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Abstract

This paper provides a retrospective view of the design
of SRI’s Provably Secure Operating System (PSOS), a for-
mally specified tagged-capability hierarchical system ar-
chitecture. It examines PSOS in the light of what has hap-
pened in computer system developments since 1980, and
assesses the relevance of the PSOS concepts in that light.

1 Historical Introduction

The design of the Provably Secure Operating System began
in 1973. Subsequent to interim reports in 1975 and 1977,
the final design was described in the 1980 final report [33]
— although an earlier summary of PSOS was published in
1979 [13]. This paper reconsiders that effort.

PSOS was designed as a useful general-purpose oper-
ating system with demonstrable security properties. Sev-
eral advanced requirements were quite far-reaching at the
time, such as formally provable trustworthiness of the sys-
tem and its applications, confinement of information flow,
and hierarchically layered monitoring. Every operation
uniformly requires possession of an appropriate hardware-
generated capability, which is nonforgeable and nonby-
passable. The hardware-software design of the capability-
based operating system provided an early example of hi-
erarchically layered abstraction. Strong typing was deeply
embedded in the hardware-software architecture. A rig-
orous development methodology was used to design the
system with typical operating system functionality, good
performance expectations, and well-defined security prop-
erties. Because operating systems were (and still are) large
and complex combinations of hardware and software prone
to reliability and security vulnerabilities, PSOS was de-
signed using a combination of disciplined engineering pro-
cesses in order to provide a sound basis for claiming that
the resulting system could meet its security requirements.

The approach represents an instance of good software
engineering design practice, with (for example) abstrac-

tion, modularity, encapsulation and inheritance (as in the
object-oriented paradigm), information hiding (including
internal data and state), least privilege, and simplicity of
module interfaces, specifications, and interdependencies.
These techniques helped reduce the otherwise overwhelm-
ing problem of demonstrating the security of a large and
complex system, reducing it to the problem of proving the
security of a composition of small subsystems.

The PSOS design was strongly motivated by the for-
mal approach that was developed early in the project
— namely, the Hierarchical Development Methodology
(HDM) and its formally based SPECIfication and Asser-
tion Language (SPECIAL), which was used to precisely
specify each module at each system layer, as well as in-
terlayer state mapping functions and abstract implementa-
tions that allowed an abstraction at one layer to be formally
related to lower-layer abstractions and that rigorously de-
fined the system as a composition of modules. Several il-
lustrative application layers were also formally specified.

Many of the characteristic design flaws still common in
today’s systems were essentially avoided by the methodol-
ogy and the specification language. Although some simple
illustrative proofs were carried out, it would be a incor-
rect to say that PSOS was aprovensecure operating sys-
tem. Nevertheless, the approach clearly demonstrates how
properties such as security could be formally proven — in
the sense that the specification could be formally consistent
with the requirements, the source code could be formally
consistent with the specifications, and the compiler could
be proven correct as well.

Multilevel security (MLS) was shown to be imple-
mentable at an application layer rather than in a kernel, via
provably cumulative trustworthiness, or alternatively could
be embedded in the underlying capability mechanism. Var-
ious applications were sketched out, including (among oth-
ers) a primitive but illustrative secure relational database
management system, a confined-subsystem manager, se-
cure e-mail, and a hierarchical monitoring facility.

Efficiency of execution was possible despite the hierar-
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chical layering, because of the hardware-software nature of
the capability architecture.

In addition to the two authors of this paper and [13],
the PSOS team also included Bob Boyer, Karl Levitt,
and Larry Robinson, with cameo contributions from Bob
Fabry, Bernard Mont-Reynaud, Olivier Roubine, and
Ashok Saxena.

After the design was completed in 1980, the PSOS
project continued until 1983, encompassing the Feiertag
flow analyzer for multilevel security [12] (which used the
Boyer-Moore theorem prover to detect MLS design flaws),
the initial development of Extended HDM (EHDM), and
the Goguen-Meseguer work on noninterference [15], un-
winding, and inference control [16]. However, this later
work is not discussed further here, where we concentrate
on the system architecture.

2 The PSOS Design

The PSOS hierarchical layering is summarized in Table 1,
showing 17 system layers (0 to 16), with arbitrary extend-
ability to higher layers for applications and user software.

Table 1: PSOS Design Layers
Layer PSOS Abstraction or Function
17+ applications and user code (-)
16 user request interpreter *
15 user environments and name spaces *
14 user input-output *
13 procedure records *
12 user processes*, visible input-output*
11 creation and deletion of user objects*
10 directories (*)[c11]
9 extended types (*)[c11]
8 segmentation (*)[c11]
7 paging [8]
6 system processes, input-output [12]
5 primitive input/output [6]
4 arithmetic, other basic operations *
3 clocks [6]
2 interrupts [6]
1 registers (*), addressable memory [7]
0 capabilities *

Note:
* user-visible interface

(*) partially visible interface
(-) user-restrictable as desired

[c11] creation/deletion hidden by layer 11
[i] module hidden by layer i=6,7,8, or 12

Layering. Each layer defines one or more abstract ob-
jects or services. The abstract objects of each layer are
intended to be implemented in terms of abstract and prim-
itive objects of lower layers. The capability layer (layer 0)
is the most primitive layer, with each higher layer provid-
ing additional services.

In HDM, the functionality of each of these layers is for-
mally specified in SPECIAL, as is the composition of mod-
ules – in terms of how each module at each layer is (ab-
stractly) implemented in terms of the lower layers. These
formal specifications can then be used to prove or demon-
strate desired security properties of the system. Each layer
is defined as a single module or a small set of modules,
which can straightforwardly be implemented in hardware
or software and can be verified to be consistent with its
formal specifications.

Table 2: PSOS Generic Hierarchy
Group PSOS Abstraction Layers

G application/user activities 17–...
F user abstractions 14–16
E community abstractions 10–13
D abstract object manager 9
C virtual resources 6–8
B physical resources 1–5
A capabilities 0

It is convenient to group the layers of Table 1 together
as shown in Table 2, collecting together abstractions that
satisfy similar goals. At the base of the hierarchy is the
capability mechanism, from which all other abstractions
in the system are constructed. Above the basic capability
mechanisms are all the physical resources of the system —
for example, primary and secondary storage, processors,
and input/output devices. From the physical resources are
constructed the virtual resources. These virtual resources
present a more convenient interface to the programmer
than the physical resources, permit multiplexing of the
physical resources in a manner largely invisible to the user,
and allow the system to allocate the physical resources
so as to maximize their efficient use. (Note that map-
ping asynchronous physical operations into convenient
virtual abstractions is generally a tricky operating system
challenge.) The abstract object manager provides the
mechanism by which higher-layer abstractions may be
created. It is possible to construct higher-layer abstractions
based solely on the capability mechanism; however, the
abstract object manager provides services that make
construction of such abstractions easier. The top two
system groups (E and F) in the generic hierarchy of
Table 2 include community abstractions and user-created



abstractions. The community abstractions are intended
to be used by a large group of users — for example, all
users or just those within a particular organization. Such
abstractions can include utility routines such as compilers
and editors, and virtual resources that create and control
access — such as directories. The user abstractions are
those intended for use by a limited and potentially more
carefully controlled group of individuals.

PSOS Capabilities. In PSOS, capabilities are the
means by which all system objects are referenced and
accessed. Each object in PSOS can be accessed only
upon presentation of an appropriate capability to a module
responsible for that object. Capabilities can be neither
forged nor altered. As a consequence, capabilities provide
a controllable basis for implementing the operating system
and its applications, as there is no other way of access-
ing an object other than by presenting an appropriate
capability designating that object. Each PSOS capability
consists of two parts: a unique identifier (uid) and a set of
access rights (represented as a Boolean array). By defini-
tion, neither part is modifiable, once a capability is created.

Unique Identifiers. PSOS generates only one original
capability for each uid. Copies of a given capability can be
made (wherever not restricted — see below). Therefore, a
procedure or task that creates a new capability with some
uid knows that the only capabilities that can have that uid
must have been copied either directly or indirectly from
the original. In other words, the creator of a capability with
a given uid is able to retain control over the distribution
of capabilities with that uid (including revocation, for
example, as in Redell [39]).

Access Rights.The set of access rights in a capability
for an object is interpreted by the module responsible for
that object to define what operations may be performed
by using that capability. For example, the access rights
for a segment capability as interpreted by the segment
manager indicate whether that capability may be used to
write information into the designated segment, to read
that information, to call that segment as a procedure, and
to delete that segment. The access rights for a directory
capability might indicate whether that capability may be
used to add entries to the designated directory, to remove
entries, and to use the capability contained in that entry.
The interpretation of the access rights is constrained by a
monotonicity rule, namely that the presence of a right is
always more powerful than its absence. The interpretation
of the access rights differs for different object types, but
the monotonicity rule must always apply.

Creating Capabilities. PSOS has only two basic oper-
ations that involve actions upon capabilities (as opposed to
actions based on capabilities, which is the normal mode of
accessing objects), as follows.

c = create-capability creates a new capability
with a never-previously used uid and all access
rights enabled.

cl = restrict-access(c, mask)creates a capabil-
ity with the same uid as the given capability c
and with access rights that are the intersection
of those of the given capability c and the given
maximum (mask); that is, it creates a possibly
restricted copy that can under no circumstances
have any access rights that c does not possess.

The second capability operation described above ap-
pears to permit unrestricted copying of capabilities. For
certain types of security policies this unrestricted copying
is too liberal. For example, one may wish to give the
ability to access some object to a particular user but not
permit that user to pass that ability on to other users.
Because simplicity of the basic capability mechanism
is extremely important to achieve the goals of PSOS,
any means for restricting the propagation of capabilities
should not add complexity to the capability mechanism.
A few access rights (only one was used by PSOS itself)
are reserved as store permissions. This is the only burden
placed on the capability mechanism. The interpretation
of the store permissions is performed by the basic storage
object manager of PSOS, namely the segment manager.
Each segment in the system is designated as to whether or
not it is capability store limited for each store permission.
If a segment is capability store limited for a particular
store permission, then it can contain capabilities only if
they have that store permission. This restriction can be
enforced by a simple check on all segment-modifying
operations. By properly choosing the segments that are
capability store limited, some very useful restrictions
on the propagation of capabilities can be achieved. The
restriction used in PSOS is not allowing a process to
pass certain capabilities to other processes or to place
these capabilities in storage locations (e.g., a directoryor
interprocess communication channel) accessible to other
processes. More general means for restricting propagation
of capabilities and for revoking the privilege granted by
a capability can be implemented as subsystems of PSOS.
The store permission mechanism was selected as primitive
in the system because it achieves the desired result with
negligible additional complexity or cost.

Tagging of Capabilities. In PSOS, capabilities can be
distinguished from other entities because they are tagged



throughout the system, that is, in processors and in both
primary and secondary memory, by means of a tag bit in-
accessible to software or ordinary hardware instructions.
In particular, there are no processor operations (other than
the two capability-creating instructions noted above) that
can make alterations to an existing capability or fabricate
a bogus capability. Consequently, hardware can enforce
the nonforgeability and unalterability of capabilities. (Ca-
pabilities are generally intended to be local to a particu-
lar system, but could be meaningful in a networked sense
outside of a particular system context within a trustworthy
enclave. This is discussed in [33].)

2.1 PSOS Design Principles

The design of PSOS relies heavily on rigorous engineer-
ing principles. Although some use of modularity is evident
in the hierarchical layering presented above, PSOS further
divides each layer into modules that implement specific ab-
stract objects and services of each layer. In addition, each
module specification enforces strong encapsulation in the
design as a direct result of constraints within SPECIAL.
PSOS modules provide well-defined functionality and are
responsible for assuring that functionality by protecting
themselves from interference (both intentional and unin-
tended) from outside the module and from side-effects on
other modules. One of the main reasons that capabilities
are embedded in the lowest layers of the PSOS hierarchy
is to further enforce encapsulation in implementation. Ca-
pabilities also allow modules to provide access control for
the abstract objects that they implement, even for objects
that are the most basic.

Defining appropriate design layering is an exercise in
abstraction and information hiding, both of which are fun-
damental to the PSOS design. Several instances of certain
types of system objects appear several times at differing
levels of abstraction in the PSOS layering. For example,
input-output devices appear in layers 5, 6, 12, and 14, each
higher layer providing a more abstract view of I/O and hid-
ing the specifics of the lower-layer I/O. Similarly, storage
objects and object referencing each appear at several layers
in the hierarchy. This use of multiple layers of abstraction
to gradually build the interfaces necessary to support appli-
cations allows each layer in the PSOS hierarchy to be small
and simple, and straightforward to implement and verify. It
also facilitates information hiding.

PSOS represents one of the earliest uses of all four tech-
niques of abstraction, modularity, encapsulation, and infor-
mation hiding. These techniques are all in general use in
the design of systems today, although they may have dif-
ferent names and may be implemented differently than in
PSOS. In particular, encapsulation is often defined in con-

temporary systems by linguistic constructs and enforced by
compilers rather than at runtime by the operating system.
Thus, PSOS was prescient in the uniform application of
these techniques within the system.

Hierarchical layering is also a fundamental principle of
the PSOS design. It is important because it significantly
simplifies how components can interact. Hierarchical lay-
ering dictates that modules can be dependent only on func-
tions of modules at the same or lower layers in the hier-
archy. If hierarchical layering is not imposed, then rela-
tionships between components can be arbitrarily complex
— making it difficult for a developer to understand how
components interact.

Use of hierarchical layering is one PSOS design princi-
ple that has not found widespread application in contem-
porary systems, for various reasons. Hierarchical layer-
ing requires strict control over the design of the system.
Contemporary development techniques such as spiral de-
velopment or rapid prototyping that promote continual in-
cremental design modifications at all layers of the design
make it difficult to maintain a strict hierarchical layering.
Also, it can be difficult to maintain the integrity of the hier-
archy in the implementation. Most systems provide many
ways in which components can interact, and often such in-
teractions are implicit and not explicitly stated in the code.
It is easy to unintentionally introduce interactions between
components that violate the hierarchical layering. In ad-
dition, client-server and agent-based systems promote un-
constrained and dynamic component interactions. Main-
taining a hierarchical layering in such a system appears to
be self-contradictory. However, it is not necessary to to-
tally constrain relationships in systems to obtain a hierar-
chical layering. It is necessary to find an appropriate layer-
ing that somehow allows localization of arbitrary relation-
ships and constrains the relationships between the abstract
layers of the system. Finding such a layering was a reward-
ing challenge for PSOS 30 years ago, but it would probably
not be so easy to do this today for client-server and agent-
based systems. Nevertheless, it can significantly reduce the
errors that arise in such systems and is well worth further
research.

Incidentally, the PSOS design tends to observe the secu-
rity principles provided by Saltzer and Schroeder [43] and
the Generally Accepted System Security Principles [36].

2.2 PSOS Implementation Considerations

The PSOS architecture effectively dispels the popular myth
that hierarchical structures must be inherently inefficient.
It provides a counter-example to claims by Clark [5] and
Atkins [1], who suggest that layering is generally undesir-
able because it leads to poor performance. For example,



the PSOS layers enable user-process operations (layer 12)
to execute as single capability-based hardware instructions
(layer 0) whenever processes and dynamic segment link-
ages had been previously established, without requiring
interpretation by the system process abstraction (layer 6).
Similarly, a capability-based operation in user-generated
software at or above layer 17 could execute hardware in-
structions directly. (The bottom seven layers were con-
ceived to be implemented directly in hardware, although
the hardware could also encompass higher-layer function-
ality as well.) Thus, repeated layers of nested interpreta-
tion are not necessarily a consequence of layered abstrac-
tion, given a suitable architecture. Furthermore, the PSOS
layering is in part conceptual; some of the layers can real-
istically be collapsed into single layers as long as the ab-
straction integrity, encapsulation, and relative dependence
are maintained. For example, UNIX-like and other mod-
ern operating systems tend to collapse layers 12 and higher
into one layer.

3 Hierarchical Development Methodology

HDM and SPECIAL played a vital role in the design, spec-
ification, and analysis of PSOS. The methodology strongly
facilitated the hierarchical design with abstraction, encap-
sulation, and information hiding. In particular, the speci-
fication language explicitly defines all relevant definitions,
necessary assumptions, exception conditions, and desired
effects, and then factors them appropriately into the proof
process as preconditions, conditions, and postconditions.
As one particular benefit of this approach, module exe-
cution memory residues that are not explicitly part of the
module state information (that is, nonexplicit state infor-
mation that transcends module invocation and that could
be accessed by another module invocation) cannot be spec-
ified, as there is no way of referring to them. Similarly,
buffer overflows are easily excluded from specifications.
Both types of flaws are demonstrably avoidable in the cor-
responding code.

Abstract implementations are metaprograms in which a
particular module function is specified in terms of func-
tions and data arguments of lower layers of abstraction.
Mapping functions define how higher-layer state informa-
tion is represented in terms of lower-layer states. The for-
mal approach enables the analysis (such as formal proofs)
of system compositions and systems in the large.

See the 1980 final report [33], a series of HDM reports
including [42], and the Robinson-Levitt paper [40] for de-
tails. A general overview of HDM is also available [41],
although it uses an earlier version of the PSOS design for
illustration.

Table 3 indicates a few of the properties that can be as-

sociated with some of the layers and that could be sub-
jected to formal analysis. For example, at layer 0, a design
proof of nonforgeability of capabilities relies on the fact
that there are only two machine instructions that create ca-
pabilities, and that the hardware design does not allow ma-
nipulation of the tag bits. An implementation proof of that
property requires reasoning about the hardware implemen-
tation itself. Similarly, a design proof that there can be no
memory residues at any layer after completion of execu-
tion is almost trivial — because those residues cannot be
specified. An implementation proof that there are no such
residues in the code falls out of the proof of consistency of
code and specification, and is meaningful at various layers
(for example, relating to processes and procedures). Ap-
plying HDM’s analytic abilities to the PSOS specifications
and mapping functions, it is thus possible to prove proper-
ties about higher layers of abstraction that encompass the
fulfillment of those properties in the design and the im-
plementation all the way down to the bottom layer. This
enables the feasibility of analyzing systems in the large,
based on formal analysis of the hierarchical specifications
of the modules, mappings, and design composition.

Table 3: Illustrative PSOS Properties
Layer Property
17+ Application-relevant properties

(e.g., MLS separation, secure e-mail)
16 Soundness of user types
15 Search-path flaw avoidance
12 Process isolation,

input-output soundness,
no process memory residues

11 No lost objects (missing capabilities)
9 Generic type soundness
8 Segmentation integrity and

independence (HW)
6 Interrupts properly masked (HW)
4 Correctness of basic operations (HW)
0 Nonforgeable, nonbypassable,

nonalterable capability mechanism
(in hardware, MLS only if desired)

4 Background

We briefly summarize some related work.

PSOS Spinoffs.The PSOS methodology was used di-
rectly in the Ford Aerospace Kernelized Secure Operat-
ing System (KSOS) [2, 27, 37], for the specification, for-
mal flow analysis of multilevel security (using the Feiertag



tool), and an analysis of what would be needed to carry out
code proofs if desired.

The PSOS project led to subsequent parallel imple-
mentation feasibility studies by Ford Aerospace and
Honeywell (also funded by NSA), which subsequently re-
sulted in further projects by Honeywell and its outgrowth,
Secure Computing Corporation, particularly with respect
to SCC’s dependence on pervasive typed objects, layered
designs, and layered analyses. The Honeywell/SCC
systems included the Secure Ada Target (SAT) [19], the
LOgical Coprocessor Kernel (LOCK) [14, 18, 44], and
the SideWinder firewall, each of which used typed en-
forcement to enhance protection. SAT pursued the PSOS
observation that the MLS property could be embedded
into the capability mechanism (see Boebert et al. [50]),
thus gaining the benefits of enforcing a mandatory security
policy. Honeywell/SCC also took a different approach
to mandatory integrity than the Biba multilevel integrity
policy [3] (see Boebert and Kain [4]), implementing it via
enforcing strong typing. (Proofs of this enforcement of
integrity are given in [19].)

Capabilities. There have of course been many other
capability-based architectures, both before and after
PSOS. A classification of many possible architectures is
included within the taxonomy presented by Landwehr and
Kain [20]. To mention just a few relevant efforts, see CAL
TSS [23, 25], Lampson’s paper on the confinement prob-
lem [24], Fabry [11], Redell’s thesis [39], KeyKOS [38]
and its reincarnation as EROS [45], Linden [26], CAP [49],
Karger’s thesis [21], and Gong [17]. In addition, Karger
and Herbert [22] reconsider the incorporation of lattice-
based mandatory security into a capability-based system.
On the practical side, IBM developed System/38, a tagged
capability-based system in the late 1970s. (Its successors,
the AS/400 and iSeries servers are not genuinely capability
based [46], but commercially more successful.)

Layered Abstraction. Earlier uses of layered abstrac-
tion include Multics [7, 8, 34] (with rings of protection,
layering of system survivability and recovery, and direc-
tory hierarchies) and Dijkstra’s THE system [9] (with
hierarchical locking protocols that demonstrably avoided
interlayer deadlocks).

Formally Based Design and Proofs. There are of
course many software development methodologies. How-
ever, only a few of those are formal, and very few are
mathematically based design methodologies approaching
HDM. Another effort in the 1970s done in the SRI
Computer Science Laboratory also made effective use
of formal methods for specification and proof: SIFT, the

Software Implemented Fault Tolerant system [28, 48, 30],
was a sevenfold-redundant fly-by-wire system prototype
developed for NASA with a systemwide five-order-of-
magnitude increase in reliability over a single processor.
Note that most of the functionality, expressive power, and
proof capabilities associated with HDM have now been
superseded by its successor, SRI’s PVS [35]. See [10, 47]
for recent work on verifying a compiler. Also, as a
remarkable illustration of a hierarchical proof process,
see the five papers in the December 1989 special issue
of the Journal of Automated Reasoning[29], edited by J
Strother Moore, which demonstrates hierarchical system
verification from bottom to top, including microprocessor
design verification, a verified language implementation,
and a verified code generator.

Principled Design. As further background on prin-
cipled architectures and development, see Neumann’s
report [32] for the DARPA CHATS program (Composable
High-Assurance Trustworthy Systems); that report distills
some of the experience gained from Multics, PSOS,
and subsequent efforts, into some further guidance for
future system developers, and should be of interest
to open-source as well as proprietary code developers.
(An earlier summary version of the report is found in [31].)

5 Retrospection

According to David Redell, Butler Lampson is credited
with saying somewhen in the 1970s that “Capability sys-
tems are the way of the future, and always will be.” There
seems to be considerable truth in that statement, although
for reasons that may have little to do with the technical
merits of capabilities.

One obvious reason that capability-based addressing has
not made it more widely into commercial practice involves
the inherent demands of the marketplace. The inertia of
having to stay within the mainstream mitigates against rad-
ical departures, and the demand for meaningfully secure
systems has remained surprisingly small until recently.
Our 1980 PSOS report showed that a tagged capability-
based system such as PSOS could be retrofitted relatively
easily onto hardware architectures that existed then, but
that might be less likely today.

However, some of the concepts of PSOS and other capa-
bility architectures have found their way into wider prac-
tice, beyond the IBM System/38 noted above. In particular,
digital certificates are in essence universal capabilities, and
of considerable potential use in distributed and networked
systems. Similarly, strong typing in computer systems has
found a place in the Honeywell/SCC systems and in var-



ious programming languages. (It would be interesting to
contemplate the incorporation of a capability concept into
programming languages such as Java; that is currently be-
ing done in the E language.)

On the other hand, hierarchical abstraction as in PSOS
has not been widely used elsewhere (network protocols are
an important exception), even though it offers enormous
benefits in software development — particularly for sys-
tems that must satisfy critical requirements. One of our
main hopes for the future is that this paper can inspire
greater awareness of those benefits in system design.

Incidentally, what Butler Lampson said about capabil-
ity systems has also been said about formal methods. We
believe that the formal methodology and formal specifica-
tions greatly improved the understandability and security
of PSOS, and analyzability in the large. Some of the signif-
icant benefits of formal methods are being realized today in
other contexts, most notably with respect to algorithms for
critical systems and to hardware designs and implementa-
tions, but there is still much that can be learned from PSOS.

In the 1980s, the momentum in the DoD research com-
munity was toward supposedly small kernels that could
enforce multilevel security, underlying trusted computing
bases (TCBs) that took care of all the practical matters
that the kernels could not. Unfortunately, the kernels
tended to expand, and the TCBs became bloated when
they had to support general-purpose applications. How-
ever, whether we use capabilities or access-control lists
or user/group/world rights or multilevel security or other
forms of access control, it is important that the underlying
mechanisms be largely invisible (through programming-
language and higher-layer system abstractions) and easy
to use. Capability systems enforcing strong typing offer
a possible alternative, by having a very simple addressing
mechanism upon which secure environments can be built
in a layered hierarchical way.

Taking a broader view than just capabilities, there are
still many historically learned lessons that need to be con-
veyed to today’s developers tasked with producing depend-
ably secure and robust systems and networks. For exam-
ple, there is much wisdom in the Schroeder-Saltzer princi-
ples [43] and Corbató’s Turing paper [6], if suitably applied
— and hopefully also in the PSOS experience summarized
here. Observance of what is explored in [32] can greatly
enhance the effectiveness and controllability of develop-
ment efforts: well-defined requirements, highly principled
system architectures that honor the most important prin-
ciples (for example, achieving sound structural layering,
abstraction, isolation, compartmentalization, etc.), sensible
implementation that adheres to principled software engi-
neering practice, judicious use of sound development tools
that help avoid flaws, and wise administration.
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