
www.usenix.org	   WI N T ER 20 17  VO L . 42 , N O. 4  37

SECURITY

An Interview with Peter G. Neumann
R I K F A R R O W

I first encountered Peter G. Neumann at the PC party for Security in
Washington, DC, back around 2000. Peter was playing a grand piano and
leading a group in singing songs from Gilbert and Sullivan, Tom Lehrer,

and more. I later learned that Peter can play many more instruments.

Peter and I met for lunch in 2007 in Palo Alto, not far from where he works at what used to
be Stanford Research Institute and is now SRI International. I was going to speak at Apple
and Google over the following week about the failure of current measures that were supposed
to be making our systems more secure. Peter encouraged me, then regaled me with stories
about the Multics design.

Peter has been involved in security since 1965, starting with his work on the Multics file
system and overall Multics development, continuing with a provably secure operating sys-
tem (PSOS). His current project involves the CHERI (Capability Hardware Enhanced RISC
Instructions) hardware-software system co-design [1]).

Rik Farrow: Part of what got me thinking about you was your story about part of the design of
the Multics file system: getting a small group of people in a room with whiteboards and com-
ing up with a design.

Peter G. Neumann: The first real get-together of the Multics team (MIT, Bell Labs, and
GE-then-Honeywell) took place at an AT&T training center in Hopewell, NJ, the week of
Memorial Day 1965. Fernando Corbató (Corby, who led the CTSS effort), Bob Daley (who
created the CTSS file system), Stan Dunten (who had done the CTSS I/O), Jerry Saltzer
(just about to complete his PhD thesis, “Traffic Control in a Multiplexed Computer System,”
1966), and—inspirationally—Ted Glaser from MIT (co-designer with John Couleur of the
really innovative hardware; former NSA, later head of the CS Department at Case Western)
and his dog, and Vic Vyssotsky, Joe Ossanna, and me from Bell Labs (BTL). We discussed the
emerging independently protectable segmentation hardware architecture, the desiderata for
the operating system (segment descriptors, paging, and the file system), and planning for the
five Fall Joint Computer Conference papers for Las Vegas in 1965. Bob Fano and Bell Labs
VP Ed David (later Nixon’s Science Advisor) were assigned the introductory paper, and Bob
Daley and I the file system design—which largely emerged over the summer. The papers are
all on multicians.org, maintained by Tom Van Vleck.

Ted was blind since age 12 but the most far-sighted person I have ever known. His impact on
Multics was holistic and enormous. The first day of our week was in fact Memorial Day, and
we had to find a local restaurant that was open for lunch. The only one we could find would
not allow Ted’s wonderful German Shepherd into the restaurant, but we finally talked them
into setting up tables outside.

RF: What happened with Multics? I know Multics has continued to be used from visiting the
multicians.org site, but my recollection is that the project fell apart because of disagreements
between the various parties.

Peter G. Neumann is Senior
Principal Scientist in the
SRI International Computer
Science Department, where
he has been for 45 years. His
research has been concerned

with computer systems and networks,
trustworthiness/dependability, high assurance,
security, reliability, survivability, safety, and
many risk-related issues such as election-
system integrity, cryptographic applications
and policies, health care, social implications,
and human needs—especially those including
privacy. Currently, he is Principal Investigator
of the joint SRI/Cambridge project relating
to the CHERI system. He was at Bell Labs
in Murray Hill, New Jersey, where he was
heavily involved in Multics development.
He has AM, SM, and PhD degrees from
Harvard, and a Doctor rerum naturalium from
Darmstadt. He moderates the ACM Risks
Digest forum (http://www.risks.org) and
has been responsible for 242 “Inside Risks”
columns in the Communications of the ACM.
He chairs the ACM Committee on Computers
and Public Policy. His 1995 book, Computer-
Related Risks, is still timely. He received the
National Computer System Security Award
in 2002, the ACM SIGSAC Outstanding
Contributions Award in 2005, the Computing
Research Association Distinguished Service
Award in 2013, and in 2012 was elected to the
National Cybersecurity Hall of Fame as one
of the first set of inductees. See his Web site,
http://www.csl.sri.com/neumann, for further
background and URLs for papers, reports, and
testimonies. Neumann@CSL.sri.com

Rik Farrow is the editor of ;login:.
rik@usenix.org

http://www.risks.org

38    WI N T ER 20 17  VO L . 42 , N O. 4 	 www.usenix.org

SECURITY
An Interview with Peter G. Neumann

PGN: Bell Labs dropped out of the Multics development in 1969,
when AT&T upper management realized that its declared intent
that Multics would replace all computers at Murray Hill, Holm-
del, Whippany, and Indian Hill could not be fulfilled on time.

Ken Thompson had joined BTL in 1967, and immediately
observed that the symbolic name scheme (with dynamic linking
to descriptor entries) for the file system that Bob Daley and I had
designed would be great for input-output, which triggered a very
nice redesign of the original Multics I/O system. As a result of
Bell Labs bailing on Multics, Ken found a PDP-7 that no one was
using. I remember one day when Ken came in at noon for lunch
with Joe Ossanna and me, and said that he had just written a
thousand-line one-user OS kernel, and I suggested he should use
all of his Multics experience on multiuser multiprogramming
to extend his kernel. The next day he came in with another 1000
lines. That then led to Unics (the castrated one-user Multics, so-
called due to Brian Kernighan) later becoming UNIX (probably
as a result of AT&T lawyers).

Multics development and maintenance continued for many
years after that at MIT and at the Honeywell CISL office nearby
in Cambridge. Charley Clingen headed the Honeywell Multics
group, and Tom Van Vleck was heavily involved in Multics from
1966 at MIT and later moved over to Honeywell. The last Multics
installation, a five-processor multiprocessor configuration, ran
until 2000.

In the early 1970s there was even an effort that retrofitted
multilevel security into Multics, which required a little jig-
gling of ring 0 and ring 1. I was a distant advisor to that (from
SRI), although the heavy lifting was done by Jerry Saltzer, Mike
Schroeder, and Rich Feiertag, with help from Roger Schell and
Paul Karger.

The Multics hardware-software effort was seminal in pioneer-
ing Jack Dennis’s notion of segmentation, with hardware-
supported paging, dynamic linking, a hierarchical file system,
ring structures (control hierarchies), solving the buffer overflow
problem, execute-only code, pure procedure sharing, innova-
tive file backup, and lots more. The buffer overflow problem was
solved by making everything outside of the active stack frame
not executable, and enforcing that in hardware.

RF: Can you tell us about your work on Provably Secure Operat-
ing System for the NSA?

PGN: Multics had a considerable influence on SRI’s Provably
Secure Operating System (PSOS [2]), for which the security-rel-
evant hardware and software functionality was formally speci-
fied in a common language that we created (SpecIAL), primarily
by Larry Robinson and Karl Levitt. The PSOS architecture is an
early example of a hierarchically designed hardware-software
system, in which each successive layer could depend only on

lower layers (somewhat akin to Dijkstra’s THE system [3]), but
where the hardware enabled an operation at an OS or application
layer to be executed efficiently as a single instruction after the
descriptor table and page tables were in place. I worked on PSOS
from 1973 until 1980 under a contract from the NSA. Three more
years of that project supported the Goguen-Meseguer work on
noninterference and early work on SRI’s PVS formal verification
system.

In turn, Multics and PSOS had significant influence on the
CHERI that we are currently developing. In addition, the
CHERI hardware supports some of the security concepts from
the more recent Capsicum operating system [4])—notably, its
hybrid architecture and the ability to enforce least privilege and
compartmentalization.

RF: I’ve been reading the PSOS retrospective paper [2] and am a
bit confused about what a capability is. PSOS capabilities appear
associated with unique user IDs with a set of access rights.
These can be copied, with restrictions, and appear to be created
with hardware monotonicity that would ensure that rights could
never increase.

I think I am confused because I associate capabilities with both
an application and a user ID, so that a user ID doesn’t have the
same set of capabilities for all applications she may run. Perhaps
you could explain?

PGN: You are indeed confused, perhaps because each capability
system—in the past, present, and the future—tends to be slightly
if not fundamentally different. PSOS capabilities were different
from others because the ID of the capability was unique for the
lifetime of that processor, and could be stored in a Multics-like
directory for access via a symbolic name. There was no user
ID associated, because capabilities could be shared—subject to
the propagation limits. This was appropriate for the researchy
hardware-software spec, as it was conceptually simple but not
very practical.

CHERI capabilities [1] are more local in nature rather than
global potentially for every user and every process. They are fat
pointers, which include bounds and permissions, along with a
nonforgeable tag to ensure nonforgeability of the capabilities.
One common thread between PSOS and CHERI is that both
have object-oriented capabilities with either default types (for
virtual memory) or user-defined types (for objects).

The huge difference is that CHERI solves the legacy compatibil-
ity problem and allows crapware to coexist safely with very trust-
worthy operating systems, applications, compilers, and so on.

RF: The fat pointers that I know about are part of the D language
extensions to C [5] and include a range with every pointer to
prevent buffer overflow attacks. Can you tell me how pointers in
CHERI are different?

www.usenix.org	   WI N T ER 20 17  VO L . 42 , N O. 4  39

SECURITY
An Interview with Peter G. Neumann

PGN: Conventional fat pointers are typically virtual addresses
that have been extended with additional metadata such as
bounds and permissions. CHERI’s fat-pointer capabilities add
notions of sealing and unsealing (for strongly typed object capa-
bilities), provenance (ensuring that new capabilities are properly
derived from other legitimate capabilities), and monotonicity.

RF: In the PSOS paper, you describe the system as hierarchically
layered, but also write that such multi-layer designs aren’t found
in contemporary systems. Could you explain the importance of
layering and perhaps why it’s not found in systems today?

PGN: Layered assurance is premised on formal analyses that can
be built up layer by layer. Dijkstra’s THE system [3] had informal
proofs that there could be no deadlocks between layers, because
the locking strategy at each layer involved purely hierarchical
dependencies. Years later I asked Nico Habermann [6] about
that. He said they had actually discovered a hitherto undetected
deadlock within a single layer, but never any that involved mul-
tiple layers.

The Multics ring structure enabled up to eight rings, although
rings 0, 1, 2 were the primary ones that were used by the system
itself with ring 4 used by user software. Outer rings were left for
applications. Nothing that happened in ring 1 could ever clobber
ring 0, ring 2 could never clobber lower rings, and so on. Many
systems have a layered structure, but typically it is only kernel
and user—that is, only two layers. CHERI could implement many
layers easily using the capability mechanism, either implicitly or
explicitly.

PSOS had 17 layers in the conceptual architecture. Layer zero
had two instructions out of which everything else was built in
initialization—creating a new capability with desired privileges
and creating a copy of an existing capability with at most the
same privileges. That’s CHERI’s monotonicity property (which
includes privileges and bounds that may never increase). The low-
est 7 PSOS layers were intended to be implemented in hardware.

The Multics ring property is conceptually similar to the Biba
multilevel integrity dependence property—that each layer (or
in Biba’s case, integrity level) must depend only on itself and
on lower layers, at least in principle. There are of course some
trusted exceptions involving calling into a lower ring—and then
returning without acquiring any lower-layer privileges. CHERI
explicitly introduces the principle of intentionality to counter
the fact that calling something else must not allow the something
else to confer properties elsewhere or usurp privileges it does not
have. This addresses so-called confused-deputy attacks.

As you can see, this all fits together—from Multics to PSOS and
Capsicum to CHERI, with deep awareness from my Cambridge
colleagues on all of the other attempts at past and contempora-
neous capability-based systems, and proactively trying to avoid

the pitfalls of the past while adopting other ideas that might
work in this context (such as capabilities that act as fat pointers).
Robert Watson in particular has an absolutely uncanny under-
standing of all of this, and someone without whom we could have
never gotten this far so quickly in developing CHERI.

RF: This is making sense to me. I didn’t realize that the lower
seven layers of PSOS were supposed to be done in hardware.

I’m glad you brought up rings, as people widely misunderstand
them today. I did want to mention that virtualization actu-
ally has meant the creation of more rings, such as “ring -1” for
hypervisors.

What I was wondering is whether CHERI provides a model for
capabilities that would be useful for people to learn about today?
I haven’t finished reading the technical report yet, but it seems
like capabilities are a bit like container technology, in that capa-
bilities are used to control access to various namespaces, very
much like Linux containers.

How closely does CHERI mimic the systems that Multics ran
on? I realize that both the GE 645 and CHERI make use of seg-
ment registers as hardware support for isolation. That seems
different from the capabilities discussed in Capsicum.

PGN: PSOS used ideas from Multics. CHERI used ideas both
from Multics and from PSOS and Capsicum. But Capsicum is
software only and relies on potentially untrustworthy hardware.
We rectified that in CHERI, which adopted the hybrid model of
Capsicum, but designed hardware that would greatly enhance
the trustworthiness of operating systems and applications.
It also advances operating systems beyond Capsicum. Try to
understand the CHERI papers [7] as new stuff, although each
paper states how we differ from the past. The tech report will
help a lot. The report is long but well structured. It includes a
chronological history of how we got to where we are, as well as
how it relates to other efforts. All of this should be extraordi-
narily valuable for learning about the security pitfalls that can
be overcome through enlightened hardware and total-system
architecture.

RF: Does CHERI provide the same or better support in hardware
than did systems running Multics? Does CHERI’s hardware
support extend beyond segment registers, for hardware that
provides real isolation for different capabilities? Those are ques-
tions I’d like you to answer.

PGN: The Multics hardware was designed by John Couleur and
Ted Glaser. John was a pure hardware person. Ted was someone
who got John to build independently protectable segmentation
into the hardware, with a deep understanding of how the operat-
ing system and compilers might exploit it for paging and shared
pure procedure, as well as for security, reliability, robustness,
resilience, and more.

40    WI N T ER 20 17  VO L . 42 , N O. 4 	 www.usenix.org

SECURITY
An Interview with Peter G. Neumann

The CHERI hardware ISA began with an open-source MIPS
64-bit ISA formal spec (developed by Cambridge), and added
capability instructions and capability registers. It represents a
complete clean-slate hardware-software co-design. CHERI has
proceeded iteratively, with a few very minor but useful additions
or refinements of particular instructions over the past seven
years because of better understanding of the operating-system
and compiler needs.

CHERI can do anything Multics could do—segmentation, pag-
ing, dynamic linking, ring-structured software—and much more
(high-assurance fine-grained access controls, fine- and coarse-
grained compartmentalization, e.g., within a given application
or within an OS, and among all of the different applications,
virtual partitions and more). We believe that we will soon have
some viable approaches to the active device input-output direct
memory access problems. The Multics General Input/Output
Controller (GIOC) had that problem in spades, because the GIOC
needed absolute memory addresses, bypassing all segmentation,
paging, and memory protection. CHERI hopes to extend the
reach of the capability-based protection to I/O and embedded
active devices and microcontrollers.

A big difference between Multics and CHERI development is
that the Honeywell 645 was pretty much frozen early in the
hardware design. Getting the operating-system dynamic linking
to work with the hardware took several iterations, and might
have been abetted by hardware improvements that were not
available. On the other hand, the CHERI ISA has been fluid
and able to respond to the needs of software and compilers, as
we increasingly learned how to take advantage of the CHERI
capability architecture—which is somewhat different from most
of the predecessor capability systems. Various instructions were
added along the way to simplify software development. CHERI
also adopted the PSOS idea of capabilities for typed objects in
hardware (noted above), which was not possible in Multics.

There is considerable detail that we have glossed over, and other
efforts such as microkernel operating systems, application trust-
worthiness, and the use of formal methods to ensure that the
hardware ISA satisfies the required trustworthiness properties
and principles. In addition to [1], see [8] and [9].

References
[1] R. N. M. Watson, R. Norton, J. Woodruff, A. Joannou, S.
W. Moore, P. G. Neumann, J. Anderson, D. Chisnall, N. Dave,
B. Davis, K. Gudka, B. Laurie, A. T. Markettos, E. Maste, S. J.
Murdoch, M. Roe, C. Rothwell, S. Son, and M. Vadera, “Fast
Protection-Domain Crossing in the CHERI Capability-Sys-
tem Architecture,” IEEE Micro Journal, vol. 36, no. 6 (Septem-
ber-October 2016), pp. 38–49: https://goo.gl/Vu8W1J.

The current comprehensive hardware ISA document is online:
R. N. M. Watson, P. G. Neumann, J. Woodruff, M. Roe, J.
Anderson, J. Baldwin, D. Chisnall, B. Davis, B. Laurie, S. W.
Moore, S. J. Murdoch, R. Norton, S. Son, H. Xia, “Capability
Hardware Enhanced RISC Instructions: CHERI Instruction-
Set Architecture (Version 6),” Technical Report no. 907, Uni-
versity of Cambridge Computer Laboratory, July 2017: http://​
www.cl.cam.ac.uk/techreports/UCAM-CL-TR-907.pdf.

[2] P. G. Neumann and R. Feiertag, “PSOS, Revisited,” ACSAC,
2003: http://www.csl.sri.com/users/neumann/psos03.pdf;
http://www.csl.sri.com/neumann/psos/psos80.pdf (full 1980
report—scanned).

[3] E.W. Dijkstra, “The Structure of the THE Multiprogram
ming System,” Communications of the ACM, vol. 11, no. 5 (May
1968), pp. 341–346; also, Wikipedia, “Edsger W. Dijkstra,” sec-
tion 2.5 (Operating system research): https://en.wikipedia.org​
/wiki/Edsger_W._Dijkstra#Operating_system_research.

[4] R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway,
“Capsicum: Practical Capabilities for Unix,” in Proceedings of
the 19th USENIX Security Symposium, August 2010; see also
Capsicum Technologies: https://wiki.freebsd.org/Capsicum.

[5] Cello, “A Fat Pointer Library”: http://libcello.org/learn​
/a-fat-pointer-library.

[6] Wikipedia, “Nico Habermann”: https://en.wikipedia.org​
/wiki/Nico_Habermann.

[7] CHERI project home page: http://www.cl.cam.ac.uk​
/research/security/ctsrd/cheri/.

[8] R. N. M. Watson, P. G. Neumann, and S. W. Moore, “Balanc-
ing Disruption and Deployability in the CHERI Instruction-
Set Architecture (ISA),” in New Solutions for Cybersecurity,
ed. H. Shrobe, D. Shrier, A. Pentland (MIT Press/Connection
Science, 2018).

[9] P. G. Neumann, “Fundamental Trustworthiness Principles,”
in New Solutions for Cybersecurity, ed. H. Shrobe, D. Shrier, A.
Pentland (MIT Press/Connection Science, 2018).

https://goo.gl/Vu8W1J
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-907.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-907.pdf
http://www.csl.sri.com/users/neumann/psos03.pdf
http://www.csl.sri.com/neumann/psos/psos80.pdf
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra#Operating_system_research
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra#Operating_system_research
https://wiki.freebsd.org/Capsicum
http://libcello.org/learn/a-fat-pointer-library
http://libcello.org/learn/a-fat-pointer-library
https://en.wikipedia.org/wiki/Nico_Habermann
https://en.wikipedia.org/wiki/Nico_Habermann
http://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
http://www.cl.cam.ac.uk/research/security/ctsrd/cheri/

August 15–17, 2018 • Baltimore, MD, USA

The USENIX Security Symposium brings together researchers, practitioners, system administrators, system

programmers, and others interested in the latest advances in the security and privacy of computer

systems and networks.

Submit your work!
Submissions are due February 8, 2018.

Program Co-Chairs
William Enck, North Carolina State University,

and Adrienne Porter Felt, Google

Save the Date!

www.usenix.org/sec18

Save the Date!

www.usenix.org/soups2018

S
O

U PS

2018

Sym
posiu

m
 O

n U
sable Privacy and Security

Fourteenth Symposium on
Usable Privacy and Security
Co-located with USENIX Security ’18
August 12–14, 2018 • Baltimore, MD, USA

Submit your work!
Abstract submissions are due February 12, 2018.
Full paper submissions are due February 16, 2018.

General Chair
Mary Ellen Zurko, MIT Lincoln Laboratory

Vice General Chair
Heather Richter Lipford,

University of North Carolina at Charlotte

Technical Papers Co-Chairs
Sonia Chiasson, Carleton University

Rob Reeder, Google

Symposium Organizers

