Robust Nonproprietary Software

PeterG. Neumann
PrincipalScientist,ComputerSciencd.ab
SRl InternationalMenlo Park CA 94025-3493
Neumann@csl.sri.corhitp://www.csl.sri.com/neumani;650-859-2375
(©IEEE Symposiunon SecurityandPrivagy, OaklandCA May 15-17,2000

Our ultimate goal hereis to be able to develop robust
systemsand applicationsthat are capableof satisfyingse-
rious requirementsnot merelyfor securitybut alsofor re-
liability, fault tolerancehumansafety and survivability in
thefaceof awide rangeof realisticadwersities— including
hardware malfunctions,software glitches, inadwertenthu-
manactions,massve coordinatedattacksandactsof God.
Also relevantareadditionaloperationakequirementsuch
asinteroperability evolvability andmaintainability aswell
asdisciplinein the softwaredevelopmentprocess.

Despiteall our pastresearchdevelopmentof commer
cial systemsds decidedlysuboptimalwith respecto meet-
ing stringentrequirements.This brief paperexaminesthe
applicabilityof somealternatve paradigms.

To bepreciseaboutourterminology we distinguishhere
betweenblack-box (that is, closed-box)systemsin which
sourcecodeis notavailable,andopen-box systemsn which
sourcecodeis available(althoughpossiblyonly undercer
tain specifiedconditions).Black-boxsoftwareis oftencon-
sideredasadvantageousy vendorsandbelieversin secu-
rity by obscurity However, black-boxsoftware makes it
muchmoredifficult for anyoneotherthanthe original de-
velopergo discover vulnerabilitiesandprovide fixesthere-
for. It alsohindersopenanalysisof the developmentpro-
cessitself (which is somethingmary developersarehappy
to hide). Overall, it canbe a seriousobstacleto having ary
unbiasedonfidencén theability of asystento fulfill itsre-
guirementgsecurity reliability, safety etc.,asapplicable).

We alsodistinguishherebetweenproprietary and non-
proprietary software. Note that open-boxsoftware can
comein variousproprietaryandnonproprietarylavors.

Examplesof nonproprietaryopen-boxsoftware are in-
creasinglyfoundin the Free Software Movement(suchas
the Free Software Foundations GNU systemwith Linux)
and the Open SourceMovement,althoughdiscussionf
the distinctionsbetweenthosetwo movementsand their
respectie nonrestrictve licensingpolicies are beyond the
scopeof thisbrief analysis.In essenceyothmovementde-
lieve in andactively promoteunconstrainedightsto modi-

ficationandredistribution of open-boxsoftware[2].

The benefitsof nonproprietaryopen-boxsoftware in-
cludethe ability of outsidegoodguysto carry out peerre-
views, add new functionality, identify flaws, andfix them
rapidly — for example,throughcollaboratye efforts involv-
ing peoplewidely dispersedaroundthe world. Of course,
the risks include increasedpportunitiesfor evil-doersto
discover flaws that canbe exploited, or to inserttrap doors
andTrojanhorsesnto thecode.

A questionfor this panelis what arethe rolesof open-
box softwarein developingrobustsystemsijn light of (for
example)the Internet,typically flawed operatingsystems,
vulnerablesystemembedding®f strongcryptographyand
the presencef mobile code. An architecturakubquestion
involveswheretrustworthinessmustbe placedto minimize
theamountof critical codeandto achieve robustnessn the
presencef the specifiedadersities.

Will open-boxsoftwarereally improve systemsecurity?
My answeris not by itself, although the potential is con-
siderable. Many otherfactorsmustbe consideredindeed,
mary of the problemsof black-boxsoftware can also be
presenin open-boxsoftware,andvice versa (for example,
flaweddesignstherisksof mobilecode ashortagef gifted
systemadministratorsandsoon). In theabsencef signif-
icantdiscipline andinherentlybettersystemarchitectures,
opportunitiesnaybeevenmorewidespreador insertionof
maliciouscodein the developmentprocessandfor uncon-
trolled subversionsof the operationaprocess.

We facethebasicconflictbetween(a) securityby obscu-
rity to slow down theadwersariesand(b) opennesto allow
for morethoroughanalysis[3] andcollaboratve improve-
ment of critical systems- aswell as providing a forcing
functionto inspireimprovementsn the faceof discovered
attackscenarios. Ideally, if a systemis meaningfully se-
cure, openspecificationsaand open-boxsourceshouldnot
beasignificantbenefitto attaclers,andthedefendersnight
be ableto maintaina competitve advantage!For example,
this is the principle behindusing strongopenly published
cryptographialgorithms-for whichanalysisof algorithms



andtheirimplementationss very valuable andwhereonly
the privatekeys needto be hidden. Otherexamplesof ob-
scurity include tamperproofingand obfuscation. Unfortu-
nately mary existing systemgendto be poorly designed
andpoorlyimplementedwith respecto incompleteandin-
adequatelyspecifiedrequirements Developersarethenat
adecideddisadantagegvenwith black-boxsystems.Be-
sides,researchnitiated in a 1956 paperby Ed Moore [1]
remindsusthatpurely external(Gedanken) experimenton
black-boxsystemganoftendeterminanternalstatedetails.

Behavioral systemrequirementssuch as safety relia-
bility, and real-time performancecannotbe realistically
achieved unlessthe systemsare adequatelysecure. It is
very difficult to build robust applicationsbasedon propri-
etaryblack-boxsoftwarethatis not sufficiently trustworthy.

Further1956 papers,by Moore, ClaudeShannonand
Johnvon Neumannshaovedhow to constructreliablecom-
ponentsout of lessreliablecomponentslaterwork on cor
rect behaiior despitesomenumberof arbitrarily penerse
Byzantinefaults followed along thoselines. In that con-
text, building a fault-tolerantsilk purseout of lessrobust
saw's earsis indeedpossiblein somecasesBut construct-
ing more trustworthy securesystemsout of lesstrustwor-
thy subsystemsloesnot seemrealisticwhenthe underly-
ing componentarecompromisibledespiteefforts suchas
wrappertechnologyandfirewall isolation.

Wheneer achieving securityby obscurityis not the pri-
mary goal,thereseemto be strongargumentgor open-box
softwarethatencouragespenreview of requirementsge-
signs, specifications,and code. Even when obscurityis
deemednecessarysomewider-community open-boxap-
proachis desirable. For software and for systemapplica-
tionsin which securitycanbe assuredy othermeansand
is notcompromisiblewithin theapplicationitself, theopen-
box approacthasparticularlygreatappeal.In ary event, it
is alwaysunwiseto rely solely on obscurity

So, what elseis neededto achieve trustworthy robust
systemghatarepredictablydependable Thefirst-level an-
sweris the samefor open-boxsystemsaswell as closed-
boxsystemsserioudisciplinethroughouthedevelopment
cycle and operationalpractice,useof good software engi-
neering,rigorousrepeatedcevaluationsof systemsin their
entirety andenlightenednanagemenfopr starters.

A second-lgel answerinvolves inherently robust and
secureevolvableinteroperablearchitectureghat avoid ex-
cessve dependencen untrustworthy components. One
sucharchitectureinvolves thin-client user platforms with
minimal operatingsystems,where trustworthinessis be-
stovedwhereit is essential- typically, in seners firewalls,
codedistribution paths,nonspooébleprovenancdor criti-
cal software,cryptographiaccoprocessorgamperprooem-
beddingspreventingdenial-of-servicattacks runtimede-
tectionof maliciouscodeanddeviant misusegtc. [4].

A third-level answeris thatthereis still muchresearch
yetto bedone(suchason realisticcompositionalityinher
ently robust architecturesand open-boxbusinesanodels),
aswell asmoreefforts to bring that researchinto practice.
Effective technologytransferseemsmuch more likely to
happenin open-boxsystems.

Nonproprietaryopen-boxsystemsare not a panacea.
However, they have potential benefits throughout the
processof developing and operating critical systems.
Impressie beginningsalreadyexist. Neverthelessmuch
effort remainsin providing the necessarydevelopment
discipline, adequatecontrols over the integrity of the
emeging software, systemarchitectureshat can satisfy
critical requirementsandwell documentediemonstrations
of the benefitsof open-boxsystemsn the real world. If
nothingelse,open-boxsuccessemayhave aninspirational
effectoncommerciadeveloperswho canrapidly adoptthe
bestof theresults. But | like the possibilitiesfor coherent
community cooperation,and have considerablehope for
nonproprietaryopen-boxsoftware.

References

[1] E.E Moore, Gedanlen Experimentson Sequential
MachinesAutomata Sudies, Annalsof MathematicaStud-
ies,34,C.E.ShannorandJ. McCarthy eds. PrincetorJni-
versityPress;1956.pp. 129-153.

[2] The Free Software Foundation Website is
htt p: // ww. gnu. or g,andcontainsoftware,projects,
licensing proceduresgtc.: The Open SourceMovement
Websiteis htt p: / / www. opensour ce. or g/, which
includesEric Raymonds “The Cathedralandthe Bazaar”
andthe OpenSourceDefinition.

[3] Analytic tools for open-boxsourcecode include
Crispin Cowan's StackGuardht t p: / /i nrruni x. or g),
David Wagners buffer overflow analyzer
(http://ww. cs. berkel ey. edu/ ~daw paper s/ ),
@Stale's LOpht security review analyzer slint
(http://ww. | Opht.confslint.htm) and
RST's ITS4 function-call analyzerfor C and C++ code
(http://ww rstcorp.comits4/).

[4] The U.S. Army Research Laboratory
(ARL) has supported my work on survivable sys-
tems, under contract DAKF11-97-C-0020. See
http://ww. csl.sri.com neunann for a re-
port for ARL togetherwith a coursetaughtin the fall of
1999 on developing robust systems. That Website also
containsa paperon single-level multilevel-securesystems,
N.E. ProctorandP.G. NeumannArchitecturallmplications
of Covert ChannelspProceedings of the Fifteenth National
Computer Security Conference, Baltimore, Maryland,
Octoberl3-16,1992,pp. 28—43,very muchin the spirit of
thethin-clientarchitecturenotedabove.



