a with s0 2 P and (s0; s

a
0) 2 �, if

(s0; s1) 2 R then there exists a state sa1 2 �a such that (sa0; s
a
1) 2 Ra and

(s1; s
a
1) 2 �,

3. I � P , and
4. for every state s in I there exists a state sa in Ia such that (s; sa) 2 �. 2

Now, it can be proved by induction on n that for every computation s0; � � � ; sn
of S such that si 2 P , for every i = 0; � � � ; n � 1, there exists a computation

sa0; � � � ; s
a
n of Sa such that (si; s

a
i ) 2 �, for every i � n. Therefore, we can state

the following preservation result:

Theorem 1. Let S and Sa be transition systems such that S vP
� Sa. Let P a �

�a and P 0 � �. If ��1(P a) � P \ P 0, and Sa j= 2P a, then S j= 2(P \ P 0). 2

3 A General Veri�cation Rule

In this section, we present a general rule for verifying invariance properties which

combines the two main approachs to the veri�cation of invariance properties of

in�nite-state systems:

1. the deductive approach which consists in applying a rule that allows to reduce
the veri�cation to proving a set of 1st-order formulas, and

2. the veri�cation by abstraction approach which consists in abstracting the

system in hand to a �nite system which is then analyzed algorithmically

using model-checking techniques.

To do so, we �x throughout this section a transition system S = (�; I;R)

and a set P � � of states. We then consider the problem of showing that S

satis�es the invariant P .

A uniform rule While Theorem 1 allows us to deduce S j= 2P in case Sa j= 2P a,

they do not tell us whether it is possible to take advantage from Sa in case Sa 6j=

2P a. Rule (Inv-Uni) (see Fig. 1), which can be seen as a uniform presentation

of the deductive and the veri�cation by abstraction approaches, addresses this

question. Indeed, the proof rule shows how concretizations of invariants of the

abstract system can be used to prove that the predicate P is preserved by the

transition relation of S. In fact, these concretizations are used to weaken the

third premise of the rule (Inv-Uni).

Theorem 2. The proof Rule (Inv-Uni) (see Figure 1) is sound and complete.

Proof. Let us �rst show soundness. Let S and Sa be transition systems such

that (P1) S vP
� Sa, (P2): ��1(R(Sa)) � Q, (P3): Q \ P \ P 0 � wp(R;P \ P 0),

and (P4): I � P 0.
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There exists � � � ��a

S vP
� Sa

��1(R(Sa)) � Q

Q \ P \ P 0 � wp(R; P \ P 0)
I � P 0

S j= 2(P \ P 0)

Fig. 1. Proof rule (Inv-Uni).

Let s0; � � � ; sn be a computation of S. We prove by induction on n that

sn 2 P \ P 0. Now, since (P1) implies that all initial states of S satisfy P , and

since I � P 0, we have s0 2 P \ P 0. Moreover, from (P1) and (P2), we have

sn�1 2 Q, and hence by induction hypothesis, sn�1 2 Q \ P \ P 0. Therefore,

from (P3), sn 2 P \ P 0.

Completeness of Rule (Inv-Uni) is easily proved along the same lines as for

the completeness of the standard rule for proving invariants, e.g. [26]. 2

3.1 Concretizing OBDD's

To be able to apply Rule (Inv-Uni) we need:

1. a �nite representation of the set Ra of abstract reachable states and
2. to transform this representation into a �nite representation of its concreti-

sation, that is, ��1(Ra).

Symbolic model checkers like SMV use ordered binary decision diagrams (OB-

DDs) to represent sets of states. To do so, all abstract variables are encoded

by boolean variables. An OBDD is very easily transformed into a proposional

formula in disjunctive normal form. Such representation can, however, be un-

necessarily cumbersome.

In this section, we describe an algorithm for converting an OBDD into a

propositional formula over the original state variables (not necessarily boolean),

which is often almost as compact as the original OBDD.

Consider �rst a simple case when the top variable x of an OBDD b is boolean.

Then, by the Shannon-Boole expansion law, b = x � bjx=true+ �x � bjx=false. Equiv-

alently, this can be written as a formula

(x = false! formula(bjx=false)) ^ (x = true! formula(bjx=true));

where formula(b) is a formula corresponding to the BDD b. Generalizing this

to program variables with arbitrary number of possible values represented as a

vector of boolean variables x = (x1; : : : ; xn), and assuming that xi's are the n

top variables in b, we can recursively construct a formula
^

v2type(x)

(x = v ! formula(bjx=v)):
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bdd2f(b: BDD, var list: list of variables): formula =
if b 2 H then return H(b);

if b = true bdd then res := TRUE;

else if b = false bdd then res := FALSE;
else

x := car(var list);

res := TRUE;
for every v 2 type(x) do

tmp := bdd2f(bjx=v , cdr(var list));

res := res ^ (x = v ! tmp);
end;

H ! (b; res);

end if

return res;

end bdd2f

Fig. 2. Basic algorithm converting BDD to a formula.

The basic algorithm is shown on Figure 2. It takes a BDD b and the list of

program state variables (not necessarily boolean), and returns a formula equiv-

alent to b. It uses a hash table H that hashes pairs of the form (b; f), where

f is a formula previously constructed for a BDD b. At the very beginning the

algorithm checks whether b is already in the table, and if it is, it simply returns

the associated formula. If the formula has not been constructed yet, it checks for

the trivial base cases (TRUE or FALSE). If we are not at the base case, then it

constructs a formula recursively on the BDD structure. For every value in the

type of the �rst variable2 we restrict b to that value, remove the variable from

the list, construct the formula recursively for that restricted BDD, and add the

result into the �nal formula. Finally, the result is included into the hash table

before it is returned.

If the internal representation of the formula being constructed is done using

pointers, then multiple occurences of the same subformula in the �nal formula

does not cause the formula to grow exponentially in the size of b. In fact, its size

is only linear. However, the formula cannot be easily printed without losing this

structure sharing. A simple solution to that would be to print the subformulas

collected in the hash table with names assigned to them, and then print the �nal

formula that has the names instead of these subformulas. However, the formula

will be ugly and hardly manageable both for a human and for a mechanical tool

reading it. We designed a set of simpli�cations that make the formula look a lot

more understandable and even more compact. These transformations are applied

for each program variable before the function returns from the recursive call.

Example 1. Let us consider the abstract system of the Bakery example (see

e.g. [7]). If we apply the basic algorithm (see Figure 2) to the obdd that char-

2 We assume that the types are always �nite.
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acterizes the reachable states of this abstract system, we obtain the following

formula:
(a1 ) (a2 ) a3 ^ pc1 = l11^ pc2 = l21)^

(:a2) a3 ^ pc1 = l11^ pc2 6= l21))^

(:a1) (a2 ) :a3^ pc1 6= l11 ^ pc2 = l21)^

(:a2) (a3) pc1 6= l11 ^ pc2 = l22)^

(:a3) pc1 = l12 ^ pc2 6= l21)))

The concretization of the above formula yields the conjunction of following for-

mulae:

(y1 = 0 ^ y2 = 0)) pc1 = l11 ^ pc1 = l21 (1)

(y1 = 0 ^ y2 > 0)) pc1 = l11 ^ pc1 6= l21 (2)

(y1 6= 0 ^ y2 = 0)) pc1 6= l11 ^ pc1 = l21 (3)

y1 6= 0 ^ y2 6= 0 ^ y1 � y2 ) pc1 6= l11 ^ pc1 = l22 (4)

y1 6= 0 ^ y2 6= 0 ^ y1 > y2 ) pc1 = l12 ^ pc1 6= l21 (5)

In this example, the concrete invariant obtained by this approach is stronger than

the invariant generated by the method presented in [9,5]. The invariants (4) and

(5) cannot be immediately obtained by these methods. Indeed, these methods

cannot easily generate invariants relating the variables of di�erent processes.

4 Analyzing Counter-examples and Re�ning Abstraction

Relations

A key issue in applying the veri�cation method described by Theorem 1, respec-

tively Rule (Inv-Uni), is �nding a suitable abstraction relation �. In this section,

we discuss a heuristic for �nding an initial abstraction relation and present a

method for re�ning it by analyzing abstract counter-examples, that is, counter-

examples of the abstract system.

4.1 Initial Abstraction Relation

Assume that we are given a syntactic transition system S = (X; �; �) and a

quanti�er-free formula P with free variables in X. Henceforth, we assume that �

is given as a �nite disjunction of transitions �1; � � � ; �n, where each �i is given by a

guard gi that is quanti�er-free formula and a multiple-assignment x1; � � � ; xn :=

e1; � � � ; en.

We want to prove that P is an invariant of S. To do so, we choose a constant

N 2 ! and compute
V
i�N wpi�(P ). Then,

V
i�N wpi�(P ) is also a quanti�er-

free formula. Let F = ff1; � � � ; fmg be the set of atomic formulas that appear

in
V
i�N wpi�(P ) in the predicate describing the initial states or in the property.

(Notice that one can choose N suÆciently large to include the atomic formulae in

the guards.) Then, we introduce for every formula fi an abstract variable ai and

de�ne the abstraction function � de�ned by ai � fi. In [6], we show how given a
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transition system S, a predicate P and an abstraction function �, we compute

a system Sa such that S vP
� Sa and a predicate P a such that ��1(P a) � P .

Rule (Inv-Uni) addresses the question of how to bene�t from computing the set

of reachable states of Sa even when Sa does not satisfy 2P a. In this, section we

address the following questions:

1. given a counter-example for Sa j= 2P a does it correspond to some behavior

in the concrete system and

2. in case the answer to the �rst question is no, how can we use the given

counter-example to re�ne the abstraction function.

Identifying false negatives As in this paper, we focus on invariance proper-

ties, counter-examples are �nite computations. Let �a = sa0�
a
1 s

a
1 � � � �

a
ns

a
n be a

counter-example for Sa j= 2P a. The concretization ��1(�a) of �a is the sequence

��1(sa0)�0�
�1(sa1) � � � �n�1�

�1(san). We call ��1(�a) a symbolic computation of

S, if there exists a computation s0�1s1 � � � �nsn of S such that si 2 ��1(sai ), for

i = 0; � � � ; n. Clearly, this de�nition can be generalized to arbitrary sequences

Q0�1Q1 � � ��nQn, with Qi � �. Then, we have the following:

Lemma 1. A sequence Q0�1Q1 � � ��nQn, with Qi � � is a symbolic computa-
tion i� � \ X0 6= ;, where Xn = Qn and Xn�i�1 = Qn�i�1 \ pre�n�i (Xn�i).
2

Lemma1 suggests the procedure CouAnal given in Figure 3 for checking whether

an abstract counter-example is a false negative or whether it corresponds to a

behavior of the concrete system.

Input: An abstract counter-example �a = sa0�
a
1 s

a
1 � � � �

a
ns

a
n

X := ��1(san);

i := n;
while (X 6= ; and i > 0) do

Y := X;

X := pre�i(X) \ ��1(sai�1);

i := i� 1

od

if i = 0 and � \X 6= ; then return "the following is a counter-example:"
Take any s 2 � \X 6= ;

Let s0 := s; s1 := �1(s0) � � � ; sn := �n(sn�1)

write s0 � � � sn
else return i; Y

�

Fig. 3. Counter-example Analyzer: CouAnal
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Re�ning the abstraction function First, we consider a simple re�nement strategy

of the abstraction function. Thus, let �a = sa0�
a
1 s

a
1 � � ��

a
ns

a
n be a counter-example

for Sa j= 2P a that is not a symbolic computation of S. By Lemma 1, procedure

CouAnal returns some i � n and a set Y = Xi � � such that Xi�1 = ;3. Now,

since Xi�1 = ;, Qi�1 � wp�i(:Xi) and abstract transitions from abstractions

of states in Qi�1 to abstractions of states in Xi are super
uous and should be

omitted. To achieve this, we add for every atomic formula f in :Xi which is

not already in �, a corresponding new abstract variable af with af � f . Let

�e denote the so-obtained new abstraction function. Moreover, let Sae be the

abstract system with (sa1 ; s
a
2) 2 �e i� there exist concrete states s1; s2 such that

(si; s
a
i ) 2 �e, for i = 1; 2, and (s1; s2) 2 �. Then, �a is not a computation of Sae .

Speeding-up re�nement of abstraction functions The simple illustrative exam-

ple given in Figure 4 shows that in general applying �nitely many times the

procedure CouAnal is not suÆcient. In this example, we want to show that lo-

cation l2 is not reachable and we initially take the abstraction function de�ned

a � x = y. After the n-th application of CouAnal we will have the abstraction

function de�ned by a1 � x = y; � � � ; ai � x+ i = y; � � � ; an � x+n = y. However,

the abstraction function we need is a � x = y; a1 � x > y. The problem here

is clearly that the abstract counter-examples contain abstract transitions that

correspond to the unfolding of a loop in the concrete system. In the following,

we generalize procedure CouAnal to cope with this situation. Let us �rst explain

the main idea.

l0
l1 l2

x; y := 1; 0 x=y

x++

Fig. 4. Example for showing that speeding-up is needed

Henceforth, we assume that the description of the concrete system makes a

clear distinction between control and data variables. That is, we assume that

the concrete system is given by an extended transition system as in Figure 4,

where l0; l1; l2 are the control locations and x and y are the data variables.

Let �a = sa0�
a
1 s

a
1 � � � �

a
ns

a
n be a counter-example for Sa j= 2P a. Assume that

�i0 ; � � � ; �i1 is a loop in the control graph of the concrete system. In the procedure

CouAnal we apply one time pre�i on each Xi. However, since �i0 ; � � � ; �i1 is a loop,

it is more interesting to apply an arbitrary number of times pre(�i0 ; � � � ; �i1) on
Xi1 , that is, to consider

W
i2! pre

i(�i0 ; � � � ; �i1) on Xi1 .

3 We assume that i > 0 as the case of i = 0 is easily handled
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For instance, in the example of Figure 4, applying
W
i2! pre

i(x++) on x = y

gives after quanti�er elimination the predicate x � y. Now, since pre(x; y :=

1; 0)(x � y) is empty our strategy consists in adding an abstract variable b such

that b is true in the abstraction of a state s i� s satis�es :(x � y) which is

x > y; what we indeed expect.

This idea of speeding-up counter-example analyzes leads to the procedure

AccCouAnal given in Figure 5. There are several remarks to say about pro-

Input: An abstract counter-example �a = sa0�
a
1 s

a
1 � � � �

a
ns

a
n;

Let L1; � � � ; Lm be loops in the concrete system such that

Lj = �ij ; � � � ; �ij+kj and
�1; � � � ; �n = �1; � � � ; �i1�1L1; �i1+k1+1; � � � ; Lm; �im+km+1; � � � ; �n;

X := ��1(san);

i := n;
k := m;

while (X 6= ; and i > 0) do

Y := X;
if i = ik then

X :=
W
j2!

pre
j

Lk
(X) \ ��1(sai�1);

i := i� length(Lk)

else X := pre�i (X) \ ��1(sai�1)

�
i := i� 1

od

if i = 0 and � \X 6= ; then return "S does not satisfy the property"
else return i; Y

�

Fig. 5. Accelerated Counter-example Analyzer: AccCouAnal

cedure AccCouAnal. The �rst one is that for a sequence �1; � � � ; �n of tran-

sitions there are in general several but �nitely many ways to partition it in

�1; � � � ; �i1�1L1; �i1+k1+1; � � � ; Lm. The accuracy of the obtained abstraction func-

tion depends on this choice. In principle, one could, however, consider all pos-

sible choices and combine the obtained abstraction functions into a single one

(take their conjunction). An other point is that in order to have reasonably sim-

ple abstraction functions one needs to simplify the predicates
W
j2! pre

j
Lk
(X) \

��1(Qi�1), in particular, when possible, one should eliminate the existential

quanti�cation on i.
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5 Example

To illustrate how we can use the procedure CouAnal, we consider the veri�cation

of the Bounded Retransmission protocol [27,18,20,19], BRP for short.

The BRP accepts requirements from a producer to transmit a �le of data to

a consumer. The protocol consists of a sender at the producer side and a receiver

at the consumer side (see Figure 6). Sender transmits data frames to the receiver

L

K

Sender

aahead

head

a�le

�le

Receiver

Fig. 6. The Bounded Retransmission Protocol.

via channel K and waits for acknowledgment via channel L. Since these channels

may lose messages timeouts are used to identify a loss of messages. After sending

a message, the sender waits for an acknowledgment. When the acknowledgment

arrives, the sender either proceeds with the next message in the �le, if there

is one, or sends a con�rmation message to the producer. However, if a timeout

occurs before reception of an acknowledgment, the sender retransmits the same

message. This procedure is repeated as often as speci�ed by a parametermax. On

its side, the receiver after acknowledging a message that is not the last one waits

for further messages. If no new message arrives before a timeout, it concludes

that there is a loss of contact to the sender and reports this to the consumer.

Since the same message may be sent several times by the sender, a data frame

includes a bit to indicate whether the same datum is resent or not. In fact, the

BRP protocol can be seen as an extension of the alternating bit protocol [2].

The protocol is responsible for informing the producer whether the �le has been

transmitted correctly. On the consumer side, the protocol passes data frames

indicating whether the datum is the �rst one in a �le, the last one, or whether it

is an intermediate one. Thus, a data frame contains also the information whether

the data is the �rst, the last, or an intermediate. A third timeout is used in case

a transmission has been interrupted to ensure that the sender waits enough to

be sure that the receiver is prepared to receive new frames.
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Correctness Criterion In the original formulation the requirements on the pro-

tocol are given by an abstract BRP-spec, and the task is to prove that BRP

implements BRP-spec. To reduce the problem of proving that BRP implements

BRP-spec to an invariance problem, we consider a superposition of BRP and

BRP-spec and prove that the superposed protocol, BRP+, satis�es the invari-

ance property 2Safe, where Safe is a variable that is set to false as soon as

BRP makes a transition that is not allowed by BRP-spec. It should be realized

that BRP+ contains for many variables of the protocol two di�erent copies cor-

responding to the variable in BRP and BRP-spec, respectively. So, for instance

there are two variables �le and a�le which correspond to the �le to be sent

and two variables head and ahead which correspond to the position of the data

being processed in �le and a�le, respectively. It is also worth mentioning that

the variables head and ahead are never compared in BRP+. Any relation be-

tween them these variables can not be deduced from the speci�cation of BRP+.

The property that says the data transmitted is the same as the data received is

important for the veri�cation of this protocol.

5.1 Veri�cation of the Protocol

The BRP protocol represents a family of parameterized protocols. The param-

eters are the number of allowed retransmissions max, the length of a �le last,

and �nally, the data type Data. Let us describe now the main steps we followed

in the veri�cation of BRP using InVeSt [7].

An initial abstraction function is generated automatically and used to com-

pute an abstract system of the BRP+. This initial abstraction function is ob-

tained from the predicates describing the initial states, the speci�cation andV
i�N wpi�(P ) with i = 1. The abstraction is the identity on variables ranging

over �nite domains . The concrete variables that range over an in�nite, resp.

parameterized domain, and their abstract versions are (partially) given in the

following table:

head<last � �le = MANY (a�le[ahead]=data(msg)) � msga�le

(head=last) � (�le=ONE) (a�le[ahead]=data(k)) � ka�le

(head=last+1) � (�le=NONE) rn=0 � :Rn
...

...

It turns out the abstract system obtained by the initial abstraction does not

satisfy the speci�cation. The provided trace by the model-checker SMV has 6

states, each state contains 39 variables (not all of them booleans). This trace

is concretized and checked using CouAnal. The result of this analysis is that

this counter-example is spurious. Moreover, the result of this analyzes is that

we have to add a boolean abstract variable hah that is true i� head = ahead.
Then, analyzing the abstract system obtained by this new abstraction shows

a new counter-example. In this new counter-example, �rst head is incremented

which on the abstract level assigns false to hah as initially head = ahead. Then,
after a few steps, ahead is incremented. Thus, though, at the concrete level
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head = ahead, this cannot be inferred at the abstract level. Indeed, applying

CouAnal shows us that we have to add a new abstract variable corresponding to

head = ahead + 1. Again, the abstract system obtained by this new abstraction

shows a new counter-example. This time the incrementation of ahead precedes

head and we have to add a new abstract variable corresponding to head + 1 =

ahead. And now we are done. The new abstraction is �ne enough for proving the

property; the constructed �nite abstract system satis�es the speci�cation.

As a second experimentation we used the proof rule (Inv-Uni) to verify the

BRP protocol. We started with the initial abstract system. But rather than going

through the re�nement process of the abstraction function, we concretized, using

the procedure described in section 3, the OBDD that characterizes the abstract

reachable states of the �rst abstract system. One iteration of strengthening was

needed to prove the desired property of BRP protocol.

6 Conclusion

We have presented a novel veri�cation methodology that combines abstraction,

model-checking and deductive methods. To support this methodology, and in

particular, the veri�cation by abstraction method we developed techniques for re-

�ning abstraction functions. These are based on the analysis of counter-examples

and allow in many cases the simultaneous analysis of in�nitely many examples

by applying acceleration techniques. These techniques have been implemented in

the tool InVeSt, which is a tool for verifying invariance properties of in�nite-state

systems. InVeSt is based on PVS and connected to SMV. Since then we applied

these techniques to several interesting examples and the results are promising.

In contrast to [11] we did not consider liveness properties. For in�nite-state

systems, the key issue is techniques for automatically generating ranking func-

tions and fairness conditions (cf. [3,4,22]).
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