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Preface

Abstract: This report summarizes the analysis of information system survivabil-
ity. It considers how survivability relates to other requirements such as security,
reliability, and performance. It considers a hierarchical layering of requirements,
as well as interdependencies among those requirements. It identifies inadequacies
in existing commercial systems and the absence of components that hinder the
attainment of survivability. It recommends specific architectural structures and
other approaches that can help overcome those inadequacies, including research
and development directions for the future. It also stresses the importance of sys-
tem operations, education, and awareness as part of a balanced approach toward
attaining survivability.

The field of endeavor addressed in this report is inherently open ended. New research re-
sults and new software components are appearing at a rapid pace. For this reason, the report
stresses fundamentals, and is intended to be a guide to certain principles and architectural
directions whose systematic use can lead to systems that are meaningfully survivable. In
that spirit, the report is intended to serve as a coherent resource from which many further
resources can be gleaned by following the cited references and URLs.

The report is relatively modest in its intent. It does not try to solve all the problems of how
to design, implement, administer, maintain, and use highly survivable systems and networks.
Those problems require future research and greater discipline in system development and
operations. Nevertheless, the report represents a substantive starting point.

The document can be useful to developers of systems with critical requirements. It can
also be useful in connection with anyone wanting to teach or learn the basics of system and
network survivability. The Army Research Laboratory and the Software Engineering Insti-
tute have sponsored workshops on Information Survivability (InfoSurv). In part as a result
of Paul Walczak’s efforts at ARL relating to this project, several universities (Maryland,
Pennsylvania, Tennessee-Knoxville, Georgia Tech) have had courses using the contents of
our interim first-phase report (January 1999). Appendix A characterizes some of the cur-
riculum issues relating to survivability. We have intentionally not tried to spell out specific
course materials lecture by lecture, but rather have tried to provide basic directions that
such courses might address.

Printable versions of this document contain URLs for many relevant Web resources. The
browsable html version may be preferable for Web users, because it contains hot links to
those resources.
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Executive Summary

The Problem

Systems and networks with critical survivability requirements are extremely difficult to spec-
ify, develop, procure, operate, and maintain. They tend to be subject to many threats, laden
with risks, and difficult to use wisely. By systems, we include operating systems, dedicated
application systems, systems of systems, and networks viewed as systems.

We begin with several observations.

e Commercially available mass-market software systems tend to be very poor with respect
to security and reliability. They are even worse with respect to overall system and
network survivability, which depends critically on security and reliability. Software
components are often incompatible with one another, even when obtained from the same
developer. Interoperability and reusability are much less than what should reasonably
be expected. Compatibility with legacy systems is driving many systems into their
lowest common denominators. Proprietary systems and proprietary interface standards
generally make integration with other system types very difficult. They also make open
analysis of those systems very difficult (promoting security by obscurity rather than
security by in-depth analysis). Long-term compatible evolvability is a serious problem.
The reasons for this overall situation are widespread, and the blame must be shared
among developers, governments, user communities, inadequate procurement processes,
and the lack of market incentives (for example).

e The U.S. Government and the defense establishment have become increasingly depen-
dent on commercially available systems — with all their warts, blemishes, and fun-
damental shortcomings. Unfortunately, many of these systems are not advancing fast
enough to meet the needs of critical applications. A possible alternative for critical
applications is gaining some credibility: some sort of disciplined efforts to make certain
source-available software components substantially more robust, and to generate new
components — particularly where proprietary off-the-shelf products are not adequate.
However, that approach has its own potential risks, which deserve to be studied and
overcome where possible.

e System development practice is in general abysmal. (Recent examples of fiascos relating
to U.S. Government system developments include the cancellations of the FAA Air
Route Traffic Control System contract, the IRS Tax Systems Modernization effort,
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and the first FBI NCIC-2000 fingerprint system, representing the waste of billions of
dollars.) A representative example of the very bad state of practice and the great
difficulties inherent in trying to advance the state of commercial systems is given by the
mere existence and pervasiveness of the Year-2000 problem, with the resulting enormous
costs to fix billions of lines of code in the presence of lingering doubts as to whether
those attempts would be successful up to and even after the actual event. The Y2K
problem is just one more example of short-sighted system development practice, rather
than a unique problem unto itself, and is realistically less complex than the overall
security /survivability problems.

The range of potential threats to survivability that must be considered is enormous,
including hardware malfunctions, software flaws, environmental hazards, and malicious
and accidental human acts. The level of awareness of threats, vulnerabilities, and
risks is generally deplorable. Offensive information warfare is becoming recognized as a
serious potential threat to survivability, but attempts to develop corresponding defenses
are lagging badly. Defensive information warfare seems to be a misnomer for what
should otherwise be considered pervasively as sensible standard practice: if we were to
develop and use systems and networks that are meaningfully survivable, secure, reliable,
and so on, it would dramatically decrease the threats of offensive information warfare
against us. Many organizations (perhaps most visibly, the Pentagon) have been deluged
with attacks on their Web sites and computer-communication infrastructures, including
penetrations, denials of service, and Trojan horses such as Melissa and ILOVEYOU that
propagate by people reading e-mail. And yet very few substantive actions are being
taken to improve the information infrastructures technologically.

The 1997 report of the President’s Commission on Critical Infrastructure Protection
(PCCIP) touches on the tip of an enormous iceberg. It observes that the survivabil-
ity and integrity of the critical national infrastructures (such as telecommunications,
power, energy, transportation, and financial services) are very much at risk, and fur-
thermore that these national infrastructures are highly interdependent on one another.
Whereas the report recognizes that the critical national infrastructures depend critically
on computers and communications, their recommendations touch only lightly on what
might be done to strengthen the underlying computer-communication infrastructures.
(Although the Commission’s initial focus in telecommunications was narrowly aimed
at the public switched network, the Commission’s members did ultimately attempt to
broaden their concerns to include the Internet and computer networking.) The PC-
CIP recommendations are important and must be considered very carefully, although
there is a tendency toward increasing bureaucracy. (See Section 5.19 for more on the
Commission and subsequent actions, and Section 9.7 for how this report addresses the
problems identified by the PCCIP report.)

Although significant research and prototype-development efforts could help minimize
many of the existing problems and many new problems that need to be addressed,
valuable R&D advances related to security, reliability, and survivability have in general
been exceedingly slow in finding their way into practice. That must change.



(Goals

The above observations motivate a simple statement of the goals of our project and of this
report. To surmount these realities, we seek to

1. Make more explicit the requirements for survivability and its necessary subtended prop-
erties such as security, reliability, and performance, and characterize the interactions
among the different subrequirements

2. Identify functionality whose absence currently prevents adequate satisfaction of those
requirements and recommend the development of specific infrastructural components
that are currently missing or not commercially available

3. Explore techniques for designing and developing highly survivable systems and net-
works, despite the presence of untrustworthy subsystems and untrustworthy people —
where untrustworthiness may encompass the lack of reliability, integrity, and correctness
of behavior on the part of systems and people

4. Recommend specific architectural structures and structural architectures that can lead
to survivable systems and networks capable of either preventing or tolerating a wide
range of threats

5. Explore operational principles that can enhance survivability

6. Recommend directions for the future, including research and development

Approach of the Report

It is absolutely essential to realize that there are no easy answers for achieving survivable
systems and networks. This report does not pretend to be a cookbook. Cookbook ap-
proaches are doomed to fail, because of the intrinsic multidimensionality of the survivability
problems, the inadequacies of the existing infrastructures, the fact that the underpinnings
are continually in flux, and the fact that no one solution or small set of solutions fits all
applications. We cannot merely follow tried-and-true recipes, because no foolproof recipes
exist. For these reasons, we emphasize here the need for in-depth understanding of the basic
issues, the recognition and pervasive adherence to sensible principles, the fundamental im-
portance of insights gleaned from past experience, and the urgency of pursuing significant
R&D approaches and incorporating them into practical systems. Thus, we include many
references to primary literature sources, with the hopes that diligent readers will pursue
them. The successful integration of the best of these concepts is absolutely fundamental to
the development, procurement, and use of systems and networks that can fulfill requirements
for high survivability.

To satisfy the goals stated above, we take a strongly system-oriented approach. Surviv-
ability of systems and networks is not an intrinsic low-level property of subsystems in the
small. Instead, it is an emergent property — that is, a property that has meaning primarily
in the overall context to which it relates. Emergent properties can be defined in terms of

xi



the concepts of their own layers of abstraction, but generally not completely in terms of
individual components at lower layers. That is, an emergent property is a property that
arises as a result of the composition of lower-layer components and that is not otherwise
evident. Emergent properties may be positive (such as human safety and system survivabil-
ity) or negative (such as unforeseen interactions among components — for example, covert
channels that exist only when components are combined). Simply composing a system or
network out of its components provides no certainty whatever that the resulting whole will
work as desired, even if the components themselves seem to behave properly. One of the
most important challenges confronting us is to be able to derive the emergent properties of
a system in the large from the properties of its components and from the manner in which
they are integrated.

There is an important body of work devoted to dependable systems (especially in Eu-
rope) and to high-assurance systems (especially in the U.S.). These are really aspects of
the same thing. A system should be capable of satisfying its requirements, dependably and
with appropriate assurance, whatever those requirements are. Survivability is an overar-
ching requirement that implies security, reliability, adequate performance, and many other
subrequirements.

Recommendations

The following recommendations are ordered roughly according to how they appear in the
development and operational cycles. Their relative importance is considered at the end of
the enumeration.

1. We must establish generic mission models that can be readily tailored to specific sys-
tems, and develop processes whereby those models can be used in evaluating the ade-
quacy of requirements.

2. We must establish fundamental requirements for survivability and its subtended proper-
ties that can be directly applied to system developments and procurements, sufficiently
detailed but not overly constraining.

3. We must define families of system and network architectures that are inherently robust,
and demonstrate the implementability of those architectures.

4. We must develop new network and distributed system protocols appropriate for the
development of highly survivable, secure, and reliable information infrastructures.

5. We must design and implement open-system architectural components that are essential
for robust architectures but not yet readily available in the marketplace, which when
composed together can satisfy strong requirements for survivability and interoperability.

6. We must establish a library of demonstrably sound procedures that enable trustworthy
systems to be built out of less trustworthy components. This is the concept of generalized
dependence, which we explore in this report.

xii



7. We must establish and consistently use sound cryptographic infrastructures for authen-
tication, certificate authorities, and confidentiality.

8. We must find ways to encourage commercial system developers to increase the surviv-
ability, security, and reliability of their standard products, including encouraging them
to embrace more good research and development results.

9. We must consider, as an alternative to proprietary closed-source software, the develop-
ment and use of source-available software and nonproprietary interfaces. Although this
approach does not necessarily lead to survivable systems all by itself, it has enormous
potential when combined with other techniques.

10. We must provide for mechanisms for trustworthy distribution of trustworthy code —
including robust mobile code.

11. We must refine and make practical the ongoing R&D efforts for monitoring, analyzing,
and responding to system and network anomalies, and generalize them from merely
intrusion-detection systems, so that they address a broad range of survivability-related
threats, including reliability problems, fault-tolerance coverage failures, and classical
network management.

12. We must be able to develop systems that are more easily configured and managed
without placing excessive burdens on system administrators.

13. We must pursue realistic research and development relating to practical system is-
sues such as composability, maintainability, evolvability, interoperability that are also
strongly based theoretically.

14. We must find ways to disseminate the concepts of this report widely, including influ-
encing the education processes and improved training.

It is always desirable to indicate relative priorities in which such recommendations need to
be addressed, and their relative difficulty. Unfortunately, survivability, security, and reliabil-
ity are weak-link phenomena that can be compromised in many different ways. Thus, all the
above recommendations can have considerable payoffs in efforts to develop survivable sys-
tems, for many different reasons — because of the holistic nature of the desired requirements
and the inherent complexity of their realization.

It is difficult to pinpoint the recommendations that might provide the greatest payoffs
— precisely because of the weak-link phenomena. Besides, searching for easy answers is
a common failing, especially in complex situations in which there are no easy answers.
However, in general the greatest long-term benefits seem to accrue from up-front efforts, that
is, relating to establishing sound requirements, system designs, and architectures, rather than
focusing on software development, operations, topical preventive measures, and maintenance.
That is why we have chosen the order of recommendations as above, implicitly placing
emphasis on the items in that order. Nevertheless, there would be major benefits from
almost all the items above.

In particular, the establishment of mission models (1) and fundamental requirements
(2) might have the greatest benefits of all, because it could provide the basis for system
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developments and procurements of systems. However, past experience with the DoD Trusted
Computer Security Evaluation Criteria and system procurements suggests that this is not
an easy path, and that even if we had a superb set of requirements, they might be largely
ignored.

Stronger architectures, components, protocols, and cryptographic infrastructures (3, 4,
5, 6, 7) are all potentially important to the development process. Ideally, they need to
be motivated by strong requirements. In the absence of such explicit requirements in the
past, systems have developed according to a slow migration path that is driven primarily by
perceived market considerations, which have not converged on what is needed. Incentivizing
main-stream developers (8) and promotion of source-available software and open systems
(9,10) are both vital, particularly if the latter inspires greater advancement by the former.

Real-time analysis of system monitoring and rapid response (11) are essential, but pri-
marily as a last resort in the presence of vulnerable systems. Ideally, greater emphasis on
up-front requirements and architectures would diminish the need for real-time analysis — at
least with respect to outsider attacks. However, this is not likely to happen for a long time.

Building systems that are more easily administered and simplifying the role of system ad-
ministration (12) would yield great savings in labor and cost, as well as minimizing emergency
remediation (especially in combination with more intelligent real-time analysis). However,
outsourcing of administrators is a highly riskful proposition. (Recently, system adminis-
trators in SRI’s Computer Science Laboratory complained to their counterparts at Fort
Huachuca relating to a host within the Fort Huachuca domain that was issuing repeated
domain name service (DNS) requests to a machine within our CSL network that is not a
name server. The human response was in effect, well, it is after 3 in the afternoon on Friday,
and our admin efforts are outsourced to a contractor whose availability is uncertain. Sorry.)

Furthermore, long-term research and development issues must not be ignored (13). Spe-
cific directions for R&D are discussed in Section 9.2 of this report.

When attempting to confront a complex system problem, considerable benefit can result
from considering the situation in the large (top-down), rather than attempting to patch
together a bunch of existing would-be solutions (bottom-up). The bottom-up approach
typically makes unrealistic assumptions about the independence of subproblems. The holistic
approach taken here attempts to address the whole system, and then see what can be done
to partition the problems while also dealing with the interactions among the components. In
some cases, it is advantageous to consider a somewhat more general problem to gain insights
that cannot be seen from the more specific problem (especially when the specific problem
is not well understood). We believe that such an approach is advantageous in developing
complex systems.

It is clear that systematic use of strong authentication (including avoidance of fixed pass-
words) could have an enormous impact all by itself on system integrity. Firewalls that
are secure and properly administered would help. Highly survivable servers would be a
considerable benefit. More precise requirements would have a major influence on system
procurements — if those requirements were satisfied. Serious consideration of an open-design
policy of extensive early review and the use of source-available software where appropriate
may in the long run be essential to overcome the limitations of proprietary closed-source
systems that cannot fulfill the desired requirements. Alternative architectures including
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a secure mobile-code paradigm have considerable promise, particularly in connection with
thin-client systems and highly trustworthy servers. But the bottom line here is that the
basic computer-communication infrastructure is fundamentally inadequate today.

Architecture and Implementation

The use of structure is particularly important in designing, implementing, and maintaining
systems and networks. The combination of architectural principles and the use of good soft-
ware engineering and system engineering practice can be extremely effective. In particular,
it is vital to address the full range of survivability-relevant requirements from the outset;
it is typically very difficult to make retrofits later. The notion of generalized dependence
considered in this report permits us to avoid needing total dependence on the correctness of
certain other components — many of which have unknown trustworthiness, or are inherently
suspect. This is the notion of obtaining trustworthiness despite the relative untrustworthi-
ness of certain components. This concept is increasingly important in highly distributed
computing environments. Preventing or seriously hindering denial-of-service attacks is a
particularly important architectural issue. The mobile-code paradigm offers many potential
advantages in such environments, but it also requires some dramatic improvements in the
security, reliability, and robustness of certain critical components.

Conclusions

It is a difficult course that we must follow. It is evidently a never-ending course, for a va-
riety of reasons. As the requirements continue to be better understood, more is demanded.
As technical improvements are introduced, new vulnerabilities are typically introduced. As
technology continues to offer new functional opportunities, and as systems tend to oper-
ate closer to their technological limits, the vulnerabilities, threats, and risks are increased
accordingly, requiring much greater care. Operational and administrative challenges are con-
tinually increasing. As systems continue to grow in complexity and size, the risks seem to
grow accordingly. As a result, ever greater reliance is placed on the omniscience and om-
nipotence of system administrators. Also, our adversaries are becoming much more agile and
are capable of becoming much more aggressive. As a consequence, much greater discipline is
required to achieve the necessary goals. This report attempts to characterize what is needed
in terms of increased awareness and new approaches for the future.
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Chapter 1

Introduction

1. Out of clutter, find simplicity.

2. From discord, find harmony.

3. In the middle of difficulty lies opportunity.
Albert Einstein, three rules of work

1.1 Project Goals

The primary goal of this project is to significantly advance the state of the art in obtaining
highly survivable systems and networks, whereby distributed systems and networks of sys-
tems are considered in their totality as systems of systems, and as networks of networks —
rather than more conventional approaches that focus only on selected properties of certain
subsystems or modules in isolation.

To accomplish that goal in this report, Chapter 2 addresses a broad spectrum of threats
to survivability. Chapter 3 considers the overarching survivability requirements necessary
to surmount those threats, and also considers the subordinate requirements on which sur-
vivability ultimately depends — including reliability, availability, security (confidentiality,
integrity, defense against denials of service and other types of misuse), performance, in the
presence of accidental and malicious actions and malfunctions of software and hardware.
Chapter 4 then identifies fundamental deficiencies in the technology available today, and
Chapter 5 makes recommendations for how to overcome those deficiencies. Subsequent
chapters address guidelines for developing and rapidly configuring highly survivable systems
and networks, including the presentation of generic classes of architectural structures and
some specific types of systems. Appendix A considers how the contents of this report might
find their way into an educational curriculum.

Despite the quoted dictum of Albert Einstein at the beginning of this chapter, we observe
that general-purpose systems and networks that must be highly survivable are not likely to
be simple — unless they are seriously trivialized. The nature of the problem is intrinsically
complex: experience shows that many vulnerabilities are commonplace, and not easy to
avoid; the potential threats are very broadly based; complexity is often beyond the scope of
a small and closely knit development team; management is often unaware of the complexities



and their implications. Consequently, the approach of this report is to confront the challenge
in its full generality, rather than merely to carve out a simply manageable small subset.
Remember the following quote, which is also very pithy:

Everything should be as stmple as possible — but no simpler.
Albert Einstein?

Recognizing the complexity inherent in satisfying any realistic set of survivability require-
ments, we have chosen to consider the very difficult fully general problem of achieving highly
survivable systems and networks subject to the widest spectrum of threats. By tackling the
general problem, we believe that much greater insight can be gained and that the result-
ing approaches can look farther into the future. In this sense, we believe that there is a
significant opportunity in the face of the intrinsic difficulties.

1.2 Fundamental Concepts

Basic concepts are identified and defined here that are used throughout the report, including
survivability, security, reliability, performance, trustworthiness, dependability, assurance,
mandatory policies, composition, and dependence. Section 1.3 introduces the notion of
compromisibility.

1.2.1 Survivability

For the purposes of this report, survivability is the ability of a computer-communication
system-based application to satisfy and to continue to satisfy certain critical requirements
(e.g., specific requirements for security, reliability, real-time responsiveness, and correctness)
in the face of adverse conditions. Survivability must be defined with respect to the set of
adversities that are supposed to be withstood. Types of adversities might typically include
hardware faults, software flaws, attacks on systems and networks perpetrated by malicious
users, and electromagnetic interference.? Thus, we are seeking systems and networks that
can prevent a wide range of systemic failures as well as penetrations and internal misuse,
and can also in some sense tolerate additional failures or misuses that cannot be prevented.

As currently defined in practice, requirements in use today for survivable systems and
networks typically fall far short of what is really needed. Even worse, the currently available
operating systems and networks fall even farther short. Consequently, before attempting
to discuss survivable systems, it is important to establish a comprehensive set of realistic
requirements for survivability (as in Chapter 3). It is also desirable to identify fundamental
gaps in what is currently available (as in Chapter 4).

Given a well-defined set of requirements, it is then important to define a family of reusable
interoperable baseline system and network architectures that can demonstrably attain those

1See http://www.csl.sri.com/neumann for some background on this quote.

2 As is often done for reliability, survivability could alternatively be defined as a probabilistic measure of how well the given
requirements are satisfied. However, quantitative measures tend to be very misleading — especially when based on incorrect
or unfounded assumptions. This is particularly true when considering security, where the widespread dissemination of a newly
discovered vulnerability would radically change the perceived probabilities! Thus, we prefer an unquantified definition.



requirements — with the goals of enhancing the procurement, development, configuration,
assurance, evaluation, and operation of systems and networks with critical survivability
requirements.

A preliminary scoping of the general survivability problem was suggested by a 1993 report
written for the Army Research Laboratory (ARL), Survivable Computer-Communication
Systems: The Problem and Working Group Recommendations [29]. That report outlines a
comprehensive multifunctional set of realistic computer-communication survivability require-
ments and makes related recommendations applicable to U.S. Army and defense systems.? It
assesses the vulnerabilities, threats, and risks associated with applications requiring surviv-
able computer-communication systems. It discusses the requirements, and identifies various
obstacles that must be overcome. It presents recommendations on specific directions for
future research and development that would significantly aid in the development and opera-
tion of systems capable of meeting advanced requirements for survivability. It has proven to
be useful to ARL as a baseline tutorial document for bringing Army personnel up to speed
on system vulnerabilities and basic concepts of survivability. It remains timely. Some of
its recommended research and development efforts have still not been carried out, and are
revisited here.

The current technical approach is strongly motivated by a collection of highly disci-
plined system-engineering and software-engineering concepts that can add significantly to
the generality and reusability of the results, as well as having specific applicability to Army
developments. Above all, our approach here stresses the importance of sound system and
network architectures that seriously address the necessary survivability requirements. This
approach entails several basic concepts that are considered in the following subsections.

1.2.2 Attributes of System Survivability

The following three bulleted items consider three types of infrastructures: (1) the critical
national infrastructures, (2) information infrastructures such as the Internet, or whatever
it may evolve into (a National Information Infrastructure, or a Global Information Infras-
tructure, or a Solar-System Information Infrastructure, or perhaps even the Intergalactic
Information Infrastructure), and (3) underlying computer systems and networking software.

e Survivability of the critical national infrastructures. The 1997 report [194] of
the President’s Commission on Critical Infrastructure Protection (PCCIP) summarizes
the PCCIP’s recommendations relating to eight major critical national infrastructures:
telecommunications; generation, transmission, and distribution of electric power; stor-
age and distribution of gas and oil; water supplies; transportation; banking and finance;
emergency services; and continuity of Government services. Perhaps most important
from the present perspective is the recognition that very serious vulnerabilities and

3The working group, chaired by Charles Meincke (AMSRL-SL-EI), included Anthony Barnes (AMSRL-SL-EI), Andrew
Hollway!surivivability study (deceased, VAL FIO), Robert Hein (CECOM SWD), Bernard Newman (CECOM C3), John Preusse
(CECOM C3), Barry Salis (CECOM C3 Systems), Phillip Dykstra (BRL/SECAD), Beth Manahan (ATZH-TH), Thomas
Reardon (USAISC HQ), Joseph Stevenson (USAISC HQ), Laura Vaglia (SAA, INSCOM), Jeni Wilson-Galleher (AMC HQ),
Dennis Steinauer (NIST), Marianne Swanson (NIST), and Peter Neumann — who did most of the writing. Organizational
designations are given as of the date of the report’s publication in 1993.



threats exist in all these critical infrastructures. Perhaps equally important is the Com-
mission’s recognition that these critical infrastructures are closely interdependent and
that they all depend on underlying computer-communication infrastructures.

e Survivability of the computer-communication infrastructures on which the
national infrastructures depend, such as the Internet and its eventual suc-
cessors. A comprehensive system- and network-wide set of realistic requirements is
desired, encompassing security, reliability, fault tolerance, real-time performance, and
any other attributes necessary for attaining adequate system and network survivability.
From this set of requirements, it is possible to select those that are specifically relevant
to any desired system. The Internet is seriously vulnerable to denial-of-service at-
tacks, losses of confidentiality and integrity in transmission, and collapse of constituent
nodes. In the future, critical applications are likely to demand alternative information
infrastructures that provide greater survivability and its subtended requirements, with
particular attention to reliability, availability, and security — cryptographically based
confidentiality and integrity, protection against denials of service, and basically a com-
pletely new set of protocols designed with security in mind from the very beginning
— including secure interoperability with other infrastructures. Such a national infor-
mation infrastructure would be of enormous value to DoD and to the critical national
infrastructures, and would also be valuable for electronic commerce.

e Survivability of the underlying computer systems and communication sys-
tems. Survivability of the computer-communication infrastructures depends on de-
pendable operating system and network security, dependable system and network reli-
ability, and dependable operational performance. Much of the emphasis in this report
is on these basic information infrastructures.

System attributes that are particularly relevant to the attainment of survivability include
the following.

e Security. Security must encompass dependable protection against all relevant con-
cerns, including confidentiality, integrity, availability despite attempted compromises,
preventing denials of service, preventing and detecting misuse, providing timely re-
sponses to perceived threats, and reducing the consequences of unforeseen threats. It
includes both system security (e.g., protecting systems and networks against tampering
and other misuse) and information security (e.g., protecting data and programs against
tampering and other misuse). It must anticipate all realistic threats, including misuse
by insiders, penetrations by outsiders, accidental and intentional interference (e.g., elec-
tromagnetic), emanations, covert channels, inference, and data aggregations. There is
much more to security than merely providing confidentiality, integrity, and availability.
All components that must be trusted in order to achieve adequate system behavior must
actually be trustworthy. (The distinction between these two concepts is discussed in
Section 1.2.3.)

e Reliability and availability. Reliability is often defined as a measure of how well
a system operates within its specifications. For, example, fault tolerance can enable a



variety of alternatives, including real-time, fail-safe, fail-soft, fail-fast, and fail-secure
modes of operation. Availability despite system failures must be tailored to a variety of
specific needs, with different techniques used for different functionality, as appropriate.
It must address unintentional and malicious changes in the operating environment, in-
cluding those that result from power outages and power variations, earthquakes, floods,
and other natural disasters. There should be no serious weak links that are vulner-
able to perceived threats, and system design should be defensive enough that it also
addresses some of the more serious unanticipated threats.

e Performance. Particularly in real-time systems, performance tends to be a critical
requirement. In some cases, adequate performance may be critical to the survivability
of the services provided by an enterprise or an application. On the other hand, in most
cases, performance is itself dependent on survivability and availability — if a system
is not survivable, adequate performance cannot be achieved. To avoid this apparent
interdependence loop, it would be possible to redefine performance requirements as
being meaningfully specified only when the relevant systems are available. However,
this seems to be a cop-out, because of the need to ensure adequate performance that is
itself critical to survivability.

What is immediately obvious is that close interrelationships exist among the various re-
quirements. For example, consider the various forms of availability. Availability is clearly a
security requirement in defending against malicious attacks. It is clearly a reliability require-
ment in defending against hardware malfunctions, unanticipated software flaws, environmen-
tal causes, and acts of God. It is also a performance issue, in that adequate availability is
essential to maintaining adequate performance (and conversely, adequate performance can
be essential to maintaining adequate availability, as noted above).

Whereas it is conceptually possible to consider these different manifestations of availability
as separate requirements, this is very misleading — because they are closely coupled in the
design and implementation of real systems and networks. As a consequence, we stress the
notion of architectures that address these seemingly different requirements in an integrated
way that permits the realization of different requirements within a common structure. This
is pursued further in Section 3.1.

1.2.3 Trustworthiness, Dependability, and Assurance

Fundamental to this report are the notions of trustworthiness, dependability, and assurance.

e Trustworthiness versus trust. In the present context, trustworthiness is a measure of
how extensively a given module, system, network, or other entity deserves to be trusted
to satisty its stated requirements when confronted with arbitrary threats. In the security
community, trustworthiness is roughly equivalent to what is called “dependability” in
the fault-tolerance community, although dependability was originally relevant primarily
to the threats intended to be covered by fault tolerance, and did not encompass what
we refer to here as trustworthiness. (In the present context, assurance — considered
below — relates to the certainty with which trustworthiness or dependability can be



believed, for example, through the use of testing and formal analyses.) In this report,
the notion of trustworthiness encompasses all aspects of survivability, including the full
spectrum of threats to survivability and its subtended requirements.

Trustworthiness is particularly relevant in situations where there are critical require-
ments, that is, where dependence on the trustworthiness of specific entities is crucial to
the overall behavior of a system or network in the large — particularly with respect to
survivability, security, and reliability. In the fault-tolerance community, dependability
tends to be a measure of how well the specified fault-tolerance requirements are met,
although recent usage is generalizing that to other requirements.

A careful distinction is made here between trust and trustworthiness. Trust is some-
thing you attribute to a system entity, whether that entity is trustworthy or not. A
trustworthy entity is one that deserves to be trusted.

In general usage in the literature, a trusted system is one that must be trusted in order
for applications using the system to behave properly. Ideally, trusted systems should
be trustworthy, although that is often not the case. For example, the notion of trusted
computing bases (Section 7.2) is really concerned with trustworthiness of components
that, because of their functionality, have to be trusted — and that therefore must be
trustworthy.

Dependability and assurance. In this report, we refer only loosely to dependability,
as the extent to which a given requirement is perceived to be satisfied, particularly
by the implementation. Assurance is then the credibility that can be given to spe-
cific statements of dependability and trustworthiness. Thus, for example, we might
rather specifically refer to the assurance of the dependability of trustworthiness within
a particular system design or its implementation, although in general we are primarily
concerned with trustworthiness itself and avoid the circumlocution. The reader will not
suffer by assuming that the assurance of trustworthiness and the predictability of de-
pendability (e.g., [313]) are indeed the same concept (or, at least, closely enough related
for present purposes).

The foregoing concepts — survivability, security, reliability, and performance — need to
be implemented in such a way that the desired properties can be achieved dependably.
Defensive measures include establishment of appropriate requirements, good system
design that is consistent with the requirements, good system development and coding
practice including the use of modern software engineering and sound programming
languages and demonstrations that implementations are consistent with their designs,
and operational procedures that maintain the integrity of design and implementation
despite ongoing debugging and maintenance — and potential misuse.

Assurance and analytic dependability. Overall system and network survivability
should be predictably demonstrable by methods other than simply testing. For exam-
ple, formal methods could be used to demonstrate the adequacy of the requirements,
the consistency of the specifications with those requirements, and the consistency of
the implementation with the specifications, at different layers of abstraction, and the
consistency of one layer with another. Other constructive analytic arguments could



measure the assurance with which a system architecture might survive specific types of
threats, even despite unanticipated events. Analytic tools are also useful in uncovering
flaws and questionable coding practices in software. Various approaches to assurance
exist, including formal methods discussed in Section 5.9.

Various other attributes are also highly desirable in ensuring dependable survivability.

e Subsystem composability. Subsystems and components should be designed and
implemented to enhance the ease with which they can be integrated together without
adversely affecting survivability. Composability is considered further in Section 5.8.

e Interoperability. Interoperability should be easily attainable, across different net-
works, systems, subsystems, and application services. Various platforms should be
accommodated, including mainframes, minis, workstations, personal computers, and
combinations thereof. Firewalls and other controls necessary for security should not
unduly impede interoperability where authorized. Relevant standards should be re-
spected, but inadequate standards must be replaced, upgraded, or explicitly ignored.

e Scalability. The above-mentioned concepts must be capable of adapting to a range
of operations, from local operation to widely dispersed systems, from a few users to
a considerable community of users, from a closed community to an open-system envi-
ronment. Where single approaches are not applicable, the parameterized configuration
should permit adaptation according to the specific requirements.

e Abstraction. At each of various layers of abstraction, implementations must be prop-
erly (e.g., survivably, securely, and reliably) encapsulated, with appropriate informa-
tion hiding and high-integrity implementation. System interfaces and programming
languages must provide suitable abstractions, and must be nonbypassable.

e Prevention, detection, toleration, and reaction. Neither prevention nor de-
tection is adequate by itself. An appropriate balance must be found between the two,
utilizing constructive design techniques as well as proactive detection of events that may
be suspicious with respect to the requirements for survivability, security, reliability, and
so forth. In addition, toleration of adverse events that cannot be prevented must be
planned in system design, irrespective of whether detection succeeds. Traditional fault
tolerance is intended to combat reliability-related threats, whereas its counterpart in
security-related threats must be to withstand to whatever degree practicable malicious
attacks that cannot be prevented. Finally, speedy reaction is necessary when something
adverse has been detected that cannot be tolerated.

e Dependencies and interrelationships. In any distributed system architecture,
whether hierarchically layered or highly interrelational, it is undesirable to have to
depend on inherently less trustworthy components — with respect to security, relia-
bility, and availability. If such adverse dependence is essential to minimize or control
harmful effects, it must be demonstrably not in conflict with the desired requirements.
For example, deadlocks can be caused accidentally or intentionally, and can result in
denials of service unless the system architecture takes explicit measures to avoid them.



Devastating consequences can result from dependence on untrustworthy components
that are nevertheless ill-advisedly trusted. It is also desirable to identify and analyze
the interactions among the different requirements — with respect to the requirements
themselves, as well as with respect to conflicts that may arise in the design and im-
plementation. If potentially conflicting consequences can arise, the priorities necessary
to resolve those conflicts should be established in advance, insofar as possible. As an
example, consider the use of alternative components or redundant communication paths
to increase availability; one undesirable consequence could be increased exposures to
security attacks resulting from the additional objects of attack. This is just one more
example of the importance of understanding the dependencies and interrelationships
throughout the development cycle.

e Operational practice. The best design and implementation can be totally compro-
mised by bad administrative and operational practice. Sound configuration control is
absolutely essential as an integral part of survivability. (For example, see [391].)

These concepts are considered further in Sections 7.1 and 7.2.

Whereas we have chosen a framework in which survivability depends on security, reli-
ability, and performance attributes (for example), manifestations of survivability, security,
and reliability exist at many different layers of abstraction. Although the survivability of an
enterprise may depend on the underlying security and reliability, the security and reliabil-
ity at a particular layer may in turn depend to some extent on the survivability of a lower
layer. For example, the survivability of each of the eight critical national infrastructures
considered by the PCCIP depends to some extent on the survivability and other attributes
of the underlying computer-communication infrastructures. Similarly, the survivability of a
given computer-communication infrastructure may typically depend to considerable extent
on the survivability of the electric power and telecommunications infrastructures. In part,
this is a consequence of the fact that the definitions used here are (necessarily) somewhat
overlapping; in part, it is also a recognition of the fact that each abstract layer has its own
set of requirements that must be translated into subrequirements at lower layers.

One of the primary goals of the present work is to identify the ways in which the various
properties and their enforcing implementations depend on one another, at various layers of
abstraction and across different abstractions at given layers.

This report in no way attempts to be a definitive self-contained treatise on everything that
needs to be known to procurers and developers of highly survivable systems. Rather, it at-
tempts to identify and use constructively some of the fundamental concepts upon which such
systems can be produced. Extensive further background on computer system trustworthiness
can be found in National Research Council reports, Computers at Risk [72] and the more
recent Trust in Cyberspace [345]. (See also [109] for a recent NRC study on research needs.)
Two valuable volumes on cryptography’s role in trustworthy systems and networks are the
National Research Council CRISIS report Cryptography’s Role in Securing the Information
Society [84] and Bruce Schneier’s Applied Cryptography [347]. A realistic assessment of the
risks of improperly embedded strong crypto is found in Schneier’s subsequent book [348],
Secrets and Lies: Digital Security in a Networked World.



1.2.4 Generalized Composition

Research efforts have typically considered simple compositions of modules, such as unidirec-
tional serial connections or perhaps call-and-return semantics. (Section 5.8 discusses some
of these.) However, the existing research is far from realistic.

The concept of generalized composition [251] used here includes composition of subsystems
with mutual feedback, hierarchical layering in which a collection of modules forms a layer that
can be used by higher layers as in the Provably Secure Operating System (PSOS) [102, 246,
247, 260], layering achieved through program modularity [45], and networked connections
involving client-server architectures, gateways, unidirectional and bidirectional firewalls and
guards, encryption, and other components. Relevant approaches include [371].

In this project, we consider generalized composition as it relates to the composed sub-
systems. We believe that this approach to composition is more appropriate to the intended
large-scale distributed and networked architectures than the primarily theoretical contem-
porary work on model composition and policy composition (although that work is logically
subsumed under the present approach).

1.2.5 Generalized Dependence

In 1974, Parnas [279] characterized a variety of depends upon relations. An important such
relation is Parnas’s depends upon for its correctness, whereby a given component is said
to depend upon another component in the sense that if the latter component does not meet its
requirements, then the former may not meet its requirements. Neumann [251] has revisited
the notion of dependence, making a distinction between the Parnas relation depends upon
for correctness and a generalized sense of dependence in which greater trustworthiness can
be achieved despite the presence of less trustworthy components, thereby avoiding having
to depend completely on components of unknown or uncertain trustworthiness. To avoid
having to say “depends upon in the sense of generalized dependence”, we abbreviate that
generalized relation as simply depends on.

The following enumeration gives various paradigms under which trustworthiness can actu-
ally be enhanced, providing examples of how the generalized dependence relation depends-
on differs from the conventional depends-upon relation. In each of these cases, the resulting
trustworthiness tends to be greater than that of the constituent components. The list is sur-
prisingly long, and may help to illustrate the power of the notion of generalized dependence.
(Although particular mechanisms may fall into multiple types, these types are intended to
represent the diverse nature of mechanisms having the characteristics of generalized depen-
dence.)

1. The use of error-correcting codes (e.g., [123]) that can enable correct communications
despite certain tolerable patterns of errors (e.g., random, asymmetric as in bit-dropping
only, bursty, or otherwise correlated), in block communications or even in variable-
length or sequential encoding schemes, as long as any required redundancy does not
cause the available channel capacity to be exceeded (following the guidance of Shannon’s
information theory), and in arithmetic operations (e.g., [268])



10.

. The early work of John von Neumann [384] and of Ed Moore and Claude Shannon [222],

who showed how reliable subsystems in general (von Neumann) and reliable relay cir-
cuits in particular (Moore-Shannon) can be built out of unreliable components — as
long as the probability of failure of each component is not precisely one-half and as
long as those probabilities are independent from one another; also relevant is the 1960
paper of Paul Baran [27] on making reliable communications despite unreliable network
nodes, which was influential in the early days of the ARPAnet.

. Self-synchronizing techniques that result in rapid resynchronization following nontol-

erated errors that cause loss of synchronization, including intrinsic resynchronizability
of sequentially streamed codes — by adding explicit framing bits, or adding redun-
dancy to provide implicit synchronization as in comma-free codes, or without having to
add any redundancy in certain variable-length and sequential codes [240, 241, 242] (as
self-resynchronizing properties of certain variable-length codes [135] and information-
lossless [136] sequential encoding systems) — as well as other self-stabilization tech-
niques (e.g., [97])

. Robust synchronization algorithms, such as hierarchically prioritized locking strate-

gies [94], two-phase commitments, nonblocking atomic commitments [315], and fulfill-
ment transactions [205] such as fair-exchange protocols guaranteeing that payment is
made if and only if goods have been delivered

. Traditional fault-tolerance algorithms and system concepts that can tolerate certain

specific types of component or subsystem failures as a result of constructive use of
redundancy [18, 80, 145, 186, 206, 225, 389] — although failures beyond the coverage
of the fault tolerance may result in unspecified failure modes

. Alternative-computation architectural structures, which can achieve satisfactory but

nonequivalent results (with possibly degraded performance), despite failures of hardware
and software components and failure modes that exceed planned fault coverage, such
as the Newcastle Recovery Blocks approach [17, 18, 134]

Alternative-routing schemes in packet-switched networks, which can attain good perfor-
mance and eventual communications despite major outages among intermediate nodes
and disturbances in communications media (as in the ARPAnet routing protocols)

. Byzantine fault-tolerant systems that can withstand Byzantine fault modes [164, 334,

342], whereby successful operation is possible despite the arbitrary and completely un-
predictable behavior (maliciously or accidentally) of up to some ratio of its component
subsystems (e.g., k£ out of 3k + 1), with no assumptions regarding individual failure
modes of the component subsystems

. Byzantine network-layer protocols [295]

Encryption applied to an open transmission medium or storage medium that is easily
intercepted or monitored, whereby the encrypted form is significantly more inscrutable
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Use of integrity checks, such as cryptographic checksums and proof-carrying code [235],
both of which can enable the detection of unexpected alterations to systems or data
and hinder the tampering of data and programs

Micali’s fair public-key cryptographic schemes [209], in which different parties must
cooperate with the simultaneous presentation of multiple keys — allowing cryptograph-
ically based operations to require the presence of multiple authorities

Threshold multikey-cryptography schemes, in which at least & out of n keys are required
(for conventional symmetric-key decryption, or for authentication, or for escrowed re-
trieval) — for example, a Byzantine digital-signature system [91] and a Byzantine key-
escrow system [318] that can function successfully despite the presence of some parties
that may be untrustworthy or unavailable, as well as a signature scheme that can func-
tion correctly despite the presence of malicious verifiers [296]

Byzantine-style authentication protocols that can work properly despite untrustworthy
user workstations, compromised authentication servers, and other questionable compo-
nents (see Chapter 7)

Constructive use of kernels and “trusted” computing bases to achieve nonsubvertible
application properties, such as in SeaView, which demonstrated how a multilevel-secure
database management system can be implemented on top of a multilevel-secure kernel
— with absolutely no requirement for multilevel-security trustworthiness in the Oracle
database management system. [88, 188, 190] (This is the notion of balanced assurance.)

Multilateral mechanisms enforcing policies of mutual suspicion, with the ability to op-
erate correctly despite a lack of trust among the various parties [351]

Interposition of trustworthy firewalls and guards that mediate between regions of un-
equal trustworthiness — for example, ensuring that sensitive information does not leak
out and that Trojan horses and other harmful effects do not sneak in, despite the pres-
ence of untrustworthy subsystems or mutually suspicious adversaries

Use of run-time checks to prevent or mediate execution in questionable circumstances
(e.g., embedded in the base programs or in application programs, as in the cases of
bounds checks and consistency checks)

Addition of wrappers (without modifying the source or object code of the wrapped
module), to enhance survivability, security, or reliability, or otherwise compensate for
deficient components — such as adding a “trusted path” to an inherently untrustwor-
thy system, enabling monitoring of otherwise unmonitorable functionality, or providing
compatibility of wrapped legacy programs with other programs

Object-oriented, domain-enforcement, and access-control techniques that effectively me-
diate or otherwise modify the intent of certain attempted operations, depending on the
execution context [102, 260, 351] — for example, the confined environment of the Java
Virtual Machine [114, 116] and related work on formal specification [87, 112] for the
analysis of the security of such environments
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21. Use of real-time analysis techniques such as anomaly and misuse detection to diag-
nose live threats and respond accordingly, capable of dynamically altering system and
network configurations based on perceived threats (e.g., [304, 305])

Each of these paradigms demonstrates techniques whereby trustworthiness can be en-
hanced above what can be expected of the constituent subsystems or transmission media.
By generalizing the notions of dependence and trustworthiness, and judicious use of some of
these techniques, we seek to provide a unifying framework for the development of survivable
systems.

Dependence on components and information of unknown trustworthiness is a particularly
serious potential problem. (See Sections 2.1.1 and 2.1.2.)

Dependable clocks (Byzantine or otherwise) provide a particularly interesting challenge.
Lincoln, Rushby, and others [181] provide an elegant detailed example of generalized de-
pendence. They have analyzed a three-layered model consisting of (1) clock synchroniza-
tion [332], (2) Byzantine agreement [179, 180], and (3) diagnosis and removal of faulty compo-
nents [180]. They also exhibit formal verifications for a variety of hybrid algorithms [180] that
can greatly increase the coverage of misbehaving components. This three-layered integration
of separate models and proofs is of considerable practical interest, as well as illustrative of
forefront uses of formal methods.

An example of generalized dependence relating to clock drift is given by Fetzer and Cris-
tian [104] in developing fault-tolerant hardware clocks out of commercial off-the-shelf (COTS)
components, at least one of which is a GPS receiver. A formal analysis of a time-triggered
clock synchronization approach is given by [299].

The basic approach of this project considers within a common framework many different
generalized-dependence mechanisms that are capable of enhancing trustworthiness, enabling
the resulting functionality to be inherently more trustworthy than otherwise might be war-
ranted by consideration of only its constituent components.

1.2.6 Survivability with Generalized Dependence

Ultimately, overall system survivability may depend on (in the sense of generalized depen-
dence noted above) the security, integrity, reliability, availability, and performance character-
istics of certain critical portions of the underlying computer-communication infrastructures.
In this report, our notion of survivability explicitly includes this context of generalized de-
pendence.

Compromises from outside, from within, or from below (see Section 1.3 and [250, 251,
267]), whether malicious or not, can subvert survivability unless prevented or ameliorated
by the architecture, its implementation, and the operational practice. Unfortunately, com-
promises from outside (e.g., externally, originating from higher layers of abstraction or from
other entities at the same layer of abstraction, or from supposedly security-neutral applica-
tions) often can lead to compromises from within (affecting the implementation of a partic-
ular mechanism) or from below (subverting a mechanism by tampering with its underlying
dependent components). One of the fundamental challenges addressed here is to be able
to design, implement, and operate survivable systems despite the presence of components,
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information, and individuals of unknown trustworthiness — as well as saboteurs (e.g., cy-
berterrorism [302]), and thereby to prevent, defend against, or at least detect attempted
compromises from outside, within, or below. This is in essence what we mean by surviv-
ability — in the context of generalized dependence on potentially unknown entities. For
example, a particularly difficult challenge is to ensure that the embeddings of sound crypto-
graphic algorithms cannot be compromised because of inherent weaknesses in the underly-
ing computer-communication infrastructures (e.g., hardware, microcode, operating systems,
database management, and networking) — as discussed in [249].

Survivability is an emergent property of the overall systems and networks. That is, it is
not definable and analyzable in the small, because it is the consequence of the composition
of the subtended functionality; it must be considered in the large. In other words, it is
not a property that can be identified with any of the constituent components. Ideally,
it should be derivable in terms of properties of the constituent functionality on which it
depends, as described in the 1970s work of Robinson and Levitt [322] on the SRI Hierarchical
Development Methodology (HDM) as part of the PSOS effort.* In practice, it may not be so
derivable, as in the case of covert channels that arise only because of module composition.

Stephanie Forrest in her introduction to the 1991 CNLS proceedings [106], Nancy Leve-
son [173], Heather Hinton [127, 128], Zakinthinos and Lee [394], and D.K. Prasad [306]
provide some background on emergent properties; Zakinthinos and Lee define an emergent
property as one that its constituent components do not satisfy. Prasad draws on measure-
ment theory and decision analysis [307] to show that such properties are not compositional
and also that such properties are not ‘absolute’ — different stakeholders may have different
ideas about the meaning of the property. Her thesis work also presents the method of multi-
criteria decision making (in a specific framework) as an approach for the measurement (on a
sound theoretical basis) of such properties. Hinton [128] observes that undesirable emergent
behavior is often the result of incomplete specification, and can be formally analyzed.

1.2.7 Mandatory Policies for Security, Integrity, and Availability

The notions of multilevel security [32, 33, 34, 35, 36], multilevel integrity [42], and multilevel
availability [267] characterize hierarchical mandatory policies for confidentiality, integrity,
and availability, respectively. In multilevel security (MLS), information is not permitted
to flow from one entity to another entity that has been assigned a lower security level. In
multilevel integrity (MLI), no entity is permitted to depend upon an entity that has been
assigned a lower integrity level. In multilevel availability (MLA), no entity is permitted to
depend on an entity that has been assigned a lower availability level.

Although it has been the subject of considerable research in security policies and kernelized
system architectures, and highly touted by the Department of Defense (see Chapter 6),
multilevel security has remained very difficult to achieve in realistic systems and networks.
This is due to many factors, including inadequacies in the DoD criteria, an unwillingness of
commercial system providers to develop systems, and an unwillingness of non-DoD system
acquirers to consider such systems. Architectural alternatives are considered in Chapter 7.

4HDM dealt with emergent properties without so naming them.
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Strict multilevel integrity is thought to be awkward to enforce in practical systems, be-
cause high-integrity users and processes often depend on editors, compilers, library routines,
device drivers, and so on, that are typically not necessarily trustworthy and therefore are
risky to depend upon. However, that is precisely the fundamental integrity problem in most
system architectures. The implicit web of trust should force those utility functions to be at
least as trustworthy with respect to integrity, because they must all be considered within the
perimeter of trustworthiness. The notion of generalized dependence is one way of working
within that constraint without either sacrificing the power of the basic concepts or of intro-
ducing new vulnerabilities that result from informal deviations from strict interpretations.

1.2.8 Multilevel Survivability

In this report, we consider the conceptual use of this kind of mandatory basis for surviv-
ability. Strictly speaking, this would lead to a lattice-based mandatory policy for multilevel
survivability that directly imitates the MLS, MLI, and MLA policies. For simplicity, we refer
to this policy as simply multilevel survivability (MLX). In an oversimplified formulation of the
multilevel survivability policy, no system or network entity is allowed to depend on an entity
that has been assigned a lower survivability level (unless an explicit generalized-dependence
mechanism is established that permits the use of mechanisms of lower trustworthiness, as
illustrated in Section 1.2.5). These concepts are considered in this report to include gener-
alized dependence.

For descriptive purposes, we implicitly assume the possibility of compartments in each of
these policies (MLS, MLI, MLA, and MLX), although we describe the policies in terms of
levels (without categories). Because of the compartments (familiar to afficianados of MLS
and MLI), the ordering on the levels and compartments generates a mathematical lattice
in each instance. Thus, when we refer to mandatory policies in this context, we imply
lattice-based policies rather than just completely ordered levels (without compartments).

In the absence of generalized dependence, strict MLX ordering would most likely suffer
the same kind of problems that arise in the practical use of strict MLI — namely, the
realization that enormous portions of any given distributed system must be of high integrity
and high survivability. The notion of generalized dependence therefore allows the strict
partial ordering to be relaxed locally whenever it is possible to achieve greater trustworthiness
out of less trustworthy components, as illustrated in Section 1.2.5 — without relaxing it in
the large.

For readers who shudder at the complexities and inconveniences introduced by multilevel
policies, we hasten to add that the MLX property is considered only as a structural organizing
concept rather than as an explicit goal of design and implementation. Furthermore, even if
MLX were interpreted seriously, there is always a likelihood that the levels and compartments
might be set up in such a way that there would be a fundamental conflict among the MLS,
MLI, MLA, and MLX constraints that would prevent expected results from happening.
Consequently, MLX is introduced only to encourage the intuitive design of systems in which
we avoid unnecessary dependence on components that are inherently less survivable (in the
sense of generalized dependence).

This initial discussion represents a first approximation to what is actually needed. In
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Chapter 7, we address the possible conflicts among the subrequirements of survivability in
the context of generalized dependence.

1.3 Compromisibility and Noncompromisibility

To illustrate the importance of dependence on properties of underlying abstractions, consider
the necessity of depending on a life-critical system for the protection of human safety. In
such a system, safety ultimately depends upon the confidentiality, integrity, and availability
of both the system and its data. It may also depend on information survivability. It may
further depend upon component and system reliability, and on real-time performance. It
also usually depends upon the correctness of much of the application code. In the sense that
each layer in a hierarchical system design depends upon the properties of the lower layers,
the way in which trusted computing bases are layered becomes important for developing
dependably safe systems — particularly in those cases in which the generalized depends
on relation can be used more appropriately instead of depends upon to accommodate an
implementation based on less trustworthy components.

The same dependence situation is true of secure systems, in which each layer in the
abstraction hierarchy (e.g., consisting of a kernel, a trusted computing base for primitive
security, databases, application software, and user software) must enforce some set of se-
curity properties. The properties may differ from layer to layer, and various trustworthy
mechanisms may exist at each layer, but the properties at a particular layer are derivable
from lower-layer properties.

In the security context, many notions of compromise exist. For example, compromise
might entail accessing supposedly restricted data, inserting unvalidated code into a trusted
environment, altering existing user data or operating-system parameters, causing a denial of
service, finding an escape from a highly restricted menu interface, or installing or modifying
a rule in a rule-base that results in subversion of an expert system.

There is an important distinction between having to depend on lower-layer functionality
(whether it is trustworthy or not) and having some meaningful assurance that the lower-layer
functionality is actually noncompromisible under a wide range of actual threats. Noncom-
promisibility is particularly important with respect to security, safety, and reliability.

Potentially, a supposedly sound system could be rendered unsound in any of three basic
ways:

e Compromise from outside (intuitively, above or laterally — from elsewhere at the
same abstraction layer)

e Compromise from within (intuitively, inside a component or layer)
e Compromise from below (intuitively, underneath)

Each of these situations could be caused intentionally, but could also happen accidentally.
(For descriptive simplicity, a user may be a person, a process, an agent, a subsystem, another
system, or any other computer-related entity.)

5This section is adapted from [251].
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e Compromise from outside typically originates from an access point that is nominally
external to the component being compromised.

— In cases of purposeful compromise from outside, the perpetration is typically that
of a completely unprivileged user or a partially privileged user who gains access to
perpetrate a further compromise. In general, authorization may be unnecessary,
possibly because of an exploitable flaw in the standard interface; in some cases,
authorization may be bypassed.

— In cases of accidental compromise from outside, the compromise may result from
an inadvertent program error in a higher layer that somehow affects a lower layer,
or in another module at the same layer for which there is inadequate isolation.

e Compromise from within typically originates inside a particular component that is com-
promised, existing at a given layer of abstraction.

— In cases of purposeful compromise from within, the perpetration is performed by a
user or program that has somehow gained access (with or without authorization) to
the internals of a component, such as privileged maintenance access to a database
management system, network controller, or automatic teller machine. The compo-
nent could be compromised by an authorized user who is misusing privileges, or
by a penetrator; once a perpetrator has gained access to the component internals,
such a distinction may be academic, because the penetrator is now more or less
indistinguishable from an insider. Thus, compromise from within may follow from
a compromise from outside that enables a subsequent penetration.

— In cases of accidental compromise from within, the compromise could involve flaws
or malfunctions associated with the particular system component.

e Compromise from below is initiated at a lower layer of abstraction than the layer at
which the compromise of a given component occurs. Compromise from below may result
from malicious action or accidental failure of an underlying mechanism on which the
particular component depends. It typically affects the particular component by altering
the state of lower-layer functionality, or in some cases merely by gaining access to
information in a lower-layer abstraction and using that information in some unexpected
way. This is roughly equivalent in meaning to subversion.

— In cases of purposeful compromise from below, the perpetration is performed by a
user who has somehow gained access (with or without authorization) to layers of
abstraction underlying a particular component that is being compromised, which
can then be undermined without attacking the component itself. Examples include
(1) obtaining the unencrypted form of an encrypted message by reading a temporary
file in storage, (2) finding an occurrence of a particular word in a restricted database
to which access is not permitted by scanning the disk on which that database is
stored, and (3) editing the raw text of an enqueued mail message after it is released
by a user but before it is actually sent out by the mailer. Thus, compromise from
below may follow from a compromise from outside or compromise from within that
enables a subsequent penetration to the lower-layer mechanisms.
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— Cases of accidental compromise from below often involve the results of flaws or
malfunctions at lower layers of abstraction that in some way alter or otherwise
affect the expected behavior of the particular component. For example, consider
a rather dramatic error that occurred in the early 1960s in the MIT Compatible
Time-Sharing System (CTSS). The entire unencrypted file of user passwords was
printed out as the message of the day for each new user login. This resulted from a
shortsighted naming convention in the context editor being used at the same time
by two different operators in a shared system directory [250]. Two temporary file
names were the same for each invocation of the editor, and the temporary files
became interchanged between two different users in the same directory. Notable
examples of hardware flaws include the Pentium floating divide flaw (discussed in
the Risks Forum in RISKS-16.57-59,61,66,67,69,71,72,81, for example) and security-
relevant flaws in other processors (e.g., [357]).

The distinctions among these three modes tend to disappear in systems that are not well
structured, in which inside and outside are indistinguishable (as in systems with only one
protection state), or in which outside and below are merged (as in flat systems that have
no concept of hierarchy). In addition, compromises from outside may subsequently enable
compromises from within, and compromises from outside or within may subsequently enable
compromises from below. The distinctions are also murky in cases of emergency operations.
Furthermore, an egregious process whereby vendors can disable software remotely is discussed
in Section 2.4.

Certain attack modes may occur in any of these forms of compromise. For example,
consider the following Trojan-horse perpetrations, which can take place in each form.

e Compromise from outside: a letter bomb (e.g., electronic mail or Word macro virus)
that when read or interpreted can result in unanticipated executions, or a spoofing
attack that piggybacks on a line or replays a message

e Compromise from within: a surreptitious code patch that maintains a hidden trickle
file of sensitive information within the program data

e Compromise from below: a wiretap implanted inside a telephone switch, or Ken Thomp-
son’s now-classical object-code modification of the C compiler that permitted a trapdoor
routine to be planted in the login [372] (whereby it becomes clear that system security
also depends upon the compiler). Thompson’s Trojan horse was inserted into the
object code of the C compiler (with no change in the source of the C compiler), lurking
until the next recompilation of the login routine, when it created a trapdoor in the
object code of the login routine (with no change to the source code of the login routine).
The Trojan horse placed in the compiler was capable of reinserting itself into the object
code of successive recompilations of the compiler itself, and thus was itself survivable!
This suggests that compilers have some special problems of their own, as considered in
Section 5.10.

Table 1.1 summarizes some properties whose nonsatisfaction could potentially compro-
mise system behavior, by compromising confidentiality, integrity, availability, real-time per-
formance, or correctness of application software, either accidentally or intentionally. To
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Table 1.1: Illustrative Compromises
Layer of Compromise Compromise Compromise
abstraction || from outside: from within: from below:
Needs exogirding Needs endogirding Needs undergirding
Outside Acts of God, Chernobyl-like
environment earthquakes, disasters caused
lightning, etc. by users or operators
User Masqueraders Accidental mistakes; Application system outage
Intentional misuse or service denial
Application Penetrations of Programming errors Application (e.g., DBMS)
application service in application code undermined within
integrity operating systems (OSs)
Middleware Penetration of Trojan horsing of Subversion of middleware
Web and DBMS Web and DBMS from OS or network
servers servers operations
Networking Penetration of Trojan horsing of Capture of crypto
routers, firewalls; network software keys within the OS;
Denials of service Exploitation of lower
protocol layers
Operating Penetrations of OS by | Flawed OS software; OS undermined from
system unauthorized users Trojan-horsed OS; within hardware:
Tampering by faults exceeding fault
privileged tolerance; hardware
processes flaws or sabotage
Hardware Externally generated | Bad hardware design Internal power
electromagnetic or and implementation; irregularities
other interference; Hardware Trojan horses;
External power- Unrecoverable faults;
utility glitches Internal interference
Inside Malicious or Internal power supplies,
environment || accidental acts tripped breakers,

UPS/battery failures
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illustrate such compromises, the table also indicates possible compromises — whether they
involve modification (tampering) or not — that can occur from outside, from within, or from
below, for each representative layer of abstraction. The distinctions are not always precise: a
penetrator may compromise from outside, but once having penetrated, is then in position to
compromise from below or from within. Thus, one type of compromise may be used to enable
another. For this reason, the table characterizes only the primary modes of compromise. For
example, a user entering through a resource access control package such as RACF or CA-
TopSecret, or through a superuser mechanism, and gaining apparently legitimate access to
the underlying operating system may then be able to undermine both operating-system in-
tegrity (compromise from within) and database integrity (compromise from below if through
the operating system), even though the original compromise is from outside. Similarly, a
software implementation of an encryption algorithm or of a cryptographic check sum used
as an integrity seal can be compromised by someone gaining access to the unencrypted in-
formation in memory or to the encryption mechanism itself, at a lower layer of abstraction.
A user exploiting an Internet Protocol router vulnerability may initially be able to compro-
mise a system from within the logical layer of its networking software, but subsequently may
create further compromises from outside or below. The Thompson compiler Trojan horse is
a particularly interesting case, because it may not normally be thought of as compromise
from below if the compiler is not understood to be something that is depended upon for
its correct behavior. Indeed, it is a very bad policy to use an untrustworthy compiler to
generate an operating system, and therefore the compiler must be considered “below” (or
else the dependence must be considered as a violaton of layered trustworthiness, as in MLX).
Indeed, the entire software development process is a huge opportunity for compromising the
integrity of the resulting system (intentionally or accidentally).

From the table, we observe that a system may be inherently compromisible, in a variety of
ways. The purpose of system design is not to make the system completely noncompromisible
(which is impossible), but rather to provide some assurance that the most likely and most
devastating compromises are properly addressed by designs, architectures, development pro-
cesses, and operational practices, and — if compromises do occur — to be able to determine
the causes and effects, to limit the negative consequences, and to take appropriate actions.
Thus, it is desirable to provide underlying mechanisms that are inherently difficult to com-
promise, and to build consistently on those mechanisms. On the other hand, in the presence
of underlying mechanisms that are inherently compromisible, it may still be possible to use
Byzantine-like strategies to make the higher-layer mechanisms less compromisible. However,
flaws that permit compromise of the underlying layers are inherently risky unless the effects
of such compromises can be strictly contained.

1.4 Defenses Against Compromises

Protection against the three forms of compromise noted in Section 1.3 — compromise from
outside, compromise from within, and compromise from below — are referred to in this report
as erogirding, endogirding, and undergirding, respectively — that is, providing outside barrier
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defenses, internal defenses, and defenses that protect underlying mechanisms, respectively.®

In general, all three types of protection are necessary. Various approaches are considered
in Chapters 5, 7, and 8. For the purposes of this chapter, just a few illustrative examples are
given here, relating to a few of the layers of abstraction shown in Table 1.1. As indicated by
this summary, some of the techniques are quite different from one case to another, although
other techniques are more generically applicable.

e Exogirding: Domain architectures protecting systems from their users, firewalls pro-
tecting one system from another, authentication mechanisms preventing penetrations
at different layers, use of encryption for confidentiality and integrity of information
transmission, electromagnetic shielding

e Endogirding: compile-time and run-time checks such as bounds checks and type checks
to minimize the effects of errant programs, fault tolerance, integrity checks to prevent
and detect Trojan horses, use of encryption for confidentiality and integrity of stored
information, monitoring of program behavior to detect misuse or aberrant system op-
eration

e Undergirding: use of secure kernels to prevent higher-layer compromises, trustworthy
operating systems and high-integrity hardware to support critical software functionality,
use of special-purpose hardware (e.g., co-processors and cryptographic engines) to aid
less trustworthy higher-layer systems

1.5 Sources of Risks

Some of the many stages of system development and use during which risks may arise are
listed below, along with a few examples of what might go wrong (and, in most cases, what
has gone wrong in the past). This list summarizes some of the main threats. Section 1.6
gives examples of specific illustrative cases.

Problems in the system development process involve people at each stage, and are
illustrated by the following examples:

e System conceptualization: inappropriate use of technology when the risks were
actually too great, and absence of computerization when it would have been essential

e Requirements definition: erroneous, incomplete, and inconsistent requirements

e Models: false assumptions about the physical world, the operating environment, and
human behavior

e System design: fundamental misconceptions and design flaws

e Implementation: program bugs, omissions, and Trojan horses causing unanticipated
effects

61n this usage, “undergirding” has its natural-language meaning; “exogirding” takes on the primary meaning of “girding”, to
avoid confusion with its other meanings; “endogirding” is introduced as an intermediate concept — neither outside nor below,
but rather internal.

20



e Support systems: poor programming languages, faulty compilers and debuggers, and
misleading development tools whose use might permit the development of weak systems

e Testing and verification: incomplete testing, incomplete or erroneous verification

e Evolution: sloppy maintenance, misconceived system upgrades, introduction of new
flaws in attempts to fix old flaws

e Stagnation: infeasible expansion of a system beyond its initial requirements (e.g.,
because software bloat, loss of key personnel, or unavailability of compatible hardware
impedes upgrades and retrofits)

e Decommission: premature removal of a primary or backup facility, hidden dependence
on an old version that is no longer available but that is required (e.g., for compatibility)

Problems in system operation and use involve people and external factors, and are
illustrated by the following examples:

e Hardware malfunction, due to

— Environmental factors such as lightning, earthquakes, extreme temperatures, elec-
tromagnetic and other interference including cosmic radiation and sunspot activity,
animals (sharks, rats, and squirrels are included in the case histories, for example)
and many natural disasters. For recent House testimony on some of the risks of RF
interference, see Radio Frequency Weapons and Proliferation: Potential Impact on
the Economy, http://www.house.gov/jec/hearings/02-25-8h.htm). Systems devel-
oped in the former Soviet Union were previously discussed by General Schweitzer
(http://jya.com/rfw-jec.htm).

— Loss of electrical power

— Component malfunction: aging, transient behavior, or inadequate design

e Software misbehavior: for example, due to problems in the system development
process, as noted above

e Human behavior in system use, whether in system operators, administrators, staff,
users, or unsuspecting bystanders, for example, in

— Installation: improper configuration, incompatible versions, erroneous parameter
settings, or linkage errors
— Misuse of the overall environment or the computer systems, including

* Unintentional misuse (including untimely use): entry of improper inputs, mis-
interpretation of outputs, or execution of the wrong function

x Intentional misuse: penetration by unauthorized or unintended users, misuse
by authorized users, insertion of Trojan horses, or fraud

The last subcategory — intentional misuse — represents a particular worrisome area of
concern and is considered in Section 2.1.
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1.6 Some Relevant Case Histories

We consider here just a few illustrative problems that have been encountered in the past,
suggesting the rather pervasive nature of the survivability problem — with many diverse
causes and effects.

The first seven items listed below involved massive outages triggered accidentally by local
events, each of which compromised overall system and network survivability. The eighth was
triggered by a single human error, but the effects propagated throughout the San Francisco
Bay Area. The ninth involved a local outage that was quickly corrected, but whose after-
effects continued to propagate for many hours. These cases involved human factors as well
as other causes.

e ARPAnet collapse. On 27 October 1980, the ARPAnet accidentally shut itself down
globally. Collapse, analysis, and recovery took about 4 hours. The problem was due to a
hardware design omission (the absence of parity checking in memory), hardware failures
(the coexistence of two bogus versions of a node status message resulting from memory
errors), and an overly generous algorithm for garbage collection of status messages.
Each node in the network became contaminated, memory overflowed, and the network
became useless.

e Internet service outages. On 23 April 1997, Internet service providers lost contact
with nearly all U.S. Internet backbone operators. As a result, much of the Internet was
disconnected, some parts for 20 minutes, some for as long as 3 hours. The problem was
attributed to MAI Network Services in McLean, Virginia (www.mai.net), which gave
Sprint and other backbone providers incorrect routing tables, the result of which was
that MAI was flooded with traffic. In addition, the InterNIC directory incorrectly listed
Florida Internet Exchange as the owner of the routing tables. A “technical bug” was
also blamed for causing one of MAI’s Bay Networks routers not to detect the erroneous
data. Furthermore, the routing tables Sprint received were designated as optimal, which
gave them higher credibility than otherwise. Something like 50,000 routing addresses
all pointed to MAI

e Internet domain blockage. On 16 July 1997, Network Solutions Inc. attempted
to run the autogeneration of the top-level domain zone files, which resulted from the
failure of a program converting Ingres data into the DNS tables, corrupting the .com and
.net domains in the top-level domain name server (DNS), maintained by NSI. Quality-
assurance alarms were evidently ignored and the corrupted files were released at 2:30
a.m. EDT on 17 July — with widespread effects. Other servers copied the corrupted
files from the NSI version. Corrected files were issued 4 hours later, although various
problems lingered.

e Long-distance calling blockage. On 15 January 1990, the AT&T long-distance net-
work suffered a nationwide congestion problem that effectively shut down long-distance
calling for more than 9 hours. The problem was traced to a flaw in the recovery soft-
ware in each Signaling System 7 switch that enabled each neighboring switch to crash
when receiving traffic from a newly crashed switch that had attempted to reinitialize
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itself. This crash phenomenon propagated repeatedly throughout the entire network,
and resulted in almost no long-distance calls getting through.

AT&T frame-relay outage. On 13 April 1998, AT&T’s packet-data frame-relay
network collapsed throughout the United States. This network is used for business
customers, credit-card activities, bank transactions, travel reservations, among others.
The outage resulted from a faulty software upgrade of a circuit card in a single switch,
and effectively created a black-hole-like path that shut down the entire network, in some
cases for as long as 26 hours.

Western power outages. Electric power outages on 2 July 1996 affected at least 10
Western states. The outage was reportedly triggered by a single tree in Idaho coming
in contact with a transmission line, although many other events conspired to create
the massive propagation. Further Extensive West Coast outages on 10 August 1996
affected 8 million customers in 8 states, Canada, and Baja (Mexico).

Galaxy IV satellite failure. The loss of the orientation of the Hughes HS601 Galaxy
IV satellite on 19 May 1998 (resulting from a malfunction of both the primary system
and the backup system) caused as many as 40 million pager systems to fail across the
United States, as well as the loss of many other services also provided by that satellite
— affecting point-of-sale devices, hospital operations, and other activities. It took
several days to reconfigure the communications, using other satellite facilities. (Two
other failures of Hughes HS601 satellites occurred — Galaxy VII on 14 June 1998 and
another on 4 July 1998 affecting 3.7 million DirecTV subscribers — but the backup
systems worked properly in both of those cases.)

San Francisco Bay Area power outage. At 8:15 a.m. on the morning of 8 December
1998, a power surge resulted from an attempt to reconnect a power station to the grid —
but without first having removed a temporary ground connection. More than a million
people were affected, some of whom were without power for as long as 8 hours. San
Francisco Airport was closed for 1.5 hours. The Pacific Stock Exchange, Rapid Transit,
ATMs, offices, and hospitals were without power. Various secondary effects arose; for
example, the surge caused SRI only a momentary blip, but that was enough to take
many computers down for hours. (See RISKS, vol. 20, nos. 11 and 12.)

Kansas City power outage triggers national air-traffic snarl. At the Kansas
City (Olathe) Air Route Traffic Control Center, at 9:03 a.m. CST on 18 December
1997, a technician routed power through half of the redundant “uninterruptible” power
system, preparatory to performing annual preventive maintenance on the other half.
Unfortunately, he apparently pulled the wrong circuit board, and took down the re-
maining half as well. The maintenance procedure also bypassed the standby generators
and emergency batteries. The resulting outage took out radio communications with
aircraft, radar information, and phone lines to other control centers. Power was out
for only 4 minutes, communications were restored shortly thereafter, and backup radar
was working by 9:20 a.m. However, at least 300 planes were in the Olathe-controlled
airspace at the time, and the effects piled up nationwide. Hundreds of flights were
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canceled, diverted, or delayed. Many delays were as long as 2 hours, with some delays
continuing into the evening.

The remaining cases noted here are examples of other types of accidental survivability
problems, although less widespread in their resulting effects.

e Navy on-board problems. Two Ticonderoga-class cruisers (the USS Hue City and
USS Vicksburg) were put out of commission because of difficulties in integrating new
on-board weapon-control system software, involving 8 million lines of code (RISKS
vol. 19, no. 86). The Navy’s Windows NT based Smart Ship technology is also causing
potentially serious difficulties. For example, in September 1997, the Aegis missile cruiser
USS Yorktown suffered a systems failure during maneuvers off the coast of Cape Charles,
Virginia, as the result of an unchecked divide-by-zero in an NT application. The ship
was dead in the water for 2 hours and 45 minutes. An earlier loss of propulsion also
occurred on 2 May 1997 (RISKS vol. 19, no. 88).

e Tomahawk missile abort. On 2 August 1986, a Tomahawk missile suddenly made
a soft landing in the middle of an apparently successful launch. The abort sequence
was accidentally triggered as a result of a bit dropped by the hardware, possibly due to
stray electromagnetic radiation (a cosmic ray hit or other form of interference?) on the
computer.” (On 8 December 1986, an earlier Tomahawk cruise missile crashed during
launch because its midcourse program had been accidentally erased on loading.)

e Black Hawk helicopter crashes. In tests, radio waves triggered a complete hy-
draulic failure of a UH-60 Blackhawk helicopter, effectively generating false electronic
commands. Twenty-two people were killed in five Black Hawk crashes before shielding
was added to the electronic controls. Failures in other systems have also been linked
to electromagnetic interference and rotor control failures. (On 13 December 1998, 60
Minutes reported that repeated notices of failures had not been acted upon.)

e Other electromagnetic interference affecting defense systems. Patriot defenses
and Predator unmanned aerial vehicles reportedly cannot work properly in certain for-
eign countries (Germany, Japan, South Korea, and Bahrain are particular instances)
because of frequency clashes. For example, Patriot missile system radios, radars, and
data-link terminals clash with Korean cellular phones; pagers of U.S. forces clash with
Japanese aeronautical systems; crib monitors used on U.S. bases clash with German
telephone service. In Bahrain, SPS-40 and SPS-49 radars are unusable because of in-
terference from the national telecommunications services. (See the Defense Week issue
released 26 October 1998.)

e Phobos probe losses. The Phobos I probe was doomed by a faulty software update,
which caused a loss of solar orientation, which in turn resulted in discharge of the solar
batteries. Phobos II encountered a similar fate when the automatic antenna reorienta-
tion failed, causing a permanent loss of communications. Several similar catastrophes
are linked to faulty maintenance.

"The cause of this abort is still unknown to me. If you know the results of the final analysis, please let me know.
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e Other space cases. Other cases of nonsurvivable systems are also worth noting: (1)
the cosmic ray bombardment of TDRS in 1984 (which cut the Challenger’s communi-
cations in half), (2) the ill-fated Challenger launch in 1986 due to an O-ring weak-link
problem, (3) sunspot activity that affected the computers and altered Skylab’s orbit in
1979, and (4) an Atlas-Centaur whose program was altered by lightning.

e Patriot missile defense. In addition, many cases have occurred in which system
functionality continued but the overall performance was no longer consistent with ex-
pectations. An example is provided by the Patriot software whose clock drifted far
enough to prevent it from adequately tracking the incoming SCUD missile that hit the
Dhahran barracks. It might be said that the computer hardware survived (it continued
to do its computations), but the necessary application functionality did not survive over
the 100 hours that the system had been running (instead of the 14 hours specified by
the requirements). This illustrates the fact that we must always define survivability
with respect to specific requirements or expectations of the application, not just of the
system software.

e Cable cuts. In numerous cases, a single cable was cut, with amazingly dispersed effects
— in one case resulting in prolonged delays at all three airports in the New York City
area. There have also been cases in which multiple circuits have been severed simul-
taneously. In 1986, the entire Northeast of the United States was separated from the
rest of the ARPAnet because all seven circuits actually went through the same conduit
in White Plains. In 1991, two fiber-optic lines in Annandale, Virginia, that had been
intentionally placed in separate conduits to avoid such single weak links were simulta-
neously severed, affecting 80,000 telephone circuits (including the Pentagon and news
services). In the last week of June 2000, during construction preparing for connecting
the Bay Area Rapid Transit (BART) to the San Francisco Airport, a droplet of welding
material in a manhole just south of San Francisco caused a fire that destroyed portions
of 27 cables, wiping out telephone service to 25,000 customers; the process of replacing
800 feet of cable and correctly reconnecting the many thousands of wires was expected
to take at least two weeks.

Next, we consider a few cases attributed to malicious acts.

e Denial-of-service attacks on ISPs and servers. The PANIX ISP suffered a severe
denial of service resulting from a syn flooding attack (RISKS-18.45,
http://catless.ncl.ac.uk/Risks/18.45.html). WebCom did also (RISKS-18.69,
http://catless.ncl.ac.uk/Risks/18.69.html). Such flooding and resource-exhaustion at-
tacks are relatively easy to perpetrate, because they do not require any authentication
within the attacked systems.

e Distributed denials of service. Within a three-day period in February 2000, attacks
were targeted at many sites — including Yahoo, Amazon, eBay, CNN.com, Buy.com,
ZDNet, E*Trade, and Excite.com. These attacks were launched from intermediary sites
(zombies) that had been compromised externally, which made it difficult to track the
perpetrators. (See RISKS-20.79,
http://catless.ncl.ac.uk/Risks/20.79.html.)
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e Personal computer virus attacks. (See Section 2.1.2 for background on personal-
computer viruses.) In the personal computer world of Microsoft software, there is an
extraordinarily large number of user-propagated Trojan horses, usually referred to as
viruses, and herein referred to as PC viruses even though they are technically not
viruses (because their propagation requires human actions). Some of these viruses have
resulted in serious consequences such as disabling systems. Of particular noteworthiness
are the Word macros in the Melissa attacks (RISKS-20.26,28-34,39,40,44,45) and the
scripting attachments in the ILOVEYOU virus (4 May 2000, RISKS-20.88 and later)
and its copycat spinoffs, both of which exploited fundamental weaknesses in Microsoft
Outlook software relating to the executable nature of attachments. (The ILOVEYOU
virus actually infected some classified systems and networks, which of course is simply
not supposed to happen, although we know that operationally the complete isolation
of classified systems is a myth.)

e Australian sabotage. A massive communications blackout in Sydney, Australia, on 22
November 1987 was caused by a knowledgeable saboteur who had been a former Telecom
employee. The attacker severed 24 main cables in 10 different locations, which had been
carefully selected to have maximum effect. This attack knocked out 35,000 telephone
lines, shutting down many computers, banks, telephone offices, ATMs, point-of-sale
systems, stores, telexes, facsimile, and betting-office services. Because all international
services are routed through Sydney, the effects were not just local. It was suspected
that the attack had been based on 2-year-old information, because the same attack 2
years earlier would have been completely devastating.®

e San Francisco blackout attributed to sabotage. 126,000 customers in northern
San Francisco experienced a power outage for as long as 3.5 hours beginning at 6:15 a.m.
on 25 October 1997, when five transformers at a single power station stopped working.
The FBI counterterrorism unit investigated what it considered to be sabotage, whereby

39 of the 42 switches at one substation appeared to have been manually opened. (See
RISKS-19.42.)

e Hacked Web sites. Many organizations now depend on their Web sites for dissemina-
tion of timely and reliable information. However, serious risks exist of databases being
altered by intruders. Many cases of pranks and nuisance acts also clearly demonstrate
how vulnerable systems are to attack. Such intrusions continue to occur, because the
systems remain vulnerable. Here are a few recent cases. Although they were mostly
intended as pranks rather than malicious activities, it is clear that penetrations were
involved, and the damages could have been much worse — especially in cases in which
there were no firewalls isolating these Web sites from internal systems, or where the
firewalls were improperly configured.

+ CIA (RISKS-18.49)
+ Justice Department (RISKS-18.35)
+ FBI (RISKS-20.43)

8«Saboteur Tried To Black Out Australia” in The Australian, 23 November 1987, Sydney, Australia, p.1, 2nd edition,
reprinted in ACM Software Engineering Notes, vol. 13, no. 1, January 1988, pp. 15-16.

26



+ Department of Interior (RISKS-20.43)

+ Three Army Web sites (RISKS-19.63)

+ Air Force (RISKS-18.64)

+ NASA (RISKS-18.88)

+ Space Station problem reporting database (RISKS-20.47-48)

+ National Collegiate Athletic Association (RISKS-18.88)

+ U.S. Information Agency (RISKS-20.18)

+ George W. Bush campaign site, photo replaced (RISKS-20.64)

+ Gallup Organization (RISKS-20.83)

+ Japanese Government Science and Technology Agency, census data erased (RISKS-
20.77)

+ Swedish meatpacker site (RISKS-19.14)

+ Swedish National Board of Health and Welfare (RISKS-20.87)

+ National Hockey League denial of service, 5-day outage (RISKS-20.89)

In addition, a U.S. General Accounting Office study uncovered some rather egregious
security vulnerabilities in the Web site of the Environmental Protection Agency. When
threatened with exposure of those vulnerabilities by an environmentally unsympathetic
Congressman, the EPA chose to remove its Web site from the Net altogether (RISKS-
20.77).

There was also a report in Federal Computer Week that a DoD bloodtype database
had been subverted and bloodtype data altered (RISKS-19.97); however, that report
was subsequently corrected: no such penetration had occurred, although a red team
had identified the possibility of such an attack and contemplated its possible effects
(RISKS-20.02). The fallacious report apparently did cause the Pentagon to reconsider
what information is put on its Web sites.

e Faked e-mail. Given the ease with which e-mail can be spoofed, it is not surprising
to find various cases involving phony names, e-mail addresses and IP addresses, bogus
content, and even altered text on legitimate messages — as well as rampant spams from
bogus addresses, scams, and other annoyances.

e Other malicious attacks. Many system outages have resulted from malicious at-
tacks. In the world of conventional computer systems, there have been various mali-
cious attacks using penetrations and Trojan horses, including a variety of logic bombs
and time bombs inserted by disgruntled employees, a tampered database that affected
General Dynamics’s Atlas rocket (resulting in the conviction of the perpetrator — see
RISKS-11.95), a surreptitiously changed password that effectively blocked usage of a
Washington, DC city computer system (in retaliation for alleged reactions to the sabo-
teur’s criticism of his superiors), and the apparently intentional malicious deletion of
the annual financial records for a town in Arizona. In many other cases, a system su-
perficially appeared to be operating correctly, but had actually been tampered with or
penetrated in such a way that much greater damage could have occurred.

References to these and many other similar cases of nonsurvivable systems and networks
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can be found in Neumann’s RISKS book [250] and in the on-line archives of the Risks Forum
at http://catless.ncl.ac.uk/Risks/, where you can browse and search through RISKS issues.
A compendium of short, mostly one-liner, descriptions of cases ([256] is browsable on-line at
http://www.csl.sri.com /neumann /illustrative.html and in ftp form for compact printing
ftp://ftp.csl.sri.com/pub/users/neumann/illustrative.ps and
ftp://ftp.csl.sri.com/pub/users/neumann/illustrative.pdf.

(Other known cases have been reported informally, but not documented publicly.) Some
cases of nonsurviving systems are attributable to software flaws introduced by system design,
by system software development, or by maintenance, at various points in the system life
cycle. Some were due to hardware, others to environmental factors such as electromagnetic
radiation, others simply to human foibles.

Malicious system misuse is a very serious potential problem (especially when it can re-
sult in system and network collapse), although most of the penetration efforts recorded to
date were attacks on computer systems themselves rather than on critical applications that
used computers. Nevertheless, serious security vulnerabilities exist in many mission-critical
systems, many of which could result in loss of survivability.

With all the furor over penetrations of Web sites, denial-of-service attacks, and propa-
gating Trojan horses in e-mail, deeper issues seem lost in the shuffle. In the case of the
penetrations and distributed denial-of-service attacks, it is obvious that operating system
security and networking robustness are inadequate. In the e-mail cases, the vulnerabil-
ities exploited in the MS Word macro virus in Microsoft Outlook and Outlook Express
have been around for a long time and are likely to be around for a long time. Although
some palliative fixes are available, the fundamental problems remain. For example, fil-
ters deleting e-mail with “Subject: Important Message from ...” are only partially use-
ful, in light of variant versions of Melissa with Subject: lines that are different or even
blank. The same problem repeated itself a year later with ILOVEYOU and its subsequent
clones. The basic system infrastructure is incapable of adequately protecting itself against
all kinds of misuses, and this particular exploit is just another reminder that many folks
need to wake up. The situation could have been much worse, but unfortunately many of
those who depend on systems that are inherently inadequate do not get the proper mes-
sages when the situation is not a terrible disaster. On the other hand, even if we were
to have terrible disasters, it apparently would not be enough. Many of the constructive
lessons that should have been learned from Robert Tappan Morris’s Internet Worm in
1988 and subsequent events are still unlearned. (See my 1997, 1999, and 2000 testimonies
for the U.S. House Judiciary Committee at http://www.csl.sri.com/neumann/house97.html,
http://www.csl.sri.com/neumann/house99.html, http://www.csl.sri.com/neumann/house00.html,
respectively, which discuss the amazing lack of progress from one year to the next. Written
answers to Representatives’ questions on the 1997 testimony are also on-line: http://www.csl.sri.com/neum:

One of the major lessons involves the risk of monocultures, that is, putting all your eggs
in one basket — particularly when that basket is inherently vulnerable. A second lesson
is that when a potentially dangerous vulnerability is exploited in a relatively harmless way,
proactive measures should be taken to avoid much greater damage in the future. The Melissa
and ILOVEYOU PC viruses both exploited the scripting capabilities of Microsoft Outlook.
The latter case should have been no surprise, but the damage could have been much greater.
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A third lesson is that we have still not seen enormously destructive PC viruses, and have
only begun to find polymorphic pest programs that can transform themselves continually in
order to hinder detection.

1.7 Causes and Effects

Breakdowns in system survivability are often attributed to either security problems or relia-
bility problems. However, there is an interesting crossover between the two types of problems,
whereby causes and effects may be related and in some cases intermixed. The following enu-
meration suggests this coupling. It illustrates the distinctions and similarities between the
two types, and gives a preliminary view of some of the interdependencies.

e Reliability problems that also could have been security problems. In some
cases, failures that have been traced to system reliability problems could alternatively
have been caused by malicious human actions. For example, both the 27 October 1980
ARPAnet collapse and the 15 January 1990 AT&T collapse could have been maliciously
triggered, although the system hardware and software flaws that permitted those prob-
lems were already in place, inadvertently. In the former case, it would have been possible
to maliciously insert bogus status messages into the node traffic, and create exactly the
same effect of saturating every node in the network. In the latter case, Neumann was
told by two young intruders shortly afterward that they had been experimenting on
the first switch when the initial crash occurred; in that case, it is conceivable that the
acknowledged reliability problem may actually have been triggered as an accidental
byproduct of a security penetration — if they had caused the initial crash. Indeed, any
distributed system with remote maintenance facilities has simultaneous potentials for
unreliability modes and malicious compromises; remote maintenance is very common
in many systems, including via dial-up lines and Internet access (in addition to hard-
wired connections). Similarly, there have been many inadvertent cases of accidentally
severed cables where the same effect could have been achieved intentionally — if one
knew where to dig. Once an accidentally exploitable vulnerability becomes known, it
may be relatively easy to create similar conditions maliciously.

e Security problems that could also have been reliability problems. In certain
cases, system disruptions that have been traced to malicious human actions could al-
ternatively have been caused by hardware or software malfunctions. This is especially
true with denial-of-service attacks in which an intentionally exploited single weak link
could just as well have failed accidentally. It is even true where multiple events could
have been triggered by a single underlying cause — as could have been the case in the
San Francisco power outage noted above if there had been a previously unidentified
common-mode failure mode that accidentally tripped multiple switches.

e Reliability problems that are less likely to occur as security problems. Some
cases have resulted from an obscure combination of malfunctions or other reliability
problems that could not realistically have arisen from malicious human actions. For
example, in the ARPAnet collapse, there was a fundamental design decision to omit
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hardware-implemented parity checking of stored status words (parity checking was
present for transmissions), and a weak garbage collection algorithm in software. The
result was clearly a network-wide reliability problem that was unlikely to have been
created intentionally as a Trojan horse or installed dynamically through a security pen-
etration. There were much easier ways to trash the network. (On the other hand, once
this vulnerability had been recognized, it would have been very easy to trigger the same
failure mode maliciously, as noted in the first bulleted item in this section.) Similarly,
the Patriot missile clock-drift problem was a subtle implementation flaw that would
not likely have been created intentionally — unless the development process itself had
been subverted; the vulnerability was fairly subtle, and arose only because of prolonged
use of the missile platforms in the same location, without the expected reinitialization.
Nevertheless, in such cases of obscure programming bugs, it is possible that a disgrun-
tled programmer could have planted a much simpler undetectable Trojan horse in the
software to achieve comparable results.

e Security problems that are less likely to occur as reliability problems. Cases
that result from extremely elaborate malicious human actions are much less likely to
be caused by malfunctions. For example, consider a complicated sequence of successive
penetrations and manipulations of programs and data (e.g., cracking, hacking, and
Trojan horsing), relying at each step on knowledge gained from the efforts thus far. In
such cases, freak accidents are much less probable than intelligently coordinated attacks
(as in the case of the Australian sabotage noted above).

In time of crisis, there can be uncertainty over whether a particular survivability problem
is related to security or to reliability, availability, and fault tolerance.

e At the time of the Year-2000 Problem rollover, a malicious security attack could be very
difficult to distinguish from a failure triggered by the Y2K problem itself.

e Prevention against denial-of-service attacks is typically considered to be a security prob-
lem, whereas design for high system availability is considered to be a reliability problem.
Clearly, they are closely interrelated. In some cases, malicious denial-of-service attacks
may be indistinguishable from accidental denials of service, in underlying causes and in
their effects.

e Protecting against electromagnetic interference has attributes of both security and
reliability, because it could occur maliciously (jamming) or accidentally (e.g., atmo-
spheric radiation, lightning, circuit emanations). Such interrelationships are considered
in Chapter 3.

Furthermore, in certain cases it may not be evident whether a particular attack was
natural or human related — and if human, whether accidental or intentional, malicious
or otherwise. Indeed, there is long-standing evidence that intruders (“crackers”) have had
access to the telephone switches, and could have caused results otherwise attributed to
system problems. As noted above, the 15 January 1990 AT&T outage may actually have
been triggered by intruders, albeit accidentally. There is also an unverified statement made
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by an FBI agent during a talk at the University of California at Davis to the effect that the
2 July 1997 West Coast power outage involved some maliciously caused events.

As further examples of the fuzzy crossover between reliability and security — although
directed more toward survivability of integrity requirements than toward survivability per
se — there have been numerous cases of suspicious activities involving computers used in
elections. In one case in particular, the results of the preliminary test processing were left
undeleted, and actually would have caused the wrong winner to be elected, had an anomaly
not been detected. Although this error was eventually diagnosed and corrected, the claim
was of course made that this was an accident. How do you know it was not intentional?

The foregoing discussion also applies to performance degradations as well as complete
outages. The evident heterogeneity of causes and effects suggests that systems should be
developed to anticipate a broader class of threats — not just to narrowly address threats to
security, or to reliability, or to performance, but rather to address the necessary requirements
in the same context.

An obvious conclusion of this discussion is that systems should be designed to be surviv-
able, to withstand both accidental malfunctions and intentionally caused outages or other
deviations from desired behavior. Survivability in turn requires a variety of further require-
ments, for example, relating to security, reliability, and robustness of components, networks,
algorithms, implementations, and so on.
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Chapter 2

Threats to Survivability

Numerous vulnerabilities, threats, and risks are encountered in attempting to develop, op-
erate, and maintain systems with stringent survivability requirements. All these sources of
adversity can result in system and application survivability being undermined. The sec-
tions of this chapter consider threats to security, reliability, and performance, respectively.
Whereas it is convenient to think of these types of threats as independent of one another,
they are in fact related in various ways. However, what is most important is that the totality
of threats must be addressed by the system requirements and by the system architectures
that presume to address those requirements.

2.1 Threats to Security

Security is mostly a superstition.*

Helen Keller

Malicious attacks can take many forms, summarized in Table 2.1 according to a classifi-
cation scheme shown in Figure 2.1, based on earlier work of Neumann and Parker [264]. For
visual simplicity, the figure is approximated as a simple tree. However, it actually represents
a system of descriptors rather than a taxonomy in the usual sense, in that a given misuse
may involve multiple techniques within several classes.

The order of categorization depicted is roughly from the physical world to the hardware
to the software, and from unauthorized use to misuse of authority. The first class includes
extrinsic misuses that can take place without any access to the computer system. The
second class concerns system misuse and typically requires some involvement with computer
hardware or software. Two types in this class are eavesdropping and interference (usually
electronic or electromagnetic, but optical and other forms are also possible). Another major
type of this class involves denial-of-service attacks that can be committed remotely without
any need for authorized access. The third class includes masquerading in a variety of forms.
The fourth includes the establishment of deferred misuse, for example, the creation and

1 Belief or practice resulting from ignorance, fear of the unknown, or trust in magic or chance (Webster). Security by obscurity
certainly seems consistent with Helen Keller’s view when applied to information security!
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enabling of a Trojan horse (as opposed to subsequent misuse that accompanies the actual
execution of the Trojan-horse program — which may show up in other classes at a later
time), or other forms of pest programs discussed below. The fifth class involves bypass of
authorization, possibly enabling a user to appear to be authorized — or not to appear at all
(that is, to be invisible to the audit trails). The remaining classes involve active and passive
misuse of resources, inaction that might result in misuse, and finally misuse that helps in
carrying out additional misuses (such as preparation for an attack on another system or use
of a computer in a criminal enterprise).

The main downward sloping right-hand diagonal line in Figure 2.1 indicates typical steps
and modes of intended use of computer systems. The leftward branches all involve misuse,
while the rightward branches represent potentially acceptable use — until a leftward branch
is taken. (Each labeled mode of usage along the main-diagonal intended-usage line is the
antithesis of the corresponding leftward misuse branch.) Every leftward branch represents a
class of vulnerabilities that must be defended against — that is, either avoided altogether or
else detected and recovered from. The means for prevention, deterrence, avoidance, detec-
tion, and recovery typically differ from one branch to the next. (Even inaction may imply
misuse, although no abusive act of commission may have occurred.)

The ordering used in Figure 2.1 and Table 2.1 is roughly upside down from the natural
layering used in Tables 1.1 and 3.1 — except for the Extrinsic Misuse category, which is at
the top. This order helps to maintain the sense of the cumulatively increasing binary-tree
choices at each layer and the successful choices down the right-sloping diagonal of Figure 2.1.

It must be noted that no taxonomy is perfect. There are always fuzzy boundaries and
overlaps. Besides, many actual perpetrations involve multiple types of misuse. No claim
is made for this particular representation. However, the categories shown here are useful,
recurring frequently in the discussion throughout this report.

Two classes of misuse techniques are of primary interest here, namely, bypasses of author-
ity (trapdoor exploitations and authorization attacks) and preplanned pest programs such
as Trojan horses, PC viruses, and worms, with effects including time bombs, logic bombs,
and general havoc. However, several other forms are important in the present context, and
these are also discussed.?

2.1.1 Bypasses

e Bypassing intended controls. Trapdoors and other system flaws often enable con-
trols to be bypassed. Bypassing may involve circumvention of existing controls, mod-
ification of those controls, or improper acquisition of otherwise denied authority, pre-
sumably with the intent to subsequently misuse the acquired access rights. Bypassed
controls might involve operating-system authentication mechanisms, system or database
access controls, and firewalls. In the World Wide Web, attacks may exploit flaws in
the programming environment or in browsers and servers. For example, with respect
to the Java language, weaknesses have been found in the language, in the Java Virtual

2The following description is adapted from Neumann and Parker [264], and in turn evolved from some earlier classifications
discussed by Neumann [245]. An extensive discussion of each misuse class is presented by Neumann and Parker [265], along
with examples of each class. They also present an analysis of more than two hundred cases [263].
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Adapted from P.G. Neumann and D.B. Parker,
“A summary of computer misuse techniques,” Twelfth National
Computer Security Conference, Baltimore, Maryland, 1989.

EX. Extrinsic
misuse

HW. System
misuse

Computer system access

Computer system use

Apparently authorized use
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Figure 2.1: Classes of Computer Misuse Techniques
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Table 2.1: Types of Computer Misuse

Extrinsic misuse (EX)
1. Visual spying: observation of keystrokes or screens
2. Misrepresentation: social engineering, deception
3. Physical scavenging: dumpster-diving for printout
System misuse (HW)
4. Logical scavenging: examining discarded or stolen media
. Eavesdropping: electronic or other data interception
. Interference: electronic or other jamming
. Physical attack on, or modification of, equipment or power
. Physical removal of equipment and storage media
9. Remote denials of service without needing system access
Masquerading (MQ)
10. Impersonation: false identity external to computer systems
11. Piggybacking attacks on communication lines, workstations
12. Playback and spoofing attacks, particularly IP spoofing
13. Network weaving to mask physical whereabouts or routing
14. Denials of service with spoofed identity
Pest programs (PP) — setting up opportunities for further misuse
15. Trojan-horse attacks (including letter bombs)
16. Logic bombs (a form of Trojan horse, including time bombs)
17. Malevolent worm attacks, acquiring distributed resources
18. Virus attacks, attaching to programs and replicating
Bypassing authentication or authorization (BY)
19. Trapdoor attacks, from any of a variety of sources:
a. Improper identification and authentication
b. Improper initialization or allocation
c¢. Improper termination or deallocation
d. Improper run-time validation
e. Naming flaws, confusions, and aliases
f. Improper encapsulation: exposed implementation detail
g. Asynchronous flaws: e.g., time-of-check to time-of-use anomalies
h. Other logic errors
20. Authorization attacks, for example, password cracking, token hacking
Active misuse of authority (AM) (writing, using, with apparent authorization)
21. Creation, modification, use, service denials (includes false data entry)
22. Incremental attacks (e.g., salami attacks)
23. Denials of service requiring authorization
Passive misuse of authority (PM) (reading, with apparent authorization)
24. Browsing randomly or searching for particular characteristics
25. Inference and aggregation (especially in databases), traffic analysis
26. Covert channel exploitation and other data leakage
27. Misuse through inaction (IM): willful neglect, errors of omission
28. Use as an indirect aid for subsequent misuse (IN): off-line preencryptive
matching, factoring large numbers, autodialer scanning.

00 3 O Ut
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Machine model (JVM), and in the Java Development Kit; although many of those vul-
nerabilities have been fixed or reduced [114, 116], some still remain. Similar problems
exist within the Microsoft Internet Explorer environment, although the penetrations
tend to have greater potential damaging effects than in JDK1.2 (which has finer-grain
access controls), because of the lack of an enforceable security policy other than merely
digitally signed applets.

Common cases of unauthorized access can result from system and usage flaws (e.g.,
trapdoors that permit devious access paths) such as the following [245]:

— Inadequate identification, authentication, and authorization of users, tasks, or sys-
tems. Failing to check identity and failing to require nonspoofable authentication
are common sources of problems. System spoofing attacks may result in which a
system component masquerades as another. The debug option of sendmail and
the .rhosts file exploited by the Internet Worm [324, 354, 360] are examples. These
exploitations also represent cases in which authentication and authority checking
were both absent. (Password-related trapdoors are noted separately below.)

— Improper initialization: improper initial domain selection or security parameters;
improper partitioning, as in implicit or hidden sharing of privileged data; embedded
operating system parameters in application memory space. If the initial state is
not secure, then what follows is in doubt. System configuration, bootload, initial-
ization, and system reinitialization following reconfiguration are all serious sources
of vulnerabilities, although often carried out independent of the standard system
controls. The sendmail debug option exploitation is also a configuration manage-
ment initialization problem, because system administrators can turn it off. (They
tend to leave it enabled for their own convenience.)

— Improper finalization: incompletely handled aborts, accessible vestiges of deallo-
cated resources (residues), incomplete external device disconnects, and other exits
that do not properly clean up after themselves. A particularly insidious flaw of this
type has existed in several popular operating systems (including TENEX), permit-
ting accidental piggybacking (tailgating) when a user’s communication line suffers
an interruption; the next user who happens to be assigned the same login port is
attached to the still-active user job. This type of problem continues to recur in new
systems (although sometimes as a configuration or cabling problem rather than an
incomplete termination).

— Incomplete or inconsistent run-time validation: improper argument validation, type
checking, and bounds checks; failure to prevent permissions, quotas, and other
programmed limits from being exceeded; control bypass or misplacement. One
example is the missing bounds check in gets, which was exploited by the finger
attack used in the Internet Worm — enabling the execution of arbitrary code on
the overflowed stack buffer. Instances of buffer overflows are very frequent among
the archives of bug collectors. (For example, see the BUGTRAQ newsgroup.)

— Improper naming: aliases (e.g., multiple names with inconsistent effects), search-
path anomalies, and other context-dependent effects (same name, but with different

36



effects, depending upon the directories, operating system version, and so on).

— Inadequate encapsulation: lack of information hiding, accessibility of internal data
structures, alterable audit trails, mid-process control transfers, hidden or undocu-
mented side effects.

— Other sequencing problems: incomplete atomicity or sequentialization, as in faulty
handling of interrupts or errors; flawed asynchronous functionality, such as permit-
ting undesired changes to be made between the time of validation and the time of
use; incorrect serialization, resulting in harmful nondeterministic behavior, such as
critical race conditions® and other asynchronous side effects. The so-called time-of-
check to time-of-use (ToCtToU) problem illustrates both inadequate atomicity and
inadequate encapsulation: an example is the situation in which, after validation is
performed on the arguments of a call by reference, the caller can then change the
arguments. Also, spoofing attacks and replay attacks can result from predictable
or tamperable sequencing — e.g., [224] — or nonmatching sequenced operations —
as in SYN attacks.

— Other logic errors: for example, inverted logic, conditions or outcomes not properly
matched with branches, wild control transfers (especially if undocumented).

Tailgating may occur accidentally when a user is randomly attached to an improperly
deactivated resource, such as a port through which a process is still logged in although
its original user is no longer attached. Unintended access may also result from other
trapdoor attacks, logical scavenging (e.g., reading a scratch tape before writing upon
it), and asynchronous attacks (e.g., incomplete atomic transactions, and discrepancies
between time of check and time of use). For example, trapdoors in the implementation
of encryption can permit unanticipated access to unencrypted information.

Password attacks are a particularly insidious subclass of trapdoor attacks and may
involve, for example

— Guessing of passwords, based on common strings (such as dictionary words and
proper names) or strings that might have some logical association with an individ-
ual under attack (such as initials, spouse’s name, dog’s name, and social security
number).

— Capture of unencrypted passwords in transit (via local or global net, or by trapdoors
such as using /dev/mem for reading the entire Unix memory), whether or not the
password file is stored in encrypted form.

— Derivation of passwords by algorithmic means. Various techniques are vastly more
effective than exhaustive enumeration. For example, if passwords are known to
have a particular form (because they are algorithmically generated, for example),
that algorithm can be used to attack them. Passwords can sometimes be derived
by inference, as in the TENEX connect flaw using a match-and-shift approach to

3 A race condition is a situation in which the outcome is dependent upon internal timing considerations. A race condition is
critical if something else depending upon that outcome may be affected by its nondeterminism, and is noncritical otherwise.
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detect page fault activity on the next serially checked password character. Dictio-
nary attacks are particularly popular these days, whereby each entry in a particular
on-line dictionary is encrypted, and a match sought with the corresponding entry in
the encrypted password file. Such preencryptive dictionary attacks were described
by Bob Morris and Ken Thompson [223] and were exploited in the Internet Worm.
Use of foreign-word dictionaries is also common.

Existence of unintentional universal passwords, similar to skeleton keys that open
a wide range of locks. In at least one case, it was possible to generate would-be
passwords satisfying all login routines for a given system even without knowledge of
a valid password. In that case, a missing bounds check permitted an intentionally
overly long password consisting of a random sequence followed by its encrypted
form to overwrite the stored encrypted password and defeat the password checking
program [392]).

Existence of trapdoors that require no passwords at all, as in the remote login from
a similarly named but bogus foreign user (e.g., using the Unix .rhost facility). The
philosophy of a single universal login authentication for a particular user that is
valid throughout all parts of a distributed system and — worse yet — throughout a
network of networks represents an enormous vulnerability, because one compromise
anywhere can result in extensive damage throughout.

Interrupting during authentication (e.g., logging in with an incorrect password, in-
terrupting, and discovering oneself effectively authenticated — which results from
inadequate atomicity). This was a problem on several early higher-layer authenti-
cators (that is, not in the operating system).

Editing an inadequately protected password file to insert a bogus but viable user
identifier and password (improper encapsulation, authentication, and authoriza-
tion).

Inserting a trapdoor into an authorization program within the security perimeter.
The classical example is the C-compiler Trojan horse described by Thompson [372]
and discussed in Section 1.3.

The variations within this class are amazingly rich. There are also comparable at-
tack techniques for the more sophisticated authentication schemes, such as challenge-
response schemes, token authenticators, and other authenticators based on public-key
encryption. Even if one-time token authenticators are used for authentication at a re-
mote authentication server, the presence of multiple decentralized servers can permit
playback of a captured authenticator within the time window (typically on the order of
three 30-second intervals), resulting in almost instantaneous penetrations at the other
servers. Predictable behavior of message hashing was used to break Netscape’s crypto-
graphically based security. In addition, Drew Dean has recently found some intriguing
theoretical weaknesses in well-known hashing algorithms (MD4, MD5, SHA-1) used for
authentication and integrity checks [87].
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2.1.2 Pest Programs

e Pest programs and setting up subsequent misuses. Pest program attacks involve
the creation, planting, and arming of software by using methods such as Trojan horses,
logic bombs, time bombs, letter bombs, malicious worms, and viruses.

A Trojan horse is typically a computer program that surreptitiously contains function-
ality that contains a hidden source of risk, with effects of varying seriousness. A logic
bomb is a Trojan horse whose effects are triggered by the occurrence of some logical
event. A time bomb is a logic bomb whose logical trigger is based on time. A virus is a
program that can iteratively infect other programs with copies of itself. Personal com-
puter viruses tend to propagate as a result of manual actions such as shared diskettes;
mainframe viruses in theory could propagate automatically, but are rare. A worm is a
program capable of executing pieces of itself simultaneously, often remotely. These are
discussed further below.

Anything that appears innocently as data but whose execution can be triggered surrep-
titiously represents a serious risk. Web browers present numerous opportunities for the
execution of Trojan horses on your own machine when your browser downloads an ap-
plet, because the applet typically executes with all or many of your execution privileges.
This is a problem with Java applets, ActiveX components, and browser plug-ins. Mobile
code can cause some particularly nasty security problems, especially if it originates from
an untrustworthy site — where any Web browser may access a site that houses a stable
full of Trojan horses or permit other types of intrusions [103, 160, 326], unbeknownst
to users. (For an incisive account of mobile-code security, see Gary McGraw and Ed
Felten’s Java security book [200] or preferably its second edition [201].) Many other
situations have similar risks. Word Macro viruses and the presence of an executable
printing-language interpreter (e.g., for PostScript) offer further opportunities for com-
promise from outside that can set up compromise from within that result from a Trojan
horse that would seem to be ordinary data. Similar opportunities arise in CD-ROMs,
zip drives, and other portable storage media, agent software, scripting languages, and
e-mail enclosures (such as MIME). This problem is likely to worsen in the presence of
real-time audio and video, where enormous security vulnerabilities already exist.

The setting up of these pest programs may actually employ misuses of other classes
such as bypasses or misuse of authority, or may be planted via completely normal use,
as in a letter bomb. The subsequent execution of the deferred misuses may also rely on
further misuse methods. Alternatively, execution may involve the occurrence of some
logical event (e.g., a particular date and time, or a logical condition), or may rely on
the curiosity, innocence, or normal behavior of the victim. Indeed, because a Trojan
horse typically executes with the privileges of its victim(s), its execution may require no
further privileges. For example, a Trojan-horse program might find itself authorized to
delete all the victim’s files. A Trojan-horse letter bomb (with hidden control characters
and escape sequences squirreled away in the text) might be harmless unless explicitly
read interpretively or otherwise executed; however, if the system permits the transit of
such characters, the letter bomb would be able to exploit that flaw and be executed
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unknowingly by the victim. Several existing systems still permit the interpretation of
characters, despite the long-term knowledge of this problem.

2.1.3 Resource Misuse

In addition to the foregoing two forms of malicious attacks (bypasses and pest programs),
various forms of attack are related to the misuse of conferred or acquired authority. Indeed,
these are the most common forms of attack in some environments:

e Active misuse of resources. Active misuse of apparently conferred authority typ-
ically alters the state of the system, or changes data (e.g., data diddling), or both.
Examples include misuse of administrative privileges or superuser privileges; changes in
access control parameters to enable other misuses of authority; harmful data alteration
and false data entry; denials of service (including saturation, delay, or prolongation of
service); aggressive covert channel exploitation, for example, unusual resource use re-
sulting from direct user action or by embedded Trojan horses; and the somewhat exotic
salami attacks in which numerous very small pieces (e.g., round-off) are collected (e.g.,
for personal or corporate gain). The apparently conferred authority may have been
obtained surreptitiously, but its use appears locally as if it were legitimate.

e Passive misuse of resources. Passive misuse of apparently conferred authority typ-
ically results in reading of information without altering any data and without altering
the system (with the exception of audit-trail and status data). Passive misuse includes
browsing (without specific targets), searching for specific patterns, accessing data ag-
gregates that are more sensitive than the individual items [187], drawing inferences
(e.g., as in traffic analysis that permits information to be derived without any access to
data), and nonaggressive exploitation of covert channels (storage or timing channels),
for example, resulting from unusual reading activity. These events may have no appre-
ciable effect on the objects used or on the state of the system except for the execution of
computer instructions and the resulting audit data. They need not involve unauthorized
use of services and storage. Certain events that superficially might appear to be passive
misuse may in fact result in active misuse — for example, through time-dependent side
effects.

2.1.4 Comparison of Attack Modes

Misuse of authority is of considerable concern here because it can be exploited in either the
installation or the execution of malicious code, and because it represents a major threat
modality. In general, attempts to install and execute malicious code may employ a combina-
tion of the methods enumerated above, as well as others external to the computer systems,
such as scavenging of discarded materials, visual spying, deception, eavesdropping, theft,
hardware tampering, and masquerading attacks — including playback, spoofing, and pig-
gyback attacks; these are discussed by Neumann and Parker [264]. For example, the Wily
Hackers [366, 367] exploited trapdoors, masquerading, Trojan horses to capture passwords,
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and misuse of (acquired) authority. The Internet Worm [324, 354, 360] attacked four differ-
ent trapdoors, the debug option of sendmail, gets (used in the implementation of finger),
remote logins exploiting .rhost files, and (somewhat gratuitously) a few hundred passwords
obtained by selected preencryptive matching attacks. The result was a self-propagating
worm with virus-like infection abilities.

The most basic pest-program problem is the Trojan horse, which contains code that
when executed can have malicious effects (or even accidentally devastating effects). The
installation of a Trojan horse often employs system vulnerabilities, which permit penetration
by either unauthorized or authorized users. Furthermore, when executing, Trojan horses may
exploit other vulnerabilities such as trapdoors. In addition, Trojan horses may cause the
installation of new trapdoors. Thus, there can be a strong interrelationship between Trojan
horses and trapdoors. Time bombs and logic bombs are special cases of Trojan horses. Letter
bombs are messages that act as Trojan horses, containing bogus or interpretively executable
data.

A strict-sense virus, as defined by Cohen [74], is a program that alters other programs
to include a copy of itself. Viruses often employ Trojan-horse effects, and the Trojan-
horse effects often depend on trapdoors that are either already present or that are created
for the occasion. There is a lack of clarity in terminology concerning viruses, with two
different sets of usage, one for strict-sense viruses, another for personal-computer viruses.
What are called viruses in original usage are usually Trojan horses that are self-propagating
without any necessity of human intervention (although people may inadvertently facilitate
the spread). What are called viruses in the personal-computer world are usually Trojan
horses that are propagated by human action. Personal-computer viruses are rampant, and
represent a serious long-term problem (Section 2.1.5). On the other hand, strict-sense viruses
(which attach themselves to other programs and propagate without human aid) are a rare
phenomenon — none are known to have been perpetrated maliciously, although a few have
been created experimentally.

A worm is a program that is distributed into computational segments that can execute
remotely. It may be malicious, or may be used constructively — for example, to provide
extensive multiprocessing, as in the case of the early 1980s experiments by Shoch and Hupp
at Xerox PARC [355]. The Internet Worm provides a graphic illustration of how vulnerable
some systems are to a variety of attacks. It is interesting that, even though some of those
vulnerabilities were fixed or reduced, equally horrible vulnerabilities still remain today. (The
argument over whether the Internet Worm was a worm or a virus is an example of a “ter-
minology war”; its resolution depends on which set of definitions is used.)

Subtle differences in the types of malicious code are relatively unimportant. Rather than
try to make fine distinctions, it is much more appropriate to attempt to defend against the
malicious code types systematically, employing a common approach that is capable of ad-
dressing the underlying problems. The techniques for an integrated approach to combatting
malicious code necessarily cover the entire spectrum, except possibly for certain vulnera-
bilities that can be completely ruled out — for example, because of operating environment
constraints such as all system access being via hard-wired lines to physically controlled ter-
minals. Thus, generic defenses are more effective in the long term than defenses aimed only
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at particular attacks. Besides, the attack modes tend to shift with the defenses. For these
reasons, it is not surprising that many of the defensive techniques in the system evaluation
criteria can be helpful in combatting malicious code and trapdoor attacks (although the
criteria at the lower levels do not explicitly prevent such attacks). It is also not surprising
that in general the set of techniques necessary for preventing malicious code is very closely
related to the techniques necessary for avoiding trapdoors. The weak-link nature of the
security problem suggests a close coupling between the two types of attack, and that defense
against one type can be helpful in defending against the other type.

Malicious code attacks such as Trojan horses and PC viruses are not adequately covered
by the existing system evaluation criteria. The existence of such code would typically never
show up in a system design, except possibly for accidental Trojan horses (an exceedingly rare
breed). They are addressed primarily implicitly by the criteria and remain a problem even
in the most advanced systems (although the threat from external attack can be reduced if
those systems are configured and used properly).

Indeed, differences exist among the different types of malicious code problems, but it
is the similarities and the overlaps that are most important. Any successful defense must
recognize the differences and the similarities, and accommodate both.

Bull, Landwehr, McDermott, and Choi [168] have drafted a taxonomy that classifies
program security flaws according to the motive (intentional or inadvertent), the time of
introduction (during development, maintenance, or operation), and place of introduction
(software or hardware). They subdivide intentional flaws into malicious and nonmalicious,
and — continuing on to further substructure — they provide examples for most of these
classifications. However, some distinctions are not made. For example, there is no distinction
between the existence of a flaw and its exploitation, where the former may be inadvertent
and the latter intentional. Presumably, such problems will be addressed in any subsequent
versions of their work.

There seem to be serious problems with trying to partition cases into malicious and
nonmalicious intents, because of considerable commonalities in the real causes and consid-
erable overlap among the consequences. Also, problems arise in trying to distinguish among
human-induced effects and system misbehavior.

It is a slippery slope to attempt to define security problems in terms of misuses of au-
thority. For example, the Internet Worm was able to execute without any explicit misuses of
authority. In reality, no authority was exceeded in the execution of the finger daemon, the
use of the .rhost files, the sendmail debug option, or the copying of an unprotected encrypted
password file! Similarly, many of the denial-of-service attacks do not need any authority.

2.1.5 Personal-Computer Viruses

Personal-computer viruses may attack in a variety of ways, including corruption of the boot
sector, hard-disk partition tables, or main memory. They may alter or lock up files, crash
the system, and cause delays and other denials of service. These PC viruses take advantage
of the fact that there is no significant security or system integrity in the system software. In
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practice, personal-computer virus infection is frequently caused by contaminated diagnostic
programs.

The number of distinct personal-computer virus strains grew from five at the beginning
of 1988 to more than a thousand early in 1992, and has continued to grow steadily since
then. By 1998 numbers exceeding 10,000 were commonly quoted. The number is now much
larger, and still growing at an alarming pace. Many different types of PC viruses and variant
forms exist. The growth in the virus ‘industry’ is enormous. In addition, we are beginning
to observe stealth viruses that can conceal their existence in a variety of ways and distribute
themselves. Particularly dangerous is the emergence of polymorphic viruses, which can mu-
tate over time and become increasingly difficult to detect. Ultimately, the antiviral tools are
limited by their inherent incompleteness and by the ridiculously simplistic attitude toward
security found in personal-computer operating systems. Serious efforts to develop survivable
systems would do well to avoid today’s personal-computer operating systems, although the
hardware is not intrinsically bad.

2.1.6 Other Attack Methods

In addition to the attack methods noted above, several others are worth discussing here in
greater detail, namely, the techniques numbered 1 through 14, and 23 in Table 2.1.

e Extrinsic misuse. Generally nontechnological and unobserved, extrinsic misuse is
physically removed from computer and communication facilities. It has no directly ob-
servable effects on the systems and is usually undetectable by the computer security
systems; however, it may lead to subsequent technological attacks. Examples include
visual spying (e.g., remote observation of typed keystrokes or screen images), physi-
cal scavenging (e.g., collection of waste paper or other externally accessible computer
media such as discards — so-called dumpster diving), and various forms of deception
(e.g., misrepresentation of oneself or of reality), external to the computer systems and
telecommunications. Surprisingly, many incidents have involved the disposition of com-
puter systems whose sensitive contents have not been sanitized or deleted.

e System misuse. System misuse takes on two basic forms, passive or active.

— Passive system misuse tends to have no immediate effects on hardware or software
behavior, and includes logical scavenging (such as examination of discarded com-
puter media) and electronic or other types of eavesdropping that intercepts signals,
often without the victims’ knowledge. Eavesdropping may be carried out remotely
(e.g., by picking up emanations) or locally (e.g., by planting a spy-tap device in a
terminal, workstation, mainframe, or other hardware-software subsystem).

— Active system misuse typically has side effects; it includes theft of computing equip-
ment and physical storage media; hardware modifications such as internally planted

Trojan-horse hardware devices; interference (electromagnetic, optical, or other);
physical attacks on equipment and media, such as interruption of or tampering
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with power supplies or cooling. These activities have direct effects on the computer
systems (e.g., internal state changes and/or denials of service).

e Masquerading. Masquerading attacks include impersonation of the identity of some
other individual or computer subject; spoofing attacks that take advantage of successful
impersonation; piggybacking attacks that gain physical access to communication lines
or workstations; IP spoofing attacks that alter the apparent site from which the attack
is coming; playback attacks that merely repeat captured or fabricated communications;
and network weaving that masks physical whereabouts and routing via both telephone
and computer networks, as practiced by the Wily Hackers [366, 367]. These activities
may ultimately be indistinguishable from legitimate activity, although they typically
originate mostly as compromises from outside.

e Denials of service. Perhaps the nastiest attack modes with respect to survivability
are of course those involving denials of service. Table 2.1 illustrates the perverse nature
of denials of service by including them in three different classes (9, 14, and 23), although
we add that any of the pest programs can be used to cause denial-of-service attacks,
as can any bypass of authority. Thus, we realize that denials of service are not really a
primitive class, but a metaclass or class of classes.

As demonstrated by the distributed denial-of-service attacks in February 2000, although
such attacks can be carried out without any actual authorized access to the systems
(hosts and network nodes) under attack, much more devastating attacks can be launched
given the ability to penetrate. As a consequence, denials of service are at the same time
very easy to perpetrate and very difficult to protect against.

The remaining forms of attack listed in Table 2.1 are somewhat more obscure than those
noted above. The penultimate case involves misuse through inaction, in which a user, oper-
ator, administrator, maintenance person, or perhaps surrogate fails to take an action, either
intentionally or accidentally. Such cases may logically be considered as degenerate cases of
misuse, but are listed separately because they may have quite different origins.

The final case in Table 2.1 involves system use as an indirect aid in carrying out subse-
quent actions. Familiar examples include performing a dictionary attack on an encrypted
password file, attempting to identify dictionary words used as passwords, and possibly us-
ing a separate machine to make detection of this activity harder ([223]); factoring of very
large numbers, attempting to break a public-key encryption mechanism such as the Rivest-
Shamir-Adleman (RSA) algorithm that depends upon a product of two large primes being
difficult to factor; and scanning successive phone numbers, attempting to identify modems
that might be attacked subsequently.

2.2 Threats to Reliability

Threats to system and network reliability can take many forms. They can arise during
requirements definition, system specification, implementation, operation, and maintenance.
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Table 2.2: Tllustrative Reliability Threats

Outside-environmental threats
Environmental problems (earthquakes, floods, etc.)
Power utility disturbances
Electromagnetic and other external interference
Inappropriate user behavior, unavailability of key persons
National-infrastructure threats
Glitches in telecommunications, air-traffic control,
power distribution, and other infrastructures dependent
on computer-communication infrastructures
Middleware and application service threats
Windows environments: cache management, crashes
Browser and Web server flaws
Accidentally corrupted code
Database-specific threats
DBMS software flaws
Internal database synchronization and cache management
Distributed database consistency
Improper DBMS software upgrades and maintenance
Improper database entries and updates
Network threats
Faulty network components (hosts, routers, firewalls, etc.)
Distributed system synchronization
Traffic blockage and congestion
Operating-system threats
OS software design and implementation flaws
Improper OS configuration
Improper OS upgrades and maintenance
Failures of backup and retrieval mechanisms
Software-development problems
Faulty system design and implementation
Poor use of software engineering techniques
Bad programming practice
Programming-language threats
Compiler language inadequacies
Compiler design and implementation flaws
Hardware threats
Flaws in hardware design and implementation
Undesirable internal hardware state alterations
Improper hardware maintenance
Inside-environmental threats
Internal power disturbances
Self-generated or other internal interference
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They can originate from hardware malfunctions, operating-system software flaws, network
software flaws, application software problems, operational errors (e.g., in system configura-
tion, management, and maintenance), environmental anomalies, and — not to be ignored —
human mistakes. Some illustrative types of reliability threats are summarized in Table 2.2.

Essentially every one of the types of threats summarized can represent a fundamental
threat to overall survivability. Environmental threats can be particularly devastating, espe-
cially if equipment and media are seriously damaged. Losses of power and telecommunica-
tions are especially critical, particularly if they last for long periods of time and if alternatives
are not readily available. Threats to software and hardware reliability can have pervasive
effects, although in some cases they may be surmounted.

2.3 Threats to Performance

System and network performance can be threatened as a result of many of the threats to
reliability and security discussed in Sections 2.2 and 2.1, respectively. In addition to those
threats, performance threats exist that do not directly stem from reliability or security.
Inadvertent saturation of resources is one major class, perhaps because of runaway programs
or inadequate garbage collection. Table 3.1 notes some of the concepts on which performance
may depend.

2.4 Perspective on Threats to Survivability

Threats to survivability and its subtended requirements exist pervasively throughout all
system application areas; throughout the layers of abstraction related to hardware, software,
and people (as discussed in Section 3.3 and elsewhere in this report); and throughout the
stages of development and use noted in Section 1.5. In particular, threats are pervasive
throughout the services provided by the critical national infrastructures as well as computer-
communication infrastructures. These threats provide the motivation for the survivability
requirements discussed in Chapter 3.

Many threats to survivability exist that transcend system development and operation.
Once particularly nasty example results from legislation that is beginning to work its way
through U.S. state legislatures, namely, the Uniform Computer Information Transactions
Act (UCITA). [359] As of June 2000, UCITA has already passed in Virginia and Maryland.
UCITA encourages trapdoors that can enable a software developer to disable widely dis-
tributed software on demand; such a mechanism might easily be exploitable by outsiders as
well as the developers. Besides, the distinction between insiders and outsiders is not clear-
cut, as we have already noted. UCITA also permits developers to absolve themselves from
liability, discourages source-available software, allows developers to forbid interoperability
with proprietary interfaces, legalizes currently outlawed abusive practices, stifles competi-
tion, and is generally antithetical to the development of secure survivable systems. (The
U.S. 1998 Digital Millennium Copyright Act is also problematical.)

To give a detailed example of the breadth of threats in just one critical-infrastructure sec-
tor, consider the safety-related issues in the national airspace, and the subtended issues of
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security and reliability. (See for example, Neumann’s position statement for the International
Conference on Aviation Safety and Security in the 21st Century [253].) Alexander D. Blu-
menstiel at the Department of Transportation in Cambridge, Massachusetts, has conducted
a remarkable set of studies [46, 48, 47, 58, 49, 50, 51, 57, 53, 54, 55, 59, 56] over the past
14 years. In his series of reports, Blumenstiel has analyzed many issues related to system
survivability in the national airspace, with special emphasis on computer-communication
security and reliability.

Blumenstiel’s early reports (1985-1986) considered the susceptibility of the Advanced Au-
tomation System to electronic attack and the electronic security of NAS Plan and other FAA
ADP systems. Subsequent reports have continued this study, addressing accreditation (1990,
1991, 1992), certification (1992), air-to-ground communications (1993), air-traffic-control se-
curity (1993), and communications, navigation, and surveillance (1994), for example. To
our knowledge, this is the most comprehensive set of threat analyses outside of the military
establishment,* and the breadth and depth of the work deserves careful emulation in other
sectors.

To be more specific, Blumenstiel’s early reports included a 1986 assessment [58] of vul-
nerabilities of the Advanced Automation System (AAS) to computer attacks. The AAS
was planned at the time as the next-generation system of air-traffic-control computers and
controller displays for installation in all air-traffic-control centers. Blumenstiel’s study found
vulnerabilities to a range of computer attacks in this system and recommended countermea-
sures. (In 1999, the FAA is finally beginning to upgrade the displays, replacing technology
from the mid-1960s.) The FAA specified the countermeasures as a requirement for this
system. Blumenstiel also assessed vulnerabilities of the FAA’s National Airspace System
Data Interchange Network (NADIN), a packet-switched network for interfacility commu-
nication of air-traffic-control data [57]. Based on this assessment, Blumenstiel prepared a
security management plan for NADIN that has been implemented in the system to protect
critical data transmissions. Another study assessed vulnerabilities of the Voice Switching
and Control System (VSCS). The VSCS is a computer that controls the switching of air-
traffic-control communications (between controllers and flight crews and between controllers
on the ground) at all air-traffic-control centers. Another study [51] identified and assessed
risks to air traffic from electronic attacks on the entire National Air Space System, including
air-traffic-control computers, radars, switching systems, and automated maintenance infor-
mation. This study prioritized all the systems in terms of vulnerabilities and the potential
impact of successful attacks on air traffic, including the potential for crashes and the cost of
potential delays, and estimated the overall risk. Blumenstiel also produced the security plans
for FAA systems required by Public Law 100-235, authored FAA’s requirements for computer
security accreditation (and designed and developed software to automate the accreditation
reporting process) and sensitive application certification [53, 54, 55]. He authored the NIST
Guidelines [52] on FAA AIS security accreditation. He was the principal author of the June
1993 Report to Congress on Air Traffic Control Data and Communications Vulnerabilities
and Security [59]. Additional studies under Blumenstiel’s direction involved assessments of
air-traffic-control telecommunications systems to electronic attacks, and development of the

4For further information, contact Alex Blumenstiel at 1-617-494-2391 (Blumenstie@volpel.dot.gov) or Darryl Robbins, FAA
Office of Civil Aviation Security Operations, Internal and AIS Branch.
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strategic plan to protect such systems.

With respect to the national airspace, and with respect to the other national infras-
tructures and the computer-communication infrastructures, it is clear that the threats are
pervasive, encompassing both intentional and accidental causes. However, it is certainly
unpopular to discuss these threats openly, and thus they tend to be largely downplayed —
if not almost completely ignored.

In general, it is very difficult for an organization to expend resources on events that have
not happened or that are perceived to be very unlikely to occur. The importance of realistic
threat and risk analyses is that it becomes much easier to justify the effort and expenditures
if a clear demonstration of the risks can be made.
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Chapter 3

Requirements and Their
Interdependence

Things derive their being and nature by mutual dependence and are nothing in
themselves.
Nagarjuna, second-century Buddhist philosopher

We next elaborate on the requirements, threats, risks, and recommendations outlined
in [29] and discussed in Chapter 1 of this report, in such a way that those requirements could
apply broadly to a wide range of survivable system developments and to the procurement of
systems with critical requirements for survivability.

Our approach is rooted in the establishment of a sound basic set of generic requirements
for survivability and the explicit determination of how survivability in turn requires other
secondary properties. Secondary properties include various aspects of security in preventing
willful misuse; reliability, fault tolerance, and resource availability despite accidental failures
(with real-time availability when required); certain aspects of functional correctness; ease
of use; reconfigurability under duress; and some sense of overall system robustness when
faults exceed tolerability. In turn, security requirements include integrity of systems and
networking, confidentiality to avoid dissemination of information that could be useful to
attackers (especially cryptographic keys and authentication parameters), high availability
and prevention of denials of service despite malicious actions, authorization, accountability,
rapid detectability of adverse situations, and prevention of other forms of misuse. Reliability
requirements include fault tolerance, fault detection and recovery, and responses to unex-
pected failure modes. Security and reliability have some requirements that are related, such
as resistance to electromagnetic and other interference. Furthermore, some of the require-
ments interact with other requirements, and must be harmonized to ensure that they are
not contradictory. Each requirement has manifestations at each layer of abstraction, and
corresponding special issues that must be accommodated. Particular layers of abstraction
must address relevant properties — of applications, databases, systems, subsystems, and
networking software. Types of adversities to be covered by the requirements must include
the full spectrum of applicable potential threats, such as malicious software and hardware
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attacks, system malfunctions, and electronic interference noted above. All reasonable risks
must be anticipated and protected against. Thus, our approach is developing a somewhat
canonical requirements framework for survivability that encompasses all the relevant issues,
and that demonstrates how the different requirements interrelate.

Of particular importance are the ways in which some of these requirements interact with
one another, and how when systems are developed to satisfy those requirements, the com-
ponents supposedly addressing different requirements actually interact with one another.
Ideally, it is helpful if those interactions are understood ahead of time rather than mani-
festing themselves much later in the development process, or in system use, as seemingly
obscure vulnerabilities, flaws, risks, and in some cases catastrophes.

For any given application, the specific requirements must be derived from knowledge of
the operational environment, the perceived threats, the evaluated risks, many other practical
matters such as the expected difficulty and costs necessary to implement those requirements,
the available resources in funding and manpower, and considerations of how the peculiarities
of the given application are likely to compound the difficulties in development. Mapping the
generic requirements onto the detailed specific requirements then remains a vital challenge
that must be undertaken before any serious development effort is begun.

Neumann gave a keynote talk in June 2000 on the role of requirements engineering in
developing critical systems, for the 2000 TEEE International Conference on Requirements
Engineering, The visual materials are on-line
http://www.csl.sri.com /neumann /icre00talk+4.ps.

3.1 Survivability and Its Subrequirements

In defining survivability and some of the requirements on which it most depends — secu-
rity, reliability, and performance — we work primarily from the perspective of requirements
that can be dependably enforced and applied to enhance the overall system and network
survivability.

As observed at the beginning of this chapter, numerous properties are necessary for overall
survivability, some of which are — or in some cases merely seem to be — interdependent.
A highly oversimplified but nonetheless illustrative summary of a portion of the subtended
requirements hierarchy is given in Figure 3.1.1 We have somewhat arbitrarily taken security,
reliability, and performance as three major requirements that can contribute in rather basic
ways to achieving high-level survivability requirements. (Other conceptual arrangements
of the hierarchy are also possible. In addition, it is worth noting that the overarching
requirement for human safety is evidently at an even higher level than survivability, because
human safety typically depends on overall system survivability and other mission-critical
properties.)

In Section 1.2.2 we observe that there are multiple but closely related manifestations
of availability. This is depicted graphically in Figure 3.1 by a common node (“Avail”)
subtended from both security and reliability, and by a comparable node subtended from
performance. (Each node denoted by an asterisk denotes a reconvergence of a common set

IThis is a primitive rendering of the figure, which will be displayed more elegantly later.

50



Survivability [An overarching requirement:

/1\ a collection of
/ 1\ emergent properties]
VAR A
/1A
/ | \
/ | \
/ | \
/ | \
/ | \
/ | \
/ | \
Security Reliability Performance [Major subrequirements]
VAR VAR /1N
/ 1\ / 1A\ /1A
/1N /1N /1A
/N /N /1A [Subtended
Inte- Conf- Avail FT Fail RT NRT Avail requirements:
grity id’ity  x [\ modes /\ /I\ =* FT=fault tolerance
/1 N\ NN /1 N/ /1IN RT=real-time
/| I\ [\ | N/ | Prior- / | \ NRT=non-real-time]
/# 1 \ [\ # ities /
MLI No MLS Dis- MLA \ No / [More detailed
/ change | cret- | \ change / requirements]
/ /1 | ion- | \ /
/ /| | ary | * Unified *
/ VAN N availability
X Sys Data X X requirements
/1 [\ [X = Shared components of MLX!!]
/| [\ [* = Reconvergence of availability]
/| [\ [# = Reconvergence of data integrity]

Figure 3.1: Illustrative Subset of Requirements Hierarchy
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of requirements across the three major requirements.) Although it is usually desirable to
keep these three manifestations of availability separate during a requirements specification
and analysis, it is highly advantageous to consider them in an integrated way during system
design and implementation. Thus, the specification of the requirements can benefit from
an understanding of the ways in which the different manifestations interact with or depend
on one another. Furthermore, techniques that contribute to more than one of the major
requirements can be implemented more uniformly.

3.1.1 Survivability Concepts

As noted at the beginning of Chapter 1, the term survivability denotes the ability of a
computer-communication system-based application to continue satisfying certain critical re-
quirements (e.g., requirements for security, reliability, real-time responsiveness, and correct-
ness) in the face of adverse conditions. The scope of adversity may in some cases be precisely
defined, but more typically it is not well defined.

Some of the adversities can be foreseen as likely to occur, with consequences that can be
perceived as potentially harmful; these can be enumerated and defined. Other adversities
may be foreseen as unlikely, or as not having serious consequences to worry about — or
may not even be anticipated at all. Ideally, appropriate survivability-preserving actions
should be taken irrespective of whether the adversity was foreseen or not. Defensive system
design and defensive programming practices are necessary to cover otherwise unanticipated
events. Although there can clearly be circumstances in which system survival is not possible
— for example, when all communication lines and all power are out — some reasonable
contingency plans should be in place, even if in the last resort it is merely emergency actions
by the operations staff. In addition, the blame in cases of complete outages may rest with
insufficient foresight in system design.

Survivability in this sense can be defined only in terms of specific requirements that must
be met under incompletely specified circumstances (where those circumstances may possibly
be dynamically changing), which will often differ from one type of adversity to another.

Specific survivability requirements typically vary considerably from one application to
another. For example, one set of system requirements might allow degraded performance or
other real-time dynamic tradeoffs in times of extreme need (e.g., being able to relax certain
security requirements in favor of maintaining real-time requirements when under attack).?
Another set might prioritize the computational tasks and permit degradation according to the
established priorities. In general, a system’s survivability requirements might specify that the
system must withstand attacks (providing integrity and availability aspects of security) and
be resistant to hardware malfunctions (providing reliability and hardware fault tolerance),
software outages (providing resistance to hardware- or software-induced software crashes),
and acts of God (e.g., anticipating the consequences of communications interference, floods,
earthquakes, lightning strikes, and power failures) that might otherwise render the system
completely or partially inoperative. In this context, survivability appears in the guise of a
high-layer system integrity requirement.

2This approach was taken in the Secure Alpha effort [120], an SRI project that redesigned a real-time system (Jensen’s
ARCHONS project [143]) to include multilevel security and to permit dynamic tradeoffs to ensure performance.
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Thus, we adopt the following tentative working definitions:

e Information survivability relates to the extent to which suitably correct and up-to-
date information can be available whenever it is needed. Information survivability is a
meaningful concept at different layers of abstraction, including systems, networks, and
applications.

e Computer-system survivability relates to the extent to which a computer system’s
ability can continue to satisfy certain stated requirements in the face of arbitrary ad-
versities.

e Network survivability relates to the extent to which a computer network’s ability
can continue to satisfy certain stated requirements in the face of arbitrary adversities.

e Application service survivability relates to the extent to which the services provided
by an entire system application attain system survivability.

e Enterprise survivability relates to the extent to which an overall enterprise (such as
a business or critical infrastructure) can continue to satisfy certain stated requirements
in the face of arbitrary adversities.

System survivability can be defined in terms of an overall application or specific services,
or in terms of specific computer-communication systems, subsystems, or networks. Each
type of potential adversity may have its own measure of survivability.

In the definitions above, the term “arbitrary adversities” implies more than merely the
ability to withstand “known adversities” or “specified adversities” — it also implies a char-
acterization of the ability to withstand adversities that were not anticipated such as those
that exceed the reliability and security tolerances supposedly covered by the design. In each
case, a meaningful assessment of survivability rests not only on what happens when an antic-
ipated adversity occurs, but also on what might happen in response to unanticipated events.
This requires some determination of the actual coverage, not just the designed coverage with
respect to anticipated faults and threats.

Continued enforcement of system integrity, system availability, data confidentiality, and
data integrity (for example) are typically fundamental aspects of survivability. Whenever
specific lower-layer survivability properties are explicitly included among their constituent
system security properties, then survivability can also be considered as a security property
(and, specifically, an integrity property). However, for present purposes we consider appli-
cation service survivability as an overarching property to be maintained by the application
in its entirety.

3.1.2 Security

Intuitively, the natural-language meaning of security implies protection against undesirable
events. System security and data security are two types of security. The three most com-
monly identified properties relating to security are confidentiality, integrity, and availability.
There are also other important forms of security, such as the detection of misuse and the
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prevention of general misuse that does not necessarily violate confidentiality, integrity, or
availability, particularly when committed by authorized users.

With respect to any particular functional layer, the primary attributes of security are
summarized as follows:

e Confidentiality. Confidentiality involves protection against undesired release of infor-
mation by the releaser, and protection against undesired acquisition of information by
the acquirer. Confidentiality is meaningful with respect to data, but also with respect
to the system itself, for example, maintaining the confidentiality of software or of the
hardware implementation.

e Integrity. Integrity implies remaining in a sound, unimpaired, or otherwise desirable
condition. Integrity is meaningful in many ways; it may have somewhat different mean-
ings for a system, a subsystem, an application, data, hardware, communications links,
and other entities.

e Availability. Availability implies that certain required resources are available when
and as needed. Availability can be applied at many levels of abstraction, including
systems, subsystems, data entities, and communications links. Prevention of denial of
service is an availability requirement, although it also has a system-integrity component.

e Authentication. Authentication encompasses determination that a presumed identity
(of a user, system, subsystem, or other computational abstraction) is actually valid. It
has many forms, such as authenticating a user by a system, authenticating a system by
another system, authenticating a system by a user (e.g., to ensure the user is not being
spoofed by a bogus system).

e Trusted paths. In conventional systems, a user has no real assurance that he or she is
actually communicating with the desired system (rather than a masquerader or Trojan-
horsed system), and one system has little assurance that it is actually communicating
with a second system of its choice (rather than a masquerader or accidental alternative).
A communication path whose terminations can be assured without compromise is known
as a trusted path (although as is often the case in Orange Book parlance of trust, what is
really meant is a trustworthy path). Trusted paths must be persistent as well as initially
authenticated. Other risks include covert channels and timing attacks related to trusted
paths (e.g., see [374]).

e Prevention of misuse. Above and beyond explicit violations of confidentiality, in-
tegrity, availability, and authentication policies, there can be misuses that are undesir-
able but that do not explicitly violate those policy elements — such as covert channels
and small-scale thefts of services, some of which may be too small to be detected.
Prevention of misuse encompasses those.

e Tamperproofing and anti-reverse-engineering techniques. Tamperproofing is
an aspect of integrity that is particularly critical with respect to the security mecha-
nisms themselves, and especially for cryptographic implementations. Mechanisms that
seriously impede reverse engineering can also be important to security, in that there
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is always an element of security by obscurity — particularly in software-implemented
cryptography. Techniques for code and data obfuscation can be valuable for making
it difficult to reverse-engineer object code and to locate critical data elements such as
cryptographic keying information.

e Auditability and detection of misuse. For the above-mentioned types of misuse,
and particularly for misuse by apparently authorized users (who may actually be either
legitimate users or masqueraders), efforts must be made to detect such misuse.

Identification and authentication are essential to the enforcement of confidentiality, in-
tegrity, availability, and prevention of generalized misuse, as well as to meaningful misuse
detection. They may be either explicitly designated as system security requirements or else
subjugated to the implementation, but are fundamental in either case.

Mandatory policies for confidentiality (e.g., multilevel security), integrity, availability, and
survivability (MLS, MLI, MLA, and MLX, as introduced in Section 1.2) have the advantage
that they cannot be violated by user actions (assuming that the mechanisms are correctly
implemented), but have the disadvantage that they may be inflexible for certain kinds of
applications. On the other hand, that inflexibility is precisely what makes them powerful
organizing architectural concepts.

Covert channels (out-of-band signaling paths) represent potential losses of confidentiality.
They are a problem primarily in multilevel-secure systems, in which it may be possible to
signal information through inference channels to lower levels, in violation of the security
policy. However, covert channels are often not explicitly addressed by system security poli-
cies, and are typically not prevented by conventional security access controls: they bypass
conventional controls altogether rather than violating them. Avoidance of covert channels
is a problem that must be addressed during system design, implementation, and operation.
Detection of covert channel exploitation is a problem that must be addressed during opera-
tion (see Proctor and Neumann [310]). Two types of covert channels are recognized: storage
channels (which exploit the sharing of resources across multiple security levels using normal
system functions in unusual ways), and timing channels (which exploit the time-sensitive
behavior of a system, perhaps by observing the real-time behavior of a scheduler). Because
most existing systems still have overtly exploitable security flaws, covert channels are often
of less interest. However, in highly critical applications, they could be an important source
of system compromise, for example, with the aid of a Trojan horse that is modulating the
covert channel.?

A useful paper by Millen [210] summarizes 20 years of modeling and analysis of MLS
covert channels. Covert channels can also exist with respect to MLI, MLA, and MLX, but
they seem less easy to identify and exploit.

At each layer of abstraction, each of these concepts may have its own interpretation, in
terms of the abstractions at that layer.

Threats to security are considered in Section 2.1.

3 Although implications of covert channels in multilevel-secure systems have been downplayed in this report, system and
network architectures that systemically seek to avoid covert channels (e.g., see Proctor and Neumann [310]) may have significant
benefits for other requirements as well, because the partioning required can contribute to increased survivability.
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3.1.3 Reliability and Fault Tolerance

Many requirements for reliability and fault tolerance are appropriate in addressing the various
types of threats to reliability summarized in Section 2.2 and Table 2.2. Most of these
reliability requirements can have major implications on system and network survivability, in
hardware, system software, network software, and application software. In the absence of
serious efforts at generalized dependence, the failure of a component may typically result in
the failure of higher-layer components that depend on the failed component.

Some of the reliability concepts are closely tied together with security concepts. For
example, reliably high availability with respect to systems and networks is closely related to
the prevention of denials of service. Also, degraded performance modes are closely linked
with fault tolerance and responses to detected anomalies.

In an early (D)ARPA study, 1972-1973 [261], we recommended that fault tolerance can
most effectively be used at each hierarchical layer according to the particular needs of each
of the specific abstractions at that layer. That approach is still valid today, and is embodied
in the architectural directions pursued in this report. A recent article by Nitin Vaidya [378]
further pursues a design principle of multilevel recovery schemes in which the most common
cases are disposed of most quickly. (Vaidya considers only two levels, but the concept is
readily generalized to more levels, or to a continuous spectrum.)

Numerous examples of survivability failures related to inadequate reliability and fault
tolerance are given in Neumann’s RISKS book [250], along with a summary of techniques
for improving reliability and fault tolerance.

3.1.4 Performance

Complete system and network outages are an extreme form of performance degradation,
whether caused accidentally or intentionally, through reliability problems or security prob-
lems. However, in some cases even relatively small performance degradations can cause
unacceptable behavior, particularly in tightly constrained real-time systems. Thus, perfor-
mance requirements must be closely coupled with those for security and reliability.

Performance depends on availability in both its security manifestations (e.g., prevention
of denials of service) and its reliability manifestations (e.g., fault tolerance and alternative
computation modes). This confluence of subrequirements is illustrated in Figure 3.1 as the
reconvergence of what is otherwise depicted as a pure tree structure.

The reconvergent nodes indicated by an asterisk (*) in the figure could of course be
split into separate but essentially identical nodes if the sanctity of the pure tree structure
were important. However, it is not important — and in fact illustrates an important point:
apparently different subrequirements that originate from seemingly disjoint requirements
are in fact best handled by a common integrated mechanism, rather than treated completely
separately. For implementing assured availability, it is true that different techniques may
indeed be useful for (1) preventing malicious denials of service, (2) preventing accidental
denials of service, (3) preventing failures due to faults that exceed the coverage of fault
tolerance, (4) ensuring adequate performance despite intentional acts, (5) ensuring adequate
performance despite unintentional acts and system malfunctions, and (6) ensuring adequate
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performance despite acts of God. On the other hand, by taking a systematic view of these
supposedly different aspects of availability, it is likely that many common mechanisms can
work synergistically.

Many other interdependencies also exist. For example, the aspect of integrity relating to
prevention of undesired changes (to data, programs, firmware, hardware, communications
media, and so on) is fundamental to security, reliability, performance, and of course sur-
vivability in the large. Several manifestations of the no-unintended-change requirement are
indicated by a sharp (#) (the erstwhile octothorpe in early telephony) in the figure, and
discussed further in Section 5.12. Similarly, the confidentiality of sensitive information such
as cryptographic keys can undermine many desired system properties.

Dependencies in requirements are sometimes not recognized until well into design and
implementation. For example, extensive requirements for reliability and availability may
induce additional risks with respect to security and survivability, such as those that result
from replication of common mechanisms that introduce multiple common vulnerabilities, or
the use of different mechanisms that introduce different vulnerabilities. Similarly, extensive
security mechanisms may have deleterious effects on performance and system usability. To
avoid performance degradation, security controls are often disabled.

3.2 System Requirements for Survivability

As noted, enterprise survivability is a requirement on the enterprise as a whole. Other
such highest-layer application requirements might include preservation of human safety for
friendly humans, destruction of unfriendly humans by a tactical system in a hostile environ-
ment, and detailed accountability of system and human actions in terms of the application
functionality.

System survivability typically depends on two types of properties, sometimes called live-
ness properties (implying availability) and functional safety properties (implying functional
correctness). Alpern and Schneider [8] have shown that every property can be expressed as a
combination of functional safety properties and liveness properties, relative to definitions that
have evolved from Lamport [162]. Intuitively, functional safety properties imply that noth-
ing bad happens, while liveness implies that eventually something good happens. Indeed,
most application-layer requirements (e.g., survivability and human safety) and system-layer
requirements have components of each type.

We do not need to make a precise distinction here between the two types of properties.
However, we do recognize that some of the desired properties have time-dependent aspects
— particularly in highly distributed systems.

Failure of the system or subsystem to enforce any of a variety of properties can result in
a loss of application survivability. Some of those necessary underlying properties on which
application survivability may depend are illustrated next. In each case, the term system can
equally well imply an entire computer-communication system or a subsystem thereof.

Some of the necessary properties are largely time independent, although some of them
have certain time-dependent attributes. We consider the general properties first and then
reconsider those with specific real-time attributes. For simplicity, we include networking and
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communications issues as an integral part of the system issues, particularly in distributed
systems.

Necessary system security properties:

e System integrity. Preventing malicious (and, to some extent, accidental) effects on
the hardware, system software, and intercommunications.

e System availability. Preventing system and communication outages, and even tem-
porary unavailability of resources. Such outages may include malicious or accidental
denials of system service.

e System confidentiality. Preventing the undesired dissemination or acquisition of
sensitive system code and data, particularly if the application can be compromised.
Otherwise, for example, knowledge of the system design, a specific algorithm, a piece of
code, a password, a cryptographic key, a network authenticator, or a piece of equipment
could lead to a system subversion.

e Authorization and accountability of systems and users. Assuring that a system
is capable of controlling which subsystems and which users are using it. Otherwise, it
may be vulnerable to spoofing attacks, penetrations, and other forms of misuse. After
any such attack, the system’s inability to provide real-time (or at least rapid) account-
ability and audit-trail analysis may lead to additional compromises of survivability.

e Data integrity. Preventing undesired alteration of input data, internal stored data, or
output data. Data integrity includes internal data consistency (particularly important
in a highly dispersed environment) as well as external consistency with the real world.

e Data availability. Preventing disruptions in timely access to data, including sensor
data in a control system. Multiple versions of critical data and alternative sensors can
help increase data availability.

e Data confidentiality. Preventing undesired data disclosure. For example, a penetra-
tor could obtain sensitive data that would compromise the application’s ability to fulfill
its requirements in a hostile environment.

Necessary network security properties:

e Network integrity. Preventing attacks on network nodes and on the communication
media that alter network states.

e Network availability. Detecting, preventing, and recovering from denial-of-service
attacks, such as outages of network nodes and access devices, electromagnetic inter-
ference on the communications media. Alternate routes, redundant nodes, and other
techniques for fault tolerance can contribute to security as well.

o Network data confidentiality. Preventing the undesired interception of unencrypted
or decryptable information, typically through the use of encryption, steganography,
operations security, and other techniques for defeating acquisition of data and traffic
analysis that could be used to affect network and system survivability.
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e Authorization and accountability of network access and control. All network
nodes and access points must be adequately controlled, to reduce the opportunities for
spoofing attacks, maintenance attacks, and other forms of misuse. Digital signatures
and other cryptographic techniques for authentication can be helpful.

e Network data integrity. Preventing undesired alteration of communications them-
selves — for example, through a combination of error-correcting codes and encryption.
This might be considered a system requirement if end-to-end integrity is desired, but can
also be a network requirement when link-by-link (node-to-node) protection is needed.

Although the foregoing system and network security issues all imply attempts to constrain
usage by users, operators, system programmers, and administrators, they inevitably depend
to some extent on compliant system use by those people. Misuse by apparently authorized
individuals is a serious potential problem in many applications.

Necessary system and network reliability properties:

e Fault tolerance. Preventing undesirable effects resulting from failures of underlying
hardware components, subsystems, or indeed the entire system. Essentially, fault tol-
erance is both a system integrity issue and a system reliability issue. Constructive
use of redundancy is essential. Survivability is a particular concern when the nominal
fault-tolerance coverage is exceeded.

e Functional correctness. Assuring that a flaw in the application or in the computer
operating system, or a human error in system maintenance, cannot compromise the
application. Good software engineering, development practices, and system operation
are important, but clearly are not enough by themselves.

It is useful to note that the security and reliability properties have some time-dependent
attributes, such as the following.
Necessary time-dependent security properties:

e Real-time availability (including the system, data, and other resources). Ensuring
that real-time processing can be done in a timely way, protecting against maliciously
or accidentally caused delays.

e Real-time accountability such as anomaly detection and misuse detection (e.g., [189,
304]

Necessary time-dependent reliability properties:

e Timely detection and correction of deviant system behavior, including recon-
figuration in the face of nontolerated faults or penetrations. Recovery from serious
outages may or may not be allowed to incur long time delays or human intervention.
Whenever human intervention is not possible, thorough advanced planning is necessary.

e Real-time accountability such as anomaly detection and misuse detection extended
to survivability, reliability, and fault tolerance.
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Necessary performance properties:

e Functional timeliness, such as strict bounds in hard-real-time systems, or best-effort
intentions in fuzzy-real-time systems.

Necessary operational properties:

o Essentially every security, reliability, performance, or other functional property has a
manifestation in operational practice. Typically, inappropriate operational manage-
ment can vitiate any of the desired functional properties. Thus, requirements must
address operational characteristics. If 24-hour coverage is necessary, that has strong
implications on operational practices, and may well suggest that outsourcing of system
and network administration may not be a wise strategy — even if almost-instantaneous
emergency coverage is available. (The risk of unknown third-world subcontractors arose
in a different context, after the Year-2000 problem code remediation for the Air Traffic
Control systems, where almost all the remediation was done by Chinese nationals under
subcontract, reportedly unbeknownst to the Federal Aviation Authority.)

One of the major challenges of system development and operation is to understand a prior:
all the relevant requirements, as well as their implications on lower system layers (including
hardware and communications), and to organize the system development accordingly.

Further issues on which survivability depends include human behavior — on the part of
system designers and implementors, operators, users, and maintainers, for example — and
acts of God. However, these may be anticipated to a considerable extent by suitable system
design and operation with respect to security, reliability, and performance considerations.

In any particular application, certain vulnerabilities may not exist, or some of the threats
that could expose those vulnerabilities may not exist, or the risks may be deemed inconse-
quential. In such cases, the survivability problem may be simplified somewhat. In general,
however, it is very dangerous to base simplifications in system design, implementation, or
operation on assumptions that may not be valid in practice. Therefore, great care must be
taken to provide adequate assurance in any efforts that are permitted to ignore one or more
of the foregoing necessary properties.

3.3 A System View of Survivability

Survivability is meaningful primarily as an emergent property of an entire computer and com-
munication system complex, or, more broadly, of a collection of computer-based applications.
Survivability also transcends lower-layer policies relating to subsystem reliability, integrity,
and the like. Certain aspects of survivability are meaningful with respect to hardware as
well.

Some of the properties on which application survivability typically depends are illustrated
in Table 3.1, under the approximate headings of security, reliability, and performance. These
three headings partially overlap, even among the different manifestations at each functional
layer. For example, system integrity at any particular layer clearly contributes to security,
reliability, and performance at higher layers. Similarly, prevention of malicious and accidental
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Functional
layer

Security
concepts

Reliability
concepts

Performance
concepts

Users, Human integrity, Human reliability, Human responsiveness,
operators, education, training, education, training, ease of use,
admins, ... user identity human interfaces education, training
Application Application Functional correctness, Service availability,
software integrity and redundancy, real-time performance,
(SW) confidentiality robustness, recovery functional timeliness
Middleware SW integrity and Functional correctness, Functional timeliness
(MW: DBMS, || confidentiality redundancy, DB backup, | of Web, remote DBs,
DCE, CORBA || in DCE, Webware, robustness, recovery and file servers
Webware) DB access controls
Networking Netware integrity, Netware integrity, Netware throughput and
(Netware) confidentiality, error correction and guaranteed service,
availability, fault tolerance alternative routing and
node nontamperability, | in transmission and other infrastructural
peer authentication, routing, especially factors, especially
especially wireless in wireless roving bandwidth
Operating OS integrity, OS integrity, OS integrity,
system data confidentiality, fault tolerance, guaranteed service,
(0S) guaranteed service, sound asynchrony, avoidance of deadlocks,
OS nontamperability, archiving/backup performance optimization,
OS development and OS development and OS development and
maintenance, OS maintenance maintenance
user authentication
Hardware Access controls, HW fault tolerance, Processor /memory speed,
(HW) protection domains, instruction retry, communication bandwidths,

HW nontamperability,
configuration control,
protection against
intentional interference,
HW development

error-correcting codes,
HW correctness,
protection against
accidental interference,
HW development

contention control,
adequate HW configuration,
protection against

any interference,

HW development
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service denials at any layer clearly contributes to security, reliability, and performance at
higher layers.

Human safety is very similar in its dependence on the same properties of the lower-layer
functionality. Human safety is also largely an emergent property of the entire system com-
plex, although particular aspects of safety can be considered at lower layers of abstraction.
(For example, see [173, 175].)

Clearly, there are many more detailed properties of lower layers on which the system prop-
erties in turn depend. These are not shown explicitly, for reasons of descriptive simplicity.

3.4 Mapping Mission Requirements into Specifics

Before attempting to carry out an architecture and its implementation, a vital preliminary
step is to map the overall mission requirements into a specific subset of the generic require-
ments for survivability and its subtended attributes. This is at present a human endeavor,
although the existence of computer-aided analysis tools can be contemplated to assist in
requirements analysis, and subsequently to assist in determining the sufficiency of the archi-
tecture with respect to the chosen requirements.

The mapping process should take into account expected vulnerabilities, threats, and risks.
It should anticipate the needs of the full range of expected applications and capabilities. The
needs for each of the following functional capabilities should be anticipated from the outset,
rather than discovered later in the development, and specific requirements defined.

e Multimedia facilities, including data, voice, high-bandwidth quality audio, passive or
interactive video, other modes of real-time graphics, Internet telephony

e Broadcast and multicast applications
e Interoperability requirements, including open standards

e Inter- and intra-system connectivity — for example, shared-memory multiprocessors,
locally networked systems, direct Internet access, firewalls, or alternatively isolated and
dramatically restricted use (as in compartmented multilevel-secure enclaves)

e Operational requirements — for example, implications of expected skill levels of system
administrators and desired levels of interaction, explicit declaration of needs for remote
operations (either out-of-band or via the standard networking), operator-free needs as
in embedded systems in inaccessible locations
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Chapter 4

Systemic Inadequacies

Many deficiencies in existing subsystems, systems, and networks seriously hinder the at-
tainment of survivability. We identify those that are fundamental, and recommend specific
approaches to overcome those inadequacies.

In this context, survivability is considered in the broadest possible sense, encompassing
measures to handle all realistic threats — including, for example, hardware malfunctions,
software flaws, accidental and malicious misuse, electromagnetic interference, acts of God,
and other occurrences that are typically unanticipated. We seek to provide a realistic ar-
chitectural bridge across the gap that exists between (on one hand) the present status quo
of inherently incomplete requirements, criteria, standards, protocols, components, and sys-
tems, and (on the other hand) the need for survivable systems and networks that can be
rapidly configured out of off-the-shelf commercial products, specifically tailored to particular
applications. Unfortunately, many systems that exist today or are foreseen for the near-term
future are likely to be inadequate for these purposes.

This chapter identifies some of these shortcomings, including technological deficiencies
(Sections 4.1 and 4.2) and other problems (Section 4.3). Chapter 5 presents recommendations
for overcoming those limitations. Chapter 7 continues the identification and analysis of the
deficiencies in the context of survivable architectures, and presents specific recommendations
for alternative system and network architectures, new system components, fundamental
changes in how systems are developed, and guidelines for implementation.

4.1 System and Networking Deficiencies

With the almost total dependence of the U.S. Government, critical infrastructures, and the
public sector on commercially available off-the-shelf systems, subsystems, and networks, all
survivability-critical applications are seriously at risk.

e Operating systems. Existing personal-computer operating systems are seriously lack-
ing in security, reliability, and high availability. For the most part, these systems crash
frequently (sometimes very painfully, such as when an entire file system is wiped out)
and offer almost no sound support for networking or multiprocessing. Minicomputer
systems are only a little less worse. Supercomputers by themselves pay essentially little
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or no attention to security and availability concerns. Distributed operating systems
are particularly vulnerable, being prone to synchronization and timing problems, dead-
locks, crashes, denials of service, and serious misuse. (For example, see [72].) The
absence of a so-called trusted path from a user to a trustworthy system is itself a
serious failing of most systems. (Achieving suitable trusted paths is considered in Sec-
tion 7.3.4.) On the whole, existing operating systems are not secure as delivered; even
with very careful initialization and configuration management, many vulnerabilities
are still likely to remain. The Computer Emergency Response Team (CERT) Coor-
dination Center (the CERT is part of the Software Engineering Institute at Carnegie-
Mellon; see http://www.cert.org) and other such official organizations (such as the
Lawrence-Livermore CIAC, http://www.ciac.org/) provide a steady flow of reports on
vulnerabilities and fixes (with emphasis on the latter rather than the former). Greater
emphasis on flaws is provided by the BugTraq distribution (BugTraq@netspace.org),
which generally gets the knowledge of vulnerabilities out long before the CERT, and
which is widely read by the underground cracker community. See also NTBugTraq
http://www.ntbugtraq.com/ for Windows NT related problems.

Servers. The state of the art with respect to servers is only a little better than for
operating systems in general. Systems such as firewalls are typically vulnerable to mis-
use or to permitting dangerous events to pass through, and in actuality may themselves
be risky — in part because of the illusion that they solve a larger portion of the se-
curity problem than they actually do, and in part because they themselves may be
flawed. File servers and authentication servers are still not adequate for the needs of
critical-survivability applications.

Distributed heterogeneous backup systems. Survivable environments depend
critically on the availability of facilities that perform regular trustworthy backup when-
ever any critical system state information changes, and rapid trustworthy recovery
whenever required. In highly heterogeneous environments, the backup systems must be
cognizant of the idiosyncrasies of the individual systems and servers for which backup
and retrieval must be performed.

Systemic authentication. Some of the most serious security deficiencies in user op-
erating systems, servers, and networks involve the lack of adequate authentication (in-
cluding authentication of users, systems, and subsystems) and the lack of trusted paths
from users to systems and from systems to users. In almost all commercial systems,
there are almost no guarantees that a user is interacting with the intended system. One
of the most important advances in overcoming several of the deficiencies noted here
involves a serious effort to improve the authentication process and the pervasiveness
with which it is used throughout. Systemic authentication and integrity of resource
management are also considered in Section 7.3.3.

Networking protocols. The various Internet protocols at different layers in the proto-
col stack (e.g., FTP, Telnet, and SMTP at the application layer, UDP at the transport
layer) and their implementations (e.g., sendmail as an implementation of SMTP) are
for the most part seriously deficient when it comes to security, and weak with respect to
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reliability. Unfortunately, they are very widely used, despite their glaring weaknesses.
Various successors to the IP Internet protocol suite have been proposed, although their
realistic strengths and weaknesses remain to be seen. IPSEC (http://www.ietf.org) is
intended to provide end-to-end encryption over the Internet (not provided in IP Ver-
sion 4), and some peer authentication (but not user authentication) and some integrity
(noncryptographic message authentication). Various weaknesses of IPSEC have been
analyzed (e.g., [38]). Overall, IP Version 6 is intended to provide a more robust set of
protocols, and includes IPSEC. Domain Name System Security (DNSSEC) protocols
have also been proposed, with a public-key infrastructure independent of the DNS-
domain public-key infrastructure. Among its other known vulnerabilities, DNSSEC is
vulnerable to compromises of its all-powerful hierarchical root. Although further study
and refinement are needed, these proposals seem to be aimed at only a small portion
of the security problem, and a much smaller portion of the overall survivability prob-
lem. For those environments in which fixed communication facilities are not possible
or desirable, the requirements and facilities for secure, reliable, and survivable wireless
communications are still in their infancy. Many problems remain, such as robust key
management.

e Cryptographic protocols and embeddings. Although strong cryptographic algo-
rithms exist, their implementations tend to be vulnerable to compromise. Because of
U.S. Government policies regarding strong cryptography and because of the inherent
risks associated with key-recovery schemes, the use of cryptography is far less prevalent
than is needed to support meaningful security. (For example, see [6, 7, 84, 249].) There
are surprisingly many ways of breaking cryptographic embeddings without exhaustive
key searches and without breaking the algorithm — such as Paul Kocher’s timing at-
tacks [158], Kocher’s differential power analyses (Risks Forum, volume 19, issue 80,
http://catless.ncl.ac.uk/Risks/19.80.html), or the fault-injection techniques of Ander-
son and Kuhn [15] and others [26]. However, even brute-force attacks are becoming
feasible, as demonstrated by the Electronic Frontier Foundation sponsored machine,
Deep Crack [107] — which is capable of finding DES keys, on the average after just
a few days of exhaustive search (at the cost of less than a quarter of a million dollars
to build the initial Deep Crack machine). More recently, the 1999 RSA DES Challenge
was broken in less than 24 hours by Distributed Crack, a consortium of many different
computers (including Deep Crack, which happened to be the machine that actually
discovered the Challenge key, after a random search of only 9% of the key space; Dis-
tributed Crack itself had exhausted 23% of the key space at that time, indicating that
the aggregate power of the systems other than Deep Crack was considerably greater
than Deep Crack itself). The marginal cost of Distributed Crack is therefore essentially
zero, because it is merely using free cycles from participating systems anywhere on the
Internet.

Schneier and Mudge [350]' have uncovered an astounding variety of elemental flaws in
Microsoft’s implementation of the Point-to-Point Tunneling Protocol (PPTP), only a

! Mudge is part of a White-Hat Hacker group known as LOpht, now part of @Stake. LOpht’s 1998 Senate oral testimony [226]
claimed that it is possible to bring down the entire Internet in about 30 minutes.
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few of which have apparently been fixed.

On a much broader front, Schneier [348] examines many of the characteristic flaws that
result from improperly embedded cryptography.

Computer-communication infrastructure. The Internet, routers, IP addresses, do-
main name servers, network information services, and other infrastructural components
are themselves vulnerable to misuse and accidental failures. Wireless communications
are particularly vulnerable to compromise. In the absence of cryptography, compro-
mises of confidentiality and integrity represent enormous risks. Even in the presence of
strong and well-embedded cryptography, denial-of-service attacks are easy to carry out
(e.g., with electromagnetic interference).

Hardware. With the prevalance of RISC (reduced instruction set computers) hard-
ware architectures, some of the security mechanisms have disappeared from types of
processor designs that once paid serious attention to security. Even in cases in which
domain separation is provided in the hardware, operating systems tend not to use it
effectively. Similarly, some of the more advanced and powerful techniques for reliability
and fault tolerance are typically not used in commercial hardware. In the stand-alone
personal-computer world, occasional hardware crashes are not considered important
events. Unfortunately, such hardware is often found in critical systems.

Real-time monitoring and analysis. At present, real-time analytic environments
tend to be special purpose — for example, focusing on attempted exploitations of a
few known security vulnerabilities or a few known threats to reliability and availabil-
ity. It is difficult today to provide real-time monitoring and analysis with respect to
suspicious but unspecific events, and with respect to the simultaneous satisfaction of
multiple requirements. It is also difficult to handle highly distributed environments,
where correlation of different analytic results would be advantageous. Furthermore,
the absence of meaningful authentication and accountability makes it very difficult to
determine the source of security intrusions.

Operational practice. A thread that runs throughout this report is that good system
architecture and good development practice are not enough. Operational practice is an
enormous source of problems.

4.2 Deficiencies in the Information Infrastructure

The previous section outlines numerous deficiencies in computer systems and in network-
ing software. However, some fundamental problems transcend deficiencies in systems and
networking software — specifically, those relating to the underlying information infrastruc-
ture. We are becoming critically dependent on the Internet, and are likely to be even more
dependent on whatever succeeds it.

Unfortunately, the Internet has become an enormous self-perpetuating organism of its

own — with no coherent management, no overall control, and almost no ownership by any
national or corporate entities (except in nondemocratic countries). Its existence is almost
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totally unregulated, and it is run on the fly in a strikingly unprofessional way. Because traffic
may be routed arbitrarily through potentially untrustworthy and unreliable nodes, retrying
over alternate routes is at present typically the best that can be done when problems are
experienced. But that approach is vulnerable to massive denial-of-service attacks. If a
vital gateway is down, an entire enterprise may be off the Internet. In general, weaknesses in
the infrastructure become weaknesses in the computer systems and networking software. For
example, the fundamental deficiencies in networking protocols noted in Section 4.1 affect not
just local networks and enterprise-internal networks, but also the Internet; they are likely
to haunt any future information infrastructures unless radically superseded. Conversely,
weaknesses in computer systems and networking software can result in weaknesses in the
information infrastructure — affecting telecommunications and power distribution as well.

4.3 Other Deficiencies

e System development practice. The system-development practice in the U.S. is not
good, and in many cases could be called disastrous. Good system engineering and soft-
ware engineering practice is extremely rare. Many U.S. Government systems have had
to be abandoned (e.g., the FAA Air-Route Traffic Control System, the FBI fingerprint
system, and the IRS Tax System Modernization effort) after the expenditure of billions
of dollars. The record of states and private corporations is not much better (e.g., the
California Statewide Automated Child Support System known as the Deadbeat [Moms’
and| Dads’ Database). Systems that are actually completed and deployed are often rid-
dled with security and reliability flaws and performance problems. Numerous examples
are given in [250]. (See also James Paul’s Congressional report [290] on some of the
difficulties of software development.) The Year-2000 Problem is of course a massive
and pervasive example of very bad system development practices that have persisted
for many years.

System developments fail for a wide variety of reasons, including inadequately speci-
fied requirements, inadequately specified system designs, poor implementations, poor
documentation, poor management, and poor choices of programmers. Projects that
have many programmers seem to be much less likely to succeed, although extremely
gifted management and skilled team-oriented programmers can make such efforts suc-
cessful. (However, there are very few success stories.) Projects with inadequate staffing
or misassigned personnel can also be seriously impaired. Overcommitted contractors
and improperly guided subcontractors are also sources of development risks.

e Problems with proprietary products. One of the most serious obstacles to surviv-
able systems and network environments involves the use of proprietary standards and
proprietary products, which can make interoperability with other systems very difficult.
These difficulties arising from proprietary systems and interfaces can be further compli-
cated by developers’ desires to make their own new systems backward compatible with
their older systems. These obstacles often result in earlier deficiencies being perpetu-
ated into future systems. Furthermore, short-sighted commercial developers seem to
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have little interest in making their products interoperable with less widely used prod-
ucts from other vendors. Perhaps most important, proprietary closed-source systems
cannot be subjected to the same scrutiny that source-available systems can. This has
always been of particular importance for security, for which peer review, design analysis,
code analysis, and in some cases formal methods can play an enormous role in detect-
ing system flaws. The same argument applies to survivability and its other subtended
requirements as well. (See Section 5.10.)

e System procurement practice. Would-be acquirers of systems with critical surviv-
ability and security requirements often have an even more difficult task than the system
developers. In many cases, the requirements to be met are not adequately understood,
or are inadequately specified. Even when the requirements are well established, no off-
the-shelf solutions are likely to exist, which necessitates additional software — which
can result in further development problems. Furthermore, procurements tend to favor
popular products, irrespective of whether they are robust.

e Understanding of the vulnerabilities, threats, and risks. There is an enormous
lack of understanding on the part of system procurers, government officials, develop-
ers, system procurers, users, system administrators, and users. Unfortunately, critical
requirements for survivability and security tend to necessitate greater understanding
on the part of these individuals, and also put extreme stresses on computer systems,
networks, and people alike.

e High-performance computing and communication (HPCC). The field of super-
computing has been slowly transforming itself in recent years. For decades, it had
remained a highly overspecialized cult, with inordinate emphasis on special-purpose
processors, the use of assembly code in the hopes of program optimization, and the use
of compilers for Fortran and other languages that were inherently ill suited for the in-
tended applications. The field largely ignored reliability and fault tolerance in hardware.
It demonstrated very little interest in mainstream concepts — such as multiprocessor
architectures or networked configurations of systems, and most of computer science —
including robust algorithms for concurrency, synchronization, deadlock avoidance. In-
deed, it had an almost total disdain of what software might be able to contribute —
ignoring operating systems, compiler generators, make files, preprocessors, translators,
and different approaches to programming languages other than developing parallelizing
compilers for languages not designed for such use (e.g., Fortran). Application program-
ming has suffered from the inability to flexibly use widely available resources, and has
also been plagued with overreliance on flawed or suspect simulation models.? As systems
with stringent survivability requirements increasingly seek to employ supercomputers,
such problems are likely to be exacerbated. Fortunately, a few efforts to modernize the
field are finally beginning to emerge — including the DoD High Performance Comput-
ing Modernization Program (http://www.hpcmo.hpe.mil). Of considerable potential
interest is the joint UCLA-Hewlett-Packard massively parallel Teramac project, which

2See pages 219-221 of [250] for cases in which simulation models were themselves seriously faulty. See also a terse but incisive
summary of problems with large-scale simulations by D.E. Stevenson [365].
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achieves supercomputer capabilities despite the presence of hundreds of thousands of
hardware defects [124]. In a rather novel approach, processor functionality is determined
after implementation rather than specified beforehand, thus accommodating what would
otherwise be considered to be permanent fault modes; it does what it does (although
it is not clear how it handles transient faults). At a completely different point in the
architectural spectrum, massive computational resources can be acquired over the In-
ternet, for example, using Sun Microsystems’s Jini, which uses Java to enable arbitrary
modes of distributed multiprocessing across the Internet. Considering the power of the
mobile-code paradigm (Section 7.4), that approach is likely to win out in many cases.

Although entire books can be and have been written about these deficiencies and the
resulting risks (e.g., [64, 250]), the emphasis here is on overcoming the deficiencies — as
addressed in the next chapter.
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Chapter 5

Approaches for Overcoming
Deficiencies

We can’t solve problems by using the same kind of thinking we used when we cre-
ated them.
Albert Einstein

Given the deficiencies identified in Chapter 4, we next consider what might be done to
overcome them. Various approaches toward prevention, detection, reaction, and iteration
are summarized in Table 5.1 for each of the three primary attributes of survivability noted
in Figure 3.1 and discussed further in this and subsequent chapters. Specific architectural
recommendations are considered in Chapter 7 for systems and networks with stringent sur-
vivability requirements. Ultimately, the use of robust architectures is absolutely fundamental
to the recommendations of this report.

| Approach || Relability | Security | Performance

Prevention || Robust architecture: | Robust architecture: Robust architecture:
Redundancy: Domain isolation, Spare capacity
error correction, access controls,
fault tolerance authorization, tolerance

Detection Redundancy: Integrity checks, Performance monitoring
error detection anomaly/misuse detection

Reaction Forward/backward, | Security preserving Reconfiguration
recovery reconfiguration, tolerance

Iteration Fault removal Exploratory Redesign,

off-line patches tradeoffs

Table 5.1: Defensive Measures
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5.1 Conceptual Understanding and Requirements

Perhaps the most important step toward attaining system and network architectures that
are capable of meeting advanced survivability requirements is to have a well-defined set
of detailed requirements. However, for those requirements to be sensibly matched to the
realistic needs, it is important that there be a well-defined and well-understood model of
the mission that a specific system is intended to fulfill. In the absence of such a model,
it is difficult to assess the adequacy of a given architecture, the dependence on external
infrastructures and substructures, and the consequences of systemic breakdowns or attacks
on the system.

Two types of models would be useful — generic model frameworks that can be tailored
to specific needs, and specific models applicable to particular systems.

5.2 System and Networking Architectures

Two fundamentally different architectural approaches seem possible — either increase the
security, reliability, and survivability of the most critical components, or else develop sys-
tem and network architectures that are survivable despite the presence of inherently weak
components. In practice, a combination of both approaches is desirable, for several reasons:

e End-user personal computers, network computers, hand-held wireless units, and dumb
terminals are likely to be lowest-common-denominator components with respect to crit-
ical requirements, for the foreseeable future.

e Intelligent workstations are never likely to enforce multilevel security. Whenever MLS is
essential, architectural alternatives must be exploited that do not require MLS end-user
platforms.

e Systems and networks tend to be heterogeneous, and must accommodate deficient com-
ponents even when they represent potential weak links.

e High-speed wireless computer-communications hold enormous potential for the future.
They also greatly increase the needs for systemic security, cryptography, prevention of
denials of service, and overall survivability.

Indeed, component survivability can benefit greatly from component diversity, particu-
larly in the context of architectures that are designed for robustness. In such an architecture,
it becomes essential to identify the most critical components, and to concentrate sufficient ar-
chitectural strengths in those components. The basic challenge is to considerably reduce the
extent to which all subsystems must be extensively trustworthy. Identifying the critical com-
ponents and minimizing the dependence on untrustworthy components are both extremely
difficult, and are pursued in this report. As noted in Section 5.1, having a well-defined
mission model and detailed requirements is a vital precursor.

System architectures must address the necessary survivability-relevant requirements, in-
cluding reliability, fault tolerance, and security — irrespective of which components are
actually trustworthy with respect to which requirements. In addition, these architectures
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must be flexible enough to support real-time applications and supercomputing requirements,
rather than necessitating special-purpose designs. Various architectural alternatives are con-
sidered in Chapter 7. An alternative that approaches multilevel survivability (Section 1.2.8)
might lead to a sensible system structure that is of interest even in non-MLS systems and
networks. However, MLS should be taken not as an attempted universal property of ker-
nels and trusted computing bases (as was attempted with MLS), but rather as a potentially
useful architectural driving force in the context of the notion of generalized dependence.

Perhaps the most fundamental architectural concept involves the isolation of potentially
bad activities from whatever functionality must be trustworthy. This is considered in Chap-
ter 7.

5.3 System/Networking Protocols and Components

Section 4.1 notes that existing network protocols leave something to be desired with respect
to network survivability. However, there is an amazing amount of energy and effort going into
protocol development. For background on TCP/IP and related protocols, see the massive
collection of Internet draft proposals and subsequently Requests for Comments (RFCs),
which collectively represent a goldmine of information on emerging Internet protocols.

In the interest of dramatically increasing overall network robustness, two new Internet
Engineering Task Force (IETF) draft Internet protocols are of particular interest here:

e Simple Control Transmission Protocol (SCTP), potentially a replacement for TCP:
http://www.ietf.org/internet-drafts/draft-ietf-sigtran-sctp-07.txt

e Distributed Data Protocol (DDP), in conformance with RFC 2026:
http://www.ietf.org/internet-drafts/draft-xie-stewart-sigtran-ddp-00.txt

Among the existing RFCs, several recent ones are worth noting:

e RFC 2401: http://www.ietf.org/rfc/rfc2401.txt, draft security architecture for the In-
ternet Protocol, by S. Kent and R. Atkinson, November 1998

This provides security services for the IPO layer in IP versions 4 and 6.

e RFC 2408: http://www.ietf.org/rfc/rfc2408.txt, the Internet Security Association and
Key Management Protocol (ISAKMP).

e RFC 2409: http://www.ietf.org/rfc/rfc2409.txt, the Internet Key Exchange (IKE), pro-
vides authenticated keying material for use with ISAKMP.

e RFC 2411: http://www.ietf.org/rfc/rfc2411.txt, the IP Security Document Roadmap,
is helpful in relating the various documents to one another.

e RFC 2412: http://www.ietf.org/rfc/rfc2412.txt, the OAKLEY Key Determination Pro-
tocol, is based on the Diffie-Hellman key exchange algorithm.
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However, all the RFCs and Internet drafts are necessarily the ultimate answers in themselves.
Much more remains to be done.

Of particular importance is the need for robust public-key infrastructures (PKIs) that
compatibly provide public-key certificates and validation of the genuineness of the certificate
authorities and verification authorities, with sufficiently good performance, to make cryp-
tographically protected interoperability practical. Many commercial distributed PKIs are
emerging, and are expected to win out over a few highly unified PKIs. However, compati-
bility and interoperability are still badly lagging. Certificate authorities are by themselves
inherently limited (for example, by issues of trustworthiness). Validation authorities are
necessary. In essence, a certificate authority can be issued off-line as needed. A validation
authority is invoked on-line per transaction, and can provide stronger revocation, as in the
Valicert approach of certificate revocation trees (see http://www.valicert.com).

Existing cryptographic algorithms (especially the AES algorithms) appear to be adequate
for the foreseeable future needs. However, we urgently need better cryptographic protocols
and greater dependability in their implementations. Flaws have been discovered in various
popular protocols (for example, Needham-Schroeder). See a recent report by Abadi and
Gordon [2] as part of a series of papers on formalizing cryptographic protocols (they include
copious references to earlier work), along with further discussion in Section 5.9.

Composability of components such as protocol implementations is considered in Sec-
tion 5.8. However, composability by itself is not enough. Knowing that vulnerabilities
abound, a particular concern is that by concentrating trustworthiness around one function-
ality such as a public-key infrastructure makes that functionality an attractive subject for
attack. Even if the mechanisms themselves have adequate integrity and nonspoofability
(which is unlikely), they become easy targets for denial-of-service attacks.

Roving end-user terminals with wireless communications represent huge challenges for
networking. Strong noncompromisible end-to-end cryptography is essential; link encryption
may also be important, particularly in warding off denial-of-service attacks on the network
nodes.

The DARPA Global Mobile effort — GloMo

(http://www.darpa.mil/ito/research /glomo/index.html) — is seeking to address some of the
basic engineering issues in research and prototype developments, and is also attempting to
use Fortezza technology for cryptographic approaches to retrofitting security into the GloMo
research environment
(http://www.glomo.sri.comhttp://www.glomo.sri.com/).
However, achieving secure portable computer communications is a very difficult task, and at
present security and to a large extent survivability are not driving requirements in most of the
ongoing DARPA GloMo research programs; rather, security (not to mention survivability)
seems to be thought of as something that can be added later — which goes against the
teachings of years of experience in system development.

The components that are most critical for survivability — and therefore deserving of the
most defensive design, development, and maintenance attention — are typically authenti-
cation servers, file servers, network servers, boundary controllers (including access control
mechanisms, firewalls, guards), as well as other components that must necessarily be at
least partially trusted. From a reliability point of view, file servers and network servers
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are particularly critical. From a security point of view, authentication servers, boundary
controllers, and cryptographic units must receive extra protection. From a system integrity
point of view, cryptographically generated integrity seals and proof-carrying code are useful
techniques to hinder undetected system modifications.

5.4 Configuration Management

Several considerations are necessary to be able to readily configure survivable systems and
networks out of subsystems. Architecturally, the subsystems must have appropriate func-
tionality. They must also be compatible with one another, and their interfaces must be
easily composable. System and network management facilities are also critical to the main-
tenance of survivability. In particular, the configuration management system must be both
comprehensive and comprehensible enough to permit consistent administrative control.

Given the nature of the threats and natural failures, it is essential that systems and
networks be capable of dynamic reconfiguration, with or without human intervention ac-
cording to the real-time requirements. This implies that requirements and dynamic policies
must address the needs for reconfiguration that maintains whatever functionality must be
retained, with appropriate security and reliability. Each potential change carries with it cer-
tain implications, such as whether the resulting system configuration will be less survivable
or more survivable, and whether it will be easier or more difficult to attack. Anticipating
the consequences of each possible reconfiguration is extremely difficult, but should be a part
of any mission-critical architecture. Thus, there are design-time tactical and strategic issues
that must foresee the run-time tactical and strategic issues. Such considerations will be
particularly important whenever information warfare is a vital concern.

5.5 Information Infrastructure

The previous sections of this chapter outline improvements that need to be made in com-
puter systems and in networking software. However, Section 4.2 notes that some fundamental
problems cannot be solved through better systems and networking software — specifically,
those relating to the underlying information infrastructure (such as the Internet as it exists
today). Overcoming the limitations of the Internet is an enormous undertaking, but some
drastic measures must be taken immediately to prevent those limitations from becoming
significantly worse. The biggest problem of course is that the Internet is an international
entity. In May 1996, at a hearing of the U.S. Senate Permanent Subcommittee on Investiga-
tions (Senate Committee on Governmental Affairs), in light of testimony on difficulties that
exist with being connected to the Internet, Senator Sam Nunn ([377], pages 10-11) asked
in essence what would happen if we (the United States) simply cut ourselves off from the
rest of the Internet. Perhaps having a national computer-communication infrastructure in
addition to the international Internet is in fact a good idea, although it would not solve the
problem that the computer systems and networking software are not secure enough, and
would defeat the global information interchange purposes of the Internet. But even more
fundamentally, if it had gateways and dial-up connections that could be accessible from the
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rest of the world, it would be very difficult to seal it off. Nevertheless, rigidly controlled
private networks are clearly a good idea. (See also [252, 254, 226] for subsequent relevant
Senate testimonies.)

This leads us to one of our most far-reaching conclusions on overcoming the existing
deficiencies. It is urgently necessary to supplant the existing TCP/IP/ftp/telnet/udp/smtp
set of protocols. Ideally, a fundamentally new set of protocols could be engineered to provide
the necessary survivability, security, reliability, and performance (all at once), with robust
authentication as a fundamental requirement. Alternatively, a few of the existing protocols
might be successfully modified, but we are not encouraged at this point at the likelihood of
small incremental improvements. Although IPSEC and IP Version 6 attempt to overcome
some of the most glaring weaknesses, they are still not strong enough. In certain less critical
cases, it might be possible to use a subset approach, parameterizing the protocols accordingly.
However, in the long run, the strategy of replacing the existing fundamentally defective
protocols with a new set of survivable and secure protocols might actually be less costly
than trying to coexist with those protocols that are clearly not up to the job. In that
way, it would be possible to develop highly survivable separate information structures, with
perhaps some possibility of trustworthy but highly controlled interoperability with the rest
of the world (e.g., the Internet).

5.6 System Development Practice

In general, system development practice is truly abysmal and must be improved dramatically.
If systems are to be configured primarily out of off-the-shelf components, then development
practice is vital to the dependability of those components. However, it is not realistic to
expect that operating systems and networking software will improve dramatically. On the
other hand, once subsystems have been developed, it is too late to quibble about bad de-
velopment practice — particularly if completed systems and networks are to be assembled
rather than developed. Furthermore, the best development practice is not very effective if
the basic architecture is not suitable.

A recent thoughtful but somewhat simplistic article by Paul Green [119] is worth not-
ing, entitled “The art of creating reliable software-based systems using off-the-shelf software
components.” Although the article is concerned primarily with application-system reliabil-
ity, it presents a few practical guidelines based on Green’s 17-year experience at Stratus
Computer. For example, if you are a procuring agent, he suggests (we oversimplify for de-
scriptive purposes) that you should select vendors who are committed to reliability, insist on
good software engineering practice throughout, make sure your contracts cover the entire life
cycle, test in the large and force that process on your contractors, and don’t pay off vendors
until they deliver what they are required to produce (assuming that you have specified the
requirements adequately in the first place).
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5.7 Software Engineering Practice

Good software engineering practice involves the use of modular design, functional abstrac-
tion, well-specified functionality, reusable and interoperable interfaces, information hiding to
mask implementation detail, and the use of analysis techniques and tools that greatly reduce
the likelihood of flaws and programming errors. Good software engineering practice there-
fore should also involve the use of high-level programming languages that are intrinsically
less susceptible to characteristic errors — such as missing bounds checks, mismatched types
and mismatched pointers, off-by-one errors, and missing exception conditions. As widely
used as the C programming language is, it is a continual source of programming errors by
skilled programmers as well as novices. Careful documentation is also essential. Potentially,
the most powerful techniques may in the long run involve formal methods (Section 5.9), but
those techniques are labor intensive and are now becoming much more effective in practice.

Commercial techniques for software engineering tend to emphasize procedures for control-
ling and constraining the processes involved in the software development cycle: requirements
engineering, specification, implementation, testing, management, quality assurance, and risk
management. Testing is inherently incomplete, with the old adage that it demonstrates only
the presence of bugs rather than the absence of bugs. Metrics are popular for the develop-
ment process and for assessing code quality, but are not definitive. Code inspections are also
popular, but not conclusive. Assessment of risk management is inherently a risky process
(see [250], pages 255-257).

Many of the commercial software engineering techniques are supported by automated or
semiautomated tools. Indeed, the ones that are not supported by mechanical tools are of
very limited value. The use of software engineering tools can be advantageous, particularly
in detecting the characteristic errors noted above. One of the most useful tools in recent
years is the purify program, which detects garbage collection problems resulting from un-
freed storage. However, overreliance on such tools can result in serious risks in the absence of
human intelligence. Furthermore, overemphasis on the processes rather than on the require-
ments, the designs, and the implementations themselves can be misleading. Not surprisingly,
the Year-2000 Problem is forcing a rethinking of much of the old-style conventional wisdom
relating to software engineering. Those who take the challenge seriously are likely to realize
the need for radical change in making the so-called software engineering field more of an
engineering discipline. (See a provocative article by David Parnas [283] on that subject.)

Use of the object-oriented paradigm in the system design itself may be beneficial (par-
ticularly with respect to system integrity), for example, creating a layered system in which
each layer can be looked upon as a strongly typed object manager, as in the PSOS de-
sign [102, 260]. That paradigm combines four principles of good software engineering —
abstraction, encapsulation, inheritance, and polymorphism. Inheritance is the notion that
related classes of objects behave similarly, and that subclasses should inherit the proper type
behavior of their ancestors; it allows reusability of code across related strongly typed classes.
Polymorphism is the notion that a computational resource can accept arguments of differ-
ent types at different times, and still remain type safe; it permits programming generality
and software reuse. (A recent effort to model dynamically typed access controls is given by
Tidswell and Potter [373].)
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Ultimately, the choices of which of many development methodologies, testing techniques,
and assurance methods are used is not particularly critical. What is most important is
that software development managers understand the development process, that designers
understand the full implications of their designs, and that implementors respect the integrity
of the designs when those designs are adequate but that they also recognize when the designs
are faulty. The methods and tools can go only so far. Inevitably, it is the people in the process
that matter, and they cannot be automated.

Software Architecture in Practice [31], a potentially useful recent book from the Carnegie-
Mellon University Software Engineering Institute, considers the business cycle and organiza-
tional forces behind software architecture. It presents a management-oriented view of some
of the problems that we consider here.

5.8 Subsystem Composability

Parnas [77, 278, 277, 279, 288, 289, 280, 286, 281, 285, 282, 287 (listed chronologically) and
Dijkstra [93, 94, 95] have for many years written extensively on the modular decomposition
of system designs. (Various other authors have written more recently on this subject.)
Unfortunately, most commercial systems are seriously lacking in their architectural structure.

The effects of module composition on the corresponding security models have been stud-
ied extensively in recent years (e.g., [3, 40, 129, 192, 195, 196, 197, 198, 202, 213, 325, 330,
370, 394, 395]). In many cases, however, seemingly straightforward compositions have un-
predicted side effects, in some instances interfering with one another. (A case of supposedly
independent cryptographic security protocols interacting unsecurely is given by [153].)

In other efforts less specifically related to security, there has been considerable research in
combining models, theories, equational and other logics, term-rewriting systems, and data
structures. However, most of these efforts have considered the simplest forms of composition
(particularly those involving serial hookups without feedback) and the effects that result from
simple combinations of policies or models; these efforts have often been extremely theoretical
— with not much applicability to real system needs such as the implications of composed
implementations.

When great care has been taken to achieve interoperable modularity, modular composi-
tion is relatively straightforward. More commonly, however, composition is not an a prior:
design consideration, and composability may be very difficult. Ideally, it should be possi-
ble to configure a specific system capable of attaining the desired (sub)set of requirements,
parametrically tailored to each specific application. Integration of the chosen components
should be attainable with minimum effort, with respect to design, implementation, opera-
tion, and maintenance. Composition should address the incorporation of less trustworthy
components (e.g., as in Byzantine agreement) as well as compromise of trustworthy com-
ponents. As applicable, common useful middleware components should be identified from
which survivable systems can more readily be configured — in the sense of a virtual surviv-
able trusted computing base that can survive certain threats despite the presence of a less
trustworthy underlying operating system. System adaptability under perceived threats may
also be useful.
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At the Eighth ACM SIGOPS European Workshop in Sintra, Portugal, in September 1998
(see [24]), a rather awkward debate took place. The stated argument was that the devel-
opment of robust distributed systems from components is impossible [155]. Although “a
marginal majority disagreed” with this proposition, there are strong arguments that emerge
from the discussion bearing on why composition is not straightforward in any realistic sit-
uations. However, a deeper conclusion that might be drawn from that debate is that we
must work much harder to establish criteria under which composition does not compro-
mise robustness, and perhaps even enhances it — as suggested by the notion of generalized
dependence.

5.9 Formal Methods

[T]he representation of structure is the most important aspect of programming for
purposes of formalization.
Bob Barton, May 1963 [30]

Formal methods can play an important role in the attainment of systems and networks
that must achieve generalized survivability, in specification, design, and execution. Great
improvements in system behavior can be realized when the requirements (such as survivabil-
ity, security, and reliability) have a formal basis. Similarly, enormous benefits arise whenever
design specifications have a formal basis — especially if they are derived from well-specified
requirements rather than the common practice of being established after the fact to represent
an ad hoc assembly of already-developed software (sometimes referred to as putting the cart
before the horse). Formal design verification then involves formal demonstrations that the
specifications are consistent with their requirements, providing no less than required — and
to the extent that the absence of Trojan horses can be demonstrated, nothing unexpected
that might be harmful. Verification of designs is difficult for systems that were not designed
to be readily analyzed, but can nevertheless be valuable in legacy systems (as in analyses
of the risks associated with the Year-2000 problem). Finally, although it is less commonly
practiced in software, formal code verification can demonstrate that a given implementation
is consistent with its specifications. Formal hardware verification is being used increasingly,
and demonstrates the potential effectiveness of formal methods where there are considerable
risks (financial or otherwise) of improper design and implementation.

Various formal methods can be valuable in specifying and analyzing requirements, designs,
and implementations, as well as in compositionality. Of particular importance in connec-
tion with survivability are techniques that can provide formal relationships between different
layers of abstraction — with respect to requirements and specifications alike. The use of
formal methods is recommended in particularly critical applications, and can help move the
current highly unpredictable ad hoc development process into a much more predictable for-
mal development process. In the long run, use of such techniques can dramatically decrease
the risks of system failure. Contrary to popular myth, judicious use of formal methods can
also decrease the overall development and operating costs — especially when the costs of
aborted developments (such as the cancellations of the IRS, FAA, FBI systems noted in Sec-
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tion 4.3) are considered, along with the costs of overruns, delays in delivery, and subsequent
maintenance.

Judicious use of formal methods can have a very high payoff, particularly in requirements,
specifications, algorithms, and programs concerned with especially critical functionality —
such as concurrency, synchronization, avoidance of deadlocks and race conditions in the
small, and perhaps even network stability and survivability in a larger context, derived
on the basis of more detailed analyses of components. There is no substitute for using
demonstrably sound algorithms (e.g., [343]).

Important early work on the effects of composition using hierarchically layered abstrac-
tions was part of SRI’s Hierarchical Development Methodology effort (see Robinson and
Levitt [322]). For some reason, this work is still relatively unknown, although it is vital to
formal reasoning about subsystem composition and analysis of emergent properties.

Of particular importance is the formal analysis of requirements — for example, deter-
mining whether a given set of requirements at a particular layer of abstraction is consistent
within itself, whether the different sets of requirements at the lower layer are fundamentally
incompatible with one another, and whether the requirements at a lower layer are consistent
with the requirements at the upper layer. Once such an analysis is done, then it is also ben-
eficial to determine whether system specifications and implementations are consistent with
the relevant requirements. (Formal analysis applied to safety requirements is considered
in [126].)

It must be emphasized that the most valuable uses of formal methods are in finding
flaws and inconsistencies, not in attempting to prove that something is completely correct.
However, formal methods approaches are not absolute guarantees, because problems can
exist outside of their scope of analysis. For example, suppose that a given analysis does not
detect any flaws or inconsistencies in a specification or implementation. It is still possible
that the requirements are inadequate (e.g., the specifications could fail to prevent a problem
not covered by the requirements), or that the analysis methods themselves could be flawed.
For these reasons, extensive testing of developed systems is also important — albeit inherently
limited.

Unfortunately, testing is itself inherently incomplete and incapable of discovering many
types of problems — for example, stemming from distributed system interactions and concur-
rency failures, subtle timing problems, unanticipated hardware failures, and environmental
effects. Exhaustive testing over all possible scenarios is basically impossible in any complex
system.

Considering that survivability, security, reliability, and fault tolerance are all weak-link
properties, formal methods and nonformal testing are both useful approaches in attempting
to find the weak links. Neither is adequate by itself. An interesting nonformal approach to
fault injection to detect failure modes is given by Voas and McGraw [382]; similar ad hoc
approaches are common with respect to red-team attacks in testing would-be secure systems.

Formal methods have been used extensively in the past for security (e.g., [60, 79, 144, 172,
176, 251, 269, 270, 309, 331], fault tolerance (e.g., [67, 131, 163, 180, 206, 227, 228, 274, 293|),
general consistency [101], object-oriented programs (e.g., [4]), composability (as noted in
Section 5.8), compiler correctness (e.g., [368]), protocol development (e.g., [132, 154, 358]),
hardware verification and computer-aided design [363], and human safety (e.g., [126, 341])
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but to our knowledge not for survivability, or for security and fault tolerance in combina-
tion. One serious attempt at a broader approach comes from the European dependability
community, which tends to consider dependability as an all-embracing quality (as noted in
Section 1.2.3). A representative example of that approach is found in the work of Gerard
Le Lann [170, 171] relating to “X-critical applications”, where X could be any qualifier such
as life, mission, environment, business, or asset, although his formal methods have thus far
been applied primarily to fault tolerance. See the discussion of the role of formal methods
in secure system architectures by Neumann [251].

The work of Jon Millen under the project is summarized in Appendix B. With particu-
lar relevance to the formalization of survivability, he has generalized earlier security-related
work of Catherine Meadows [203] to address the configurability of survivable services. Earlier
results of his survivability work are given in a published research paper [214] that character-
izes reconfiguration as a kind of flow property that can be formally satisfied. Millen’s recent
survivability measure work [216] extends the system model introduced in the reconfiguration
paper [214] to a structural hierarchy. Components of system services are viewed as services
with components of their own. With this additional dimension, one can define dependency
of a service on a lower-level service, and look for a lattice-valued measure of survivability
for comparing services that may be at different levels. The concepts in the measure paper
have been simplified dramatically, yet still lead to a max-min formula for the measure that
satisfies the intuitively necessary properties. The work also considers uniqueness properties
for the measure and other properties of the hierarchical structure, such as criticality of sets
of components.

Other papers were also done by Millen with at least partial ARL support, relating to
certificate revocation [211, 217] and reasoning about public-key infrastructures [218]. (Jon
Millen is also working under a DARPA contract to formally model and prove properties
of network protocols and cryptographic protocols, using SRI’s PVS verification system for
formal proofs — http://www.csl.sri.com/pvs.html.)

Formal methods are also the basis for methods for belief logics that permit the system-
atic analysis of cryptographic protocols, stemming from the Burrows-Abadi-Needham BAN
logic [66], as well as more recent work by Gong, Needham and Yahalom [115], Meadows [204],
Kailar and Gligor [146], Alves-Foss [9], Abadi and Gordon [2], and others. There is consid-
erable other work on formal analysis of cryptographic protocols, including Meadows [204]
on key management, Lowe [184] on Needham-Schroeder, and Paulson [291, 292], Mitchell et
al. [220], and Lincoln et al. [177] on cryptographic and authentication protocols in general.
See also Abadi and Needham’s formulation of prudent engineering practice for cryptographic
protocols [5]. See also Millen and Ruess [212] for a separation of protocol-independent and
protocol-dependent analyses (performed under DARPA contract).

Bellovin [37] shows how formal verification can be used to constrain the code generation
process, which can be particularly important in source-available compilers, where consistency
between the semantics of the source code and the semantics of the object code is critical,
independent of the compiler.

See also High-Integrity System Specification and Design, by Jonathan Bowen and Michael
Hinchey [61], which applies formal methods to integrity.

Formal methods can also be used in execution, as in proof-carrying code that can be used
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to ensure that a critical component has not been tampered with. For example, see George
Necula’s thesis work [235] and Web site (http://www.cs.berkeley.edu/ necula/), including
a hands-on demonstration. (An earlier one-page summary of Necula’s work in progress is
given in [236].)

Of particular interest in the context of highly survivable systems, formal methods have a
potentially vital role in robust source-available software, considered in Section 5.10.

The SRI Computer Science Laboratory formal methods Web site has assembled an ex-
tensive collection of URLSs (see http://www.csl.sri.com/pvs.html) representing work within
CSL and elsewhere in the world on formal methods.

5.10 Toward Robust Open-Box Software

We next consider a challenging alternative to conventional software development.! Our
ultimate goal here is to be able to develop robust systems and applications that are capable of
satisfying serious requirements, not merely for security but also for reliability, fault tolerance,
human safety, and survivability in the face of the wide range of realistic adversities considered
in this report. Also relevant are additional operational requirements such as interoperability,
evolvability and maintainability, as well as discipline in the software development process.

Despite all our past research, development of commercial systems is decidedly suboptimal
with respect to meeting stringent requirements.

To be precise about our terminology, we distinguish here between black-boz (that is, closed-
box or closed-source) software in which source code is not available, and open-box software
(occasionally called clear-bozx) in which source code is available (although possibly only under
certain specified conditions). Black-box software is often considered as advantageous by
vendors and believers in security by obscurity. However, black-box software makes it much
more difficult for anyone other than the original developers to discover vulnerabilities and
provide fixes therefor. Overall, it can be a serious obstacle to having any unbiased confidence
in the ability of a system to fulfill its requirements (security, reliability, safety, and so on, as
applicable).

We also distinguish here between proprietary and nonproprietary software. Note that
open-box software can come in various proprietary and nonproprietary flavors.

5.10.1 Black-Box Software

Dependence on black-box proprietary code and proprietary interfaces can have many disad-
vantages:

e Unavailability of source code leads to inscrutability, which means that the code is un-
analyzable in any practical sense, particularly by knowledgeable colleagues who might
find serious flaws.

1 This section incorporates material from a panel position paper by Neumann [258], written for the IEEE Symposium on
Security and Privacy, May 2000.
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e Nonmodular closed-source systems are often enormous. The inability to subset them
typically hinders the removal of unnecessary components, and further adds to in-
scrutability.

e Closed-source systems often suffer from a serious lack of interoperability and compos-
ability, which in turn can result in systems with poor survivability (as well as poor
satisfaction of the subtended requirements — especially security and reliability).

e Closed-source environments tend to induce single-vendor solutions, which in turn tend
to preclude constructive evolution.

e Closed-source systems cannot be adapted readily to different situations or easily and
quickly repaired when serious flaws are discovered.

e Dependence on proprietary interface standards greatly complicates integration of large
systems out of mix-and-match components that could otherwise be well suited to the
tasks at hand.

e Proprietary development of black-box software hinders open analysis of the development
process itself (which is something many developers are happy to hide).

Windows 2000 (N 5.0) reportedly will have something in excess of 50 million lines of source
code (most of that appears to be kernel code), with another 7.5 million lines of associated
test code. It is illustrative of each of these factors. Unfortunately, the totality of code on
which survivability and security depend is essentially the kernel and operating system plus
potentially all the application software that can be loaded at any time. That represents an
enormous amount of code that must be trusted (because it is not trustworthy) in any critical
application. (Recall the divide-by-zero in an NT application that brought the Yorktown
Aegis missile cruiser to a halt, in Section 1.6.)

Spinellis [361] compares the number of system calls in Windows SDK (1998, 3422 calls)
with First Edition Unix (1971, 33 calls), SunOS 5.6 (1997, 190 calls), and Linux 2.0 (1998,
229 calls). The comparison is not flattering to the Windows environment.

A humorous but subliminally serious assessment of the use of commercial off-the-shelf
(COTS) systems is given by David Carney [69].

5.10.2 Open-Box (Source-Available) Software

In contrast with proprietary black-box software systems, various forms of open-box software
and nonproprietary software offer opportunities to surmount these risks enumerated in the
previous section, in various ways.

The benefits of nonproprietary open-box software include the ability of outside good guys
to carry out peer reviews, add new functionality, identify flaws, and fix those flaws rapidly
— for example, through collaborative efforts involving people widely dispersed around the
world. Of course, the risks include increased opportunities for evil-doers to discover flaws
that can be exploited, or to insert trap doors and Trojan horses into the code.

The Free Software Foundation (FSF) uses the term free software to imply that the users
and redevelopers of the software have certain freedoms that do not arise with proprietary
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software — in particular, freedom to copy and freedom to change; however, the cost of
the software may or may not be free, so that there are still opportunities for entrepreneurs
in developing and maintaining such software. The Free Software Foundation Website at
http://www.gnu.org contains software, projects, licensing procedures, and so on. It in-
cludes a treatise by Richard Stallman on “Why Free Software is better than Open Source”
(http://www.gnu.org/philosophy/free-software-for-freedom.html). It also defines the FSF
General Public License (GPL), which enforces copyright plus copyleft, where copyleft re-
quires that redistribution (with or without change) must not restrict freedom to further
copy and change.

The Open Source Movement has registered the term Open Source as a certification mark.
The term is specified by the Open Source Definition (http://www.opensource.org/osd.html),
although there are no restrictions on the use of software subject to that definition. The re-
quirements of the Open Source Definition specify unrestricted redistribution; distributabil-
ity of source code; permission for derived works; constraints on integrity; nondiscriminatory
practices regarding individuals, groups, and fields of endeavor; transitive licensing of rights;
context-free licensing; and no adverse effects on associated software. The Open Source
Movement Website is http://www.opensource.org/, which includes Eric Raymond’s “The
Cathedral and the Bazaar” and the Open Source Definition. Because of these terminology
confusions, we use the term “open-box” to denote source-available code, encompassing both
free software and Open-Source software.

By referring here to nonproprietary open-box software, we encompass the efforts of both
the Free Software Movement and the Open Source Movement. Nonproprietary open-box
software is increasingly found in the Free Software Movement (such as the Free Software
Foundation’s GNU system with Linux) and the Open Source Movement. Both of these
movements believe in and actively promote unconstrained rights to modification and redis-
tribution of open-box software.

It is a sad commentary on many commercial and proprietary software developments that
some of the most useful, flexible, and robust software components today are nonproprietary
open-box software products, often the results of labors of love, and widely available free of
charge over the Internet or with minimal encumbrances. (Three examples of nonproprietary
open-box software have been particularly valuable in the preparation of this report: the
GNU Emacs editor, the IXTEX document system, and Hyperlatex — which generates html
from ITEX source.)

Examples of open-box software within the Free and Open-Source software communities
include GPL-ed software (e.g., The GNU System with Linux, GNU Emacs, GCC, Gnome
2.0, Ghostview, GNUscape Navigator, gzip, Java packages) and Free VSD; not quite GPL-
ed software (Perl); non-GPL free software (Free BSD, X windows, Apache, KTEX, Mozilla,
Netscape JavaScript ...); and Open BSD, Net BSD, Hyperlatex, Eazel’s Linux graphical
shell, ... (“GNU” is a recursive acronym, representing “GNU is Not Unix”.) Other licenses
besides GPL include MPL and QPL; more variants are likely to emerge in the future.

The roles of open-box software in developing highly survivable systems are a recurring
theme in the rest of this report, in light of (for example) the Internet, typically flawed
operating systems, vulnerable system embeddings of strong cryptography, and the presence
of mobile code. An architectural subquestion involves where trustworthiness must be placed
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to minimize the amount of critical code and to achieve robustness in the presence of the
specified adversities, and that question is addressed further in Chapter 7.

A highly oversimplified question is frequently asked: “Will open-box software really im-
prove system security?” The obvious answer is not by itself, although the potential is consid-
erable. Many other factors must be considered. Indeed, many of the problems of black-box
software can also be present in open-box software, and vice versa (for example, flawed de-
signs, the risks of mobile code, a shortage of gifted system administrators, and so on). In
the absence of significant discipline and inherently better system architectures, opportunities
may be even more widespread for insertion of malicious code in the development process,
and for uncontrolled subversions of the operational process.

In attempting to exploit open-box software, we face a basic conflict between (a) security
by obscurity to slow down the adversaries, and (b) openness to allow for more thorough
analysis and collaborative improvement of critical systems — as well as providing a forcing
function to inspire improvements in the face of discovered attack scenarios. Examples of
analytic tools for evaluating open-box source code include

e http://immunix.org: Crispin Cowan’s StackGuard
e http://www.cs.berkeley.edu/~daw/papers/: David Wagner’s buffer overflow analyzer

e http://www.l0pht.com/slint.html: LOpht’s (now @Stake’s) security review analyzer
slint

e http://www.rstcorp.com/its4/: Reliable Software Technology’s ITS4 function-call ana-
lyzer for C and C++ code

Ideally, if a system is meaningfully secure, open specifications and open-box source should
not be a significant benefit to attackers, and the defenders might be able to maintain a com-
petitive advantage! For example, this is the principle behind using strong openly published
cryptographic algorithms — for which analysis of algorithms and their implementations is
very valuable, and where only the private keys need to be hidden. Other examples of obscu-
rity include tamperproofing and obfuscation. Unfortunately, many existing systems tend to
be poorly designed and poorly implemented, with respect to incomplete and inadequately
specified requirements. Developers are then at a decided disadvantage, even with black-box
systems. Besides, research initiated in a 1956 paper by Ed Moore [221] reminds us that
purely external (Gedanken) experiments on black-box systems can often determine internal
state details.

Behavioral system requirements such as safety, reliability, and real-time performance can-
not be realistically achieved unless the systems are adequately secure. It is very difficult
to build robust applications based on proprietary black-box software that is not sufficiently
trustworthy.

The 1956 papers by John von Neumann [384] and by Moore and Shannon [222] noted
in Section 1.2 showed how to construct reliable components out of less reliable components.
Later work on correct behavior despite some number of arbitrarily perverse Byzantine faults
followed along those lines. In that context, building a fault-tolerant silk purse out of less
robust sow’s ears is indeed possible in some cases. But constructing more trustworthy secure
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systems out of less trustworthy subsystems does not seem realistic when the underlying com-
ponents are compromisible, despite efforts such as wrapper technology and firewall isolation.

Whenever achieving security by obscurity is not the primary goal, there seem to be strong
arguments for open-box software that encourages open review of requirements, designs, spec-
ifications, and code. Even when obscurity is deemed necessary, some wider-community open-
box approach is desirable. For software and for system applications in which security can be
assured by other means and is not compromisible within the application itself, the open-box
approach has particularly great appeal. In any event, it is always unwise to rely solely on
obscurity.

So, what else is needed to achieve trustworthy robust systems that are predictably de-
pendable? The first-level answer is the same for open-box systems as well as closed-box
systems: serious discipline throughout the development cycle and operational practice, use
of good software engineering, rigorous repeated evaluations of systems in their entirety, and
enlightened management, for starters.

A second-level answer involves inherently robust and secure evolvable interoperable archi-
tectures that avoid excessive dependence on untrustworthy components. Of course, potential
risks can be associated with nonproprietary software as well as proprietary software — for
example, relating to the authenticity of the sources and the trustworthiness of the distri-
bution paths. To combat ordinary code hacking as well as the three forms of compromise
noted in Section 1.3, a broad-spectrum combination of techniques is desirable, including (for
example) cryptographic checksums, trustworthy software distribution channels, and public-
key authentication schemes, which together can overcome some of the uncertainty as to the
trustworthiness of any code version that you might be using. One of the primary architec-
tures considered in this report involves thin-client user platforms with minimal operating
systems, where trustworthiness is bestowed where it is essential — typically, in servers, fire-
walls, code distribution paths, nonspoofable provenance for critical software, cryptographic
co-processors, tamperproof embeddings, preventing denial-of-service attacks, run-time de-
tection of malicious code and deviant misuse, and so on. A less feasible alternative in terms
of today’s technology involves much more trustworthy end-user platforms.

A third-level answer is that there is still much research yet to be done (such as on realistic
compositionality, inherently robust architectures, and open-box business models), as well as
more efforts to bring that research into practice. Effective technology transfer seems much
more likely to happen in open-box systems.

Nonproprietary open-box systems are not a panacea. However, they have potential ben-
efits throughout the process of developing and operating critical systems. Impressive be-
ginnings already exist. Nevertheless, much effort remains in providing the necessary de-
velopment discipline, adequate controls over the integrity of the emerging software, system
architectures that can satisfy critical requirements, and well-documented demonstrations of
the benefits of open-box systems in the real world. If nothing else, open-box successes may
have an inspirational effect on commercial developers, who can rapidly adopt the best of
the results. But the possibilities are considerable for coherent community cooperation in the
development of nonproprietary open-box software, especially if adequately supported.

Because some of the serious systemic deficiencies are not likely to be overcome in propri-
etary systems (Section 4.3), it would be highly advantageous to make more systematic use
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of nonproprietary software, especially if the source code is openly available, and if it can be
made more robust than its proprietary counterparts, and if trustworthy distribution paths
can be established and used consistently in a trustworthy manner. Also important is the
systematic use of nonproprietary interface standards that have been explicitly created with
interoperability in mind.

Particularly serious potential problems with Trojan horses might be implanted in variant
versions of open-box software. A paradigmatic risk is provided by Ken Thompson’s C com-
piler example [372], noted in Section 1.3. In fact, compilers used to produce critical-system
code present some special problems. Bellovin’s approach to using formal verification [37]
is relevant in demonstrating consistency between source code and object code, which is a
particularly thorny problem when insiders (such as Ken Thompson!) are able to tinker with
the compiler itself.

It is unfortunate that so few robust open-box security systems exist, particularly because
closed-source systems represent a violation of the principle of scrutability (see Section 7.1).
In a recent communication, Stallman notes that the GNU Project is working on Free Soft-
ware for public-key encryption. The GNU Privacy Guard, a free and non-patent-infringing
replacement for the non-free program PGP, is already being used. LSH, a free and non-
patent-infringing replacement for the non-free program SSH, is in development but not yet
ready for use.

The research literature is full of public-key-based authentication protocols, and an impor-
tant recent demonstration showed that serious authentication cannot be done without some
form of public-key crypto [122]. The Diffie-Hellman public-key cryptographic algorithm [92]
is now in the public domain. A few simple schemes for login authentication are freely avail-
able, such as S-Key one-time passwords. The MIT Athena Kerberos and Berkeley BSD
Unix are further examples where security has been a serious concern, although Kerberos
has experienced a variety of security flaws. PGP (Pretty Good Privacy) is becoming more
widespread as it becomes seamlessly embedded in e-mail environments, although has had
some proprietary underpinnings. Some of those products can also be obtained commercially
through organizations that provide operational and maintenance support, such as PGP and
Red Hat Linux. Indeed, it is not essential that nonproprietary software be available free of
charge, and considerable value can be added by commercial enterprises. What is important
is that the software be available for open scrutiny, able to be improved over time as a result
of an open collaborative process, and able to be subjected to distributional controls to ensure
its integrity.

We need significant improvements on today’s software, both proprietary and otherwise,
to overcome myriad risks (see the RISKS archives, http://catless.ncl.ac.uk/Risks/, or the II-
lustrative Risks document, http://www.csl.sri.com/neumann/). When commercial systems
are not adequately robust, we must consider how sound open-box components might be com-
posed into demonstrably robust systems. This requires an international collaborative process,
open-ended, long-term, far-sighted, somewhat altruistic, incremental, and with diverse par-
ticipants from different disciplines and past experiences. It also requires serious attention to
the reasons why composition has been so risky in the past (as discussed in the debate [155]
noted at the end of Section 5.8). Pervasive adherence to good development practice is also
necessary (which suggests better teaching as well). The process needs some discipline, in
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order to avoid rampant proliferation of incompatible variants. Fortunately, there are already
some very substantive efforts to develop, maintain, and support open-box software systems,
with significant momentum. If those efforts can succeed in producing demonstrably robust
systems, they will also provide an incentive for better commercial systems.

Overall, we need techniques that augment the robustness of less robust components,
public-key authentication, cryptographic integrity seals, good cryptography, trustworthy dis-
tribution paths, and trustworthy descriptions of the provenance of individual components
and who has modified them. We need detailed evaluations of components and the effects
of their composition (with interesting opportunities for formal methods). Many problems
must be overcome, including defenses against Trojan horses hidden in systems, compilers
and evaluation tools, in hardware, source code, and object code — especially when perpe-
trated by insiders. We need providers who give real support; warranties on systems today are
mostly very weak. We need serious incentives including funding for robust open-box efforts.
Despite all the challenges, the potential benefits of robust open-box software are worthy of
considerable collaborative effort.

Plans for the collaborative research and development of trustworthy survivable (e.g., ro-
bust, secure, reliable) interoperable nonproprietary open-box software components are be-
ginning to germinate. We must seek an open process that encourages the development
of systems and components addressing the essential problems defined in this report, and
which might initially be called Pretty Good Survivability (PGS). The intent is that, through
long-term open collaborative efforts involving research and development communities and
universities, PGS could gradually evolve into Very Good Survivability (VGS). At the mo-
ment, VGS seems like a dream, but it seems to be feasible if PGS is suitably motivated. It
also seems absolutely essential to the future of highly survivable systems, and should be well
worth whatever effort it requires.

A discussion group for the encouragement of efforts to produce robust nonproprietary
open-box software (whether “Open-Source” or “Free”) that I formed on 11 November 1998
has had some insightful discussions. (To join, send e-mail to
open-source-request@CSL.sri.com with the one-line content subscribe — or subscribe
[your address] if your desired address is different from your from: address; Majordomo will
accept contributions for the group only from your specified to: address.)

An interesting discussion of whether open-box software can increase security is found
in the position papers for a panel session at the 2000 IEEE Symposium on Security and
Privacy, with papers by Steve Lipner [183], Gary McGraw [199], Neumann [258], and Fred
Schneider [344]. An additional panel position paper written by Brian Witten, Carl Landwehr,
and Michael Caloyannides arrived too late for inclusion in the proceedings, but is available
on-line: http://www.csl.sri.com/neumann/witten.ps. Also on the panel was Eric Raymond,
who noted that the combined forces of the open-box movement involve 7000 active projects,
750,000 participants, and 150,000 hard-core developers. That represents a very considerable
potential force to be mobilized!

A fundamental dichotomy seems to exist between systems that must be safe and reliable
on one hand, and secure on the other. In the former case, open-box software is extremely
desirable to permit extensive analysis. In the latter case, the ingrained predilection tends to
promote security by obscurity — whether or not it is necessary. Highly survivable mission-
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critical systems clearly deserve greater scrutiny than afforded by closed-source software, but
perhaps may not merit completely open-box software where the attackers clearly have the
advantage. Ideally, if a system is secure, it should be possible for the design and implemen-
tation to be available. However, many of today’s systems are so far from adequate that this
ideal seems unattainable. Thus, this dichotomy remains very difficult to resolve adequately.

5.10.3 Use of COTS Software in Critical Systems

This section summarizes some of the most relevant papers from a recent NATO confer-
ence [229] on Commercial Off-The-Shelf Products in Defence Applications: The Ruthless
Pursuit of COTS (in addition to the slides presented by Neumann [257], which are included
in the proceedings of that conference, and whose conclusion are summarized at the beginning
of this section).

e Professor Nancy Leveson, MIT Aeronautics and Astronautics Department: Using COTS
Components in Safety-Critical Systems [174]. “In many cases, using COTS components
in safety-critical systems with acceptable risk will simply be infeasible. In these cases, it
will be cheaper and safer to provide special-purpose software — using COTS amounts
to false economy that will cost more in the end. There are, however, situations in
which COTS components can be assured to have adequate system safety. In these
cases, either the system design must allow protection against any possible hazardous
software behavior or a complete blackbox behavior specification must be provided by
the producer of that component in order to perform a system hazard analysis. For
complex software, special system hazard analysis techniques and tools may be needed
to assist the system engineer in this task.”

e Tan White, UK Defence Evaluation and Research Agency (DERA): Wrapping the COTS
Dilemma [390]. “Safety critical (SC) software cannot be provided from mainstream
COTS. However, more reliable software can be made using SC principles. ... Architec-
ture mandates do not address the problems of using COTS in military systems.”

e Nic Peeling and Richard Taylor, UK Defence Evaluation and Research Agency (DERA):
Standards — Myths, Delusions and Opportunities [294]. “... the defence community
should consider whether the latest developments in Internet Standards and Open Source
offer an opportunity to capture the benefits of Open Systems which the UNIX industry
squandered in the 1980s.”

e James Barbarello and Walter Kasian, US Army CECOM: United States Army Com-
mercial Off-The-Shelf (COTS) Experience: The Promises and Realities [28]. “... adopt,
adapt, develop philosophy.” “... any decision today ... may be different tomorrow.”

e Mark Vidger and John Dean, National Research Council of Canada: Maintaining
COTS-Based Systems [379]. “Although component-based software systems provide
many advantages, designers and users must still expect that the majority of the lifecy-
cle cost will be incurred after the initial deployment of the system. Reducing this cost,
and easing the maintenance and management effort, requires designers and architects
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to consider the post-deployment activities during the earliest stages of software devel-
opment. By identifying the activities that maintenance and management personnel
perform to support component-based systems, and using a design that supports these
activities, systems can be made more cost-effective.”

Susanne Jantsch, IABG mbH, Germany: Risks by Using COTS Products and Com-
mercial ICT Services [141]. “Accepting that the use of COTS products and commercial
services will continuously increase in the military environment, the obvious benefits
have to be levelled with not quite as obvious risks on one hand and, on the other hand,
with the possibilities available and duties unavoidable to actively manage these risks.”

Robert Charpentier and Marin Salois, Defence Research Establishment Valcartier, Que-
bec, Canada: Detection of Malicious Code in COTS Software by Certifying Compil-
ers [70]. Their approach requires a certifying compiler that enforces a formal security
specification and type annotations. It is based on Greg Morissett’s Typed Assembly
Language (TAL) effort at Cornell. It of course requires access to the COTS source code.
(A second paper by these authors [335] examines dynamic detection when source code
is not available.)

Robert Rowlingson, Defence Evaluation and Research Agency (DERA): The Conver-
gence of Military and Civil Approaches to Information Security [327]. “The highest
classified information required in defence has no counterparts in the civil sector and
there is unlikely to be any alternative to restricting such information to paper or iso-
lated, physically-protected systems.”

Norman Schneidewind, Naval Postgraduate School, Monterey: The Ruthless Pursuit of
the Truth about COTS [346]. “The decision to employ COTS on mission critical systems
should not be based on development cost alone. Rather, costs should be evaluated on a
total lifecycle basis and [reliability, maintainability, and availability] should be evaluated
in a system context (i.e., COTS components embedded in a host system). COTS
suppliers should also consider making available more detailed information regarding the
behavior of their systems, and certifying that their components satisfy a specified set
of behavioral properties. In addition, a formal risk assessment of requirements should
be performed taking into account the characteristics of host system environments.”

As seen from the excerpts, most of these conference papers reflect fairly skeptical views of

developing and configuring mission-critical systems out of conventional mainstream COTS
products, with many caveats.

5.11 Integrative Paradigms

Reliability, fault tolerance, security, and indeed survivability must be conceptually integral to
hardware and software, despite the desire to use off-the-shelf weakware as the basis for critical
applications. In principle, mainstream concepts should be used where applicable, although
their shortcomings must be overcome. Good software engineering practice should be used
in applications as well as system development. The entire process of program development
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should be systematized wherever possible. Formal methods should be applied to particularly
critical algorithms and programs.

A particularly thorny area involves the need for metrics permitting the definition and
analysis of survivability relevant attributes. On one hand, reliability requirements and fault-
tolerance mechanisms are nicely amenable to metrics and probabilistic analysis. On the other
hand, security and survivability tend to be much less easily characterized using metrics
— with just a few exceptions. One such exception involves work factors regarding the
effort to break a given cryptographic algorithm. However, the simplistic application of such
metrics is dangerous. For example, the implementation of a given strong cryptographic
algorithm may be trivially compromisable from below, from within, or from outside, because
of vulnerabilities in the operating system or the application in which the cryptography is
embedded. Another example is an attempt to come up with the security of a given operating
system. In general, given all the known flaws, the would-be security is typically easily
penetrated; furthermore, the likelihood of unknown flaws should make any quantitative
measures of security suspect. Nevertheless, the appropriate use of metrics is desirable.

As described in Section 4.3, the supercomputing field has suffered in the past from a
serious case of myopia. Some of the lessons that can be drawn from that experience are
directly applicable to the need for highly survivable systems and networks.

Several potentially useful research directions are also noted below, in Sections 5.17 and 9.2.

5.12 Fault Tolerance

This report does not attempt to replicate the vast literature of techniques for fault tolerance.
For example, techniques for increasing system reliability in response to hardware faults and
communications failures are explored in general in [43, 96, 123, 161, 169, 246, 293, 311,
314, 356]. Failure recovery in the context of Tandem’s NonStop Clusters is considered by
Zabarsky [393], representing a serious step toward systemic fault tolerance. Some signifi-
cant, recent research of Kulkarni and Arora relates to compositionality properties of fault
tolerance [22, 159] and the somewhat canonical decomposition of fault-tolerant designs into
detectors and correctors [23].

Once again demonstrating the desirability of a confluence of requirements and a corre-
sponding confluence of techniques for combatting security and reliability problems along the
lines of the reconvergence of availability requirements in Figure 3.1, consider the require-
ments for data integrity in the sense of no-unintended-change shown at the nodes designated
by a sharp (#) in the figure. Data integrity can be enhanced through cryptographic in-
tegrity checks (typically to protect against malicious alterations) or error-correcting coding
techniques (typically to protect against accidental garbling). However, an interesting re-
cent special-purpose use of coding for detecting malicious tampering as well as accidental
errors in once-writable optical disks is given by Blaum et al. [44], taking advantage of the
asymmetry inherent in certain once-writable storage media in which writing can change the
state of a bit only in one direction (e.g., from a not previously written zero bit value to
a written one bit, but never the reverse). This is another example of a crossover imple-
mentation that can simultaneously address different sets of subrequirements stemming from
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otherwise independent-seeming major requirements. In such cases, considerable benefit can
be obtained by recognizing the commonality among otherwise independent subrequirements
and then providing a unified treatment in the design and implementation.

5.13 Static System Analysis

Many techniques exist for the a prior: analysis of system behavior, based on consideration
of requirements, design specifications, implementation, and operational procedures. These
techniques may be formal (see Section 5.9) or informal. Examples of such techniques are

e Analysis of the internal consistency and completeness of requirements
e Analysis of the consistency between design and requirements
e Analysis of the consistency between design and implementation

e Analysis of operational procedures (e.g., configuration control) and their consistency
with requirements

e Black-box analysis (with no knowledge of the innards) and open-box testing (with
complete knowledge of the innards), whether with testing or formal methods

e Compiler consistency checking and implantation of dynamic checks as a byproduct of
compilation

e Risk analysis, risk management, and risk mitigation
e Independent verification and validation

e Product certification

In addition, evaluation of the processes that underlie system development may possibly be
of interest. Although such process certification does not necessarily say much about a specific
development, it may be useful in weeding out the outliers who are completely unqualified —
if the evaluation is itself meaningful:

e Certification and licensing of development personnel (for example, see [255])

e Certification of developer companies and of their development processes, such as the
Carnegie-Mellon Software Engineering Institute’s Capability Maturity Model
(http://www.sei.cmu.edu/activities/cmm/)

5.14 Operational Practice

Although the primary emphasis of this report is on system and network architectures, op-
erational practice is absolutely critical to survivability. Today’s systems and networks place
enormous burdens on system administrators and security personnel. Ideally, systems and
networks should be designed and implemented to increase the manageability of operations,
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and the requirements for operations should be included up front, as noted in Section 3.4.
Indeed, any cleanliness and controllability inherent in architectures can play a major role
in improving the operational practice. The approaches discussed earlier in this chapter and
the structural concepts examined in Chapter 7 can help. Also important are monitoring
facilities that are accurate, timely, and visually understandable. Thus, including operational
requirements among the desired system characteristics is important from the outset.

An important approach to controlling system and network behavior involves real-time de-
tection and analysis of potentially undesirable deviations from expected behavior, considered
in Section 5.15.

5.15 Real-time Analysis of Behavior and Response

As noted in Section 4.1, there is a great need for the ability to provide real-time detection
and analysis of system and network behavior, with appropriate real-time responses — from
the coordinated perspective of survivability and its subtended requirements. There has been
considerable work on this topic for more than a decade.

SRI has pioneered work on rule-based expert system analysis and statistical analysis,
through IDES (Intrusion Detection Expert System [189]) and NIDES (Next-Generation
IDES [11, 12, 142, 139]). The current work on EMERALD (Event Monitoring Enabling
Responses to Anomalous Live Disturbances) [182, 304, 305] is the current extension of IDES
and NIDES to monitor network activity. Overall, we know of no efforts other than EMER-
ALD that are oriented toward the ability to detect problems arising in connection with
generalized survivability. (See http://www.csl.sri.com/intrusion.html.)

Of course, many other institutions have been developing systems addressing various as-
pects of the intrusion-detection problem, typically using either rule-based techniques or sta-
tistical analyses, but in most cases not both, and usually dealing with users of individual
systems or local networks. See Edward Amoroso’s new book [10] for an introduction to the
field. Many papers are worth reading, including [63, 81, 125, 156, 157, 303, 340]. Bradley [62]
considers the effects of disruptive routers. In addition, only a few efforts have addressed fault
detection in this context — for example [140, 193, 208|.

Schneier and Kelsey [349] have developed a cryptographically based step toward the se-
curing of audit logs against tampering and bypassing.

Another form of real-time analysis involves dynamic network management. Network
management should also be integrated with real-time anomaly and misuse detection and
real-time reconfiguration as a result of detected problems.

5.16 Standards

Standards are important, but can also be extremely counterproductive if poorly conceived
or misapplied. Chapter 6 considers the existing and emerging evaluation criteria. Appendix
C summarizes some of the Department of Defense efforts to standardize architectures and
security services. In particular, Section C.1 considers the attempt to impose standardization
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through the Joint Technical Architecture (JTA); Section C.2 considers the DoD Goal Secu-
rity Architecture (DGSA); Section C.3 considers the Joint Airborne SIGINT Architecture
(JASA) Standards Handbook (JSH).

Criteria for security are considered in Section 6, including the U.S. Department of De-
fense Trusted Computer Security Evaluation Criteria (TCSEC), the European (ITSEC) and
Canadian counterparts (CTCPEC), and the new international Common Criteria.

The British Ministry of Defence has established some rigorous standards for safety-critical
systems [375, 376], although it is not clear to what extent they have actually been used.

International cooperation is inherently a difficult problem, complicated even further in
the case of computer system standards and criteria by needs for transborder interoperabil-
ity, reciprocal evaluations that can be (or indeed, must be) honored in multiple countries,
different national needs and perceptions (e.g., on the relevance of multilevel security, and
how to achieve it), and so on. There are no easy ways to accomplish such cooperation, but
making sure everyone is talking with everyone else is essential.

As an international nongovernmental organization, the Internet Engineering Task Force
(IETF) (http://www.ietf.org) has been particularly effective in establishing Internet stan-
dards, with considerable emphasis on interoperability and change control. (The IETF
strongly favors open interfaces, and tolerates proprietary standards only where open stan-
dards also exist.) In addition, other standards are emerging from the Open Group
(http://www.opengroup.org), the IEEE (http://www.ieee.org), the Association for Comput-
ing (ACM)

(http://www.acm.org), and other organizations. However, the IETF process must work
harder to achieve better protocols that encompass more of the survivability issues addressed
in this report.

The certification and licensing of programmers is also being considered in some circles as
an approach to standardizing developer skills. See recent position papers by Parnas [284] and
Neumann [255] from the 2000 IEEE International Conference on Requirements Engineering.

5.17 Research and Development

Historically, research has provided some powerful techniques for increasing survivability,
reliability, and security, although much of the potentially most valuable research has not
found its way into commercially available personal computer products, and only occasionally
into computer systems. Serious research is still needed to address some of the remaining
deficiencies.

e Fault tolerance is a field in which there is extensive and diverse research, many aspects
of which have found their way into common practice. Successful examples include alter-
native network routing, redundant data sites, fault detection and recovery, automatic
retry in processing and communications, and error-correcting coding in transmission
and storage.

e Security research is a more difficult issue. Much past research has been devoted to
unrealistic approaches. Work on multilevel security has had little real impact, for a
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variety of reasons, one of which is that the MLS concept has not been widely accepted
outside of DoD — either in the commercial system and networking mainstreams, or
by user communities. As a consequence, many DoD systems still run system-high.
Similarly, potentially important research on capability-based system architectures and
hardware-enforced domain structures has remained largely unimplemented in commer-
cial systems. Even when hardware does provide some domain separation, the operating
systems tend not to use it. Perhaps worst of all, some very realistic and practical
research has simply not found its way into general practice. For example, excellent
research efforts on authentication, access control, and accountability have simply not
been adopted in most commercial systems. Recommendations for achieving multilevel
security despite the absence of multilevel-secure user systems and for addressing some
of the potentially research-motivated system issues are considered in Chapter 7.

e Survivability resembles the tail trying to wag the dog. Perhaps most important in the
future will be system-oriented research efforts that pick up the challenges put forth in
this report, integrating reliability, fault tolerance, security, performance, and other vital
requirements, within the overall context of generalized survivability.

In this report (see Section 7.2), we pursue the notion of generalized multilevel survivability
(MLX, introduced in Section 1.2) that draws on past experience with multilevel security,
multilevel integrity, and multilevel availability. We do this not with the expectation that
system developers will rewrite all their systems, but rather with the expectation that the
MLX concept might provide some useful architectural insights.

The mobile-code paradigm is an important topic for future R&D, with respect to security
and reliability. (See Section 7.4.)

Research results also suggest some dramatic changes in high-performance computing,
which if properly applied could reverse the rather negative historical perspective noted in
Section 4.3. For example, two recent software-based efforts are illustrative of a kind of new
thinking that could be very beneficial. Each is a different new paradigm that has considerable
potential in the development of high-performance systems.

e GLU [138] provides a virtualization of multiprocessing that requires the addition of
a few lightweight statements to conventional programs, which when preprocessed into
the conventional language (C in the case of the existing GLU implementations) en-
able the parallelized execution of the program irrespective of the underlying hardware
configuration.

e Simple Maude [178] provides a machine-independent programming language based on
rewrite rules that can be compiled to execute on arbitrary hardware configurations. It
is a subset of Maude [207], which is an extensive environment including a very pow-
erful metalanguage that serves as an executable specification language and a universal
description language (http://maude.csl.sri.com).

Specific recommendations for future research and development are given in Section 9.2.
The R&D recommendations of the President’s Commission on Critical Infrastructure Pro-
tection are summarized in Section 9.7.
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5.18 Education and Training

Issues such as reliability, security, and system survivability need to become a part of a
broader educational curriculum and institutional training programs. The same is true of
an understanding of vulnerabilities, threats, and risks. The desired audience includes not
just programmers and system developers, but also administrators, legislators, system pro-
curement agents, and even prospective users. However, in the final analysis, education and
training cannot be effective unless effective system solutions are available to be learned.
Appendix A outlines course curricula for survivability.

5.19 Government Organizations

Chapter 7 of the report of the President’s Commission on Critical Infrastructure Protec-
tion [194] recommends the establishment of some new organizational entities. It is worth
reviewing them, because they bear directly on the problems of infrastructure survivability.

e An Office of National Infrastructure Assurance in the White House to serve as
the focal point for infrastructure assurance

e A National Infrastructure Assurance Council of corporate leaders, state and gov-
ernment representatives, and Cabinet officers

e An Infrastructure Assurance Support Office
e A federal Lead Agency for each sector
e A Sector Infrastructure Assurance Coordinator for each infrastructure

e An Information Sharing and Analysis Center of government and industry repre-
sentatives

e A Warning Center

This seems to represent a considerable increase in the institutionalization of an already
highly bureaucratic situation, especially in that the PCCIP has focused largely on the
so-called critical national infrastructures and seriously underplayed the importance of the
computer-communication infrastructures. Very little in the PCCIP report suggests that the
survivability, security, availability, or reliability of the computer-communication and informa-
tion infrastructures would gain significantly from these organizational entities. In addition,
there is still no constituency for the non-DoD non-U.S.-Government user public, as has been
pointed out on various occasions — including in the 1990 in the Computers at Risk study [72].

In the meanwhile, President Clinton has reconstituted the PCCIP concept by creating
a Critical Infrastructure Assurance Office (CIAO), and created the office of the National
Coordinator for Security, Infrastructure Protection, and Counter-Terrorism, which will be
responsible for a broad range of policies and programs related to cyberterrorism. In addi-
tion, the FBI is establishing a National Infrastructure Protection Center (NIPC) to counter
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individuals and organizations that commit computer crimes. (See Presidential Decision Di-
rectives PDD 62 on counterterrorism and PDD 63 [73], aimed at reducing the vulnerabilities.)

Unfortunately, the U.S. Government has had little success in enticing certain major com-
mercial developers to do the right thing — namely, to significantly increase the survivability,
security, and reliability of their systems. That shortcoming may ultimately be the limiting
factor — despite the hopefulness expressed in some of the recommendations of our report.

Also, unfortunately, the Government seemingly has not had much success in achieving a
minimal level of competence in avoiding security risks (as evidenced by Deputy Secretary
of Defense John Hamre calling the Cloverdale kids’ cookbook attack the “most organized
and systematic the Pentagon has seen to date” — see the Risks Forum, volume 19, issue 60
(http://catless.ncl.ac.uk/Risks/19.60.html) or in dealing with computer systems at all (as
evidenced by the huge effort to surmount the Y2K challenge — see Congressman Stephen
Horn’s Y2K report card, http://www.house.gov/reform/gmit/y2k/index.htm, which was up-
dated quarterly for several years prior to Y2K and showed slow progress for a long time). It
is a huge challenge merely getting competence levels in security up to the levels suggested
in Fighting Computer Crime [275].

Further information on Web sites for some of the above organizations and for the Carnegie-
Mellon Software Engineering Institute’s Computer Emergency Response Team (CERT) are
given in Appendix D (Some Noteworthy References) at the end of this report.
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Chapter 6

Evaluation Criteria

The currently existing evaluation criteria frameworks are not yet comprehensively suitable
for evaluating highly survivable systems and networks. Even with regard to security by itself,
the existing criteria are incomplete and inadequate. In addition, there is almost no experience
in evaluating systems having a collection of independent criteria that might contribute to
survivability, and the interactions among different criteria subsets are almost unexplored
outside of the context of this report. Nevertheless, a good set of security criteria — if it
existed — would be very valuable.

This section considers the emerging Common Criteria effort, which is attempting to over-
come many of the deficiencies of its precursors, the DoD Trusted Computer Security Evalua-
tion Criteria Rainbow series (e.g., the TCSEC [233], TNI [231], and TDI [232]), the European
ITSEC [99], and the Canadian CTCPEC [68].

The evolving Common Criteria document has been undergoing extensive review, prepara-
tory to being submitted as an ISO standard. See http://csrc.nist.gov/cc for the latest draft
documents and progress toward establishing the Common Criteria. (Version 2.1 was posted
31 January 2000.)

Any set of requirements, and indeed any generic (abstract) systems architecture, must
not overly constrain the implementations of systems intended to satisfy those requirements.
This is an inherent danger in the TCSEC, but less so in the other criteria because they are
frameworks for evaluation rather than prescriptive requirements. In addition, the ITSEC
and CTCPEC effectively distinguish functional requirements from assurance requirements,
and that useful distinction has been continued in the Common Criteria.

There is also a serious danger of underconstraining the resulting systems and networks.
For example, the Rainbow series of trusted-system criteria may overconstrain implementa-
tions with respect to the bundling of criteria elements at a particular evaluation level (e.g.,
A1, B3, B2, B1, C2), but also underconstrain the implementations with respect to many other
criteria elements that are omitted — relating to networking, application security, modern
authentication (e.g., using one-time tokens instead of fixed reusable passwords), fault tol-
erance, reliability, real-time performance, interoperability, reusability, software engineering,
and the development process, to name just a few. These aspects are absolutely fundamen-
tal to the successful procurement and development of suitable systems and networks that
can satisfy stringent requirements. Simply adhering to very superficial but allegedly defini-
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tive generic requirements and criteria (Orange Book, Red Book, and others), procurement
cookbooks, and Chinese menus for system configuration is doomed to failure. In addition,
despite the enormous proliferation of the Rainbow series in multitudinous colors, the TCSEC
is intrinsically incomplete, for a variety of reasons.! For example, it deals primarily with
confidentiality in centralized systems (failing to keep up with the last decade of progress in
distributed systems and networked systems, and not adequately treating integrity and the
prevention of Trojan horses and other pest programs). It is monolithic, in that it lumps
together functionality and assurance, and within functionality criteria lumps together re-
quirements that are more rationally treated somewhat independently. For example, the
notion of fixed passwords does not make much sense in systems that demand high assurance.
Cryptography is basically ignored. The TCSEC does not adequately concern applications
and systems configured out of other systems, stressing primarily trusted system components.
It also typically ignores survivability, reliability, fault tolerance, performance, interoperabil-
ity, real-time requirements, system engineering and software engineering, system operations,
and many other issues that are essential to the development and configuration of survivable
systems and networks.

The desire to be able to configure critical systems out of off-the-shelf components and par-
ticularly off-the-shelf software is commendable, but largely a fantasy. Commercially available
infrastructure components (operating systems, database management systems, networking
software, and application software) are typically not able to fulfill stringent requirements. In
some cases extensive customization is required, and is still inadequate. Furthermore, con-
siderable expertise is required to operate and maintain the resulting systems. The concept
of turn-key systems satisfying extremely complex critical requirements is unrealistic.

What is needed in the future is more efforts aimed not at cookbooks but rather at con-
structive documentation of worked examples providing the following:

e Detailed functional requirements encompassing realistically complete sets of require-
ments relevant to survivability (e.g., security, reliability, and fault tolerance) that could
be used for a wide range of procurements.

e Detailed guidance on how to handle the interactions among the various constituent
subtended requirements for survivability.

e Design frameworks and alternative families of logical architectures and architectural
structures that facilitate the composition of survivable system and networks out of
subsystems.

e Guidance on good system engineering and software engineering practice, and far-reaching
approaches toward system development.

e Guidance on good procurement practice.

e Identification of interoperable development environments and constructive tools. How-
ever, it must be recognized that tools are not a panacea; their use may in fact be
counterproductive.

1Several critiques by Neumann [248] and Willis Ware [388] are still worth considering, because many of the flaws in the
TCSEC are still reflected in evaluated systems today; furthermore, some of the problems with the TCSEC can be replicated by
protection profiles in the Common Criteria.
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e Guidance on achieving interconnectivity and reusability.

e Identification of fundamental gaps in the existing standards, and identification of which
standards are or are not truly compatible with which others.

e Identification of fundamental components that are absent or inadequate in the existing
products, and guidance on what is actually commercially available rather than merely
a (possibly) emerging product.

e Guidance on hardware-software tradeoffs, particularly with respect to cryptographic im-
plementations. (There is a great need for hardware-based authentication as in Fortezza,
but hardware implementation of cryptographic algorithms is by no means a panacea.
For example, see [249] for an analysis of whether crypto implemented in hardware is
necessarily more trustworthy than when implemented in software. Hint: “It ain’t nec-
essarily so.”)
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Chapter 7

Architectures for Survivability

The appropriate use of structure is still a creative task, and is,
in our opinion, a central factor in any system designer’s responsibility.
Jim Horning and Brian Randell, 1973 [133]

Intelligently conceived system structure remains seriously undervalued. The appropriate
use of structure was already recognized as a creative task in Multics (e.g., see [75]) in 1965,
and its benefits in that system were very considerable in the process of development and
subsequent evolution. Reflecting on the Horning-Randell quote above, it is still a vital
creative task in the new millennium — perhaps even more so than before. However, it
must be accompanied by thorough understanding of the desired requirements and their
implications, as well as detailed engineering to ensure that the implementation does not
undermine what the structure has attempted to achieve.

The emphasis in this report is on architectural structures and structural architectures that
are independent of particular system and network designs and independent of specific im-
plementations, but still firmly rooted in the broad set of requirements for survivability. In
this way, we avoid getting mired in the distinctions among the Joint Technical Architecture’s
“technical architectures”, “operational architectures”, and “systems architectures” (see Ap-
pendix Section C.1) — all of which lack a true sense of architecture — as well as the DoD Goal
Security Architecture’s abstract, generic, specific, and logical architectures and its so-called
security architecture (see Appendix Section C.2).!

Some of the architectural structures considered here involve relatively untrusted end-
user systems combined with ultra-dependable trustworthy servers out of which structural
architectures can be conceived, and from which survivable systems and networks can be
developed or configured. Of particular interest are architectural structures that include
authentication servers, file servers, and network servers, which under generalized dependence
can overall provide highly survivable and highly secure systems and networks.

Some of the short-term candidate architectures can eventually be made more surviv-

I The last definition of “architecture” in the Random House Dictionary is simply “the structure of anything.” Although our
terms “architectural structure” and “structural architecture” may seem to be tautologies outside the context of this report,
they are intended to emphasize the desired fundamental role of structure, and to avoid confusion resulting from the massively
misplaced overloading of the word “architecture” that arises in the JTA and DGSA.
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able by gradual evolution. Unfortunately, some of the longer-term approaches that could
achieve truly high survivability require more revolutionary new directions; they are much
more farsighted, and consequently less likely to win popular support among those system
developers who are bent on lowest-possible-cost solutions. The recent not-too-surprising dis-
covery by NASA that their “faster, cheaper, better” approach is a resounding failure is a clear
illustration of the risks. Faster and cheaper are generally not better when systems are mis-
sion critical. (For example, see RISKS-20.84 http://catless.ncl.ac.uk/Risks/20.84.html and
.86 http://catless.ncl.ac.uk/Risks/20.86.html for some discussion on the Mars Lander, and
Leveson [174] for an analysis of the role of closed-box proprietary software in mission-critical
systems.)

This chapter considers multilevel-secure systems as well as single-level systems. Single-
level systems are ubiquitous. Multilevel-secure systems are desired by the Department of
Defense, but introduce many problems of their own — some of which can interfere with
the needs for survivability, particularly if not addressed systemically. Ideally, multilevel-
secure systems should be configurable with only minimal dependence on multilevel-secure
components, rather than requiring pervasive high-assurance MLS throughout every end-user
component. Furthermore, the single-level systems should be integrally related to the mul-
tilevel systems, rather than completely different families of architectures. If an architecture
is properly conceived, a multilevel system should not have to be significantly different from
its single-level counterparts. This is a goal that has not previously been pursued, and runs
counter to the dictates of the Trusted Computer Security Evaluation Criteria (TCSEC) dis-
cussed in Chapter 6. However, it seems highly advisable if MLS systems are ever to become
practically achievable. Nevertheless, the inherent incompleteness of MLS requirements must
be addressed, in particular with respect to the requirements for integrity and survivability.

7.1 Structural Organizing Principles

Several fundamental architectural principles are essential to effective architectural structure,
each of which can considerably improve overall survivability. Not surprisingly, these prin-
ciples have deep roots in the security and software-engineering communities. In particular,
see the 1975 paper of Saltzer and Schroeder [337], in which many of the following items are
found.

e Abstraction. In computer system parlance, abstraction is the ability to describe logi-
cal functionality in its own terms rather than invoking implementation-specific details,
and to mask such details from the invokers of the given functionality. Abstraction hides
implementation details from the purview of the interface. Abstraction is particularly
useful in hiding or reducing apparent complexity of a system or subsystem. One im-
portant manifestation of abstraction is found in implementation-independent interfaces
that can greatly enhance compatible interoperability, reusability, and long-term system
evolution. Abstraction is also fundamental to simplifying formal analyses of systems in
the large, enabling reasoning about abstract entities rather than their implementations.

e Hierarchical layering. In most cases, separate layers of abstraction can advanta-
geously be identified and distinguished from one another in terms of the functions per-
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formed and the information entities involved. Each abstracted layer should mask most
of the idiosyncrasies of lower layers. The functionality at any layer should be specified
in terms of the entities at that layer, not in terms of lower-layer functionality. A simple
example is given by the layering of Table 3.1, although in a detailed architecture, each
of those layers might itself be substructured. Our notion of compromise from outside
includes compromises originating from hierarchical abstractions at higher layers as well
as from other abstractions at the same layer. For these purposes, we refer to vertical
abstraction and horizontal abstraction, respectively.  Compromises of horizontal ab-
straction can be considered as compromises from within tightly coupled systems, or as
compromises from outside whenever internal authorization is to be invoked.

Encapsulation. Abstraction masks implementation detail at a particular interface.
Encapsulation of the functionality of that abstraction has two additional attributes: it
hinders the derivation of internal state information from observation of the interface,
and it attempts to prevent compromise from outside — for example, by interference
with the internal operations. It is relevant to both design (ensuring that the internals
are logically hidden) and implementation (ensuring that the internals are masked —
subject to inferences that can be drawn, as suggested by [221].

The object-oriented paradigm. The object-oriented paradigm noted in Section 5.7
encompasses the above concepts of abstraction, encapsulation, inheritance, and poly-
morphism, which collectively provide a potentially valuable structuring organizing prin-
ciple. (However, it must be properly implemented in order to be effective.)

Design diversity. Dependence primarily on one system provider, one software de-
veloper, one hardware producer, one set of protocols, one set of network software, one
network connection, one Web browser, or one operating system is inherently unwise
if survivability is a serious goal. Common fault modes and common security vulnera-
bilities can render the entire information infrastucture useless for prolonged periods of
time. Although diversity is desirable in every one of these dimensions, diversity has its
own set of risks — including greater complexity in achieving interoperability, maintain-
ability, coordination and synchronization among diverse components. Thus, diversity
is in general not necessarily beneficial.

Composability. The principle that modules, subsystems, and systems should be read-
ily composable without additional effort is fundamental to the demands of survivability
— although the implication is not entirely obvious in a world in which most commer-
cial software is not easily composable. The decoupling of concepts, interfaces, and
implementations that is necessary to enhance composability can contribute indirectly
to survivability in various ways — for example, by increasing component independence,
interoperability, flexibility, generality, and polymorphic usability. The requirement of
facile composability offers a strong forcing function on architectures and system con-
figurability, assuming that it is intended to be recognized and honored throughout.
Composability can be considerably enhanced by the use of horizontal and vertical ab-
straction, encapsulation, and separation of policy and mechanism.
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Design for pervasive authentication and access control. Although many design-
ers may consider authentication as an afterthought, and access control relevant only
for certain access types, security requires a thorough perspective of pervasive authen-
tication and access controls throughout system and network architectures. Uniform
treatment of seemingly diverse access mechanisms can be achieved by recognizing com-
mon abstractions among different mechanisms.

Design for administrative and operational controllability. A generally ignored
principle is that of ensuring that the design of systems and their operational interfaces
is sufficiently aware of the needs of administration and operation.

Design for pervasive accountability and recovery. Similar to authentication and
access control, accountability requires a pervasive approach to monitoring of all relevant
activities at different layers of abstraction, real-time analysis of situations that might
lead to potential crises, and the ability to recover system state information and data
when necessary. These capabilities should be addressed in system architecture rather
than added on afterwards.

Separation of policy and mechanism. Policy defines what is supposed to be done,
and mechanism establishes how it is to be done. Separating them distinctly from one
another greatly enhances system flexibility and evolvability, especially if the policies can
be changed without having to alter the mechanisms. A simple example is the difference
between access-control policies and the mechanisms that are intended to enforce those
policies.

Assignment of least privilege. Whenever domain separation and differential access
controls can be enforced by a system, permissions should be granted only as needed.
Granting of superuser permissions is a flagrant violation of the principle of least privi-
lege.

Separation of concerns. We consider users at any layer of abstraction as either
people or processes that initiate actions in computers at that layer of abstraction. A
given user may have different associated duties that are to be performed, and may
take on different roles for certain sets of duties. (The notion of “user” may differ from
layer to layer. For example, compiled or assembled code can be considered as the user
of hardware. Application programs are often users of operating systems. People are
typically users of graphical user interfaces and command tools. However, the human user
is often considered to be the user of various internal interfaces.) Functional operations
may take place in different protection domains. Separation of critical operations and
communication from normal operation is also relevant, using out-of-band signaling and
control. Separation of concerns takes on at least three corresponding forms:

— Separation of roles recognizes the existence of different roles (e.g., as a certain kind
of administrator or an ordinary user) under which any particular user (that is, an
individual, or a process, or a TCSEC subject) may operate.
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— Separation of duties recognizes that different individuals should operate under dif-
ferent roles according to the duties being performed, and should be allocated per-
missions accordingly. Separation of roles is necessary for the implementation of
separation of duties — that is, the allocation of different access permissions accord-
ing to the specific role being played.

— Separation of domains recognizes that different programs or subsystems need to
operate in different execution domains, and that separate domains must not be
commingled in their design concepts or in their implementation. Separation of
domains is also necessary for the implementation of separation of duties.

The principles of separation of roles and separation of duties are associated with users,
whereas separation of domains relates to executable programs. The monolithic Unix
superuser mechanism is an example of the inability to distinguish among different roles
and different duties, because there is only one superuser domain. (Several systems have
recently partitioned the monolithic superuser role according to distinct roles, such as
Trusted Xenix.) Fortran’s shared common storage is another example of the inability
to adequately separate domains. System architectures are needed that can effectively
enforce rigorous separation among different protection domains, according to different
roles. (The definition and composability of separation-of-duty policies is considered
in [111].)

Least common mechanism. The principle of least common mechanism takes on
several manifestations, each of which reflects on not overloading mechanisms with fun-
damentally different functionality. For example, if you really believe in all-powerful
mechanisms such as the Unix superuser (which is inherently dangerous), this principle
would suggest the use of a collection of different sub-superuser privileges rather than
a single superuser privilege, with different privileges required for different mechanisms.
It also suggests that strong typing is preferable to permitting overloading of untyped
operations on different types. It further suggests that unrelated functions be treated
separately. Although this might seem to run counter to the notion of polymorphism
in the object-oriented paradigm (which implies multifunction capabilities), any efforts
toward polymorphism should maintain strongly typed usage. Another violation arises
in programming languages with an unsegmented global common storage facility.

Explicit representation of system and network states for survivability at-
tributes. In most conventional systems, the state of the systems, much less systems
of systems, is very difficult to ascertain with respect to security or reliability. System
design should attempt to make these states explicit or else easily derivable.

Avoidance of strict dependence on untrustworthy entities. The notion of gen-
eralized dependence explicitly recognizes the risks inherent in depending on something
(e.g., a component, system, communications medium, or user) that is either inherently
untrustworthy or potentially suspicious. Clearly, strict dependence on such entities
should be avoided or otherwise circumscribed, wherever possible.
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e Avoidance of concentrated values. Even in an architecture that satisfies all the
above principles, there are likely to be many attractive targets that result from the
concentration of power. The principle of least common mechanism is just one such
approach for avoiding concentration of values. Even if penetration and subversion are
difficult, there are typically many easy targets for denial-of-service attacks. For example,
security management systems, network monitoring systems, public-key infrastructures,
and encrypted files among a generally unencrypted file system all represent obvious
targets for attack. Furthermore, weak links are likely sources of reliability problems, not
just security vulnerabilities. The principle of avoiding attractive targets is an extension
of the principle of design diversity in combination with least privilege and separation of
concerns.

e Scrutability of designs and implementations. Although it seems to be less of a
structural organizing principle than a philosophical principle, the concept of scrutable
designs and implementations that can be subjected to open peer review is very helpful
in gaining confidence and improving confidence in system survivability. The open-box
paradigm (Section 5.10) is aimed at increasing scrutability.

e Mobile code. A fundamental potential advantage of mobile code is that the code can
be platform independent and executed on any system for which a suitable interpreter
exists, irrespective of where the code originated. The Java adage, “write once, run
anywhere,” is symbolic of that potential. Although the concept of mobile code by
itself does not strictly speaking seem to be a structural principle, it cries out for the
use of architectural structures in which code and its execution need not coexist. For
that reason, it is included in this itemization. Section 7.4 considers the architectural
implications of mobile code.

e Portable computing. We make a distinction here between mobile code and portable
computing. In the former case, the code is mobile. In the latter case of portable com-
puting, the computing platforms and workstations are themselves portable by virtue of
robust wireless communications. The concept of integrating rapidly deployable wireless
laptops securely within a highly configurable infrastructure clearly requires a flexible
survivable architecture, as well as extensive use of encryption for integrity, confidential-
ity, prevention of denials of service, and enhancing availability.

e Sound hierarchical bootstrapping. System bootstrapping, reconfiguration, and
initialization are common sources of dynamically introduced vulnerabilities. These pro-
cesses must adhere to the above principles, avoiding dependence on untrustworthy func-
tionality.

e Conservation of vulnerabilities. There is some sort of negative analog of the Second
Law of Thermodynamics relating to the conservation of vulnerabilities for any given set
of designers or implementers acting as a group. There will be many unforeseen tradeoffs
that are likely to result in vulnerabilities in systems and in networking depending on
the skills and interests of the developers. The exact location of the vulnerabilities may
change, but the aggregate risks are likely to be more or less the same.
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For a variety of reasons, these organizing principles can contribute to increased system
and network survivability — if they are consistently applied and if they are properly im-
plemented. Note that abstraction, layering, encapsulation, object-oriented approaches, and
policy-mechanism separation all can contribute to greater interoperability, reusability, long-
term system evolvability, and security. The principles of separation of concerns and least
privilege can also substantially improve operational security and reliability.

These principles can also contribute to improved analysis. In particular, formal methods
can be used to analyze requirements, specifications, and implementations. However, such
analyses can be greatly simplified by the use of structural concepts — especially layering,
abstraction, encapsulation, policy-mechanism separation, and domain separation. For ex-
ample, the mappings among layers of formally specified abstractions in SRI’s Hierarchical
Development Methodology [322] are capable of inducing enormous simplifications in the
formal proof process for large systems.

Approaches that properly address the mobile-code problem demand significant improve-
ments in the information infrastructure. The notion of portable computing is clearly a forcing
function on system architectures, and can result in significant improvement of the surviv-
ability of the entire system and network complex if consistently reflected in the architecture.

Ideally, modern software engineering should encompass these organizing principles, al-
though in practice it is frequently not used in a sufficiently disciplined manner to take
advantage of them.

In direct response to the 1990 Computers at Risk report of the National Research Coun-
cil [72], an effort is proceeding to develop and promulgate a set of Generally Accepted Systems
Security Principles (GASSP) (http://web.mit.edu/security/www/gasspl/html), and to es-
tablish an International Information Security Foundation (I2SF). Many of those principles
are relevant to survivability as well, but are clearly not enough by themselves.

7.2 Architectural Structures

Several main structuring concepts are of particular interest, each of which has the poten-
tial of inducing considerable discipline on architectures employing the structural concepts
of Section 7.1, and thereby enhancing survivability. The intent of this section is to sum-
marize various approaches, some of which are competing with one another, others of which
may be used in combination. There are clearly tradeoffs that must be considered carefully
before embarking on particular architectural directions — tradeoffs among survivability is-
sues including security, reliability, functionality, performance, and assurance of application
behavior.

e Hierarchical structures. Hierarchical structures can be of great value in system
design, and are particularly important in distributed systems. Hierarchical directory
structures (as in Multics [83] and Unix) provide an important organizing structure,
aiding in sensible scoping of names and protection. Hierarchical locking strategies [94]
(noted in Section 1.2.5) are useful, notably in avoiding deadlocks. Various hierarchical
layers of protection are considered in subsequent bulleted items.
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e Protection domains. The notion of layered rings of protection formed a basis
of Multics in 1965, where the functionality of any particular ring was protected from
compromise (accidental as well as intentional) resulting from the functionality of all
outermore rings. Multics used eight concentric rings, whose relevance to survivability
is considered further in Section 7.4.1. In establishing the proper layering, separation of
privileges and allocation of least privilege should be observed throughout, with clearly
delineated domains, carefully defined and enforced hierarchical layering, and logical
compartments. Although there may be applications for which centralized mechanisms
may be functionally appropriate, even those mechanisms must be able to be physically
or logically distributed in order to attain high availability. (For example, having only
a single authentication server is ill advised in distributed environments, particularly in
the presence of many users or resources.) However, the establishment of distributed
protection domains requires special care in design, because of lateral dependencies in
horizontal abstraction and the resulting potential lateral compromises.

e Security kernels and TCBs. The conceptually simple hierarchical structuring con-
cept of a trusted computing base on top of a kernel is instructive despite its hidden
complexities and inherent limitations. Traditional centralized TCSEC architectures
have relied heavily on the hypothesis that a relatively small security kernel together
with a trusted computing base (TCB) could completely encapsulate the mediation of
all security issues, so that nothing operating outside of the TCB and the kernel could
compromise security. Whereas this is only hypothetically possible for strict-sense mul-
tilevel security (and then only incompletely in a networked environment), most other
critical security properties cannot be so encapsulated unless the kernel and TCB are
large. This approach runs into difficulties especially in highly networked environments,
in which there can be no single TCB; the notion of a trusted computing base must
be either extended to require trustworthiness of all components, or else be able to ac-
commodate systems of potential untrustworthiness. Multilevel security and multilevel
integrity controls can help limit adverse effects to within security levels (and compart-
ments) — including malicious and accidental misuse as well as implanted Trojan horses.
In addition, Paul Karger [150] shows how discretionary access controls can further limit
the potential damage of Trojan horses.

One of our most important considerations throughout this report is that the application
functionality is fundamental, not just the operating systems kernels and trustworthy
extensions. One of the primary failures of the security kernel movement in the 1980s
was that it overendowed the kernels and TCBs.

e Separation kernels. Backing off from MLS kernels, Rushby [328, 329] proposed a
much simpler separation kernel (also called an isolation kernel) that does nothing more
than provide domain separation on which resource managers can be built that effectively
isolate different users and different uses, and upon which application-layer software
can be built. Such a simple architectural structure works very nicely for centralized
and nonnetworked applications with elementary isolation requirements. Although in
itself it does not support networked systems, the concept of a separation kernel can
be extended by having resource managers that work across different system platforms
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and that virtualize the networking functionality. However, the resource managers must
themselves be trustworthy with respect to the networking, as in the case of MLS kernels
and TCBs.

Isolation mechanisms, such as firewalls and trustworthy guards. Firewalls,
guards, and other isolation mechanisms can increase the trustworthiness of systems that
they encapsulate or mediate between, by partitioning systems and networks in such a
way that some limited interactions can still be permitted under carefully controlled
circumstances. Section 1.2 notes that a basic requirement in mediating between regions
of potentially unequal trustworthiness is to ensure that sensitive information does not
leak out and that Trojan horses and other harmful effects do not sneak in. Extending
that to survivability, the isolation mechanisms must ensure that actions in one region
cannot compromise the survivability of another region across the isolation boundary.
(An early example of a guard is given by [308]). However, protecting against denials
of service aimed at the isolation mechanisms themselves is a fundamental survivability
requirement.

Read-only bootstraps and backups. Considerable survivability can be achieved if
systems are booted or rebooted from nonalterable sources such as ROM or authenti-
cated CDs. This provides an alternative to cryptographic integrity checks that detect
unexpected system alterations. There is also a role for once-writable memory media,
for audit trails and logs, and for backups that can permit rapid recovery (as in the
Plan-9 directory structure, which allows virtual access to a directory structure as of any
specified time). (See [349] for a cryptographic alternative.)

Multilevel-security and multilevel-integrity TCBs. MLS and MLI (See Sec-
tion 1.2.7) each force structure on the resulting systems and networks, particularly if
any real assurance is desired (as in TCSEC B3 systems). For example, the design of a
general-purpose MLS system demands the hierarchical layering of the system and the
complete encapsulation of its security kernel and TCB (to prevent compromises from
outside). It also requires strict separation of domains across MLS boundaries. The use
of an MLS system requires explicit separation of roles and duties.

Multilevel survivability TCBs (generalized MLX). The MLX concept defined in
Section 1.2.8 with respect to generalized dependence appears to be a powerful potential
structural aid in designing and configuring systems and networks with highly critical
survivability requirements. As noted there, the use of generalized dependence rather
than the strict depends upon relation avoids some of the classical problems associated
with the strict partial orderings inherent in MLI. It also encourages the development of
trustworthy mechanisms that are implemented out of less trustworthy components, as
illustrated by various examples given in Section 1.2.5. This concept is pursued further
in Section 7.6.2.

Selective-trustworthiness architectures. One approach to establishing highly sur-
vivable systems and networks involves architectures in which subsystems (e.g., servers
and end-user platforms) are stripped of not only their unneeded functionality but also
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the corresponding undesirable vulnerabilities that the superfluous functionality entails.
This can in some cases be accomplished with off-the-shelf proprietary systems, but may
be achieved more effectively with open-box systems in which the unnecessary function-
ality can be more easily removed, and the faulty functionality replaced — resulting in
special-purpose components specifically adapted to their intended uses.

Selective-trustworthiness MLS architectures. One example of a thin-client ar-
chitecture is of particular importance here with respect to needs for multilevel-secure
and multilevel-survivable systems. Such an approach entails building multilevel-secure
systems and networks largely out of single-level client systems (for example, off-the-shelf
client systems). In such an architecture, multiple single-level (MSL) end-user systems
able to access trustworthy servers can provide multilevel security and multilevel sur-
vivability. This notion has been explored by others, in particular the architectural
approach described previously by Proctor and Neumann [310] at SRI, based in part on
an earlier Newcastle Connection Distributed Secure System architecture of Rushby and
Randell [333] at Newcastle that avoids some of the problems associated with monolithic
multilevel-security kernels and TCBs. This approach is broadened in this chapter.

An alternative approach to a portion of the ML problem is described by Kang, Froscher,
and Moskowitz [148] at the Naval Research Laboratory, and is also considered. The NRL
work aims at what is in effect a highly distributed MLS TCB incorporating a variety
of efforts to integrate MSL systems, including a one-way-flow architecture (e.g., [85], a
Pump [149] and SINTRA on the server side, and two COTS-based switched workstations
on the client side, allowing them to operate at different levels of multilevel security).
One of the clients is the Starlight Interactive Link[14], developed by the Australian
DSTO. The other is the COSPO (Community Open Source Program Office) Switched
Workstation, developed by MITRE, and approved for use between Unclassified and
Top Secret, levels of classification. The latter scheme makes extensive use of integrity
checks and authentication, particularly across MLS boundaries. However, neither the
NRL work nor Starlight addresses the integrity problems that accompany upward flow
from a lower to a higher MLS level — the MLS-only view allows rampant acquisition of
Trojan horses and other pest programs. The NRL effort is aimed primarily at allowing
the facile reading of lower-level information, flowing only from the server to the client,
and does not represent a full MLS environment.

Thin-client end-user architectures. One of the most promising architectural con-
cepts for the future involves a selective-trustworthiness architecture that represents the
antithesis of monolithic user operating systems (the largest at the moment seems to
be Windows 2000), namely, end-user operating systems that are stripped of unneeded
functionality, minimal in size, and tailored precisely to the needs of their users. In such
a concept, there is simply less software to fail and less software to be compromised.
The challenge then is to allow trustworthy systems and networks to be developed or
configured without having to trust constituent components that would normally have to
be trustworthy under conventional architectures, and to be able to rely on highly trust-
worthy servers of various special-purpose kinds — each of which does not need to have a
fully-fledged bloatware operating system. Examples of generalized dependence in which
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this might be possible are given in Section 1.2.5. The Oracle Network Computer is an
example of what may become commonplace in the future, a bare-bones user operating
system that allows access to network file servers and Web functionality, perhaps under
certain enforceable restrictions such as those of the Java Virtual Machine. If such local
operating systems have open-box software — ideally nonproprietary open-box software
(Section 5.10) — that has been carefully vetted to ensure that it satisfies its necessary
requirements, many of the characteristic vulnerabilities enumerated in this report can
be made to disappear or to become controllable at the end-user systems. In combination
with wireless communications, the thin-client user platforms have essentially unlimited
potential. The Proctor-Neumann architectures are an example of a thin-client MLS
architecture in which MLS is attainable with no end-user MLS user systems and no
resulting end-user covert channels.

Explicitly compensating system structures. The Newcastle Recovery Block mech-
anism [17, 18, 134] represents a rather different approach to system structuring, in
which alternative programs are automatically invoked in a systematic way whenever
the primary programs do not dynamically satisfy their run-time requirements. In that
approach, alternatives can be anticipated naturally within the overall system structure
to accommodate arbitrary failures or attacks, resulting in acceptable overall system be-
havior — for example, fail-safe, fail-soft, fail-hard, fail-secure, fail-unsecure, fail-with-
minimal-availability, or in the context of our present goals, fail-survivable, with whatever
definition of degraded survivability may be acceptable under the given circumstances.

Minimum essential information infrastructures. The concept of a minimum es-
sential information infrastructure (MEIL, [16]) has been proposed in the critical infras-
tructures community to ensure that some essential functionality would continue to exist
despite a reasonable range of survivability threats — attacks, outages, failures, environ-
mental disturbances, and so on. Unfortunately, there is considerable debate over the
definitions of minimal and essential — as well as recognition of the problems inherent in
trying to focus on a single universal MEIIL. One of the most compelling approaches to the
survivability of critical control and communications involves out-of-band controls that
are not so vulnerable as the normal functionality. However, unless denial-of-service
attacks can be prevented, this seeming benefit may be negated. Because of widely
varying requirements (especially when survivability is introduced), it is very unlikely
that a single MEII could be acceptable. However, MEII remains interesting in a vague
sense as a guiding architectural concept. Furthermore, conventionally based MEIIs are
likely to stumble seriously in the presence of subsystems with questionable (minimal?)
trustworthiness that are endowed with maximal (blind) trust. Although MEIIs and
minimum-trust architectures are not necessarily incompatible in principle, they may
be incompatible in practice — given the inherent untrustworthiness of so many of the
available commercial system components and the doubts about improvements in the
future. A discussion of some of the alternatives and problems with such an approach
is given in [345]. We do not repeat them here, because the MEII concept is more of
a buzzword than a reality, in light of the wide spectrum of requirements subtended by
survivability.
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e Classical control theory. The well-established field of control systems offers various
techniques that can be used to increase the survivability achievable in systems, including
stability of feedback. See [369] for the use of certain concepts from control theory
in developing survivable information systems. Such concepts could in principle add
significantly to the architectural structure of a survivable system.

What is highly desirable in the long run is the establishment of a family of logical system
architectures encompassing the best aspects of those approaches that are really applicable
to survivability. For example, we can conceive of systems whose architecture is based on
minimizing trustworthiness where possible, using MLS kernels and TCBs in MLS servers
where multilevel functionality is essential, using stringent domain separation where multiple
users are necessary (but perhaps not in one-user personal computers or in dedicated work-
stations — other than the layered isolation of the user from applications, applications from
the operating systems, and so on), using dynamic loading of authenticated mobile code from
trusted sites, and using explicitly compensating system structures where that approach can
have high payoffs. Such an architecture might actually achieve the desired effects of robust
MElIIs; however, the goal of achieving MEIIs is derivative; it would be the result of having
developed suitable system architectures, and is not meaningfully achievable by itself.

Multics (Section ArchStruct), PSOS (Section SoftEng), SeaView (Section GenDep), and
EMERALD (Section 5.15) are excellent examples of the role of design structure, because
developers of each of those systems took great pains to advance the state of the art in con-
structive structure and good software engineering practice. (See the Noteworthy References
cited in Appendix D.)

7.3 Architectural Components

7.3.1 Secure Operating Systems

The vast majority of commercial personal-computer operating systems (notably, those from
Microsoft) are a joke when considered with respect to network security and availability.
Some of the Unix platforms have matured to the point at which early jokes about “Unix
security” being an oxymoron are a less serious concern, although the ability to misconfigure
Unix systems is still a critical practical problem.

In conventional centralized multilevel-secure systems, it is customary to talk about the
scope of the security perimeter that encompasses the enforcement of multilevel security
— typically a multilevel-security kernel plus some (often large) amount of trusted code in
the TCB. However, such a security perimeter does not encapsulate the security concerns,
only a selected few abstracted issues relating to multilevel security. As soon as we consider
distributed systems and highly networked environments, the so-called security perimeter
typically encompasses major components and functionality (such as compilers, run-time
libraries, browsers, bytecode interpreters, servers, and untrustworthy remote sites), and in
some cases may actually be essentially unboundable — especially when it includes the entire
Internet, every telephone in the world, and electromagnetic interference from unanticipated
sources.
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In all such systems — whether centralized or distributed — with any generality of purpose,
there is no survivability perimeter in the sense that all critical survivability issues can be
circumscribed. Nevertheless, several of the structural architectures considered in Section 7.6
are capable of providing survivable systems and networks in the absence of secure operating
systems for end-user systems. However, authentication becomes a very critical issue, as does
the need for trustworthy bilateral authenticated paths.

7.3.2 Encryption and Key Management

Whoever thinks his problem can be solved using cryptography doesn’t understand

his problem and also doesn’t understand cryptography. Attributed by Roger
Needham to Butler Lampson, and attributed by Butler Lampson to Roger Need-
ham.

Strong cryptographic algorithms and their robust nonsubvertible implementations are
absolutely fundamental to the attainment of system security and survivability. Shared-key
cryptography (also called secret-key cryptography, and symmetric-key cryptography — be-
cause the same key is used for encryption and decryption) is helpful but in itself not sufficient
for achieving confidentiality, integrity, some detection of denials of service, and in prevent-
ing various forms of computer misuse. Public-key cryptography (also called asymmetric-key
cryptography, because different keys are used) is particularly well suited for key management
(key agreement, key distribution), integrity, and authentication.

Unfortunately, even the best cryptographic algorithms can often be trivially compromised
from outside, from within, and from below, in a variety of ways. Although a few widely
publicized challenges have resulted in exhaustive searches through the entire key space (DES
and RSA are two examples), many cryptographic algorithms or their implementations have
been broken without resorting to exhaustion. For example, systems that employ key-recovery
and key-escrow techniques have intrinsic trapdoors and are likely to be subject to compromise
of one form or another — by trusted insiders, but also potentially by outsiders. Hardware-
implemented cryptography is often considered to be more secure than software-implemented
cryptography, but that is not necessarily the case. (For example, see [249].)

In any event, cryptography and cryptographic keys represent an important example of
the potential concentration of high-value targets that should be minimized by the hardware-
software design wherever possible.

The Diffie-Hellman and Rivest-Shamir-Adleman (RSA) asymmetric-key algorithms are
extremely important examples of public-key algorithms. (For background, see Schneier’s
Applied Cryptography [347].)

Key management presents some very difficult problems. As one example of a desirable
approach, the Diffie-Hellman public-key technique [92] provides an elegant means for key
agreement without a shared private key ever having to be transmitted. Agreement is reached
with each party using its own private key and the other party’s public key (or in multikey
algorithms, the other parties’ public keys), based on partial information shared among the
parties from which each can construct the desired shared key for subsequent symmetric-key
communications.
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Only through careful and comprehensive study of vulnerabilities such as those noted in
Section 4.1 (e.g., see [6, 7, 15, 84, 158, 347]) is it possible to develop algorithms, protocols,
and implementations that are significantly less vulnerable to attack and misuse. Perhaps
here more than in any other area of security, the ultimate truth is that there are no easy
answers when it comes to the nonsubvertibility of cryptographic applications. (See [348] for
an extensive debunking of the myth that cryptography is in itself a panacea.)

In general, there are significant needs for end-to-end encryption between cooperating
entities. However, there may also be needs for additional link encryption among internal
network nodes to permit proper handling and monitoring of network traffic headers while
protecting that information in transit.

A broad range of standard specifications for public-key cryptography [137] is currently
being defined under IEEE auspices. It encompasses public-key cryptography that depends
on discrete logarithms, elliptic curves, and integer factorization. In its present advanced
draft form, it already appears to be an extraordinarily useful document, and could go a long
way toward unifying the cryptographic product marketplace.

The future of cryptographic applications is always a little uncertain. Algorithms for
factoring large prime products and tricks for computing discrete logarithms may emerge.
Digital signatures may be compromisable before their intended expiration date. The risks
must be clearly recognized, with systems and applications designed accordingly.

7.3.3 Authentication Subsystems

One of the most important subsystems that is not easily attainable today in commercially
available systems involves a set of highly survivable trustworthy distributed authentication
mechanisms that can support a variety of authentication policies, providing nonspoofable
authentication despite the presence of potentially untrustworthy components — such as
end-user terminals and workstations, Web servers, intermediate network nodes, and possibly
flawed embeddings of cryptographic algorithms. We attempt to characterize some Byzantine-
like authentication servers that can operate securely despite such uncertainties, and examine
some of the more realistic variants. Thus, there must be multiple authentication servers for
higher availability, internal redundancy and cross-checking for reliability, and extensive use
of cryptography for confidentiality, integrity, and nonspoofability. An important proposal
for a public-key certificate-based Simple Distributed Security Infrastructure (SDSI) is given
by Rivest and Lampson [321] along with a Secure Public Key Infrastructure (SPKI) [98].
See also Abadi’s formalization of SDST’s linked local name spaces [1]. There is a long history
of work on systemic authentication, going back to Needham and Schroeder [238] beginning
in 1978 (with discovery of flaws, fixes, and other advances since then [184, 220]), MIT’s
Kerberos [39, 219, 239, 364] beginning around 1987, and the Digital Distributed System
Security Architecture (DDSSA) [110, 165] around 1990. SDSI and SPKI are an outgrowth
of that particular chain of intellectual history from the research community. Somewhat
independent work stems from the European work on the SESAME project [276].
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7.3.4 Trusted Paths and Resource Integrity

An absolutely critical weak link that must be overcome is the absence of an adequate trusted
path from the user to the various systems being used, particularly in personal computers but
also in workstations. Recent work at the University of Pennsylvania by Arbaugh et al. [19]
based on their earlier work on the AEGIS Secure Bootstrap [20] presents an approach that
enforces a static integrity property on the firmware and a combination of induction, digital
signatures, and modifications to the control transitions from certain major modules such
as call and jump instructions. This approach is called Chaining Layered Integrity Checks
(CLIC). (See also related work on trustworthy automated recovery [21], which shares many
of the same problems with the trusted path.)

The lack of an adequate trusted path in the reverse direction, from systems to users, also
represents a weak link in many systems. User authentication is intended to ensure that a
particular user is authentic, but does not guarantee the integrity of the path.

Closely related to, and in some sense a generalization of, the trusted-path problem is
the need for assurance that any resource (data, source code, object code, firmware, and
hardware) has not been tampered with or otherwise altered. This problem exists whether
we are concerned with firmware in local systems, sensitive (that is, survivability-, security-, or
reliability-relevant) components of operating systems, middleware, application software, and
— very critically in networked Web environments — applets or other executables that come
from external sources. This resource-assurance problem is also very important in backup
and retrieval, and in reconfiguration. Essentially any out-of-band change to the system or
network state is vulnerable to compromise. Workable approaches may use a combination
of digital signatures, cryptographic integrity protection, dedicated tamperproof hardware
(particularly for cryptographic functions), proof-carrying code, and other forms of dynamic
code checking.

7.3.5 File Servers

Given appropriate uses of cryptography (Section 7.3.2), systems can be designed in which file
servers need not be trustworthy with respect to confidentiality or integrity, although there
would still be reliability problems relating to guaranteed availability and security problems
relating to preventing denials of service and ensuring that the accessed file servers are au-
thentic. This is true even with multilevel security (e.g., [310]). However, given the possibility
of a file server being compromised from within or from below, it is usually desirable to ensure
that some basic trustworthiness is provided by the file servers themselves, particularly for
integrity and prevention of denials of service.

7.3.6 Name Servers

Although name servers are (rather na.i.vely) often thought not to be security critical, they
are certainly critical with respect to preventing accidental and intentional denials of service
and to achieving overall system and network survivability. Inaccessibility of system and
network name servers can have devastating effects, and organized attacks on those servers
are particularly nasty. Correctness of data is also a serious problem. Name servers can also
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be instrumental in attacks that use inferences that can be drawn from the information they
provide.

7.3.7 Wrappers

When certain functionality is not sufficiently trustworthy, it may be useful to encapsulate it
within some sort of wrapper that attempts to enhance the trustworthiness of the wrapped
component. This is another manifestation of the notion of generalized dependence considered
in Section 1.2.5, in trying to make a silk purse out of a sow’s ear. However, wrapper
technology is always likely to be susceptible to compromise from within and from below, and
if not perfectly implemented may also be subject to compromise from outside. Furthermore,
there is strong evidence that safety-critical and mission-critical systems cannot be achieved
through wrapping flawed COTS systems (for example, see [174, 390]). For further discussion
of attempts to use COTS products in critical applications, see the proceedings of the April
2000 Brussels NATO conference [229] on Commercial Off-The-Shelf Products in Defence
Applications: The Ruthless Pursuit of COTS, summarized in Section 5.10.3 of this report.

7.3.8 Network Protocols

As noted in several sections of Chapter 5, we need much better protocols — more robust,
more secure, more highly available, and so on — with dramatic improvements over existing
ones (TCP/IP v6, ftp, telnet, udp, smtp) that are soundly implemented. Robust networking
protocols must also be embedded in sound operating systems; otherwise, they are compro-
misible — from outside, from within, and from below. It is conceivable that some wrapper
technology could provide some short-term help, but given the dramatic increases in band-
width, it is clear that improved protocols are needed anyway. The needs of survivability
must be more actively recognized in ongoing IETF and other protocol efforts.

7.3.9 Network Servers

Given appropriate uses of cryptography, new network protocols or assiduous overlays on the
existing protocols, and careful implementation on relatively secure platforms, it is in principle
possible to develop network servers — routers, gateways, guards, firewalls, filters, and other
interface devices — that can be adequately trustworthy. Multilevel security requires either
extraordinarily trustworthy operating systems on which to mount the network servers, or
else multiple single-level servers (e.g., [310]). Network servers must be designed to provide
confidentiality, integrity, protection against denials of service, and fault tolerance.

7.3.10 Firewalls and Routers

Firewalls are in some sense a special case of a wrapper in which the intent is to wrap an
entire network. In that case, the firewall policy is typically to prevent sensitive things from
getting out, and to prevent bad things from getting in. Existing firewalls today tend to suffer
from being inadequately secure, attempting to enforce policies that are unsound, and being
operationally misconfigured. However, in principle, a firewall that is well designed and well
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configured and whose policies are well conceived can in fact be highly beneficial. The best of
the bunch today is probably the Secure Computing Corporation Sidewinder, which permits
strong typing to be included in the firewall security policy.

Unfortunately, today’s firewalls and routers are seriously vulnerable to denial-of-service
attacks. Consequently, it is clear that any sensible architecture must address their surviv-
ability against all the likely threats. In principle, firewalls should be able to seal off internal
networks from outside attackers. In practice, firewalls are porous. In practice, firewalls
are often configured to allow potentially devastating e-mail to enter and executable Web
content to be requested (for example, Microsoft Office attachments, Word Macro viruses,
ActiveX, Java, JavaScript, and PostScript). In practice, internal systems depend on outside
functionality. In practice, denials of service against the outside routers are problematic.
Furthermore, given the porous nature of firewalls, inside routers are also vulnerable. This is
a case in which practice does not make perfect.

Ideally, serious peer-to-peer authentication and both end-to-end and link encryption
throughout might be helpful in reducing some of the primary risks of denial-of-service at-
tacks. In practice, no one seems willing to pay the ensuing performance penalties.

The only sane short-term solution seems to be to seal off internal networks from the
Internet via stringent firewall policies that block all threatening incoming traffic that might
affect the internal hosts and routers. In the long term, new architectures and network
protocols are urgently needed.

7.3.11 Monitoring

Section 5.15 suggests the need for real-time analysis of system and network behavior and
appropriate timely responses. As one illustrative example of how this might be achieved,
we believe that our existing EMERALD (Event Monitoring Enabling Responses to Anoma-
lous Live Disturbances) environment [182, 266, 304, 305] can be readily generalized to ad-
dress detection, analysis, and response with respect to significant departures from expected
survivability-relevant characteristics, including reliability, fault tolerance, and availability in
addition to the current emphasis on security. The primary EMERALD statistical component
recognizes anomalous departures from expected normal behavior, whereas the EMERALD
signature-based component is rule based and recognizes the presence of potential exploita-
tions of known or suspected vulnerabilities. In addition, a new hybrid Bayesian component
takes on some of the advantages of both. The EMERALD resolver passes the results of
the analytic engines on to a response coordinator (under development) and to higher-layer
instances of EMERALD running with greater scope of awareness. Work is just beginning on
a response coordinator that will provide specific real-time advice for defensive actions and
other remediation. With only slight extensions, a generalized EMERALD could also mediate
conflicts that might arise among the different subtended survivability requirements.
EMERALD is at present oriented primarily toward detection, analysis, and response re-
lated specifically to security misuse of computer networks. Its basic architecture observes
good software engineering practice, abstraction, and internal interoperability, and is natu-
rally well suited to this generalization effort — which we believe will fill a major gap in
attaining flexible system architectures for survivability. EMERALD is also participating in
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the Common Intrusion Detection Framework (CIDF) effort, which will enable considerable
interoperability among different analysis systems and reusability of individual components
in other environments. In addition to security-related applications, we are contemplating
integrating EMERALD with a classical network management facility, which would provide
real-time information relating to configuration management, performance management, fault
management, security management, and accounting management.

We refer to EMERALD here primarily to illustrate the potential applicability of real-
time monitoring and analysis in the maintenance of survivable systems. EMERALD has the
oldest ancestry and the greatest generality of approach (following its predecessors IDES and
NIDES). (See http://www.csl.sri.com/intrusion.html for extensive background on our work
in this area.) It has also had considerable emphasis devoted to its software engineering. Of
particular relevance here is a 1999 paper entitled Ezperience with EMERALD to Date [266]
(http://www.csl.sri.com/neumann/det99.html and
(http://www.csl.sri.com/neumann/det99.ps.

The requirements for monitoring must also be considered carefully, as was done in the 1985
document [89] that established the security requirements for IDES implementations. Among
security needs, such a system must be able to establish a strong resistance to attack (including
spoofing and denials of service) and must protect the sensitivity of the audit data and
derived information. Other requirements include generality of approach and applicability to
new domains, scalability, flexibility, adaptability, reusability of components, interoperability
with other systems, and the ability to operate at differing levels of abstraction of audit data
and results. See [266] for a discussion of the importance of good software-engineering practice
in the development of monitoring and analysis systems.

7.3.12 Architectural Challenges

With reference to the systemic inadequacies outlined in Chapter 4, Table 7.1 summarizes
some of the major hurdles that must be addressed for each component of the previous
subsections. The table considers the integrity, confidentiality, availability, and reliability of
various functional entities, as illustrative of the challenges. It suggests that we still have a
long way to go.

In light of the extensive set of limitations in the present technology exhibited in Table 7.1
(and the table gives only a sampling), we reiterate that survivability and its subtended
requirements of security and reliability are fundamentally weak-link problems. The table
very simply conveys the message that weak links abound. Although we tend to seek defense
in depth, we seem to achieve only weakness in depth. The real challenge is to overcome the
limitations suggested by Table 7.1.

7.3.13 Operational Challenges

Survivability clearly depends on many people during the development cycle. However, one
of the largest collection of weak links and vulnerabilities emerges only during the operational
phase, where survivability depends on operators, administrators, and users. As noted above,
administration of cryptography presents enormous risks. We remind our readers once again
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Table 7.1: Typical Architectural Limitations
| Functionality || Integrity Confidentiality | Availability Reliability
Application Inability to Inability to Inability to Inability to
software rely on lower rely on lower rely on lower rely on lower

layers; lack of

layers; lack of

layers; lack of

layers; lack of

correctness correctness correctness correctness
User platforms, Weak security, Weak security, Many crashes, HW/SW
OSs, middleware, || especially when especially when file errors, reliability
browsers, etc. networked; networked upgrade woes often poor

OS spoofable

Networking Flawed designs Flawed designs Weak protocols, | Weak protocols,
and protocols and code and code code bugs code bugs
Cryptography Poor embedding, | Poor embedding, | Mass market Subject to bit
(for integrity, compromise from | key exposures, hindered by errors, key
authentication, within /below; bypasses; government, unavailability,
encryption) gov’t policies gov’t policies crypto policies synch problems
Authentication Reliance on Reliance on An outage can Inconsistency
subsystems fixed reusable fixed reusable shut down all among multiple
passwords passwords dependent users | authenticators
Trusted paths Generally Generally Denials of Generally
and resource nonexistent nonexistent service nonexistent
integrity or very weak or very weak problematic or very weak
Servers (file, Weak security; Weak security; Outages and HW/SW
ftp, http, lacking crypto, lacking crypto, service denials, reliability
e-mail) authentication authentication incompatibilities | often poor
Wrappers Compromise from | Cannot hinder Service denials Much depends
below /within, insiders On wrappers on wrapper
even outside may be easy reliability
Firewalls Compromise from | Weak policies, Service denials Nonreplication
below /within, weak security on firewalls leads to service
even outside may be easy outages
Monitoring, Bypassable, Sensitive Not robust, Algorithms
analysis, alterable, data may be subject to typically
response spoofable exposed service denials incomplete
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that although the main emphasis of this report is on architectures, the best architecture
of all may be compromisible if it does not properly address the operational aspects. The
approach of this report stresses the importance of a total-system orientation, with respect
to the entire enterprise as a system of systems, a network of networks, and views networks
as systems. This approach recognizes the critical dependence on many people, even when
the architecture is specifically designed to tolerate human foibles.

7.4 The Mobile-Code Architectural Paradigm

A significant paradigm for controlled execution involves the use of mobile code — that is,
code that can be executed independently of where it is stored.? The most common case
involves portable reusable code acquired from some particular sources (remote or local) and
executed locally. From a different perspective, it could involve local code executed elsewhere,
or remote code executed at another remote site. Ideally, mobile code should be platform
independent, and capable of running anywhere irrespective of how and from where it was
obtained. Used in connection with the principles of separation of domains and allocation of
least privilege, dynamic linking, and dynamic loading with persistent access controls, this
paradigm provides an opportunity for the secure execution of mobile code, and represents a
very promising approach for achieving ultrasurvivable systems.

Of course, you can have major integrity, confidentiality, availability, denial of service, and
general survivability risks involved in executing arbitrary code on one of your systems, or even
on other systems operating on your behalf. The existence of mobile code whose origin and
execution characteristics are typically not well known necessitates the enforcement of strict
security controls to prevent Trojan horses and other unanticipated effects. In certain cases,
it may be desirable to provide repeated reauthentication and validation, plus revocation and
cache deletion as needed. (See Section 7.4.2.) When combined with digital signatures and
proof-carrying code to ensure authenticity and provenance, dynamically linked mobile code
provides a compelling organizing principle for highly survivable systems.

In principle, properly implemented environments for executing mobile code can contribute
to survivability in various ways:

e Enable the execution of machine-independent trustworthy programs that have been
carefully analyzed. Thus, the paradigm becomes not just write-once run-anywhere
(WORA), but rather write-once, verify-once, encapsulate, and run-anywhere (WOVO-
ERA). This can greatly enhance survivability by reducing the otherwise enormous task
of verifying many different versions of the same code.

e Enable a distinction between the execution of programs on intrinsically unreliable and
unsecure sites from execution on reliable and secure sites. In the sense of multilevel
survivability, critical operations should not depend on code or execution on less trust-
worthy sites. For an MLX concept to be enforced, some measure of presumed subsystem

2Tn 1971, Neumann [244] suggested a framework in which execution could take place with the assemblage of inputs, programs,
state information, and outputs, each from a multiplicity of different sites. For example, execution could take place on various
sites, possibly in simultaneous distributed programs dynamically allocated as resources are made available, with widely scattered
data sources, and results disseminated as appropriate.
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survivability must exist from which the aggregate survivability can be inferred or de-
rived.

A highly survivable overall mobile-code architecture can be aided by a combination of
trustworthy servers, encrypted network traffic, digital signatures, proof-carrying code, and
other components and concepts discussed in Section 7.3. Three contemporary doctoral theses
provide important contributions to the establishment of such an architecture:

e The formal-methods language-centric considerations of Drew Dean [87], exploring the
type-safety of dynamic linking in Java-like environments

e The system-protection-centric work of Dan Wallach [385], considering the usefulness of
access controls in what is called a security-passing-style architecture with well-defined
semantics, which embodies some of the better attributes of capability-based systems and
is specifically oriented toward mobile code, emerging as a generalization of his earlier
work on stack inspection

e The proof-carrying code approach of George Necula [235], which for a given mobile-
code segment provides an associated proof that can be dynamically and efficiently proof
checked to verify that it corresponds with the given code segment and that the code
segment has a stronger sense of integrity than otherwise

e The SDSI/SPKI-based infrastructure for distributed Java applications of Balfanz, Dean,
and Spreitzer [25], including a logic for access control

Background on understanding code mobility rather independently of survivability and
security issues is given in a useful article by Fuggetta et al. [108] (in a special issue of the IEEE
Transactions on Software Engineering on mobility and network-aware computing). Formal
methods are also particularly relevant to mobile code, because of the critical dependence on
type safety — for example, the formalization of dynamic and static type checking for mobile
code given in [319].

An extraordinary compilation of articles on various aspects of the mobile-code paradigm
has been assembled by Giovanni Vigna, and published by Springer Verlag [381]. This book
(which contains copious references) reflects most of the potential problems with mobile code,
and suggests numerous approaches to reducing the risks. Considering the enormous potential
impact, this book is mandatory reading for anyone trying to use the mobile-code paradigm
in supposedly survivable systems. Following is a brief summary of the book.

e Part I considers theoretical foundations, and includes papers by Chess [71] on basic
issues, Riordan and Schneier [320] on key generation, Volpano and Smith [383] on con-
straints that should be placed on programming languages for mobile code, and Sander
and Tschudin [338] on the roles of cryptography in software-based approaches to secure
mobile code.

e Part II considers relevant security mechanisms. Necula and Lee [237] further elaborate
on the proof-carrying code concept, giving a prototypical design and characterizing its
implementation. Hohl [130] explores the role of code obfuscation (which makes reverse
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engineering difficult) in protecting against malicious code. Berkovits et al. [41] consider
roles of authentication: certification that a server has proper authority, allocation of
least privilege, and state appraisal to ensure integrity. Vigna [380] considers the use of
execution traces and cryptography to detect attacks against code changes, state changes,
and execution flow of mobile code.

e Part III considers some specific mobile-code systems, Gray et al. [118] in D’Agents
(formerly called Agent Tcl), Karjoth [152] in IBM’s Aglets system, and Gong and
Schemers [117] in protecting and cryptographically signing Java objects — signing,
sealing, and guarding.

e Part IV considers the secure handling of mobile code on the World Wide Web. Ouster-
hout et al. [273] describe Safe-Tcl. DePaoli et al. [86] summarize the vulnerabilities in
various so-called “secure” Web browsers.

7.4.1 Confined Execution Environments

The notion of a confined execution environment goes back at least as early as Multics. The
nested Multics rings of protection were useful for protecting the system against its applica-
tions and protecting its applications (e.g., software, data) against their users. However, the
rings are also relevant to system survivability; a problem in ring 1 could not bring down the
system-critical code in ring 0, but might crash a user process; a problem in ring 2 might
abort a user command but would not crash the user process; a problem in an outer ring
might typically signal an error return without otherwise affecting running processes.

Important subsequent research came from Michael Schroeder [351, 353] (his doctoral
thesis on domains of protection and mutual suspicion grew out of the Multics project) and
Butler Lampson [166], with later work by Paul Karger [150] on preventing Trojan horses
in a conventional access environment (that is, not multilevel secure). Ideally, it should be
possible to control execution in such a way that nothing adverse can possibly happen. In
practice, of course, the challenges are much more difficult.

The Java Virtual Machine (JVM) is an example of an execution environment designed
to encapsulate the execution of code that can be dynamically obtained and loaded from
arbitrary sources, subject to suitable security controls. Together with the Java Development
Kit (JDK) [114, 116], JVM takes a significant step toward limiting bad effects that can take
place in execution of an applet obtained from a potentially untrustworthy site. This is an
example of a controlled execution domain whose intent is to radically limit what can and
cannot be done, irrespective of the source of the applet. Systems designed to support secure
and reliable execution of trustworthy mobile code can have an inherent potential stability.
However, JVM is not yet a total solution, in that it is defined only in terms of single-user
systems; it does not provide protection of one user from another simultaneous user.

The specific execution environments provided by Java, the Java Virtual Machine, and
the Java bytecode have some serious potential security problems, largely attributable to the
enormity of the code base and the fact that a very large portion of that code must be con-
sidered to be within the effective trusted computing base — which to a first approximation
includes most of the run-time support, the bytecode verifier, the local operating system, the
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browser software, the servers from which code is obtained, and the networking software. Al-
though this enormous security perimeter could be shrunk somewhat by techniques discussed
below, the security perimeter for JVM applet security is very large.

In concept, many problems can be made worse by the presence of mobile code in hetero-
geneous networked systems. However, a well-engineered and properly encapsulated virtual
machine environment has the potential of overcoming many of the risks that might otherwise
arise in the use of arbitrary programming languages and the execution of arbitrary code. We
believe that the mobile-code paradigm has enormous potential with respect to survivability
(and the potential to withstand forced system crashes, loss of security, accidental outages,
and so on), because of the roles it can play in inducing a survivable architectural structure.
But that in itself forces us to think about the problems it raises.

There is of course a conflict between the desire to provide extensive functionality and the
need to constrain or confine the functionality to make it secure — in order to help the overall
computer-communication environment be survivable under attacks.

Of particular relevance here are the analyses of Drew Dean [87] and Dan Wallach [385]
of the Java Security Manager (JSM), which is intended to be a security reference monitor
that mediates all security-relevant accesses. A reference monitor is supposed to have three
fundamental properties: (1) it is always invoked (nonbypassability), (2) it is tamperproof,
and (3) it is small enough to be thoroughly analyzed (verifiability). Unfortunately,

1. The JSM is not always invoked. Programmers must remember to call it. If they do not,
the default is that access is granted.

2. The JSM is not tamperproof. The type system can be compromised, which in turn can
undermine the JSM security.

3. The JSM has no formal basis, and its complexity led to flaws in security policies em-
bedded in JDK 1.0 and Netscape Navigator 2.0’s SecurityManager.

In addition, both Dean and Wallach note that the Java language itself and its imple-
mentations do not have any auditing facility, and thus completely fail to satisfy the TCSEC
accountability and auditing requirements.

7.4.2 Revocation and Object Currency

One of the problems associated with the mobile-code paradigm is that it is a pull mode rather
than a push mode of operation. It could be advantageous to have subsequent improvements
automatically downloaded, although that also creates potential integrity problems. Further-
more, there are cases in which it may be desirable or even necessary to revoke instantaneously
all accesses to existing copies of a particular version of a program or data. However, existing
browsers generally prefer locally cached versions to newer versions. The instantaneous revo-
cation problem was investigated in the 1970s in the context of capability-based architectures
(e.g., [100, 102, 113, 147, 151, 260]), beginning with David Redell’s thesis [316, 317].

Under Redell’s scheme, revocable access requires an extra level of indirection through
a designated master capability, so that revocation of all copies of a given object could
be effected simply by disabling the given master capability. (We could also contemplate

122



a distributed set of equivalent capabilities that could in a practical sense be disabled si-
multaneously.) To achieve a similar effect in the context of the WOVOERA mobile-code
paradigm without undermining the performance benefits that result from caching, some sort
of compromise push-pull mechanism is needed to ensure the currency of a locally cached ob-
ject. Although instantaneous revocation seems intrinsically incompatible with local caching,
various alternatives exist. One approach would be a single currency bit that is updated peri-
odically, and checked whenever access from a cached version is attempted — forcing deletion
of the cached object through dynamic reloading whenever the currency bit has been reset.

7.4.3 Proof-Carrying Code

The basic work on proof-carrying code (Section 5.9) comes from George Necula [235]. Each
code module carries with it proofs about certain vital properties of the code. The validity
of the proofs can be readily verified by a rather simple and relatively fast proof checker. If
the proofs indeed involve critical properties, in principle any adverse alterations to the code
(malicious or otherwise) are likely to result in the proofs failing.

7.4.4 Architectures Accommodating Untrustworthy Mobile Code

The survivable execution of untrustworthy mobile code depends on the successful isola-
tion of the execution, preventing contamination, information leakage, and denials of service.
What is needed in system and network architectures involves a combination of language-
oriented virtual machines as in JVM [116], sandboxes [114, 191], differential dynamic ac-
cess controls [386], mediators, trusted paths to the end user, less-permissive bytecode veri-
fiers, cryptography [339], and whatever authentication, digitally signed code, proof-carrying
code [235, 236], and other infrastructural constraints may ensure that the risks of mobile
code can be controlled. Not surprisingly, many of these requisite mechanisms are desir-
able for most meaningfully survivable environments, but the desirability of the mobile-code
paradigm makes the potential vulnerabilities much more urgent — and indeed dramatizes
the generic problems when interpreted appropriately broadly.

7.5 The Portable-Computing Architectural Paradigm

In several previous sections of this report, we have noted the enormous potentials for wire-
less end-user computing. Particularly in combination with the thin-client user platforms
discussed in Section 7.4.4, wireless communications are already beginning to revolutionize
the computer-communication technology. However, the potential risks to integrity, confi-
dentiality, and availability are also enormous, and consequently serious architectural and
operational approaches are necessary. An aggressive combination of link encryption and
end-to-end encryption is only part of the solution. Protection against denials of service is es-
sential. Under normal operations, conventional encrypted communications may be adequate.
However, under concentrated attacks, much more must be done. The use of spread-spectrum
communications, with multiple paths and redundant bandwidth with error-correction capa-
bilities are desirable, appropriate to the perceived risks. The desirability of highly survivable
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wireless environments that can also function stand-alone in times of crisis is an important
example of the need to integrate and coordinate the requirements for security, reliability,
and performance for the systems and networks in the large when confronted with the full
range of adversities noted in this report. If the stated requirements and the ensuing system
architectures do not anticipate those needs from the outset, adequate satisfaction of the
requirements will be unattainable.

7.6 Structural Architectures

Toward our stated goal of developing and configuring highly survivable systems and networks,
a fundamental challenge is to constructively take advantage of the structuring principles
(Section 7.1) and architectural structures (Section 7.2) discussed above.

This section considers some representative types of architectures, with particular emphasis
on selective-trustworthiness architectures that inherently satisfy many of the structuring
principles. Note that the mobile-code paradigm (Section 7.4) and the multilevel-survivability
paradigm can be compatibly implementable within a single architecture — and indeed should
be, considering the rampant popularity and enormous advantages of mobile code. However,
the existence of mobile code forces us to confront problems that otherwise have lurked in
the shadows for many years.

Because multilevel systems are less closely allied with what is commercially available
today, and because our multilevel concept draws heavily on single-level components, the
single-level concept is considered first. However, realistic multilevel-secure architectures are
feasible, given a little common sense in approaching nonconventional architectures.

7.6.1 Conventional Architectures

We consider next the relatively simpler case of conventional single-level systems and net-
works. We attempt to define precisely which components of a structural architecture must
be trustworthy with respect to each of the various dimensions of trustworthiness — for
example, integrity, confidentiality, prevention of denial of service and other aspects of avail-
ability, guaranteed performance, and reliability. Table 7.2 summarizes some of the primary
architectural needs that can contribute to overall survivability, in response to the identified
limitations of Table 7.1. Throughout Table 7.2, it is evident that there is a pervasive need
for good cryptography, by which is implied strong algorithms whose implementations and
system embeddings are properly encapsulated, nonsubvertible, tamperproof, and reliable.

7.6.2 Multilevel Survivability with Minimized Trustworthiness

In considering the attainment of system-, network-, and enterprise-wide multilevel surviv-
ability (including appropriate MLS, MLI, MLA) without multilevel-secure end-user systems,
we draw heavily on past work at SRI [267, 310] and ongoing work at NRL (e.g., [148]).

The basic strategy is conceptually simple. It mirrors some of the early work on multilevel-
secure systems, with several fundamental differences:
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Table 7.2: Architectural Needs

| Functionality || Integrity | Confidentiality | Availability | Reliability
User PC/NC Run-time checks, | Access controls; Alternative Constructive
0OS, application || cryptographic authentication, sources, redundancy,
code, browsers integrity seals, trusted paths, system reliable
accountability good encryption fault tolerance | hardware
Networking Better protocols, Better protocols, More-robust More-robust
and protocols sound embeddings | sound embeddings | defensive defensive
good encryption, good encryption protocols, protocols,
tamperproofing embeddings embeddings
Cryptography Tamperproof and | Robust algorithms | Dedicated Trustworthy
(for integrity, nonsubvertible and protocols, hardware, sources,
authentication, || implementations nonsubvertible sensible U.S. superimposed
encryption) implementations crypto policy! error correction
Authentication || Spoofproofing, One-time crypto- | Alternative Distributed
subsystems replay prevention, | based tokens, fault-tolerant consistency,
(e.g., with crypo tokens, in some cases authentication | redundancy
strong crypto) tamperproofing biometrics servers in hardware
Trusted paths Trusted path to Trusted path to Dedicated Self-checking,
and resource users and servers, | users and servers, | connections, fault tolerance,
integrity integrity as in good encryption alternative dedicated
user OSs (above) trusted paths circuits
Servers (file, Superior security, | Superior security, | Mirrored Constructive
ftp, http, good encryption, good encryption, file servers, redundancy,
e-mail, etc.) authentication, authentication, robust selfchecking
better protocols, better protocols fault-tolerant protocols
tamperproofing protocols
Wrappers Spoofproofing Sensible Authentication, | Robust OSs,
and Firewalls policies trusted paths wrappers,
firewalls
Monitoring, Tamperproofing, Enforcement of Continuity of Selfchecking,
analysis, nonbypassability, | privacy concerns service, strong | fault tolerance,
response avoidance of (much sensitive connectivity, coordinated net-
overreactions data involved) self-diagnosis work management
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e The overall system architecture makes distinctions among the various dimensions of
trustworthiness noted in Section 7.6.1, with respect to integrity, confidentiality, preven-
tion of denial of service, other aspects of availability, and guaranteed performance.

e The overall system architecture attempts to minimize the extent to which the various
subsystems must be multilevel trustworthy (with respect to each specific dimension),
particularly by avoiding the need for trustworthiness in end-user systems over which
there is no control or no expectation of multilevel trustworthiness, and by concentrating
the enforcement of multilevel trustworthiness where it is absolutely essential. The basic
architecture assumes that most of the end-user systems operate at a single pair of
MLS/MLI levels at a time, and that most of the MLS enforcement is in the servers
— with possibly some trustworthy (but not MLS trustworthy) local server interface
software and possibly hardware co-processors, for example, as outboard cryptographic
engines.

e The concept of monolithic multilevel kernels and TCBs as the basic building blocks is
avoided, instead considering mostly multiple single-level systems and concentrating on
a few selected trustworthy servers and other critical components.

e Generalized dependence is explicitly accommodated, on one hand avoiding the serious
practical limitations of having to enforce strict multilevel partial orderings locally, and
on the other hand allowing for trustworthy mechanisms to mediate among potentially
less trustworthy components.

e All sensitive information and media entities (data, programs, network channels, and
other definable resources) necessary for system survivability could potentially have ap-
propriate MLX labels (incorporating vectored MLS, MLI, MLA sublabels only where
appropriate), giving all potentially critical subsystems explicit measures of trustworthi-
ness. Any subsystem or component not explicitly labeled is assumed to be minimally
trustworthy (that is, potentially, completely untrustworthy unless specific caveats are
included). Alternatively, the levels may be taken care of implicitly in the design.

Given this type of architectural structure, a relatively simple informal analysis can deter-
mine whether it is at all likely that the architecture can enforce the desired partial orderings
dynamically. In other words, are there any gross violations of MLX dependence on less trust-
worthy subsystems? If so, can generalized dependence in some way adequately overcome the
potential violations? Formal methods are not required in the basic stages of defining the
architecture, although they could be useful later on in providing implementation assurance.

Overall, we should not expect that, apart from MLS (which may be fundamental to
certain applications), there would be a rigorous enforcement of strict partial ordering among
the other attributes of MLX (namely, MLI and MLA) throughout the entire enterprise, and
rather that mechanisms invoking generalized dependence can compensate for what would
otherwise be violations of partial ordering.
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7.6.3 End-User System Components

One of our most fundamental issues concerns the extent to which trustworthy systems can be
developed despite the presence of end-user systems of varying degrees of untrustworthiness.
This issue is very important in single-level systems (Section 7.6.1), and is even more im-
portant in the context of multilevel systems with minimized trustworthiness (Section 7.6.2).
The following questions relate to end-user access to networked distributed environments that
are intended to be highly survivable:

e What if the operating system security on an end-user system is not trustworthy (in some
particular respects)? In that case, a masquerader or mistakenly trusted legitimate user
might create considerable havoc on that system. For example, it is not wise to use a
subvertible operating system for storing any cryptographic keys essential to local and
network operations. Even if the keys are stored on a smart-card or similar device, flaws
in the operating system are likely to make the cryptographic implementations subvert-
ible or to make the unencrypted information accessible. Thus, the system architecture
must explicitly assume the lack of trustworthiness, wherever that is a potential problem.

In the case of multilevel operations, it might be deemed acceptable to assume that
the user of a potentially untrustworthy end-user system could operate at a permissible
secrecy level selected by its (apparent) user — if user authentication can be done in a
nonsubvertible way that provides adequate trustworthiness, and if there is some sort of
trusted path to the desired operating system (including integrity checks to ensure that
the operating system had not been subjected to tampering). For example, a level of user
authenticity could be provided by physical enclosures and personal recognition, or by
an out-of-band biometric technique or a trusted-path cryptographic authentication with
dedicated nontamperable hardware. If that assumption is not justifiable, the particular
user of that end-user system would have to operate at an unclassified level. In any case,
it must be realized that high-end authentication such as unforgeable and nonreplayable
biometrics may still be attacked by compromises from within and below. It must also
be remembered that multilevel security does not address integrity issues (particularly
those encompassed by multilevel integrity).

e What if the authentication of users on the end-user systems is not trustworthy? Then a
masquerader can create considerable havoc from a local workstation, personal computer,
or network computer. Additional authentication becomes essential before any further
nonlocal access is permitted. Clearly, if users are allowed to have a single sign-on (that
is, no further user authentication as they move further along into networked systems),
the end-user systems and other systems along the way must be substantially more
trustworthy so that the authentication can itself be more trustworthy. However, single
sign-on is a very bad idea if operating system security along the way and end-user
authentication are not impeccable throughout. In cases in which the integrity of the
authentication is questionable, the system architecture must explicitly assume the lack
of trustworthiness.

In the case of multilevel operations, the particular user of that end-user system would
have to operate at an unclassified level, or else submit to authentication by a trusted
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multilevel authentication server before any further nonlocal access is possible. If the
local authentication is not trustworthy and the local operating system is not trustworthy,
no access to multilevel resources should be permitted.

e What if the networking software on the end-user systems is not trustworthy? Again, the
system and network architectures must explicitly assume the lack of trustworthiness.

In the case of multilevel operations, no further access should be permitted if any multi-
level security is required across the network, or if the integrity of the networked remote
entity cannot be assured, or if an entity-in-the-middle attack is possible.

e What if the encryption on the end-user systems can be bypassed or compromised? In
that case, cryptography used for encrypting stored information can be compromised,
encryption used in networking can be compromised, keys used for integrity checking
may be spoofed, and authentication keys may be co-opted.

In the case of multilevel operations, no further access should be permitted.

e What if the trusted path to the end-user systems can be compromised? In that case,
fixed passwords can be trivially captured, although one-time passwords would be of
no use (as long as they are locally generated and not concurrently reusable at other
locations).

In the case of multilevel operations, no further access should be permitted.

Thus, we are faced with essential trade-offs. If the local end-user operating systems
and their trusted paths cannot be trusted, trustworthiness must not be assumed and the
architecture must transfer trustworthiness to selected servers — where permitted. If the lo-
cal authentication cannot be trusted, trustworthiness must be transferred to authentication
servers. If the local networking software cannot be trusted, then trustworthiness must be
transferred to selected network servers. On the other hand, if certain servers are not suffi-
ciently trustworthy with respect to certain dimensions, then again trustworthiness in those
dimensions must be transferred to servers that are more trustworthy.

If multilevel security is to be enforced, a sufficiently single-level secure local end-user
system is necessary, nonbypassable local end-user authentication is necessary, multilevel-
trustworthy networking is necessary even if local operation is single level (although cryp-
tographic techniques can be used to ensure that if keys are distributed according to MLS
requirements, no adverse flows can arise), and the trusted path and local system integrity
must be noncompromisible.

Certain of the dimensions of survivability are more critical than others. For example,
system integrity is generally paramount. If system integrity can be subverted, then it is
usually easy to subvert confidentiality, availability, and reliability as well. On the other
hand, denials of service can often result (whether intentionally perpetrated or accidentally
triggered) without first subverting system integrity. Thus, it is advisable to consider each
dimension in its own terms to determine the extent of the interdependencies.

By layering the mechanisms for protection, fault tolerance, and other aspects of surviv-
ability, and invoking the notion of generalized dependence, we might hope that a sufficiently
survivable system could eventually be attained. However, access to sensitive MLS data
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should not be permitted whenever the end-user authentication cannot be guaranteed (with
reasonable certainty), and also whenever the local end-user operating system can be com-
promised. Strict dependence on less trustworthy MLI resources should be avoided in any
event.
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Chapter 8

Implementing and Configuring for
Survivability

You cannot make a silk purse out of a sow’s ear.
Another reminder of the old saying, still valid

The architectural structures analyzed in Chapter 7 can be effectively implemented, and
survivable systems can be effectively configured using some commercially available compo-
nents plus the additional subsystems characterized in Chapter 5 to fill the gaps identified in
Chapter 4. Whereas the proverbial silk purse is clearly unattainable from the sow’s ear (de-
spite a few system purveyors who would have you believe otherwise), it must be recognized
from the outset that substantive risks will remain no matter what we do, because we are
living in the real world rather than some idealized fantasy world. The challenge is to min-
imize those risks by relying on an architecture that is structurally sound, implementations
that are robust where they need to be robust, operational practice that does not undermine
the given requirements, and real-time analysis tools that can rapidly identify early threats
to survivability and respond accordingly.

8.1 Developing Survivable Systems

Finally, based on the foregoing discussion, we are ready to put the pieces together. A
somewhat simplistic summary of the desired process is as follows:

1. The mission requirements must first be comprehensively and carefully defined, ideally
as a refinement and extension of an established set of detailed generic requirements.

2. The specific mission requirements must be evaluated for completeness, self-consistency,
and accuracy, and some risk analyses done to ensure that those mission requirements
are indeed appropriate.

3. Given the specific requirements, a preliminary sketch of the desired architecture or
alternative architectures should be carried out.

130



4. The selected detailed architecture should then be fleshed out and documented suffi-
ciently to enable a top-level examination of whether the functional and performance
requirements are attainable.

5. Assuming that a review of the previous items is acceptable, a detailed plan for sys-
tem evolution should be made, and the detailed system design should be carried out
according to that plan.

6. A detailed implementation and test plan should have been developed in parallel with
the system design. The system must now be implemented and tested according to that
plan. The implementation plan should address module composability with respect to
integration, testing, and configuration management, and system evolution.

7. Considerable care must be devoted to operational considerations. The best systems
in the world may be useless unless their operation is manageable. Aspects of opera-
tional practice must be represented in the earlier stages, particularly in establishing
requirements and in carrying out system design and implementation. Good operational
practice must then be enforced during use, and whatever help can be gained during the
development cycle will be very valuable.

8.2 A Strategy for Survivable Architectures

A suitable architecture for survivable networks of survivable systems might typically be one
that encompasses those of the following desiderata deemed suitable for the given application
in the case of dedicated systems, or the full range of expected applications in the case of
systems that are more general-purpose.

e Assume an open-system approach that is capable of accommodating components of
multiple vendors, different components from any particular vendors, different hardware
platforms, multiple protocols, and different data formats.

e Observe assiduously the principles outlined in Section 7.1 and the rest of the sage advice
in Chapter 7, wherever possible. Short-sighted efforts typically discard these principles
as too expensive and too time-consuming. However, far-sighted developers understand
the importance of these principles, judiciously applied.

e Facilitate evolutionary modifications of hardware, operating systems, application soft-
ware, addition of new protocols and new implementations, and indeed total replacement
of entire subsystems wherever desirable.

e Minimize the scope of trustworthiness, with a mixture of high-integrity components such
as tightly administered trustworthy firewalls and servers on one hand, and only partially
trusted or completely untrusted entities on the other hand, with various intermediate
degrees of trustworthiness as required.

e Provide robust encryption for integrity, authentication, confidentiality throughout, wher-
ever appropriate, avoiding key-recovery and key-escrow schemes wherever possible.
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Wherever wireless communications are used, they must be highly reliable and seriously
protected for confidentiality and integrity.

Include extensive mechanisms to hinder denial-of-service attacks on hosts, servers,
routers, and other systems. Wherever wireless communications are used, alternative
paths must exist to hinder denial-of-service attacks.

Provide systemic authentication wherever necessary, avoiding reusable fixed passwords
and also avoiding single-sign-ons except within sufficiently trustworthy enclaves (if any
such enclaves can actually exist, which seems very doubtful!).

Include trusted paths wherever necessary, particularly whenever a local workstation
must be trusted, when servers must be maintained, and generally whenever critical
software must be upgraded.

Facilitate the use of demonstrably trustworthy mobile code as appropriate, and oth-
erwise constrain the presence of untrustworthy mobile code (perhaps in a properly
encapsulated sandbox or otherwise confined environment that cannot contaminate its
peers or hierarchical dependents).

Accommodate generalized dependence whenever a strict dependence cannot be ensured.

Accommodate the MLS and MLI requirements whenever essential, preferably by re-
sorting to a selective-trustworthiness MSL/MLS approach such as that of Proctor and
Neumann [310] (see Section 7.2).

Accommodate the spirit of multilevel survivability locally where it is appropriate, with-
out attempting to enforce global MLX properties (while taking advantage of generalized
dependence).

Provide extensive coverage of vulnerabilities and threats that can be prevented, and
further coverage of threats that when exploited can still be tolerated to some reasonable
extent.

Include comprehensive facilities for real-time monitoring, real-time analysis, and real-
time response that aid in the maintenance of survivability and its subtended require-
ments at various layers of abstraction, from hardware to operating systems to servers
to applications to entire networked enterprises. These facilities should be capable of de-
tecting live threats that failed, that could not be prevented, and that could be tolerated
at the moment but that might represent concerns in the future.

Detailed analysis of the candidate architecture is then needed to evaluate the appropri-

ateness of the architecture, and detailed analysis of the feasibility of its successful imple-
mentation is needed to determine whether it is worth pursuing the particular architecture
further. This is clearly an iterative process whenever the analysis determines inadequacies in
the candidate architecture. In some cases, it may be appropriate to pursue alternative can-
didate architectures or variants thereof in parallel — at least until most of those alternatives
can be discarded in favor of clear winners.
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8.3 Baseline Survivable Architectures

A suitable baseline family of architectures is now evident from the preceding text of this
report.

e Today, local end-user systems are typically not trustworthy, with respect to integrity,
availability, confidentiality, reliability, and other attributes of survivability. Thus, the
desired baseline architectures must concentrate trustworthiness where it is most needed
and where it can be most effective.

e The development, configuration, and use of thin-client end-user platforms is strongly en-
couraged. Stark subsetting of existing systems could result in much greater robustness
with requisite trustworthiness in the short term. However, in the long term, thin-client
systems should be developed with just the minimal functionality required. (Trans-
meta’s low-power inexpensive chip may be a step in that direction, although the initial
offering apparently includes a full-blown Linux operating system.) Today’s bloated
mass-market personal-computer operating systems and accompanying middleware are
clearly inappropriate whenever trustworthiness is essential. However, it is therefore es-
sential that architectures compensate for deficient end-user components (for example,
by generalized-dependence mechanisms).

e (Critical functionality must be militantly isolated — for example, by well-managed highly
trustworthy firewalls, enforced physical separation, and carefully monitored logically
layered protection, subject to sensible and tightly enforceable policies.

e Servers, routers, and other critical infrastructural components must be significantly
more survivable and trustworthy, and in particular resilient against denial-of-service
attacks. However, there is no reason that they have to be built on fully general-purpose
operating systems, with all the vulnerabilities that entails. Thus, these critical compo-
nents need to have special-purpose operating systems, initially stark subsets of today’s
systems, and eventually systems that are generated and configured specially for their
intended applications.

e The denial-of-service problem must be addressed as an integral part of the system and
network architectures. A combination of authentication and robust handshaking on
firewalls and routers, filtering of obviously noncompliant traffic, and use of cryptography
might help to stave off certain types of attacks. To some degree, a willingness to take
a performance hit is necessary when critical requirements must be met. Although the
main-line commercial products generally are unwilling to allow that to happen, it is
necessary for increased robustness.

e The architecture must encompass the needs of dynamically configurable and rapidly
reconfigurable well-protected wireless communications and portable platforms, virtual
private networks, end-to-end encryption, link encryption where appropriate, firewalls,
and isolated intranets with carefully controlled access to more global networking includ-
ing the Internet.
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e The architecture must address a mobile-code paradigm that is suitably constrained to
prevent undesirable behavior. (See Section 7.4.)

Implementing systems that fit this kind of baseline architecture remains a huge challenge
for the future. But such a strategy is likely to be the only successful path to the future
whenever systems with critical survivability requirements are needed. The exact role that
open-box software might play remains to be determined, particularly in obtaining robust
components that otherwise do not exist today. Its potential is considerable and must be
explored in detail, supported by financial and other incentives.

Such a strongly partitioned network architecture with strict isolation and very controlled
information flow across well-defined and well-administered boundaries is absolutely essential
to any private intranets that are used for mission-critical purposes. There is nothing extraor-
dinary about military needs as far as the technology is concerned. Digital commerce shares
many of the needs for survivability, and particularly robustness, integrity, and prevention
of denials of service. Many businesses have similar needs. In the absence of easy solutions
to those needs, everyone is operating at risk. The U.S. Government needs to take a much
stronger role in identifying the critical requirements and finding ways to improve procure-
ment and incentives to ensure that those requirements be fulfilled. The first step involves
clear recognition of the critical requirements and dramatic improvements in education.

The emerging Tactical Internet is an ideal environment in which to explore the merits
of the highly principled architectural and operational approaches outlined in this report.
The Tactical Internet represents a combination of extremely critical requirements, including
real-time performance and extraordinarily flexible rapid reconfiguration, in addition to its
stringent requirements for security and reliability.
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Chapter 9

Conclusions

Learning ts not compulsory.
Neither is survival.
W. Edwards Deming

The currently existing popular commercially available computer-communication subsys-
tems are fundamentally inadequate for the development and ready configuration of systems
and networks with critical requirements for generalized survivability. Numerous good ideas
exist in the research community, but are widely ignored in commercial practice. However,
although it is theoretically possible to design dependable systems out of less-dependable
subsystems or to design more-dependable critical components, it is in practice almost im-
possible to achieve any predictable trustworthiness in the presence of the full spectrum of
threats considered here — including incorrect or incomplete requirements, flawed designs,
flaky implementations, and noncooperating physical environments offering electromagnetic
interference, earthquakes, massive power outages, and so on. Furthermore, the almost un-
avoidably critical roles of people throughout these systems and networks raise serious opera-
tional questions — especially relating to less-than-perfect individuals who may be dishonest,
malicious, incompetent, improperly trained, disinterested, or who might in any way behave
differently from how they would be expected to act in an assumed perfect world. These
and many other considerations that are naturally subsumed under our notion of general-
ized survivability make the problems addressed here extremely challenging, important, and
timely.

The challenge here is to do the best we can in the foreseeable future, and to characterize
steps that must be taken that will enable us to achieve better systems in the more distant
future. There is still a lot to learn about survivability and how to attain it dependably. We
hope that this report will be a significant step in that direction.

Unfortunately, the quest for simplicity and easy answers is pervasive, but very difficult to
combat. In this report, we attempt to address the deeper issues realistically and to inspire
much greater understanding of those issues.
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9.1 Recommendations for the Future

Our main recommendations are summarized here, recapitulating the Executive Summary.
Specific directions for research and development are discussed in Section 9.2.

e We must establish generic mission models (Section 5.1) that can be readily tailored to
specific systems, and develop processes whereby those models can be used in evaluating
the adequacy of requirements.

e We must establish prototypical requirements for survivability and its subtended proper-
ties that can be directly applied to system developments and procurements, sufficiently
detailed but not overly constraining.

e We must define families of system and network architectures that are inherently robust,
and demonstrate the implementability of those architectures.

e We must develop new network and distributed system protocols appropriate for the
development of highly survivable, secure, and reliable information infrastructures.

o We must design and implement open-system architectural components that are essential
for robust architectures but not yet readily available in the marketplace, which when
composed together can satisfy strong requirements for survivability and interoperability.

e We must establish a library of demonstrably sound procedures that enable trustworthy
systems to be built out of less trustworthy components. This is the concept of generalized
dependence, which we explore in this report.

e We must establish and consistently use sound cryptographic infrastructures for authen-
tication, certificate authorities, and confidentiality.

e We must find ways to encourage commercial system developers to increase the surviv-
ability, security, and reliability of their standard products, including encouraging them
to embrace more good research and development results.

e We must consider, as an alternative to proprietary closed-source software, the develop-
ment and use of source-available software and nonproprietary interfaces. Although this
approach does not necessarily lead to survivable systems all by itself, it has enormous
potential when combined with other techniques.

e We must provide for mechanisms for trustworthy distribution of trustworthy code —
including robust mobile code.

e We must refine and make practical the ongoing R&D efforts for monitoring, analyzing,
and responding to system and network anomalies, and generalize them from merely
intrusion-detection systems, so that they address a broad range of survivability-related
threats, including reliability problems, fault-tolerance coverage failures, and classical
network management.

e We must be able to develop systems that are more easily configured and managed
without placing excessive burdens on system administrators.
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We must pursue realistic research and development relating to practical system is-
sues such as composability, maintainability, evolvability, interoperability that are also
strongly based theoretically. See Section 9.2 for some specific directions for research
and development.

We must find ways to disseminate the concepts of this report widely, including in-
fluencing the education processes and improved training. (See Appendix A for some
suggestions.)

9.2 Research and Development Directions

Section 5.17 considers the role of research and development. This section outlines some
specific R&D directions for the future.

Define, develop, and implement a set of robust networking protocols that systematically
and comprehensively encompass the necessary requirements for survivability and its
subtended attributes. (We believe that because of the increasing inadequacy of the
existing protocols in light of massive bandwidth increases, today’s protocol must be
revisited anyway. Thus, we strongly urge taking advantage of that opportunity to
ensure that survivability is not ignored in the process of protocol modernization.)

Establish a definitive set of generic system requirements and elaborate on the process
of mapping mission requirements into appropriate specific subsets of generic require-
ments. Establish measures for determining the adequacy of those requirements and the
adequacy of subsequent implementations. Carry this process out explicitly for several
specific applications such as the Tactical Internet.

Design detailed open-system architectures for robust mobile code, and develop proto-
type implementations.

Establish a comprehensive foundation for mobile code, specifying necessary infrastruc-
tural requirements on operating systems, browsers and servers, boundary protection,
network protocols, programming languages, system composition, and other factors.

Develop subsystems and components that can be readily integrated within the open-
system architectures, such as boundary controllers, network servers, authentication
servers, and mobile-code servers and constrained execution clients.

Conduct research on specific aspects of generalized dependence, developing a general
framework for accommodating it in system design and development. This research
should address the mechanisms enumerated in Section 1.2.5. Although it should in-
clude the currently popular notion of wrappers that intend to mask flaws and overcome
attacks, it should not ignore some of the other promising mechanisms for enhancing
trustworthiness. It should also honestly address that fact that wrapper technology is
susceptible to compromise from within and from below.
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e Conduct research on predictable subsystem composition, by which the comprehensive
realistic properties of the resulting composed system can be derived. Characterize prop-
erties of interfaces such that the compositions do not cause any adverse side effects. This
work must encompass the full spectrum of survivability requirements, not just a very
narrow band as has been the case in the past. In particular, it must encompass general-
ized dependence rather than just strict dependence on at-least-as-trustworthy compo-
nents. It must also provide explicit conditions that must be satisfied by implementations
and indicate how those conditions can be verified — statically or dynamically.

e Develop tools for the stark subsetting of operating-system and middleware frameworks
that can be tailored to specific special-purpose requirements, with automated system
generation, resulting in special-purpose systems that seamlessly remove all the unneeded
functionality from the general framework and consequently starkly reduce the corre-
sponding vulnerabilities. For example, a firewall or a router should have bare-bones
operating system software that prohibits most of the high-risk uses of general-purpose
systems (Webware, telnet, anonymous ftp, e-mail with arbitrary attachments). As-
sociated tools should encompass techniques for ensuring the soundness of controlled
configuration management and dynamic reconfiguration.

e Develop interoperable systems for monitoring, analyzing, and responding to system
and network anomalies, encompassing security, reliability, and generalized survivability
threats and classical network management.

e Explore the process of dynamic system configuration compatible with the selected subset
of requirements. This should include both human-driven and autonomous reconfigu-
ration. The process of altering system configurations without adversely compromising
survivability should be at least partially automated, with a mixture of configuration-
time and run-time checks and self-diagnostic techniques to ensure that the given re-
quirements continue to be satisfied.

e Conduct research in dynamic adaptability of systems that does not compromise or
seriously diminish overall system and network survivability. Although dynamic adapt-
ability is similar in concept to dynamic reconfiguration, it has various aspects that need
to be considered in their own light, particularly those involving the stability of au-
tonomous actions in times of duress. However, research in dynamic adaptability should
be coordinated closely with the issues involved in dynamic configuration.

e Conduct research on how to improve ease of use of complex systems.

e Conduct research on how to improve system operation, including reducing the currently
critical dependence on the short supply of experienced system administrators.

e Develop and experiment with testbed environments that pursue the directions outlined
above, including robustification of open-box software, generalized dependence mecha-
nisms, dynamic reconfiguration in response to detected attacks, and so on. (See Sec-
tion 9.5.)
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9.3 Lessons Learned from Past Experience

[O]ur heads are full of general ideas that we are now trying to turn to some use, but
that we hardly ever apply rightly. This is the result of acting in direct opposition to
the natural development of the mind by obtaining general ideas first, and particular
observations last; it is putting the cart before the horse. ... The mistaken views ...
that spring from a false application of general ideas have afterwards to be corrected
by long years of experience; and it is seldom that they are wholly corrected. That
1s why so few men of learning are possessed of common sense, such as is often to
be met within people who have had no instruction at all.

Arthur Schopenhauer, Excerpted from Parerga and Paralipomena, 1851, included
in Schopenhauer Selections, edited by DeWitt H. Parker, Scribners, New York,
1928, with minor modernization of the translation by PGN.

Many lessons can been gleaned from experience with past system developments, both
successful and unsuccessful. These experiences can help us to calibrate the appropriateness
of the various principles scattered throughout this document.

The work of Henry Petroski [297, 298] (a civil engineer at Duke University) is noteworthy.
Petroski has often observed that we tend to learn very little from our successes and that we
generally can learn much more from our failures. Unfortunately, the experiences documented
extensively by Neumann [250] suggest that the same mistakes tend to be made over and over
again — particularly in computer-related systems.

Here are a few conclusions, in part tempered by watching the negative experiences in the
on-line Risks Forum, and in part from highlighting the constructive aspects of some past
system efforts. If Schopenhauer and Petroski are as fundamentally correct as it appears they
are, we must learn more from our experiences, good and bad.

e Requirements must be sufficiently correct, consistent, complete, and precisely specified,
from the very beginning of a procurement or development. Requirements must en-
compass not just the critical functional properties (such as survivability, security, and
reliability), but also operational requirements (such as interoperability, reusability, and
performance).

e The architectural fundamentals must be sound from the very beginning, and demon-
strably capable of satisfying the given requirements. The design must be thoroughly
specified. Survivability and its subtended requirements (notably security and fault tol-
erance) must be part of the overall conception rather than retrofitted after the fact.

e The implementation strategy must be realistic, and followed consistently throughout
unless major flaws are identified and corrected.

e The implementation should be demonstrably capable of satisfying its specification.

e The system architecture and the entire development cycle must anticipate the needs of
evolutionary growth, and must take significant advantage of what has been learned in
research as well as what can be learned from experience in developing operating systems,
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networks, architecture, protocols, cryptographic implementations, software engineering
tools, and other disciplines.

The following itemization of lessons learned amplifies some overall strategies for achieving
highly survivable systems and networks, but is also applicable to less critical environments.

e Identify your long-range goals up front before trying to haggle over your short-range
goals. It is often very difficult to retrofit measures that can overcome what you ignored
initially, despite the notion of generalized dependence. This is especially true of security
whenever the underlying infrastructure is not secure. It is also true of reliability and
fault tolerance. It is only somewhat less true of a decent human interface that hides all
the warts of a system, because in many cases you cannot hide the warts — they tend to
shine through no matter how hard you try. On the other hand, if the system is really
well designed (with abstraction, encapsulation, information hiding, strong typing, and
other principled properties), then you may be able to provide a human interface that
masks extraneous implementation detail. Nevertheless, complex systems in the hands
of incompetent or inadequately trained personnel (including users, operators, system
administrators, and security officers) inherently represent further risks. (The Aegis
system involved in the Vincennes shooting down the Iranian Airbus is a good example
of a bad user interface that could not overcome — and in fact exacerbated — some of
the limitations of the system itself.)

e Fred Brooks’s “Build one to throw one away” is not a good practice in general (and
Fred has more recently noted that) — although the concept has some merits if one
person has total control over both the throw-away prototype and the real-thing system,
and if time and money are not at stake. Much better is to have a well-thought-out
evolutionary strategy from the beginning, and be able to grow your prototype into
what you really wanted in the first place. With modularity in distributed systems,
well-defined interfaces, operability standards, and strong-willed management, this is a
very powerful approach. Such an evolutionary approach can even overcome the lack of
foresight in the original concept. However, the success of such an evolutionary strategy
depends on a thorough a priori understanding of the survivability requirements, and
also depends on the comprehensive adherence to those requirements throughout the
development.

e Fred Brooks’s first edition of The Mythical Man Month maintained that every program-
mer needs to understand the entire system. In the second edition [64], Brooks recants,
stating that he was wrong and Parnas was right. Parnas’s concepts ([77, 278, 277, 279,
288, 289, 280, 286, 281, 285, 282, 287], listed chronologically rather than numerically)
of decomposition, modularization, abstraction, transparency, and information hiding
indeed are very powerful, especially in structuring and designing large projects.

e Good software engineering practice may seem to be very difficult to achieve, but it is
invaluable in the long run. It is usually worth the effort if your goals are nontrivial.
For example, forget about merely trying to pretend that you are “object oriented”
by using a few object-oriented tools. Understand the deeper benefits of abstraction,
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encapsulation, polymorphism, and inheritance in terms of the system structure they
induce — and above all honor the concept of good design structure. (See the next
item.)

e The quote from Jim Horning and Brian Randell at the beginning of Chapter 7 is vital.
Furthermore, it is not enough merely to have good design structure. You must also
ensure that significant structural boundaries (as in isolation kernels, domain separation,
and calling semantics) do not get compromised by the implementation (if indeed you had
good structure in the first place) — as in the case of domain violations, buffer overflows,
unchecked parameters, and a raft of other bugs that result in blowing the integrity of
the design. Architectural structures that inherently facilitate constructive modularity,
predictable composition, evolvability, and interoperability should be cherished, because
they provide enormous long-term benefits.

e Short-term or local optimization is a popular lure that is almost always counterproduc-
tive in the long run. The alternative does not have to be trying to achieve global optima;
that is vastly too difficult. It is advantageous merely to be aware of and consider in
balance the long-term issues before leaping to short-term conclusions. The long-term
perspective often indicates that you should do things radically differently from what
the short-term perspective suggests.

The relative roles of experiential knowledge and general principles are considered in the
context of education in Appendix A.

9.4 Architectural Directions

Chapters 7 and 8 provide guidelines, principles, and architectural structures for designing
and implementing systems and networks with stringent survivability requirements. Experi-
ence tends to support the belief that highly principled and architecturally motivated designs
have a much greater likelihood of converging on systems and networks that can success-
fully meet stringent requirements, and that can evolve gracefully to accommodate changing
requirements. In particular, highly structured designs, domain separation, encapsulation,
information hiding, cleanly defined interfaces, formal models of composition and intercon-
nectivity, and many other concepts explored in this report can all have very significant
payoffs.

9.5 Testbed Activities

This report is only part of the picture with respect to what is ultimately needed. Require-
ments are of little use if they are not explicitly honored in architectures, implementation,
evolution, and operation. One important set of activities relating to the establishment of
a sound basis for survivable systems and networks involves experimentation with testbeds
that can demonstrate the feasibility of the architectures and concepts described in this re-
port. Such an effort is already under way within the Army Research Laboratory Survivable
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Systems and Networks Laboratory (SSNL), under the direction of Anthony Barnes at Fort
Monmouth. Among other things, SSNL is investigating and experimenting with features that
can enhance system and network survivability, relating to operating systems, network proto-
cols and networking software, IP security, hardware, routers and servers, and environmental
considerations. Specific directions include tactical networks, simulated tactical testing, vir-
tual private networks, and robustifying operating systems. Linux and related systems and
network architectures are highly relevant, using nonproprietary protocols and open-box soft-
ware wherever possible, and creating some new infrastructures as well. Portable computing
and mobile code are both of enormous relevance to DoD and particularly the Army. SSNL
plans on partnering with NSA, SEI, DISA, Army CECOM, and other organizations, as desir-
able. The SSNL effort and other activities of this type are urgently needed, and supporting
them is highly recommended.

9.6 Residual Vulnerabilities and Risks

Despite the best intentions on the part of the architects of systems and networks having
strong survivability requirements, many vulnerabilities are still likely to remain. Hardware
is always a potential source of system failures (and, potentially, physical attacks), either
transient or unsurmountable without physical repair. The software implementation process
is fundamentally full of risks. Operationally, knowledgeable system and network adminis-
trators are chronically in short supply, and their role in maintaining a stable environment is
absolutely critical. In addition, opportunities are rampant for malicious Trojan horses and
just plain flaky software — especially in mobile code and untrusted servers. Penetrations
from outside will always be possible in some form or another, and misuse by insiders remains
an enormous source of risks in many types of systems. Furthermore, because systems and
networks tend not to be people tolerant, users are inevitably a source of risks — no matter
how defensively the user interfaces may appear to be. These expected residual shortcom-
ings must be anticipated. Real-time analysis for misuse and anomaly detection still remains
desirable as a last resort, even in the best of systems.

9.7 Applicability to the PCCIP Recommendations

The recommendations of Section 9.2 provide a considerable sharpening of some generic rec-
ommendations of the report of the President’s Commission on Critical Infrastructure Pro-
tection [194]. It is interesting to contrast what comes out of the survivability-driven concepts
of this report with the funding areas suggested by the Commission:

1. Information assurance
2. Intrusion monitoring and detection
3. Vulnerability assessment and systems analysis

4. Risk-management decision support
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5. Protection and mitigation
6. Incident response and recovery

The recommendations of our report address many research and development aspects of
items 1, 2, 3, and 5, while at the same time focusing more broadly on survivability rather
than just security. Item 6 is also important, although somewhat peripheral to the focus
of our efforts. Because it does not create an architectural forcing function (other than the
motherhood idea that we should reduce the number of vulnerabilities that must be reported),
we simply assume that emergency response teams will exist in a more effective form than at
present.

Item 4 causes us some concern. Although risk avoidance is in essence what this report is
all about, and static risk assessment is important (see Section 5.13), the notion of decision
support tools is potentially dangerous. Many of those tools that purport to manage risks
actually encourage us to ignore certain risks rather than prevent them. However, those tools
are often based on incorrect assumptions, and frequently ignore the interactions or depen-
dencies among different requirements, components, and threat factors. Reliance on support
tools to perform risk management is very dangerous in the absence of deep understanding
of the risks, their causes, and their consequences. On the other hand, if we had that deep
understanding, we might have better systems, and the risks could actually be avoided to
a much greater extent — rather than having to be managed! Nevertheless, an interesting
potential attempt to quantify risks and to balance defending against perceived threats with
what can be considered acceptable risks is given by Salter et al. [336]. The Software Engi-
neering Institute at Carnegie-Mellon University is working on a taxonomy of risks
(http://www.sei.cmu.edu).

A general discussion of the risks of risk analysis itself can be found in a brief but incisive
contribution of Bob Charette ([250], Section 7.10, pages 255-257). For example, overesti-
mating the risks can cause unnecessary effort; underestimating the risks can cause disasters
and result in reactive panic on the part of management and affected people; estimates of
parameters are always suspect; perhaps most important, there is seldom any real quality
control on the risk assessment itself.

9.8 Future Work

Our three years of effort on this project represent only a beginning of what is likely to be
a long quest. There are many short-term measures that can be taken that would greatly
improve the ability of systems and networks to satisfy critical requirements. However, many
long-term issues remain to be addressed.

e We need to expand further on the architectural directions as well as the research and
development recommendations outlined in this report, leading to a level of detail suf-
ficient to enable specific guidance to system developers with respect to the missing or
deficient components, and to simplify considerably the challenges of implementing, con-
figuring, and operating systems and networks that can be significantly more survivable
than what is possible today.
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e We must pursue vigorously some of the most promising alternatives for the robustifica-
tion of open-box software, and establish specific strategies for implementing them.

e We must build prototype systems and use them in testbed environments aimed at
exploring the relevant practical issues.

e The recommendations of this report must be taken seriously with respect to improved
education and awareness, enabling the concepts herein to be taught in academic and
industrial mainstreams as well as within instructional programs of the Department of
Defense and the Army.

9.9 Final Comments

We have outlined many research and development concepts that are highly relevant to the
specification, design, development, and operation of highly survivable systems and networks.
The architectural directions pursued here integrate those concepts (including generalized
dependence and generalized composition) and provide a strong basis for systems that ac-
commodate mobile code, portable user platforms and robust execution platforms, minimal
critical dependence on untrustworthy components, and operational environments that are
highly reconfigurable and adaptive. However, the problems discussed herein need to be
confronted multidimensionally, both technologically and nontechnologically.

Much work remains to be done to demonstrate the practical applicability of this ap-
proach, but we believe that we have broken some new ground. Once again, we note that the
architecture and implementation considerations are vital, but that operational aspects are
also, as well as improving education and awareness. The state of the art has not improved
appreciably, and the risks have actually worsened relative to the threats, vulnerabilities, and
increased dependence on flaky technologies. Thus, the basic problems we face are becoming
ever more important.

This is not a case of Just Add Money and Stir. Pervasive understanding is needed of
the depths of the problems and the urgent needs for solutions. Although some significant
progress can be made in the short term, commitment to long-term advances is essential.

Although our ARL project has now ended, I hope that efforts can be continued in the
spirit outlined here on many of the fronts for which survivability matters most — for exam-
ple, supporting governmental operations, critical infrastructures, and digital commerce, and
enhancing human well-being.

The words of Albert Einstein again seem pithy, this time in circumscribing the rather
modest intent of the author of this report — despite the enormity of the underlying challenge:

Finally, I want to emphasize once more that what has been said here in a somewhat
categorical form does not claim to mean more than the personal opinion of a man,
which is founded upon nothing but his own personal experience, which he has
gathered as a student and as a teacher.

Albert Einstein, Qut of My Later Years, The Philosophical Library, Inc., New
York, NY, 1950, p. 37.
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That very humble statement succinctly expresses my sentiments about the evolution of
this report over the past three years.
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Appendix A: Curricula for
Survivability

It is essential that the essence of this report be moved into the educational and institutional
mainstream so that the valuable experiences of the past can be merged effectively with recent
advances in computer and network technology, and thus encourage the development of truly
survivable systems and networks in the future, and stimulate greatly increased awareness of
the issues.

A.1 Survivability-Relevant Courses

The following plan for courses that might contribute to an educational program is specifically
oriented toward a systems perspective of survivability. Two types of course programs are
identified, one on a small scale, the second on a much broader scale. However, the two
types are compatible, and the differences are not intrinsic. Relevant curriculum topics are
identified in Table A for each type.

e Type 1: Creation of one new course. The single course would focus primarily on
survivability-related issues, with specified prerequisites depending on the intended level
of the course. Suggested single-course material is identified in the table with an “S” in
the first column. Suggested appropriate prerequisite material would be selected from
the items denoted by the sequential letters “A”, “B”, “C”, “D”, “E”, based on the
availability of existing course offerings.

e Type 2: Creation of a fully integrated curriculum. A relatively self-contained course
program would integrate survivability-specific material with other parts of a normal
computer-science and computer-engineering curriculum, achieving a coordinated pro-
gram. An illustrative self-contained curriculum sequence could be configured out of
material selected from items in the table from “A” through “S”, plus the options of
possible subsequent course material denoted by “T”, “U”, “V”  “W” and possible prac-
tical projects subsumed under the designation “X” — depending on the academic level.

The level of detail and the nature of the material selected should of course be carefully
adapted to the academic level and experience of the students (e.g., college undergraduates,
university graduate students, industrial employees, reentry individuals being retrained for
new careers), and the background, training, and experience of the teaching staff. Many

147



| Phase | Topic | Sources
A Fundamentals of Programming Languages | Prerequisite (Type 1)
or integrated unit (Type 2)
B Fundamentals of Software Engineering Prerequisite (Type 1)
or integrated unit (Type 2)
(see X for possible follow-on)
C Fundamentals of System Engineering Integrated material (Type 1),
but not widely taught today
D Fundamentals of Operating Systems Prerequisite (Type 1)
or integrated unit (Type 2)
E Fundamentals of Networking Prerequisite (Type 1)
or integrated unit (Type 2)
S Introduction to survivability: concepts, Chapter 1(Type 1 or 2)
threats, risks, egregious examples
S Specific Threats Chapter 2 (Type 1 or 2)
S Survivability Requirements Chapter 3 (Type 1 or 2)
S Systemic Deficiencies Chapter 4 (Type 1 or 2)
S Systemic Approaches Chapter 5 (Type 1 or 2)
S Evaluation Criteria Chapter 6 (Type 1 or 2)
S System Architectures Chapters 7,8 (Type 1 or 2)
T Advanced topics in systems, networks, Follow-on (Type 1 or 2);
databases, architecture, system and Pursue bibliography
software engineering, etc.
U Advanced topics in survivability, Follow-on (Type 1 or 2);
security, encryption, reliability, Pursue bibliography
fault tolerance, error-correcting
codes, etc.
v Use of formal methods for critical Follow-on (Type 1 or 2);
aspects of survivability Pursue bibliography
W Management of development, quality Follow-on (Type 1 or 2),
control, risk assessment, human Pursue bibliography
factors, robust open-source, etc.
X Prototype development projects, ideally Follow-on (Type 1 or 2),
with collaborating teams, especially integrated with B sequence
robustification of open-source software

Table A: Survivability Curriculum Components
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advantages can result from integrating requirements for survivability and its subtended at-
tributes such as reliability, security, and performance, early in a jstudent’s life. However,
many of the subtleties of the system development process (e.g., team communication failures
and the pervasiveness of system vulnerabilities) and many of the idiosyncrasies of procure-
ment, configuration, and operation do not become meaningful to students until they have
gained sufficient experience.

We make a distinction in the table between familiarity with programming languages and
operating systems on one hand, and a deeper understanding of the principles thereof on the
other hand. It is not adequate that students have merely been exposed to many different
systems and languages. It is vital that they understand the fundamentals of those systems
and what is really necessary in the future. Thus, the prerequisites or integrated units shown
in the table for “A” through “E” are in the long run not necessarily the standard courses
that exist today in their respective areas, but rather courses or units of courses that stress a
grasp of the appropriate fundamentals. Nevertheless, exposure to some modern programming
languages is highly desirable.

Ideally, an academic program incorporating survivability should have elements of surviv-
ability and its subtended requirements distributed throughout a considerable portion of the
basic curriculum. In such an ideal world, those requirements would be addressed in the
existing courses designated by “A” through “E” and “T” through “X” in Table A.

In contrast, survivability is almost never addressed today, and security and reliability
are typically specialty subjects, and then only in a few universities. Similarly, software
engineering may be taught as a collection of tools, rather than as a coherent set of principles.
As a result, from a practical viewpoint, it would be very difficult to achieve a fully integrated
approach as an incremental modification to existing course structures. On the other hand,
it would be relatively easy to initially introduce a single new course addressing the items
denoted by “S” in the table, and then evolve toward the desired goal of a coherent integrated
curriculum.

Thus, our basic recommendation is to start small with the single course focusing on the
“S” items most specifically related to survivability, and then over time to encourage faculty
members to allow the concepts of survivability to osmose, pervasively working themselves
into the broader academic program — with particular emphasis on the design of operating
systems and networking, and the use of programming languages and software engineering
techniques to achieve greater survivability. In the process, the material in each course offering
may change somewhat, including the material earmarked for the single type-1 course on
survivability — some of which may tend to be distributed among certain prerequisite courses.

One of the most fruitful areas for student projects involves the robustification of open-
source software. The variety of approaches is enormous, the challenges are unlimited, and
the opportunities for successful penetration into the real world are very exciting. The best
results will find instant use on the Web. Collaborations with others can lead to continual
improvements.

At present, no obvious textbooks can contribute directly to the intended breadth of the
outlined survivability curriculum (other than perhaps this report, which in the first phase of
the project has been primarily concerned with the fundamentals rather than the details —
which are yet to follow in the second phase). However, there are various books that can be
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extremely useful in filling in some of the gaps — for example, addressing security (e.g., [300]),
Java security and secure mobile code (e.g., [200] or, when available, [201]), and software
engineering (e.g., [301]). Surprisingly, there does not seem to be an appropriately scoped
modern book on fault tolerance, although there are some significant journal articles, such
as [80] on distributed fault tolerance, and an early book on principles [18] that although out of
print is still useful. Far-sighted good principles tend to remain good principles forever, despite
changes in technology. However, the understanding and appreciation of those principles is
highly dependent on their being illustrated by concrete examples. Furthermore, technological
changes often tend to make optimization advice obsolete.

Many important articles should be mandatory reading for any students seeking a deeper
understanding, quite a few of which are cited explicitly in this report. (See the Notewor-
thy References cited in Appendix D.) However, it is clear that someone needs to write an
up-to-date textbook that could be used for the core portion of the proposed survivability
curriculum. Perhaps this report will serve as the basis for such a book. On the other hand,
books are often obsolete before they are published — which is why this report has focused
primarily on principles and their underlying motivation, as well as why it is important to
study the literature.

Unfortunately, the prevailing mentality among many younger researchers and develop-
ers is fairly troglodytic when it comes to earlier works: “If it isn’t on the Web today,
it never existed in the past.” Many extremely important works in the literature tend
to be forgotten. (One effort to resuscitate some historically significant efforts is the His-
tory of Computer Security Project, which has created CD-ROMs of seminal papers. See
http://seclab.cs.ucdavis.edu/projects/history for further information.)

As an outgrowth of the first-phase effort in our ARL project, with the shepherding of Paul
Walczak and George Syrmos at the University of Maryland, a one-semester course of Type
1 noted above was taught by Neumann at the University of Maryland in the fall semester of
1999. The course notes are available in a copyleft form on-line
(http://www.csl.sri.com/neumann/umd.html), freely available for use elsewhere. The basic
outline for the course is as follows:

Introduction and overview
Survivability-related risks

Risks continued, and Threats
Survivability requirements
Deficiencies in existing systems
Overcoming these deficiencies 1
Overcoming these deficiencies 2
Architectures for survivability 1
9. Architectures for survivability 2
10. Reliability in perspective

11. Security in perspective

12. Architectures for survivability 3
13. Implementing for survivability
14. Conclusions

XN OOt W
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In part inspired by the Maryland course and by the efforts of Paul Walczak in promoting
the phase-one report, related courses were taught by Tony Barnes at the University of Penn-
sylvania, and by Doug Birdwell and Dave Icove at the University of Tennessee Knoxville, in
the fall of 1999. Subsequently, a seminar on this subject was taught by Blaine Burnham at
Georgia Tech, in the winter of 2000.

I must add that the Maryland course notes are to some extent my own personal view of
what is important to teach, with considerable emphasis on basics, principles, and experience.
Reflecting on my view that this material does not lend itself to a cookbook course, I have
intentionally left gaps in the slide versions of some of the lectures (such as security and fault
tolerance specifics), as an incentive for any lecturer using these materials to apply his or
her own knowledge, and as an incentive for the student to dig into the literature. My own
personal experience clearly infused my Maryland lectures. For example, I included some
further material on David Huffman’s beautiful work on graphical error-correcting codes for
larger Hamming distances that is not included in the on-line slides. I would not expect
someone else to teach such relatively unknown material, although I had a fascination with
it because of its visual simplicity and my personal association with Huffman. Also, Virgil
Gligor sat in with me for the 11th class period, Security in Perspective, adding his own
very significant personal experience as well. That discussion is captured only briefly in
summary. In general, the discussion periods during class time were very productive, because
they addressed the specific concerns of the students — which are not easily captured in slides!
Overall, I cannot stress often enough how far away the survivability problems are from having
cookbook solutions.

A.2 Applicability of Remote Learning and Collaborative Teaching

Some universities and other institutions are offering or contemplating courses taught on-line
via the Internet, including a few with degree programs. There are many potential benefits, as
the multimedia technology improves with respect to audio, video, and sophisticated graphics:
teachers can reuse collaboratively prepared course materials; students can schedule their
remote studies at their own convenience, and employees can participate in selected subunits
for refreshers; society can benefit from an overall increase in literacy — and perhaps even
computer literacy. On-line education inherits many of the advantages and disadvantages of
textbooks and conventional teaching, but also introduces some challenges of its own:

e People involved in course preparation quickly discover that creating high-quality teach-
ing materials is labor intensive, and very challenging. To be successful, on-line instruc-
tion requires even more organization and forethought in creating courses than normally,
because there may be only limited interactions with students, and anticipating all pos-
sible options is difficult. Thoughtful planning and carefully debugged instructions are
essential to make the experience more fulfilling for the students. Furthermore, for many
kinds of courses, on-line materials must be updated regularly to remain timely.

e Major concerns arise regarding who owns the materials (some universities claim pro-
prietary rights to all multimedia courseware), with high likelihood that materials will
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be purloined or emasculated. Some altruism is desirable in exactly the same sense
that open-box software (see Section 5.10) has become such an important driving force.
Besides, peer review and ongoing collaborations among instructors could lead to contin-
ued improvement of public-domain course materials, particularly if done in the copyleft
manner.

e Administrators are likely to seek cost-cutting measures, such as firing qualified instruc-
tors in the common quest for easy answers, oversimplifying the content, and cutting
costs through other misguided measures.

e Loss of interactions among students and instructors is a serious potential risk, especially
if the instructor does not realize that the students are simply not getting it.

The last of these challenges can be partially countered by including some live lectures or
videoteleconferenced lectures, and requiring instructors and teaching assistants to be accessi-
ble on a regular basis, at least asynchronously via e-mail. Multicast course communications
and judicious use of Web sites may be appropriate for dealing with an entire class. However,
the reliability and security weaknesses in the information infrastructures suggest that stu-
dents will find lots of excuses such as the “Internet ate my e-mail” variant on the old “My
dog ate my homework” routine. Interstudent contacts can be aided by chat rooms, with
instructors trying to keep the discussions on target. Also, students can be required to work
in pairs or teams on projects whose success is more or less self-evident.

E-education may be better for older or more disciplined students, and for students who
do not expect to be entertained. It is useful for stressing fundamentals as well as helping
students gain real skills. But only certain types of courses are suitable for on-line offerings —
unfortunately, particularly those courses that emphasize memorization and regurgitation, or
that can be easily graded mechanically by evaluation software. Such courses are also highly
susceptible to cheating, which can be expected to occur rampantly whenever grades are the
primary goal, used as a primary determinant for jobs and promotions. Cheating tends to
penalize only the honest students. It also seriously complicates the challenge of meaningful
professional certification based primarily on academic records.

Society may find that distance learning loses many of the deeper advantages of traditional
universities — where smaller classrooms are generally more effective, and where considerable
learning typically takes place outside of classrooms. But e-education may also force radical
transformations on conventional classrooms. If we are to make the most out of the challenges,
the advice of Brynjolfsson and Hitt [65] suggests that new approaches to education will be
required, with a “painful and time consuming period of reengineering, restructuring and
organization redesign...”

There is still a lack of experience with, and lack of critical evaluation of, the benefits and
risks of such techniques. For example, does electronic education scale well to large numbers
of students in other than rote-learning settings? Can a strong support staff including in-
person teaching assistants compensate for many of the potential risks? On the whole, there
are some significant potential benefits, for certain types of courses. We hope that some
of the universities and other institutions already pursuing remote electronic education will
evaluate their progress on the basis of actual student experiences (rather than just the
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perceived benefits to the instructors), and share the results openly. Until then, we vastly
prefer in-person teaching coupled with students who are self-motivated — although there
have clearly been some strongly positive experiences with videoteleconferencing.

If electronic materials are to be used in a survivability syllabus, we recommend starting
modestly and then extending the offerings in a careful evolutionary manner.

A.3 Summary of Education and Training Needs

The combination of architectural solutions, configuration controls, evaluation tools, and
certification of static systems is by itself still inadequate. Ultimately, the demands for
meaningfully survivable systems and networks require that considerable emphasis be placed
on education and training of people at many different levels — including high-level definers
of high-level requirements, those who refine those requirements into detailed specifications,
system designers, software implementers, hardware developers, system administrators, and
especially users. The concept of keeping systems simple cannot be successful whenever
the requirements are inherently complex (as they usually are). (Once again we recall the
quotes from Albert Einstein given in Chapter 1.) Training large numbers of people to
be able to cope with enormous complexity is also not likely to be successful. Although
the mobile-code paradigm offers some hopes that education and training can be simplified,
many vulnerabilities in the underlying infrastructure require human involvement, especially
intervention in emergency situations. In short, our dictum throughout this report that
“there are no easy answers” also applies to the challenges of education and training. There
is no satisfactory substitute for people who are intelligent and experientially trained. But
there is also no satisfactory substitute for people-tolerant systems that can be survivable
despite human foibles. The design of systems and networks with stringent survivability
requirements must always anticipate the entire spectrum of improper human behavior and
other threats. We need intolerance-tolerant systems that can still survive when primary
techniques for fault tolerance and compromise resistance fail, irrespective of unexpected
human and system behavior. But above all we need people with both depth of experience
and depth of understanding who can ensure that the established principles are adhered to
throughout system development and maintained throughout system operation, maintenance,
and use.

A.4 The Purpose of Education

We conclude this appendix with yet another succinct quote from Albert Einstein, who
serendipitously summarized the primary aim of our intended efforts to bring survivability
concepts into mainstream curricula:

The development of general ability for independent thinking and judgment should
always be placed foremost, not the acquisition of special knowledge. If a person
masters the fundamentals of his subject and has learned to think and work inde-
pendently, he will surely find his way and besides will better be able to adapt himself
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to progress and changes than the person whose training principally consists in the
acquiring of detailed knowledge.

Albert Einstein, Out of My Later Years, The Philosophical Library, Inc., New
York, NY, 1950, p. 36.

The wisdom of Einstein (embodied in quotations throughout this report) and Schopen-
hauer (in Section 9.3) emphasizes what should be the deeper purpose of any education
relating to such a comprehensive subject as survivable systems and networks. Concerning
Schopenhauer’s view that experience must motivate the employment of general principles,
we must also keep in mind that folks who start out with only experience and no principles
also tend to go astray. Our own holistic view on the subject can be summarized as follows:

e Teaching is not enough; there must be experiential learning.
e Experience is not enough; there must be guiding principles.
e Principles are not enough; there must be serious understanding.

e Understanding is not enough; there must a real commitment to robustness and depend-
ability, and what it takes to achieve them.

e Teaching, experience, principles, and understanding may not be enough, but they are a
good start. They must be embedded deeply into the system development process, and
must consequently permeate system configuration, operation, maintenance, and use.

Perhaps this report in combination with other materials noted on the following page —
for example, [250] — can provide a useful starting place.
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Appendix B: Jonathan Millen’s
Research Contributions

Following is an enumeration of papers written at least in part under the present ARL con-
tract by Jon Millen. The first two represent fundamental research on understanding some of
the formalisms underlying survivability. The remaining three papers are important contri-
butions to modeling of public-key infrastructures and digital certificates.

Local Reconfiguration Policies [214]

Survivable systems are modeled abstractly as collections of services supported by any
of a set of configurations of components. Reconfiguration to restore services as a result of
component failure is viewed as a kind of “flow” analogous to information flow. The paper
applies Meadows’s theorem [203] on dataset aggregates to characterize the maximum safe flow
policy. For reconfiguration, safety means that services are preserved and that reconfiguration
rules may be stated and applied locally, with respect to just the failed components.

A system is viewed as a collection of components configured to provide a set of user ser-
vices. Electronic mail, for example, in a local-area network, requires a workstation, the cable
and associated interface devices, a gateway to the Internet service, and so on. Components
are not simply hardware devices, but functional combinations of hardware and software.

To study fault tolerance and reconfiguration, attention is focused on the fact that different
sets of components can support the same service. Then, if some components fail, they can
be replaced by others in a different configuration.

A service is characterized by the set of alternative configurations that can support it. A
service configuration assigns components to support a service. A service configuration is not
fully defined by the set of components it employs — two different configurations can use the
same set of components. (An example is the use of “I” and “V” to support Roman numerals
“IV” or “VI”.)

At any given time, a system is in some state where a set of services is being supported
simultaneously by the set of currently available components. Different subsets of these
components are configured to support the various services in a way that respects the ability
or inability of a component to be shared by more than one service.

Services are given a survivability ordering: one service is no more survivable than another
if every service set that supports the first also supports the second.
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Survivability Measure [216]

An as yet unpublished paper updating the earlier paper “Local Reconfiguration Poli-
cies” [214] (itself updating [215]) is ftp-able in PostScript form:
http://www.csl.sri.com/ millen/papers/measure.ps. It includes new work at the end of the
ARL project.

Efficient Fault-Tolerant Certificate Revocation [211]

This paper considers scalable certificate revocation in a public-key infrastructure. It in-
troduces depender graphs, a new class of graphs that support efficient and fault-tolerant
revocation. Nodes of a depender graph are participants that agree to forward revocation
information to other participants. The depender graphs are k-redundant, so that revoca-
tions are provably guaranteed to be received by all nonfailed participants even if up to k-1
participants have failed. A protocol is given for constructing k-redundant depender graphs,
with two desirable properties. First, it is load balanced, in that no participant need have
too many dependers. Second, it is localized, in that it avoids the need for any participant to
maintain the global state of the depender graph. The paper also gives a localized protocol
for restructuring the graph in the event of permanent failures.

Certificate Revocation the Responsible Way [217]

Public-key certificates are managed by a combination of the informal web of trust and the
use of servers maintained by organizations. Prompt and reliable distribution of revocation
notices is an essential ingredient for security in a public-key infrastructure. Current schemes
based on certificate revocation lists on key servers are inadequate. An approach based on
distributing revocation notices to “dependers” on each certificate, with cascading forwarding,
is suggested. Research is necessary to investigate architectural issues, particularly reliability
and response time analysis.

Reasoning about Trust and Insurance in a Public Key Infrastructure [218]

In the real world, insurance is used to mitigate financial risk to individuals in many set-
tings. Similarly, it has been suggested that insurance can be used in distributed systems, and
in particular, in authentication procedures, to mitigate individuals’ risks there. This paper
further explores the use of insurance for public-key certificates and other kinds of statements.
It also describes an application using threshold cryptography in which insured keys would
also have an auditor involved in any transaction using the key, allowing the insurer better
control over its liability. It provides a formal yet simple insurance logic that can be used to
deduce the amount of insurance associated with statements based on the insurance associ-
ated with related statements. Using the logic, it shows how trust relationships and insurance
can work together to provide confidence.
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Appendix C: DoD Attempts at
Standardization

The more you know, the less you understand.
Lao Tze, Tao Te Ching

The material in this appendix is included primarily as an illustration of the difficulties in
establishing architectural standards for systems and networks.

Several efforts have been made to provide some standardization for systems, the first three
driven by the organizations under the U.S. Department of Defense, the fourth resulting from
a nongovernmental task group that is explicitly targeted at advising the DoD.

C.1 The Joint Technical Architecture

We focus initially on the Army Joint Technical Architecture (JTA), Version 5.0 [90] and the
extent to which it is relevant to the development and configuration of systems and networks
with stringent survivability requirements. Irrespective of its possible benefits in constraining
systems, we consider the JTA to be seriously deficient, and discuss the reasons therefor here.!

C.1.1 Goals of JTA Version 5.0

The three main goals of the Army Joint Technical Architecture (JTA) are very worthy: (1)
provide a foundation for seamless interoperability among a very wide range of systems; (2)
provide guidelines and standards for system development and acquisition that can dramat-
ically reduce cost, development time, and fielding time; and (3) influence the direction of
commercial technology development and R&D investment to make it more directly applica-
ble. The intent of our present effort as described in this report is completely in line with
those three goals.

To engage in a meaningful evaluation of the JTA, we must refer to the specific definitions
of the three types of “architecture” defined therein.

o A Technical Architecture (TA, JTA5.0 Section 1.1.2.1) is the “minimal set of rules
governing the arrangement, interaction, and interdependence of the parts or elements

'We include this analysis here primarily because our earlier analysis [259] requested by the Army CECOM at the end of
1995 needs to surface openly. That analysis is symptomatic of deeper issues that are absolutely fundamental to survivability.
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whose purpose is to ensure that a conformant system satisfies a specified set of require-
ments. The TA identifies the services, interfaces, standards, and their relationships. It
provides the technical guidelines for implementation of systems upon which engineer-
ing specifications are based, common building blocks are built, and product lines are
developed.”

e An Operational Architecture (OA, JTA5.0 Section 1.1.2.2) “is a description (often graph-
ical) of the operational elements, assigned tasks, and information flows required ... It
defines the type of information, the frequency of exchange, and what tasks are supported
by these information exchanges.”

e A Systems Architecture (SA, JTA5.0 Section 1.1.2.3) is “a description, including graph-
ics [‘graphical representations’ is presumably intended], of the systems and interconnec-
tions ... . The SA defines the physical connection, location, and identification of the
key nodes, circuits, networks, ... platforms, etc., and allocates system and component
performance parameters. It is constructed to satisfy [the] Operational Architecture per
standards defined in the Technical Architecture. The SA shows how multiple systems
within a domain or an operational scenario link and interoperate, and may describe the
internal construction or operations of particular systems in the SA.”

The ellipses in these quoted definitions denote our elimination of references to the “war-
fighter” — because the scope of the JTA is explicitly intended to apply “to all systems
that produce, use, or exchange information electronically” (JTA5.0, Section 1.1.3), including
systems of other Armed Services. In the spirit of trying to use commercial systems wherever
possible, it is vital that those systems be adequate for defense purposes rather than requiring
extensively customized special-purpose systems.

The concept of the technical architecture must be understood within the overall problem
of developing, configuring, and operating compliant systems — a process that is by no means a
cookbook type of activity. By itself, the JTA is merely a set of guidelines, with no assurance
of completeness or adequacy. Many of the requisite standards are not even established
or sufficiently well defined, particularly with respect to survivability, security, reliability,
and fault tolerance. Furthermore, highly survivable systems cannot be merely composed
out of existing components, as noted in Chapter 4; the existing computer-communication
infrastructures are still fundamentally flawed with respect to their ability to address many
of the essential requirements. Consequently, our report is considered to be an essential
additional set of guidelines, techniques, and principles for the development and procurement
of highly survivable systems. We believe that our approach is generally consistent with the
intent of all three of the technical, operational, and systems architectures.

C.1.2 Analysis of JTA Version 5.0

The following recommendations are taken almost verbatim from an earlier assessment [259]
of various ATA Version 4 drafts, written by Peter Neumann and Peter Boucher of SRI’s Com-
puter Science Lab. Those recommendations still seem timely, and in many ways anticipate
our present study. We hope that our analysis may become obsolete as a result of subsequent
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improvements to the JTA that might occur during our project. Further changes to the JTA
are increasingly essential, despite the fact that there have been almost no improvements in
the JTA (apart from its renaming) in the past two years.

e We recommend that significantly greater attention be paid to a complete, realistic set
of system requirements, including not just security, but also survivability, reliability,
performance, and other desirable attributes, and that those requirements be system-
atically integrated into the entire architectural concept. Similarly, those requirements
must be integrated completely into any resulting architectures.

e We recommend that significantly greater attention be paid to generic, reusable, abstract,
logical architectures and architectural structures that can be readily implemented in
different platforms, compliant with the JTA.

e We recommend that significantly greater attention be paid to providing guidance on
how to effectively procure and develop compliant systems and networks that can demon-
strably meet critical requirements.

e We recommend that greater effort be devoted to identifying gaps in the existing stan-
dards and commercial products, with the long-term goal of inducing vendors to eliminate
or reduce those gaps. Efforts to design logical architectures and to provide practical
guidance would both help to smoke out some of the remaining gaps.

Ultimately, any system development and its operation depend on (among other things)
(1) the availability of an accurate, flexible, realistic, and essentially complete set of functional
requirements, (2) the existence of a conceptual architecture that can demonstrably satisfy
those requirements, (3) a development process that can tolerate changes to the require-
ments and architecture during development, (4) competent personnel on the Government
side, and (5) development personnel who provide a mixture of abilities including pervasive
understanding of the requirements, appropriate technical skills, diligence, conscientiousness,
responsibility, and a good practical sense regarding the development process. Without those
constituent elements, the notions of a technical architecture, a systems architecture, and an
operational architecture are of limited merit.

One of the biggest problems in the past has been that the initial requirements were
improperly and incompletely stated and that the effects of subsequent changes could not be
properly managed. This problem must be adequately addressed in the very near future.

The JTA Version 5.0 definition of a systems architecture suggests that a systems archi-
tecture is a physical implementation. That is in general a very unsound practice. A systems
architecture should never exist only as a physical implementation, and is most desirably
preceded by a conceptual logical architecture. More specifically, a physical implementation
represents a system build, not an architecture. That definition violates basic principles of
generality, abstraction, and reusability, and puts the cart before the horse. What is needed is
a true systems architecture, namely, a logical realization of the functional requirements that
can be readily converted into a physical implementation, but that does not overly constrain
the physical implementation. There is always a serious danger of trying to use software solu-
tions where hardware is essential, or of using inappropriate hardware where simple software
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approaches would suffice. A logical architecture must not be locked into irrevocable decisions
that a few years later become totally obsolete.

Open architectures are essential. We strongly recommend recognition of the need for
logical architectures in which there is considerable emphasis on servers (e.g., file servers,
network servers, and authentication servers) and in which trustworthiness can be focused
where it is most needed rather than distributed broadly. (See [267] and [310] for examples
of how this can be done. Also, see [249] for a discussion of what trustworthiness can be
accomplished if the cryptography is implemented in software instead of hardware, and some
of the pitfalls of trying to rely on inadequately trustworthy infrastructure.)

Not sufficiently evident in the suite of three types of “architectures” is the notion of
a generic, system-implementation-independent, reusable, abstract, architectural structure
that could be implemented on different platforms to satisfy possibly related but different
requirements, without prematurely constraining design decisions. Although in some sense
an intent of the JTA approach, it is not sufficiently well motivated within the framework of
the three JTA “architectures”.

C.1.3 JTA5.0 Section 6, Information Security

Chapter 6 of the JTA Version 5.0 is largely the same chapter that was rather belatedly
incorporated into the ATA Version 4 to address information security, and is relatively un-
changed despite the passage of two years — although references have been added to the more
recent DoD Goal Security Architecture (DGSA) intended for use with future systems. (See
Section C.2 for discussion of the DGSA.) Unfortunately, the JTA has not been upgraded to
adequately address its earlier deficiencies, and almost completely ignores survivability issues
and survivability-related requirements other than security. This seems seriously shortsighted.

The following comments are essentially the same as those registered in January 1996 with
respect to the drafts of ATA Version 4. It appears that only a few of our earlier comments
were actually addressed, and thus the relevant comments from [259] are repeated here —
updated to encompass survivability issues.

Much greater guidance on how to interpret these standards and protocols needs to be
included. Such guidance is absolutely essential to making the JTA approach practical.

It is still not clear how survivability policy, threats, vulnerabilities, and acceptable risks
are intended to fit into the three “architectures”. Presumably they are beyond the scope
of the JTA, and must be addressed in the operational and systems architectures. But it
seems to be impossible for the JTA to fulfill its intended purpose unless those concepts are
explicitly accounted for. The process of establishing and accommodating the policy, threats,
vulnerabilities, and acceptable risks must somehow be made explicit.

Some additional pointers to relevant standards and guidelines are nevertheless needed
here. For example, a reference to NCSC-TG-007 (“A Guide to Understanding Design Doc-
umentation in Trusted Systems,” Version-1, 2 October 1988, or any successor) might be
useful for policy. CSC-STD-003-85 (“Guidance for Applying the Trusted Computer System
Evaluation Criteria in Specific Environments” — the Yellow Book) provides useful guidance
for applying the NCSC security criteria, as does AR 380-19, Appendix B. Procedural, per-
sonnel, and physical security are also considered in AR 380-19. However, AR 380-19 is a
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bare-bones minimum, and itself is too hidebound by the TCSEC. For example, the password
policy is somewhere out of the dark ages, and reflects none of the risks of passwords passing
over an unencrypted network or otherwise vulnerable to capture, irrespective of how they are
created. Relevant COMSEC policy standards would also be relevant here. Risk standards
are mentioned only in passing, but should be referenced explicitly.

In JTA5.0 Section 6.2.1.1, the Orange Book (5200.28-STD) is mandated. (It is not even
the best thing available, but at least some of its serious flaws and shortcomings should be
recognized.) It would seem to be appropriate to mention the Yellow Book (CSC-STD-003-
85, noted above) and at least acknowledge its limitations as well. Unfortunately, this is an
example of why the mere mention of such references is inadequate — we are not dealing
with a cookbook process. Also, what about NCSC-TG-009 (Computer Security Subsystem
Interpretation)? What about the Common Criteria as an emerging standard, which when
instantiated with at least Orange-Book-equivalent requirements represents a significant im-
provement [although it still leaves much room for incompletely specified criteria|?

In JTA5.0 Section 6.2.2.1, the Fortezza material should be revisited.

In JTA5.0 Section 6.3.1.5, given the controversy and confusion relating to the Trusted
Network Interpretation, it is not clear what is mandated. In addition, the TNI Interpretation
document (NCSC-TG-011) should be mentioned.

Although it has been improved a little since the Version 4.x drafts, Table 6-1 (Protocols
and Security Standards) could still become a much more useful table. The left-hand column
still amorphously lumps together application, presentation, and session layers, transport
and network layers, and in a second grouping datalink and physical layers. The middle
column lists a few rather generic protocols. The right-hand column lists rather haphazardly a
collection of security-related standards and protocols, with no relation to the middle column,
whether the standards and protocols are actually adequate for any intended purposes (and if
so, which), and no indication of whether any meaningfully secure implementations actually
exist. (For many of these, the existing protocols and their implementations are seriously
flawed.)

It would be useful to have a separate table (updated regularly) providing some guidance
as to the state of the art, and enumerating current or anticipated implementations that are
relevant. This table does not seem to fall naturally into any of the three “architectures”, too
specific for the JTA, too general for the systems architecture, and not appropriate for the
operational architecture. The need for it suggests a new class of “architecture” documents,
perhaps somewhat akin to the “interpretation” documents within the TCSEC rainbow series,
such as the TCSEC [233], TNI [231], and TDI [232] and the corresponding interpretation
documents for the TCSEC [234] and TNI [230]. Such an interpretation document could
also include guidance on how to go from requirements (“operational architecture”) to a
generic architecture to the systems architecture, compliant with the JTA, and might also
include some guidelines on system and software engineering. A guidance document would
be extremely valuable, whether it is a part of the JTA document or otherwise.

JTAB.0 Section 6.4 is still very weak in comparison with the rest of the document. The
fact that no standards are yet mandated is not encouraging for those relying solely on the
JTA for their understanding of how to proceed.

JTAB.0 Section 6.5 is also weak. For example, much greater guidance is necessary relating
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to the security, complexity, and usefulness of user interfaces. In general, sophisticated user
interfaces are very complex, difficult to use, and full of security flaws. This entire section
has not been upgraded in the past two years, despite significant changes. The emerging
standards for personal authentication in Section 6.5.2.2 are unrealistic. Zero-knowledge
schemes are the tip of a very large iceberg for personal authentication, and everything else
relating to cryptographically based one-time token authentication schemes, biometrics, and
other approaches is lost in the shuffle by the mentioning only zero knowledge. Incidentally,
this is an area in which the implicit inclusion of the basic TCSEC [233] (DoD 5200.28-STD)
as a mandatory standard is misleading, because that document gives the distinct impression
that fixed reusable passwords are perfectly adequate! Fixed passwords are in general a
disaster waiting to happen, especially in highly distributed environments with components
of unknown trustworthiness.

C.1.4 Augmenting the Army Architecture Concept

To give some examples of what is needed to bridge the gaps among the technical architectures
of JTA Version 5.0, operational architectures, and systems architectures, several steps need
to be taken.

e The requirements process must address the full gamut of relevant requirements, includ-
ing not just security, but also overall system survivability, reliability, performance, and
other desirable attributes. In general, it can be extremely difficult to retrofit any of
these attributes into a system that was procured or specified in the absence of suffi-
cient knowledge of the full set of requirements. (However, see [78] for a contrary view.)
Thus, much greater guidance is required in facilitating the establishment of a compatible
and realizable set of requirements. The existing concept of the operational architecture
presumably must include a sufficiently complete representation of the necessary require-
ments.

e The concept of a generic, or abstract, architecture is completely missing from the out-
lined process, falling somewhere between the operational architecture (a set of require-
ments) and the systems architecture (which seems closer to a specific implementation).

In this section and in Chapter 6 on criteria, we paint a rather negative picture of the
difficulties that have arisen repeatedly in procuring, developing, operating, using, and main-
taining a wide variety of possibly unrelated systems and their networked interconnections.
(See [250] for an elaboration and analysis of some of the risks involved.) On the other hand,
the Technical Architecture document does represent a possibly useful step toward that goal
if supplemented with other approaches. It must not be seen as a magic carpet on which we
can fly into the future. We believe that the JTA and indeed the concept of the three Army
“architectures” could be much more effective if the contents of our report are taken seriously.

162



C.2 The DoD Goal Security Architecture

The DoD Goal Security Architecture (DGSA), Volume 6 of the Technical Architecture
Framework for Information Management (TAFIM) is intended to represent abstract and
generic system architectures. The DGSA and the DGSA Transition Plan for bringing the
DGSA into reality are both considered to be living documents, and therefore the reader is
encouraged to check the on-line sources for the latest version (http://www.itsi.disa.mil/).
Unfortunately, the evolution of these documents has been relatively slow.

The DGSA recognizes, among other things, (1) the importance of different security poli-
cies, (2) the reality that users and resources may have different security attributes, (3) the
essential nature of distributed processing and networking, and (4) the need for communica-
tions to take place over potentially untrustworthy networks. It may be a useful step forward,
but the proof of the pudding is in the eating and its potential utility is not yet realized.

A recent examination of the DGSA is given by Feustel and Mayfield [105], who remark that
“Perhaps the DGSA document can best be viewed as a conceptual framework for discussing a
security policy and its implementation.” However, the DGSA leaves completely open which
security policies are to be invoked. See also Lowman and Mosier [185], investigating the use
of DGSA as a possible methodology for system development — and giving two illustrative
systems so described.

According to the DGSA document, an abstract architecture grows out of the requirements;
it defines principles and fundamental concepts, and functions that satisfy those requirements.
A generic architecture adds specificity to the components and security mechanisms. A logical
architecture applies a generic architecture to a set of hypothetical requirements. Finally, a
specific architecture applies the logical architecture to real requirements, fleshes out the
design to enable implementation, and addresses specific components, interfaces, standards,
performance, and cost.

For discussion purposes, the overview of the TAFIM volumes gives this summary of the
TAFIM Volume 6: The DGSA “addresses security requirements commonly found within
DoD organizations’ missions or derived as a result of examining mission threats. Further,
the DGSA provides a general statement about a common collection of security services
and mechanisms that an information system might offer through its generic components.
The DGSA also specifies principles, concepts, functions, and services that target security
capabilities to guide system architects in developing their specific architectures. The generic
security architecture provides an initial allocation of security services and functions and
begins to define the types of components and security mechanisms that are available to
implement security services. In addition, examples are provided of how to use the DGSA in
developing mission-level technical architectures.”

Although security policy is left unspecified in the DGSA, the requirements are focused
on security and do not address other important aspects of survivability. In principle, that
should not be an obstacle if the DGSA is sufficiently general to encompass survivability
requirements as well. The extent to which this will be possible remains to be seen. In any
case, in Chapter 7 we address architectural structures that could enhance the realization of
the generalized survivability requirements outlined in Chapter 3.
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C.3 Joint Airborne SIGINT Architecture

The Joint Airborne SIGINT Architecture (JASA) Standards Handbook [121] (JSH) includes
Chapter 7 (Security Services) and Annex 10 (Information Security and Information Systems
Security Engineering). The handbook’s Chapter 7 and Annex 10 appear to carry on the
cookbook characteristics of the JTA and DGSA; they attempt to elaborate on the JTA and
the Unified Cryptologic Architecture (UCA), which summarizes the primary cryptographic
standards. Although such an enumeration of standards is certainly necessary, it leaves much
unspecified and does not address the issue of compatibility; in particular, it leaves as an
exercise to the reader how to achieve compatibility among incompatible approaches. It also
exhibits a remarkable fascination with a secure single sign-on (SSSO) despite the reality
that many of the components along the way typically cannot be trusted. This seems to
be a monstrous oversimplification, and is dangerous because it is likely to encourage sim-
plistic solutions that are not adequately secure. The handbook does recognize the need for
SSSO approaches that can overcome the difficulties arising from multiple authentications
(e.g., having to remember different account IDs and passwords), but the risks of trusting
untrustworthy components and the serious risks of fixed passwords themselves are not ade-
quately considered. (See Section 7.3.3.4.2 of the 30 June 1998 draft of the JASA Standards
Handbook, Version 3.0.)

C.4 An Open-Systems Process for DoD

The final study report [271] of the Open Systems Task Force (OSTF) is concerned pri-
marily with the role that open systems might play in Department of Defense computer-
communication systems. The report focuses on the requirements of an open-systems process
for DoD, and characterizes the advantages of this approach. The study group consists of a
distinguished group of nongovernment people, sponsored by the Defense Science Board.

A very compelling statement is included in the Executive Summary of the OSTF: “In
fact, the Task Force argues that major DoD priorities cannot be achieved without a massive
infusion of Open System attributes through an organized Open Systems Process. Some sort
of Open Systems Process must become the DoD mindset and core competency.”

We make a distinction here between the open-system concept (which implies primarily
that heterogeneously different systems can in some sense interoperate) and the open-box
concept discussed in Section 5.10 (which additionally implies that the source code and in-
terfaces are publicly available in some meaningful sense). Many of the arguments for the
open-system approach recommended by the OSTF report are also relevant as motivation
for pursuing the intrinsically open-box approach recommended in this report. However, the
open-box approach is in our opinion much more compelling and much more far-reaching. In
any event, we strongly urge the DoD to encourage both efforts.
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Appendix D: Some Noteworthy
References

Because this report addresses some of the most fundamental limitations of commercially
available systems and what must be done to overcome those limitations, research is of critical
importance to survivability — both the incorporation of ongoing research and the conduct
of new research that can help to fill in the gaps. As a consequence, considerable emphasis is
placed on research references in the following bibliography. Although new additions to the
literature are continually emerging, we have attempted to focus on the primary references,
and particularly those that might illuminate a highly principled approach to survivability.

We cite here a few references that have been particularly influential in this project, and
that we consider to be of historical significance in understanding the importance of architec-
tural structure and its implications. Although the following subset of references is largely
concerned with security, it also provides many valuable insights with respect to achieving
survivability:

e Willis Ware’s 1970 report for the Defense Science Board [387]
e Jim Anderson’s 1972 report [13]

e Multics’s virtual memory, segmentation, paging, hierarchical access controls, symbolic
naming and aliasing for files and input-output streams, dynamic linking, domain iso-
lation, and the use of a higher-level system programming language in the 1960s [82,
83, 272], followed by a redesign and retrofit of the kernel to accommodate multilevel
security in the 1970s [352]; two papers on lessons learned [75, 76] [Incidentally, the last
remaining Multics installation was decommissioned in October 2000 — a five-processor
system used for 18 years by the Canadian Department of National Defence Maritime
Command, Halifax NS, Canada.]

e Schroeder’s domains of protection [351], Lampson’s notion of confined execution [166],
and Saltzer and Schroeder’s fundamental paper on protection [337]

e Dijkstra’s THE system, with a hierarchical locking strategy to prevent interlayer deadly
embraces [94]

e SRI's Provably Secure Operating System effort, an early object-oriented hardware-
software operating system design, tagged capabilities, and non-kernel MLS, hierar-
chical abstraction, each layer formally specified [102, 260], an effort that also led to

165



the Hierarchical Development Methodology (HDM) [323], the SPECIAL specification
language [260], and Extended HDM (EHDM) [362]

e Rushby’s isolation kernels [328]

e SeaView [88, 188, 190], for achieving a high-assurance MLS DBMS without requiring
any trustworthiness for MLS in the DBMS via balanced assurance

e The Proctor-Neumann covert-channel-free MLS/MLI architectures, with no end-user

system MLS, of considerable potential interest today given the continued absence of
COTS MLS systems [267, 310]

e A few early writings link security and reliability, such as Lampson in 1974 [167] and
Dobson and Randell in 1986 [96, 312, and Neumann beginning at least in 1969 [243,
244, 245, 262, 246] (listed chronologically).

e There is an enormous amount of useful information on the Web. We mention here just
a few useful sources.

— Lecture notes for Neumann’s Fall 1999 University of Maryland survivability course
noted in Appendix A:
http://www.csl.sri.com/neumann/umd.html

— A report on a DARPA Denial of Service Workshop:
https://ests.bbn.com/dscgi/ds.py/Get/File-1730/Report_DoS _release_V1.doc

— A report on a workshop on Insider Misuse:
http://www2.csl.sri.com /insider-misuse/

— The Global Internet Project report on the reliability and security of the Internet,
May 2000:
http://www.gip.org

— The President’s Commission on Critical Intrastructure Protection: (PCCIP)
http://www.pccip.gov

— The Critical Infrastructure Assurance Office (CIAO):
http://www.ciao.gov

— The National Infrastructure Protection Center (NIPC):
http://www.tbi.gov/nipc/

— The Federal Computer Incident Response Capability (FedCIRC):
http://www.fedcirc.gov/

— The new Carnegie-Mellon Institute for Survivable Systems (CMISS)

— The Carnegie-Mellon Computer Emergency Response Team (CERT):
http://www.cert.org

To illustrate the frequency and diversity of announced vulnerabilities, following is a list
of the CERT Advisories in the past year, with initial date of release. (Please check the
CERT Web site for the latest revisions subsequent to the date noted below.) There are also
quarterly CERT Summaries.
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x CERT Advisory CA-99.08, 16 Jul 1999:

cmsd

x CERT Advisory CA-99.09, 19 Jul 1999:

Array Services default configuration

x CERT Advisory CA-99.10, 30 Jul 1999:

Insecure Default Configuration on RaQ2 Servers

x CERT Advisory CA-99.11, 13 Sep 1999:

Four Vulnerabilities in the Common Desktop Environment
x CERT Advisory CA-99.12, 16 Sep 1999:

Buffer Overflow in amd

x CERT Advisory CA-99.13, 19 Oct 1999:

Multiple Vulnerabilities in WU-FTPD

x CERT Advisory CA-99-14, 10 Nov 1999:

Multiple Vulnerabilities in BIND

x CERT Advisory CA-99.15, 13 Dec 1999:

Buffer Overflows in SSH Daemon and RSAREF2 Library
x CERT Advisory CA-99.16, 14 Dec 1999:

Buffer Overflow in Sun Solstice AdminSuite Daemon sadmind
x CERT Advisory CA-99-17, 28 Dec 1999:
Denial-of-Service Tools

x CERT Advisory CA-2000-01, 3 Jan 2000:
Denial-of-Service Developments

x CERT Advisory CA-2000-02, 2 Feb 2000:

Malicious HTML Tags Embedded in Client Web Requests
x CERT Advisory CA-2000-03, 26 April 2000:

Continuing Compromises of DNS servers

x CERT Advisory CA-2000-04, 4 May 2000:

Love Letter Worm

x CERT Advisory CA-2000-05, 12 May 2000:

Netscape Navigator Improperly Validates SSL Sessions

x CERT Advisory CA-2000-06, 17 May 2000:

Multiple Buffer Overflows in Kerberos Authenticated Services
x CERT Advisory CA-2000-07, 24 May 2000:

Microsoft Office 2000: UA ActiveX Control Incorrectly Marked
”Safe for Scripting”

x CERT Advisory CA-2000-08, 26 May 2000:

Inconsistent Warning Messages in Netscape Navigator

x CERT Advisory CA-2000-09, 30 May 2000:

Flaw in PGP 5.0 Key Generation

x CERT Advisory CA-2000-10, 6 June 2000:

Inconsistent Warning Messages in Internet Explorer

x CERT Advisory CA-2000-11, 9 June 2000:

MIT Kerberos Vulnerable to Denial-of-Service Attacks

x CERT Advisory CA-2000-12, 19 June 2000:
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