
Robust Nonproprietary Software

PeterG. Neumann
PrincipalScientist,ComputerScienceLab

SRI International,MenloParkCA 94025-3493
Neumann@csl.sri.com,http://www.csl.sri.com/neumann,1-650-859-2375
c

�
IEEESymposiumonSecurityandPrivacy, OaklandCA May 15-17,2000

Our ultimate goal hereis to be able to develop robust
systemsandapplicationsthat arecapableof satisfyingse-
rious requirements,not merelyfor securitybut alsofor re-
liability, fault tolerance,humansafety, andsurvivability in
thefaceof a wide rangeof realisticadversities– including
hardwaremalfunctions,softwareglitches,inadvertenthu-
manactions,massive coordinatedattacks,andactsof God.
Also relevantareadditionaloperationalrequirementssuch
asinteroperability, evolvability andmaintainability, aswell
asdisciplinein thesoftwaredevelopmentprocess.

Despiteall our pastresearch,developmentof commer-
cial systemsis decidedlysuboptimalwith respectto meet-
ing stringentrequirements.This brief paperexaminesthe
applicabilityof somealternativeparadigms.

To bepreciseaboutour terminology, wedistinguishhere
betweenblack-box (that is, closed-box)systemsin which
sourcecodeis notavailable,andopen-box systemsin which
sourcecodeis available(althoughpossiblyonly undercer-
tainspecifiedconditions).Black-boxsoftwareis oftencon-
sideredasadvantageousby vendorsandbelieversin secu-
rity by obscurity. However, black-boxsoftware makes it
muchmoredifficult for anyoneotherthanthe original de-
velopersto discovervulnerabilitiesandprovidefixesthere-
for. It alsohindersopenanalysisof the developmentpro-
cessitself (which is somethingmany developersarehappy
to hide). Overall, it canbea seriousobstacleto having any
unbiasedconfidencein theability of asystemto fulfill its re-
quirements(security, reliability, safety, etc.,asapplicable).

We alsodistinguishherebetweenproprietary andnon-
proprietary software. Note that open-boxsoftware can
comein variousproprietaryandnonproprietaryflavors.

Examplesof nonproprietaryopen-boxsoftware are in-
creasinglyfound in the FreeSoftwareMovement(suchas
the FreeSoftwareFoundation's GNU systemwith Linux)
and the OpenSourceMovement,althoughdiscussionsof
the distinctionsbetweenthosetwo movementsand their
respective nonrestrictive licensingpoliciesarebeyond the
scopeof thisbrief analysis.In essence,bothmovementsbe-
lieve in andactively promoteunconstrainedrightsto modi-

ficationandredistributionof open-boxsoftware[2].
The benefitsof nonproprietaryopen-boxsoftware in-

cludetheability of outsidegoodguysto carryout peerre-
views, addnew functionality, identify flaws, andfix them
rapidly– for example,throughcollaborativeefforts involv-
ing peoplewidely dispersedaroundthe world. Of course,
the risks include increasedopportunitiesfor evil-doers to
discover flaws thatcanbeexploited,or to inserttrapdoors
andTrojanhorsesinto thecode.

A questionfor this panelis what arethe rolesof open-
box softwarein developingrobustsystems,in light of (for
example)the Internet,typically flawed operatingsystems,
vulnerablesystemembeddingsof strongcryptography, and
thepresenceof mobilecode.An architecturalsubquestion
involveswheretrustworthinessmustbeplacedto minimize
theamountof critical codeandto achieverobustnessin the
presenceof thespecifiedadversities.

Will open-boxsoftwarereally improvesystemsecurity?
My answeris not by itself, although the potential is con-
siderable. Many otherfactorsmustbeconsidered.Indeed,
many of the problemsof black-boxsoftware can also be
presentin open-boxsoftware,andvice versa (for example,
flaweddesigns,therisksof mobilecode,ashortageof gifted
systemadministrators,andsoon). In theabsenceof signif-
icant disciplineandinherentlybettersystemarchitectures,
opportunitiesmaybeevenmorewidespreadfor insertionof
maliciouscodein thedevelopmentprocess,andfor uncon-
trolledsubversionsof theoperationalprocess.

Wefacethebasicconflictbetween(a)securityby obscu-
rity to slow down theadversaries,and(b) opennessto allow
for morethoroughanalysis[3] andcollaborative improve-
ment of critical systems– as well as providing a forcing
functionto inspireimprovementsin the faceof discovered
attackscenarios.Ideally, if a systemis meaningfullyse-
cure,openspecificationsandopen-boxsourceshouldnot
beasignificantbenefitto attackers,andthedefendersmight
beableto maintaina competitive advantage!For example,
this is the principle behindusingstrongopenlypublished
cryptographicalgorithms– for whichanalysisof algorithms

1



andtheir implementationsis veryvaluable,andwhereonly
theprivatekeys needto behidden. Otherexamplesof ob-
scurity includetamperproofingandobfuscation.Unfortu-
nately, many existing systemstend to be poorly designed
andpoorly implemented,with respectto incompleteandin-
adequatelyspecifiedrequirements.Developersarethenat
a decideddisadvantage,evenwith black-boxsystems.Be-
sides,researchinitiated in a 1956paperby Ed Moore [1]
remindsusthatpurelyexternal(Gedanken) experimentson
black-boxsystemscanoftendetermineinternalstatedetails.

Behavioral systemrequirementssuch as safety, relia-
bility, and real-time performancecannot be realistically
achieved unlessthe systemsare adequatelysecure. It is
very difficult to build robust applicationsbasedon propri-
etaryblack-boxsoftwarethatis notsufficiently trustworthy.

Further1956 papers,by Moore, ClaudeShannon,and
JohnvonNeumann,showedhow to constructreliablecom-
ponentsoutof lessreliablecomponents.Laterwork oncor-
rect behavior despitesomenumberof arbitrarily perverse
Byzantinefaults followed along thoselines. In that con-
text, building a fault-tolerantsilk purseout of lessrobust
sow's earsis indeedpossiblein somecases.But construct-
ing more trustworthy securesystemsout of lesstrustwor-
thy subsystemsdoesnot seemrealisticwhenthe underly-
ing componentsarecompromisible,despiteefforts suchas
wrappertechnologyandfirewall isolation.

Wheneverachieving securityby obscurityis not thepri-
marygoal,thereseemto bestrongargumentsfor open-box
softwarethatencouragesopenreview of requirements,de-
signs, specifications,and code. Even when obscurity is
deemednecessary, somewider-communityopen-boxap-
proachis desirable.For softwareandfor systemapplica-
tions in which securitycanbeassuredby othermeansand
is notcompromisiblewithin theapplicationitself, theopen-
box approachhasparticularlygreatappeal.In any event,it
is alwaysunwiseto rely solely onobscurity.

So, what else is neededto achieve trustworthy robust
systemsthatarepredictablydependable?Thefirst-level an-
swer is the samefor open-boxsystemsaswell asclosed-
boxsystems:seriousdisciplinethroughoutthedevelopment
cycle andoperationalpractice,useof goodsoftwareengi-
neering,rigorousrepeatedevaluationsof systemsin their
entirety, andenlightenedmanagement,for starters.

A second-level answerinvolves inherently robust and
secureevolvableinteroperablearchitecturesthat avoid ex-
cessive dependenceon untrustworthy components. One
sucharchitectureinvolves thin-client userplatformswith
minimal operatingsystems,where trustworthinessis be-
stowedwhereit is essential– typically, in servers,firewalls,
codedistribution paths,nonspoofableprovenancefor criti-
cal software,cryptographiccoprocessors,tamperproofem-
beddings,preventingdenial-of-serviceattacks,runtimede-
tectionof maliciouscodeanddeviantmisuse,etc. [4].

A third-level answeris that thereis still muchresearch
yet to bedone(suchason realisticcompositionality, inher-
ently robustarchitectures,andopen-boxbusinessmodels),
aswell asmoreefforts to bring that researchinto practice.
Effective technologytransferseemsmuch more likely to
happenin open-boxsystems.

Nonproprietaryopen-boxsystemsare not a panacea.
However, they have potential benefits throughout the
process of developing and operating critical systems.
Impressive beginningsalreadyexist. Nevertheless,much
effort remains in providing the necessarydevelopment
discipline, adequatecontrols over the integrity of the
emerging software, systemarchitecturesthat can satisfy
critical requirements,andwell documenteddemonstrations
of the benefitsof open-boxsystemsin the real world. If
nothingelse,open-boxsuccessesmayhaveaninspirational
effectoncommercialdevelopers,whocanrapidlyadoptthe
bestof the results.But I like thepossibilitiesfor coherent
community cooperation,and have considerablehope for
nonproprietaryopen-boxsoftware.

References

[1] E.F. Moore, Gedanken Experimentson Sequential
Machines,Automata Studies, Annalsof MathematicalStud-
ies,34,C.E.ShannonandJ.McCarthy, eds.,PrincetonUni-
versityPress,1956.pp. 129-153.

[2] The Free Software Foundation Website is
http://www.gnu.org, andcontainssoftware,projects,
licensing procedures,etc.: The Open SourceMovement
Website is http://www.opensource.org/, which
includesEric Raymond's “The Cathedralandthe Bazaar”
andtheOpenSourceDefinition.

[3] Analytic tools for open-boxsourcecode include
CrispinCowan's StackGuard(http://immunix.org),
David Wagner's buffer overflow analyzer
(http://www.cs.berkeley.edu/~daw/papers/),
@Stake's L0pht security review analyzer slint
(http://www.l0pht.com/slint.html) and
RST's ITS4 function-call analyzerfor C and C++ code
(http://www.rstcorp.com/its4/).

[4] The U.S. Army Research Laboratory
(ARL) has supported my work on survivable sys-
tems, under contract DAKF11-97-C-0020. See
http://www.csl.sri.com/neumann for a re-
port for ARL togetherwith a coursetaughtin the fall of
1999 on developing robust systems. That Websitealso
containsa paperon single-level multilevel-securesystems,
N.E.ProctorandP.G.Neumann,ArchitecturalImplications
of Covert Channels,Proceedings of the Fifteenth National
Computer Security Conference, Baltimore, Maryland,
October13–16,1992,pp. 28–43,verymuchin thespirit of
thethin-clientarchitecturenotedabove.


