
CSL Technical Report SRI-CSL-01-01 • April 2001

Theory Interpretations in PVS

Sam Owre and N. Shankar

Funded by NASA Langley Research Center contract numbers NAS1-20334 and
NAS1-0079 and DARPA/AFRL contract number F33615-00-C-3043.

Computer Science Laboratory • 333 Ravenswood Ave. • Menlo Park, CA 94025 • (650) 326-6200 • Facsimile: (650) 859-2844

Abstract

We describe a mechanism for theory interpretations in PVS. The mechanization makes
it possible to show that one collection of theories is correctly interpreted by another col-
lection of theories under a user-specified interpretation for the uninterpreted types and con-
stants. A theory instance is generated and imported, while the axiom instances are generated
as proof obligations to ensure that the interpretation is valid. Interpretations can be used to
show that an implementation is a correct refinement of a specification, that an axiomatically
defined specification is consistent, or that a axiomatically defined specification captures its
intended models.

In addition, the theory parameter mechanism has been extended with a notion oftheory
as parameterso that a theory instance can be given as an actual parameter to an imported
theory. Theory interpretations can thus be used to refine an abstract specification or to
demonstrate the consistency of an axiomatic theory. In this report we describe the mecha-
nism in detail. This extension is a part of PVS version 3.0, which will be publicly released
in mid-2001.

i

ii

Contents

1 Introduction 1

2 Mappings 5

3 Theory Declarations 11

4 Prettyprinting Theory Instances 19

5 Comparison with Other Systems 21

6 Future Work 25

7 Conclusion 27

Bibliography 29

iii

iv

Chapter 1

Introduction

Theory interpretations have a long history in first-order logic [Sho67,End72,Mon76]. They
are used to show that the language of a given source theoryS can be interpreted within a tar-
get theoryT such that the corresponding interpretation of axioms ofS become theorems of
T . This demonstrates the consistency ofS relative toT , and also the decidability ofS mod-
ulo the decidability ofT . Theories and theory interpretations have also become important in
higher-order logic and type theory with languages such as EHDM [EHD93], IMPS [Far92],
HOL [Win92], Maude [CDE+99], Extended ML [ST97], and SPECWARE[SJ95]. In these
languages, theories are used as structuring mechanisms for large specifications so that ab-
stract theories can be refined into more concrete ones through interpretation. In this report,
we describe a theory interpretation mechanism for the PVS specification language.

Specification languages and programming languages usually have some mechanism for
packaging groups of definitions into modules. Lisp and Ada havepackages. Standard ML
has a module system consisting of signatures, structures corresponding to a signature, and
functors that map between structures. Packages can be made generic by allowing certain
declarations to serve as parameters that can be instantiated when the package is imported.
Ada hasgenericpackages that allow parameters. SMLfunctorscan be used to construct
parametric modules. C++ allowstemplates.

In specification languages, atheorygroups together related declarations of constants,
types, axioms, definitions, and theorems. One way of demonstrating the consistency of
such a theory is by providing an interpretation for the uninterpreted types and constants
under which the axioms are valid. The definitions and theorems corresponding to a valid
interpretation can then be taken as valid without further proof as long as they have been
verified in the source theory. The technique of interpreting one axiomatic theory in another
has many uses. It can be used to demonstrate the consistency or decidability of the former
theory with respect to the latter theory. It can also be used to refine an abstract theory down
to an executable implementation.

1

Interpretations are also useful in showing that the axioms capture the intended mod-
els. For example, a clock synchronization algorithm was developed in EHDM and was later
shown to be consistent using the mappings, but it turned out that in one place< was used
instead of≤, and because of this a set of perfectly synchronized clocks was actually disal-
lowed by the model. Using interpretations in this way is similar to testing in allowing for
the exploration of the space of models for the theory.

Parametric theories in PVS share some of the features of theory interpretations. Such
theories can be defined with formal parameters ranging over types and individuals, for
example,1

group[G: TYPE, + : [G, G -> G], 0: G, -: [G -> G]]: THEORY
BEGIN

...
END group

An instance of the theorygroup can be imported by supplying actual parameters, the
type int of integers, integer addition+, zero0, and integer negation- , corresponding to
the formal parameters, as ingroup[int, +, 0, -] . A theory can include assump-
tions about the parameters that have to be discharged when the actual parameters are sup-
plied. For example, the group axioms can be given as assumptions in thegroup theory
above. However, there are some crucial differences between parametric theories and the-
ory interpretations. In particular, if axioms are always specified as assumptions, then the
theory can be imported only by discharging these assumptions. It is necessary to have sep-
arate mechanisms for importing a theory with the axioms, and for interpreting a theory by
supplying a valid interpretation, that is, one that satisfies its axioms.

The PVS theory interpretation mechanism is quite similar to that for theory parameter-
ization. The axiomatic specification of groups could alternately be given in a theory

group: THEORY
BEGIN

G: TYPE+
+: [G, G -> G]
0: G
-: [G -> G]

...
END group

The group axioms are declared in the body of the theory. Such a theory can be inter-
preted by writinggroup{{G := int, + := +, 0 := 0, - := -}} . Here the left-
hand sides refer to the uninterpreted types and constants of theorygroup , and the right-
hand sides are the interpretations. This notation resembles that of theory parameterization

1This exploits a new feature of PVS version 3.0, in which numbers may be overloaded as names.

2

and is used in contexts where a theory is imported. The corresponding instances of the
group axioms are generated as proof obligations at the point where the theory is imported.
The result is a theory that consists of the corresponding mapping of the remaining declara-
tions in the theorygroup . This allows the theorygroup to be used in other theories, such
as rings and fields, and also allows the theorygroup to be suitably instantiated by group
structures.

Theory interpretations largely subsume parametric theories in the sense that the the-
ory parameters and the corresponding assumings can instead be presented as uninterpreted
types and constants and axioms so that the actual parameters are given by means of an in-
terpretation. However, a parametric theory with both assumings and axioms involving the
parameters is not equivalent to any interpreted theory, as the parameters may be instanti-
ated without the need to prove the axioms. It is also useful to have parametric theories as a
convenient way of grouping together all the parameters that must be provided whenever the
theory is used. For example, typical theory parameters such as the size of an array, or the
element type of an aggregate datatype such as an array, list, or tree, are required as inputs
whenever the corresponding theories are used. While this kind of parameterization can be
captured by theory interpretations, it would not capture the intent that these parameters are
required inputs wherever the theory is used. Furthermore, when an operation from a para-
metric theory is used, PVS attempts to figure out the actual parameters based on the context
of its use. It can do this because the formal parameters are precisely delimited. The corre-
sponding inference is harder for theory interpretations since there might be many possible
interpretations that are compatible with the context of the operations use.

In addition to the uninterpreted types and constants in a source theoryS , the PVS theory
interpretation mechanism can also be used to interpret any theories that are imported into
S by means of theTHEORYdeclaration. The interpretation of a theory declaration forS ′

imported withinS must itself be a theory interpretation ofS ′. Two distinct importations
of a theoryS ′ within S can be given distinct interpretations. A typical situation is when
two theoriesR1 andR2 both import a theoryS asS1 andS2, respectively. A theoryT
importing bothR1 andR2 might wish to identifyS1 andS2 since, otherwise, these would
be regarded as distinct withinT . This can be done by importing an instanceS ′ of S into
T and importingR1 with S1 interpreted byS ′ and R2 with S2 interpreted asS ′. With
theory interpretations, we have also extended parametric theories in PVS to take theories
as parameters. For example, we might have a theorygroup homomorphism of group
homomorphisms that takes two groupsG1andG2as parameters as in the declaration

group_homomorphism[G1, G2: THEORY group]: THEORY ...

The actual parameters for these theory formals must be interpretationsG1’ andG2’ of the
theorygroup .

Another typical requirement in a theory interpretation mechanism is the ability to map a
source type to some quotient with respect to an equivalence relation over a target type. For

3

example, rational numbers can be interpreted by means of a pair of integers corresponding
to the numerator and denominator, but the same rational number can have multiple such rep-
resentations. We show how it is possible to define quotient types in PVS and use these types
to capture interpretations where the equality over a source type is mapped to an equivalence
relation over a target type.

The implementation of theory interpretation in PVS is described in the following chap-
ters. This report assumes the reader is already familiar with the PVS language; for details
see the PVS Language Manual [OSRSC99]. Chapter 2 deals with mappings, explaining the
basic concepts and introduces the grammar. Chapter 3 introduces theory declarations and
theories as parameters which allow any valid interpretation of the formal parameter theory
as an actual parameter. Chapter 4 describes a new command for viewing theory instances.
Chapter 5 compares PVS interpretations with other systems, Chapter 6 describes future
work, and we conclude with Chapter 7.

4

Chapter 2

Mappings

Theory interpretations in PVS provide mappings for uninterpreted types and constants of
the sourcetheory into the current (interpreting) theory. Applying a mapping to a source
theory yields aninterpretation (or target) theory. A mapping is specified by means of
the mappingconstruct, which associates uninterpreted entities of the source theory with
expressions of the target theory. The mapping construct is an extension to the PVS notion
of “name”. The changes to the existing grammar are given in Figure 2.1.

The mapping construct defines the basic translation, but to be a theory interpretation the
mapping must be consistent: if typeT is mapped to the type expressionE, then a constantt
of typeT must be mapped to an expressioneof typeE. In addition, all axioms and theorems
of the source theory must be shown to hold in the target theory under the mapping. Since
the theorems are provable from the axioms, it is enough to show that the translation of the
axioms hold. Axioms whose translations do not involve any uninterpreted types or constants
of the source theory are converted to proof obligations. Otherwise they remain axioms.

Theory interpretation may be viewed as an extension of theory parameterization. Given
a theory namedT, the instanceT[a 1,...,a n]{{c 1:= e 1,...,c m := e m }} is the
same as the original theory, with theactualsai substituted for the corresponding formal

TheoryName ::= [Id @] Id [Actuals] [Mappings]
Name ::= [Id @] IdOp [Actuals] [Mappings] [. IdOp]
Mappings ::= {{ Mapping++’ , ’ }}

Mapping ::= MappingLhs MappingRhs

MappingLhs ::= IdOp Bindings∗ [: {TYPE | THEORY| TypeExpr}]
MappingRhs ::= := {Expr | TypeExpr}

Figure 2.1: Grammar for Names with Mappings

5

parameters, and ei substituted forc i , which must be an uninterpreted type or constant
declaration. Declarations that appear in the target of a substitution in the mapping are
not visible in the importing theory. Some axioms are translated to proof obligations. The
substituted forms of any remaining axioms, definitions, and lemmas are available for use,
and are considered proved if they are proved in the uninterpreted theory.

The following simple example illustrates the basic concepts.

th1[T: TYPE, e: T]: THEORY
BEGIN

t: TYPE+
c: t
f: [t -> T]
ax: AXIOM EXISTS (x, y: t): f(x) /= f(y)
lem1: LEMMA EXISTS (x:T): x /= e

END th1

th2: THEORY
BEGIN

IMPORTING th1[int, 0]
{{ t := bool,

c := true,
f(x: bool) := IF x THEN 1 ELSE 0 ENDIF }}

lem2: LEMMA EXISTS (x:int): x /= 0
END th2

Here theoryth1 has both actual parameters and uninterpreted types and constants, as well
as an axiom and a lemma. Theoryth2 importsth1 , making the following substitutions:

T ← int
e ← 0
t ← bool
c ← true
f ← LAMBDA (x: bool): IF x THEN 1 ELSE 0 ENDIF

Note that the mapping forf uses an abbreviated form of substitution. Typechecking this
leads to the following proof obligation.

IMP_th1_TCC1: OBLIGATION
EXISTS (x, y: bool):

IF x THEN 1 ELSE 0 ENDIF /= IF y THEN 1 ELSE 0 ENDIF;

This is simply the interpretation of theax axiom and is easily proved. The lemmalem1
can be proved from the axiom, and may be used directly in provinglem2 using the proof
command(LEMMA "lem1") .

6

Note that once the TCC has been proved, we know thatth1 is consistent. If we had left
out the mapping forf , then the TCC would not be generated, and the translation of theory
th1 would still contain an axiom and not necessarily be consistent.

One advantage to using mappings instead of parameters is that not all uninterpreted
entities need be mapped, whereas for parameters either all or none must be given. For
example, consider the following theory.

example1[T: TYPE, c: T]: THEORY
BEGIN

f(x: T): int = IF x = c THEN 0 ELSE 1 ENDIF
END example1

It may be desirable to import this whereT is alwaysreal , andc is left as a parameter,
but there is currently no mechanism for this. One could envision partial importings such as
IMPORTING example1[real,] , but it is not clear that this is actually practical—in
particular, the syntax for providing the missing parameters is not obvious. With mappings,
on the other hand, we can defineexample1 as follows.

example1: THEORY
BEGIN

T: TYPE
c: T
f(x: T): int = IF x = c THEN 0 ELSE 1 ENDIF

END example1

Then we can refer to this theory from another theory as in the following.

example2: THEORY
BEGIN

th: THEORY = example1{{T := real}}
frm: FORMULA f{{c := 3}} = f

END example2

The th theory declaration just instantiatesT, leavingc uninterpreted. The first reference
to f mapsc to 3, whereas the second reference leaves it uninterpreted though it is still a
real . Note that formulafrm is unprovable, since the uninterpretedc from the second
reference may or may not be equal to3.

As described in the introduction, an important aspect of mappings is the support for
quotient types. In EHDM this was done by interpreting equality, but in PVS we instead
define a theory of equivalence classes, and allow the user to map constants to equivalence
classes under congruences. For example, thestacks datatype might be implemented
using an array as follows.

7

stack[t:TYPE]: DATATYPE
BEGIN

empty: empty?
push(top:t, pop: stack): nonempty?

END stack

cstack[t: TYPE+]: THEORY
BEGIN

cstack: TYPE = [# size: nat, elems: [nat -> t] #]
cempty?(s: cstack): bool = (s‘size = 0)
cempty: (cempty?) =

(# size := 0,
elems := LAMBDA (n: nat): epsilon(LAMBDA (x:t): true) #)

cnonempty?(s: cstack): bool = (s‘size /= 0)
ctop(s: (cnonempty?)): t = s‘elems(s‘size - 1)
cpop(s: (cnonempty?)): cstack = s WITH [‘size := s‘size - 1]
cpush(x: t)(s: cstack): (cnonempty?) =

(# size := s‘size + 1,
elems := s‘elems WITH [(s‘size) := x] #)

ce(s1, s2: cstack): bool =
s1‘size = s2‘size AND
FORALL (n: below(s1‘size)): s1‘elems(n) = s2‘elems(n)

IMPORTING equivalence_class[cstack, ce], lifteq, lifteqs
...

Theequivalence class theory defines the quotient type ofcstack with respect to
the equivalence relationce . It is defined as follows.

equivalence_class[T:TYPE, ==: (equivalence?[T])] : THEORY
BEGIN

x, y: VAR T

equiv_class(x): setof[T] = {y | x == y }
E: TYPE = {A: setof[T] | EXISTS x: A = equiv_class(x) }
rep(A: E): (A) = epsilon(A)
CONVERSION equiv_class, rep

equiv_class_covers: LEMMA FORALL x: EXISTS (A: E): member(x, A)
equiv_class_separates: LEMMA

NOT (x == y)
IMPLIES disjoint?(equiv_class(x), equiv_class(y))

END equivalence_class

Note that it introducesequiv class andrep as conversions. The type of the== param-
eter ensure that only equivalence relations are used in generating equivalence classes. The
typeE is the type of equivalence classes.

8

The lifteq andlifteqs theories allow functions on concrete stacks to be lifted to
functions on equivalence classes, so long as they are congruences, that is, they satisfy the
preserves relation.

lifteq[D, R: TYPE, deq: (equivalence?[D])]: THEORY
BEGIN

IMPORTING equivalence_class
lift(f:(preserves[D, R](deq, =[R])))(A:E[D,deq]) : R

= f(rep(A))
CONVERSION lift

END lifteq

lifteqs[D, R: TYPE,
deq: (equivalence?[D]), req: (equivalence?[R])]

: THEORY
BEGIN

IMPORTING equivalence_class
lift(f:(preserves[D, R](deq, req)))(A:E[D,deq]) : E[R,req]

= equiv_class[R,req](f(rep(A)))
CONVERSION lift

END lifteqs

For lifteqs , f satisfies thepreserves relation if the following holds

FORALL (x1, x2: D): deq(x1,x2) IMPLIES req(f(x1),f(x2))

The reader might notice that thelifteq theory is not really necessary, as
lifteq[D, R, deq] is semantically equivalent tolifteqs[D, R, deq, =[R]] .
However, in practice thelift conversion of lifteqs is not applied with-
out explicitly importing the correct instances. In addition, terms such as
rep[int,=[int]](equiv class[int,=[int]](13)) end up being constructed, and
it takes some work to reduce this to13.

With these theories imported, we can finish the specification ofcstack as follows.

...
estack: TYPE = E
IMPORTING stack[t]{{ stack := estack,

empty? := cempty?,
nonempty? := cnonempty?,
empty := cempty,
push(x: t, s: estack) := cpush(x)(s),
top := ctop,
pop := cpop }}

END cstack

9

Here the source typestack is mapped to the equivalence classE defined by the concrete
equality ce , by means of theequiv class conversion. The constantempty is then
mapped to its equivalence class. The mapping forpush is more involved;cpush must
first be lifted in order to apply it to the abstract stacks . This is applied automatically by
the conversion mechanism of PVS. The application oflift generates the proof obligation
thatcpush preserves the equivalences, that is, it is a congruence. This mapping generates a
large number of proof obligations, because thestack datatype generates astacks adt
theory with a large number of axioms, for example, extensionality, well-foundedness, and
induction.

The PVS interpretations mechanism is much simpler to implement than the one in
EHDM—equality is not a special case, but simply an aspect of mapping a type to an equiv-
alence class. The technique of mapping types to equivalence classes is quite useful, and
captures the notion of behavioral equivalence outlined in [ST97]. In fact it is more general,
in that it works for any equivalence relation, not just those based on observable sorts.

10

Chapter 3

Theory Declarations

With the mapping mechanism, it is easy to specify a general theory and have it stand for
any number of instances. For example, groups, rings, and fields are all structures that can
be given axiomatically in terms of uninterpreted types and constants. This works well when
considering one such structure at a time, but it is difficult to specify theories that involve
more than one structure, for example, group homomorphisms. Importing the original the-
ory twice is the same as importing it once, and an attempted definition of a homomorphism
would turn into an automorphism. In this case what is needed is a way to specify multiple
different “copies” of the original theory. This is accomplished withtheory declarations,
which may appear in either the theory parameters or the body of a theory. A theory declara-
tion in the formal parameters is referred to as atheory as parameter.1 Theory declarations
allow theories to be encapsulated, and instantiated copies of the implicitly imported theory
are generated.

For example, an (additive) group is normally thought of as a 4-tuple consisting of a set
G , a binary operator+, an identity element0, and an inverse operator− that satisfies the
usual group axioms. Using theory interpretations, we simply define this as follows:

1The termtheory parameterrefers to a parameter of a theory, so we use the termtheory as parameter
instead.

11

group: THEORY
BEGIN

G: TYPE+
+: [G, G -> G]
0: G
-: [G -> G]
x, y, z: VAR G
associative_ax: AXIOM FORALL x, y, z: x + (y + z) = (x + y) + z
identity_ax: AXIOM FORALL x: x + 0 = x
inverse_ax: AXIOM FORALL x: x + -x = 0 AND -x + x = 0
idempotent_is_identity: LEMMA x + x = x => x = 0

END group

As described in Chapter 2, we can use mappings to create specific instances of groups.
For example,

group{{G := int, + := +, 0 := 0, - := -}}

is the additive group of integers, whereas

group{{G := nzreal, + := *, 0 := 1, - := LAMBDA (r:nzreal): 1/r}}

is the multiplicative group of nonzero reals.
This works nicely, until we try to define the notion of a group homomorphism. At

this point we need two groups, both individually instantiable. We could simply duplicate
the group specification, but this is obviously inelegant and error prone. Using theories as
parameters, we may define group homomorphisms as follows.

TheoryFormalDecl ::= TheoryFormalType| TheoryFormalConst| TheoryDecl

TheoryDecl ::= Id : THEORYTheoryDeclName

TheoryDeclName ::= [Id @] Id [Actuals] [TheoryDeclMappings]
TheoryDeclMappings ::= {{ TheoryDeclMapping++’ , ’ }}

TheoryDeclMapping ::= MappingLhs TheoryDeclMappingRhs

TheoryDeclMappingRhs ::= MappingSubst|MappingDef |MappingRename

MappingSubst ::= := {Expr | TypeExpr}
MappingDef ::= = {Expr | TypeExpr}
MappingRename ::= ::= { IdOp | Number}

Figure 3.1: Grammar for Theory Declarations

12

group_homomorphism[G1, G2: THEORY group]: THEORY
BEGIN

x, y: VAR G1.G
f: VAR [G1.G -> G2.G]
homomorphism?(f): bool = FORALL x, y: f(x + y) = f(x) + f(y)
hom_exists: LEMMA EXISTS f: homomorphism?(f)

END group_homomorphism

HereG1andG2are theories as parameters to a generic homomorphism theory that may be
instantiated with two different groups. Hence we may importgroup homomorphism ,
for example, as

IMPORTING group_homomorphism[{{G := int, + := +, 0 := 0, - := -}}
{{G := nzreal, + := *, 0 := 1,

- := LAMBDA (x: nzreal): 1/x}}]

There is a subtlety here that needs emphasizing;G1 and G2 are two distinct ver-
sions of theorygroup . For example, consider the addition of the following lemma to
group homomorphism .

oops: LEMMA G1.0 = G2.0

If G1 andG2 are treated as the samegroup theory, this is a provable lemma. But then
after the importing given above we would be able to show that0 = 1 . Even worse, the
two different instances of groups may not even be type compatible, so theoops lemma
should not even typecheck.

We have solved this in PVS by making new theoriesG1 andG2 that are copies of the
original group theory. Declarations within these copies are distinct from each other and
from the original. Thus theoops lemma generates a type error, asG1.G andG2.G are
incompatible types.

This introduces new possibilities. When creating copies of a theory the mappings are
substituted and the original declarations disappear. However, it may be preferable to create
definitions rather than substitutions. In addition, it is sometimes useful to simply rename
the types or constants of a theory. For example, consider the following group instance

G1: THEORY = group{{G := int, + := +, 0 := 0, - := -}}

which generates the following theory.

G1: THEORY
BEGIN

x, y, z: VAR int
idempotent_is_identity: LEMMA x + x = x => x = 0

END G1

13

To create definitions, use= instead of:= , as in the following.

G2: THEORY = group{{G = int, + = +, 0 = 0, - = -}}

Now we get the following theory.

G2: THEORY
BEGIN

G: TYPE+ = int
+: [G, G -> G] = +
0: G = 0
-: [G -> G] = -
x, y, z: VAR G
idempotent_is_identity: LEMMA x + x = x => x = 0

END G2

Finally, to simply rename the uninterpreted types and constants, use::= as in the follow-
ing.

G3: THEORY = group{{G ::= MG, + ::= *, 0 ::= 1, - ::= inv}}

The generated theory instance specifies multiplicative groups as follows.

G3: THEORY
BEGIN

MG: TYPE+
*: [MG, MG -> MG]
1: MG
inv: [MG -> MG]
x, y, z: VAR MG
associative_ax: AXIOM FORALL x, y, z: x * (y * z) = (x * y) * z
identity_ax: AXIOM FORALL x: x * 1 = x
inverse_ax: AXIOM FORALL x: x * inv(x) = 1 AND inv(x) * x = 1
idempotent_is_identity: LEMMA x * x = x => x = 1

END G3

The right-hand side of a renaming mapping must be an identifier, operator, or number, and
must not create ambiguities within the generated theory. Note that renamed declarations are
still uninterpreted, and may themselves be given interpretations, as in

G3i: THEORY = G3{{MG := nzreal, * := *, 1 := 1,
inv := LAMBDA (r: nzreal): 1/r}}

Finally, we can mix the different forms of mapping, to give a partial mapping.

G4: THEORY = group{{G = nzreal, + := *, 0 ::= one}}

14

This generates the following theory instance.

G4: THEORY
BEGIN

G: TYPE+ = nzreal;
one: nzreal;
-: [nzreal -> nzreal]
x, y, z: VAR nzreal
identity_ax: AXIOM FORALL (x: nzreal): x * one = x
inverse_ax: AXIOM FORALL (x: nzreal):

x * -x = one AND -x * x = one
idempotent_is_identity: LEMMA x * x = x => x = one

END G4

Note thatassociative ax has disappeared—it has become a TCC of the importing
theory—whereas the other axioms are not so transformed because they still reference unin-
terpreted types or constants.

With theories as parameters we have another situation in which mappings are more con-
venient than theory parameters. Many times the same set of parameters is passed through
an entire theory hierarchy. If there are assumings, then these must be copied. For example,
consider the following theory.

th[T: TYPE, a, b: T]: THEORY
BEGIN

ASSUMING
A: ASSUMPTION a /= b

ENDASSUMING
...

END th

To import this theory, you simply provide a type and two different elements of that type.
But suppose you wish to import this theory from a theory that has the same parameters.
In this case the assumption must also be copied, as there is otherwise no way to prove the
resulting obligation. This can (and frequently does) lead to a tower of theories, all with
the same parameters and copies of the same assumptions, as well as proofs of the same
obligations.

There are ways around this, of course. Most assumptions may be turned into type
constraints, as in the following.

th[T: TYPE, a: T, b: {x: T | a /= x}]: THEORY
...

But this introduces an asymmetry in thata andb now belong to different types, and the
type predicate still must be provided up the entire hierarchy.

Using a theory as a parameter, we may instead defineth as follows.

15

th: THEORY
BEGIN

T: TYPE,
a, b: T
A: AXIOM a /= b
...

END th

We then parameterize using this theory (which is implicitly imported):

th_1[t: THEORY th]: THEORY ...

We have encapsulated the uninterpreted types and constants into a theory, and this is now
represented as a single parameter. AxiomA is visible within theoryth 1, and no proof
obligations are generated since no mapping was given forth . Now we can continue defin-
ing new theories as follows.

th_2[t: THEORY th]: THEORY IMPORTING th_1[t] ...
th_3[t: THEORY th]: THEORY IMPORTING th_2[t] ...

...

None of these generate proof obligations, as no mappings are provided.
We may now instantiateth n, for example, with the following.

IMPORTING th_n[th{{T := int, a := 0, b := 1}}]

Now the substituted form of the axiom becomes a proof obligation which, when proved,
provides evidence that the theoryth is consistent.

With the introduction of theories as parameters, it is natural to allow theory declara-
tions that may be mapped, in the same way that instances may be provided for theories as
parameters. Thus thegroup homomorphism may be rewritten as follows:

group_homomorphism: THEORY
BEGIN

G1, G2: THEORY group
x, y: VAR G1.G
f: VAR [G1.G -> G2.G]
homomorphism?(f): bool = FORALL x, y: f(x + y) = f(x) + f(y)
hom_exists: LEMMA EXISTS f: homomorphism?(f)

END group_homomorphism

Again, the choice between using theories as parameters or theory declarations is really a
question of taste, as they are largely interchangeable.

As with theories as parameters, copies must be made forG1 andG2. Note that this
means that there is a difference between theory abbreviations and theory declarations, as

16

Importing ::= IMPORTING ImportingItem++’ , ’

ImportingItem ::= TheoryName[AS Id]

Figure 3.2: Grammar for Importings

the former do not involve any copying. We decided to use the old form of theory abbre-
viation to define theory declarations, and to extend theIMPORTINGexpressions to allow
abbreviations, as shown in Figure 3.2. Thus instead of

funset: THEORY = sets[[int -> int]]

which creates a copy of sets, use

IMPORTING sets[[int -> int]] AS funset

which importssets[[int -> int]] and abbreviates it asfunset .

17

18

Chapter 4

Prettyprinting Theory Instances

Mappings can get fairly complex, especially if actual parameters are involved, and it may be
desirable to see the specified theory instance displayed with all the substitutions performed.
To support this, we have provided a new PVS command:prettyprint-theory-
instance (M-x ppti). This takes two arguments: a theory instance, which in general
is a theory name with actual parameters and/or mappings, and a context theory, in which
the theory instance may be typechecked. The simplest way to use this command is to put
the cursor on the theory name as it appears in a theory as parameter, theory declaration, or
importing—when the command is issued it then defaults to the theory instance under the
cursor and the current theory is the default context theory. For example, putting the cursor
ongroup homomorphism in the following and typingM-x ppti followed by two car-
riage returns1 generates a buffer namedgroup homomorphism.ppi . All instances of
a given theory generate the same buffer name.

IMPORTING group_homomorphism[{{G := int, + := +, 0 := 0, - := -}}
{{G := nzreal, + := *, 0 := 1,

- := LAMBDA (x: nzreal): 1/x}}]

This buffer has the following contents.
1The first uses the theory name instance at the cursor, and the second uses the current theory as the context.

19

% Theory instance for
% group_homomorphism[groups{{ G := int, + := +,
% - := -, 0 := 0 }},
% groups{{ G := nzreal, + := *,
% - := (LAMBDA (x: nzreal): 1 / x),
% 0 := 1 }}]

group_homomorphism_instance: THEORY
BEGIN

IMPORTING groups{{ G := int, + := +, - := -, 0 := 0 }}

IMPORTING groups{{ G := nzreal, + := *,
- := (LAMBDA (x: nzreal): 1 / x), 0 := 1 }}

x, y: VAR int

f: VAR [int -> nzreal]

homomorphism?(f): bool =
FORALL (x: int), (y: int): f(x + y) = f(x) * f(y)

hom_exists: LEMMA EXISTS (f: [int -> nzreal]): homomorphism?(f)
END group_homomorphism_instance

The group instances shown on pages 13–15 provide more examples of the output produced
by prettyprint-theory-instance .

20

Chapter 5

Comparison with Other Systems

In this chapter we compare PVS theory interpretations to existing programming and spec-
ification mechanisms of other systems. The EHDM system [EHD90] has a notion of a
mapping module that maps a source module to a target module. When a mapping module
is typechecked, a new module is automatically created that represents the substitution of
the interpretations for the body of the source theory. Equality is allowed to be mapped in
EHDM, in which case it must be mapped to an equivalence relation. In PVS, mappings
are provided as a syntactic component of names, and are essentially an extension of theory
parameters. Equality is not treated specially, but is handled by mapping a given type to a
quotient type.

IMPS [FGT90,Far94] also supports theory interpretations. It is similar to EHDM in that
it has a specialdef-translation form that takes a source theory, target theory, sort as-
sociation list, and constant association list, and generates a theory translation. Obligations
may be generated that ensure that every axiom of the source theory is a theorem of the target
theory. If these are proved the translation is treated as an interpretation. There is no mech-
anism for mapping equality. As with both PVS and EHDM, defined sorts and constants of
the source theory are automatically translated. A more detailed comparison between IMPS
and an earlier version of PVS appears in an unpublished report by Kammüller [Kam96].

In Maude [CDE+99] and its precursor OBJ [GW88] it is possible to definemodules
that represent transition systems of a rewrite theory whose states are equivalence classes of
ground terms and whose transitions are inference rules inrewriting logic. A given mod-
ule may import another module, eitherprotecting it, which means that the importing
module adds nojunk or confusion, or including it, which imposes no such restrictions.
In addition to modules, Maude hastheories, which are used to declare module interfaces.
These may appear as module parameters, as inM [X1 :: T1, . . . ,Xn :: Tn], where theXi

arelabelsand theTi are names of theories. These theory parameters (source theories) may
be instantiated by target theories or modules usingviews, which indicate how each sort,

21

function, class, and message of the source theory is mapped to the target theory. However,
Maude currently does not support the generation of proof obligations from source theory
axioms, so views are simply theory translations, not interpretations.

The programming language Standard ML [MTH90] has a module system where mod-
ules are given bystructureswith a givensignature, and parametric modules arefunctors
mapping structures of a given signature to structures. The PVS mechanism of using the-
ories as parameters resembles SML functors but for a specification language rather than a
programming language. Sannella and Tarlecki [ST97] describe a version of the ML mod-
ule system in which there arespecificationscontainingsorts, operations, andaxioms. For
example, the signature of stacks is the following.

STACK= sorts stack
opns empty: stack

push: int × stack→ stack
pop : stack→ stack
top : stack→ int
is empty: stack→ bool

axioms is empty(empty) = true
∀ s : stack.∀n : int .is empty(push(n, s)) = false
∀ s : stack.∀n : int .top(push(n, s)) = n
∀ s : stack.∀n : int .pop(push(n, s)) = s

The following algebra is arealizationof the above specification that corresponds to that of
cstack on page 8.

structure S2 : STACK =
struct

type stack = (int -> int) * int
val empty = ((fn k => 0), 0)
fun push (n, (f, i))

= ((fn k => if k = i then n else f k), i+1)
fun pop (f, i) = if i = 0 then (f, 0) else (f, i-1)
fun top (f, i) = if i = 0 then 0 else f(i-1)
fun is_empty (f, i) = (i=0)

Note however, that the stacksemptyandpop(push(6,empty)) are not equal. Thus they
distinguish theobservablesorts, in this caseint andbool , which are the only data directly
visible to the user. The above two terms are notobservable computations, so it does not
matter that they are different. In general, two different algebras arebehaviorally equivalent
if all observable computations yield the same results. Note that choosing observable values
based on sorts is a bit coarse: for example, there may be twoint -valued variables, one
of which is observable and one that represents an internal pointer. Mapping to equivalence
classes is more general, as it is easy to capture behavioral equivalence.

The induction theorem prover Nqthm [BM88, BGKM91] has a feature called
FUNCTIONALLY-INSTANTIATE that can be used to derive an instance of a theorem

22

by supplying an interpretation for some of the function symbols used in defining the theo-
rem. The corresponding instances of any axioms concerning these function symbols must
be discharged. Such axioms can be introduced as conservative extensions as definitions
with theDEFUNdeclaration or through witnessed constraints using theCONSTRAINdec-
laration, or they can be introduced nonconservatively through anADD-AXIOMdeclaration.
While the functional instantiation mechanism is similar in flavor to PVS theory interpre-
tations, the underlying logic of Nqthm is a fragment of first-order logic whose expressive
power is more limited than the higher-order logic of PVS. In addition, Nqthm lacks types
and structuring mechanisms such as parametric theories.

The SPECWARElanguage [SJ95] employs theory interpretations as a mechanism for the
stepwise refinement of specifications into executable code. SPECWAREhas constructs for
composing specifications while identifying the common components, and for composition-
ally refining specifications so that the refinement of a specification can be composed from
the refinement of its components. Unlike PVS, SPECWAREhas the ability to incorporate
multiple logics and translate specifications between these logics. A theory is an indepen-
dent unit of specification in PVS and hence there is no support for composing theories from
other theories. However, the operations in SPECWAREcan largely be simulated by means
of theories and theory interpretations in PVS.

In summary, theory interpretation has been a standard tool in specification languages
since the early work on HDM [RLS79] and Clear [BG81]. PVS implements theory inter-
pretations as a simple extension of the mechanism for importing parametric theories. PVS
theory interpretations subsume the corresponding capabilities available in other specifica-
tion frameworks.

23

24

Chapter 6

Future Work

A number of interesting extensions may be contemplated for the future.

Mapping of interpreted types and constants— There are two aspects: one is simply
a convenience where, for example, we might have a tuple type declarationT: TYPE
= [T1, T2, T3] and want to map it toposition: TYPE = [real, real,
real] by simply giving the map{{T := position}} .

The second aspect is where the mapping is between two different kinds, for example
mapping a record type to a function type. This requires determining the corresponding
components as well as making explicit the underlying axioms. For example, record types
satisfy extensionality, and if they are mapped to a different type the implicit extensionality
axiom must be translated to a proof obligation.

Rewriting with congruences— In theory substitution, if a type is mapped to a quotient
type then equality over this type is mapped to equality over the quotient type. IfT is an
uninterpreted type,≡ an equivalence relation overT ′, andT ′/ ≡ the quotient type, then
=[T] is mapped to=[T ′/ ≡] , which is equivalent to≡. An equational formula thus still
has the form of a rewrite. However, to apply such a rewrite one generally needs to do some
lifting. The following is a simple example.

25

th: THEORY
BEGIN

T: TYPE
a, b: T
f, g: [T -> T]
... Some axioms involving f, g, a, and b
lem: LEMMA f(a) = g(b)

END th
th2: THEORY

BEGIN
==(x, y: int): bool = divides(3, x - y)
IMPORTING th{{T := E(==),

a := equiv_class(==)(2),
b := equiv_class(==)(1),
f := LAMBDA (x: E(==)): equiv_class(rep(x) - 1),
g := LAMBDA (x: E(==)): equiv_class(rep(x) - 2)}}

...
END th2

To rewrite withlem , a must first be lifted to its equivalence class, then the rewrite is applied
and the result is then projected back usingrep . To do this requires some modification to
the rewriting mechanism of the prover.

Consistency Analysis— With a single independent theory such as groups, it is easy to
generate a mapping in which all axioms become proof obligations, and see directly that the
theory is consistent. On the other hand, if many theories are involved in which compositions
of mappings are involved, this may become quite difficult. What is needed is a tool that
analyzes a mapped theory to see if it is consistent, and reports on any remaining axioms
and uninterpreted declarations. This is similar in spirit to proof chain analysis, but works at
the theory level rather than for individual formulas.

Semantics of Mappings— The semantics of theory interpretations needs to be formal-
ized and added to the PVS semantics report [OS97].

26

Chapter 7

Conclusion

Theory interpretations are used to embed an interpretation of an abstract theory in a more
concrete one. In this way, they allow an abstract development to be reused at the more
concrete level. Theory interpretations can be used to refine a specification down to code.
Theory interpretations can also be used to demonstrate the consistency of an axiomatic
theory relative to another theory.

Parametric theories in PVS provide some but not all of the functionality of theory in-
terpretations. In particular, they do not allow an abstract theory to be imported with only
a partial parameterization. Theory interpretations have been implemented in PVS version
3.0, which will be released in mid-2001. The current implementation allows the interpre-
tation of uninterpreted types and constants in a theory, as well as theory declarations. PVS
has also been extended so that a theory may appear as a formal parameter of another the-
ory. This allows related sets of parameters to be packaged as a theory. Quotient types have
been defined within PVS and used to admit interpretations of types where the equality on a
source type is treated as an equivalence relation on a target type.

Theory interpretations have been implemented in PVS as an extension of the theory
parameter mechanism. This way, theory interpretations are an extension of an already fa-
miliar concept in PVS and can be used in place of theory parameters where there is a need
for greater flexibility in the instantiation. The proof obligations generated by theory inter-
pretations are similar to those for parametric theories with assumptions.

A number of extensions related to theory interpretations remain to be implemented.
First, we plan to extend theory interpretations to the case of interpreted types and constants.
This poses some challenges since there are implicit operations and axioms associated with
certain type constructors. Second, the rewriting mechanisms of the PVS prover need to be
extended to rewrite relative to a congruence. This means that if we are only interested in
f (a) up to some equivalence that is preserved byf , then we could rewritea up to equiv-
alence rather than equality. Third, the PVS semantics have to be extended to incorporate

27

theory interpretations. Finally, the PVS ground evaluator has to be extended to handle
theory interpretations. Currently, the ground evaluator generates code corresponding to a
parametric theory and this code is reused with the actual parameters used as arguments to
the operations. Theory interpretations cannot be treated as arguments in this manner since
there is no fixed set of parameters; parameters can vary according to the interpretation.
Also, non-executable operations can become executable as a result of the interpretation.

In summary, we believe that theory interpretations are a significant extension to the PVS
specification language. Our implementation of this in PVS3.0 is simple yet powerful. We
expect theory interpretations to be a widely used feature of PVS.

28

Bibliography

[BG81] R. M. Burstall and J. A. Goguen. An informal introduction to specifications
using Clear. InThe Correctness Problem in Computer Science. Academic
Press, London, 1981.

[BGKM91] Robert S. Boyer, David M. Goldschlag, Matt Kaufmann, and J S. Moore.
Functional instantiation in first-order logic. In V. Lifschitz, editor,Artificial
Intelligence and Mathematical Theorem of Computation: Papers in Honor of
John McCarthy, pages 7–26. Academic Press, 1991.

[BM88] R. S. Boyer and J S. Moore.A Computational Logic Handbook. Academic
Press, New York, NY, 1988.

[CDE+99] M. Clavel, F. Duŕan, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and J. F.
Quesada. Maude: Specification and programming in rewriting logic. Tech-
nical Report CDRL A005, Computer Science Laboratory, SRI International,
March 1999.

[EHD90] Computer Science Laboratory, SRI International, Menlo Park, CA. EHDM

Specification and Verification System Version 5.0—Description of theEHDM

Specification Language, January 1990. See [EHD91] for the updates to Ver-
sion 5.2.

[EHD91] Computer Science Laboratory, SRI International, Menlo Park, CA. EHDM

Specification and Verification System Version 5.X—Supplement to User’s and
Language Manuals, August 1991. Current version number is 5.2.

[EHD93] Computer Science Laboratory, SRI International, Menlo Park, CA.User
Guide for theEHDM Specification Language and Verification System, Version
6.1, February 1993. Three volumes.

[End72] H. B. Enderton.A Mathematical Introduction to Logic. Academic Press, New
York, NY, 1972.

29

[Far92] William M. Farmer. Theory interpretations in computerized mathematics (ab-
stract).Journal of Symbolic Logic, 57(1):356, March 1992.

[Far94] W. M. Farmer. Theory interpretation in simple type theory. In J. Heering
et al., editor,Higher-Order Algebra, Logic, and Term Rewriting, volume 816
of Lecture Notes in Computer Science, pages 96–123. Springer-Verlag, 1994.

[FGT90] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPS: An in-
teractive mathematical proof system. In Mark E. Stickel, editor,10th Interna-
tional Conference on Automated Deduction (CADE), volume 449 ofLecture
Notes in Computer Science, pages 653–654, Kaiserslautern, Germany, July
1990. Springer-Verlag.

[GW88] Joseph A. Goguen and Timothy Winkler. Introducing OBJ. Technical Report
SRI-CSL-88-9, Computer Science Laboratory, SRI International, Menlo Park,
CA, August 1988.

[Kam96] F. Kamm̈uller. Comparison of IMPS, PVS and Larch with respect to the-
ory treatment and modularization. Technical report, Computer Laboratory,
University of Cambridge, 1996. Unpublished Draft 1.0, available athttp:
//www.first.gmd.de/˜florian/papers/report.ps.gz .

[Mon76] J. Donald Monk. Mathematical Logic. Graduate Texts in Mathematics.
Springer-Verlag, New York, NY, 1976.

[MTH90] R. Milner, M. Tofte, and R. Harper.The Definition of Standard ML. MIT
Press, 1990.

[OS97] Sam Owre and Natarajan Shankar. The formal semantics of PVS. Techni-
cal Report SRI-CSL-97-2, Computer Science Laboratory, SRI International,
Menlo Park, CA, August 1997.

[OSRSC99]S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert.PVS Lan-
guage Reference. Computer Science Laboratory, SRI International, Menlo
Park, CA, September 1999.

[RLS79] L. Robinson, K. N. Levitt, and B. A. Silverberg.The HDM Handbook. Com-
puter Science Laboratory, SRI International, Menlo Park, CA, June 1979.
Three Volumes.

[Sho67] Joseph R. Shoenfield.Mathematical Logic. Addison-Wesley, Reading, MA,
1967.

30

[SJ95] Yellamraju V. Srinivas and Richard Jüllig. Specware: Formal support for
composing software. In Bernhard Möller, editor,Mathematics of Program
Construction, number 947 in Lecture Notes in Computer Science, pages 399–
422. Springer-Verlag, 1995.

[ST97] Donald Sannella and Andrzej Tarlecki. Essential concepts of algebraic speci-
fication and program development.Formal Aspects of Computing, 9:229–269,
1997.

[Win92] Phillip J. Windley. Abstract theories in HOL. In Luc Claesen and Michael
J. C. Gordon, editors,Proceedings of the 1992 International Workshop on the
HOL Theorem Prover and its Applications, pages 197–210, Leuven, Belgium,
September 1992. IFIP, North–Holland.

31

