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Certi.tude:the stateof beingor feelingcertain;
Rec.ti.tudecorrectnessf judgmentor procedurgl]

Thereis a fundamentallifferencebetweencertification
(which is intendedto give you the feeling that someone
or somethings doing the right thing) and correctnesgfor
whichyou hopefullyhave somewell-founded reason to be-
lieve that someoneor somethings doing the right thing —
with respecto appropriatalefinitionsof whatis right). Cer
tification is typically nowherenearenough;correctnesss
somavhatcloserto whatis neededalthoughoftenunattain-
ablein thelarge— thatis, with respecto the entiresystem.
However, formal demonstrationshat somethingis correct
arepotentiallymuchmorevaluablethanlooselybasedcer
tification. So, a challengeconfrontingus hereis to endav
certification— of peopleand of systems— with a greater
senseof rigor andcredibility.

I havelongworkedonsystemswith critical requirements
for security reliability, and survivability in the faceof all
sortsof adwersities. Numeroussystemfailures[2] demon-
stratethevital importanceof people.Many casesreclearly
attributableto humanshortsightednessncompetenceig-
norancecarelessnessy otherfoibles. Ironically, accidents
resultingfrom badly designechumaninterfacesare often
blamedon operators(e.g., pilots) ratherthan developers.
Unfortunatelysoftware engineering aspracticedn muchof
theworld is merelya buzzword ratherthanan engineering
profession[3,4]. This is particularly painful with respect
to systemswith life-critical, mission-critical,or otherwise
stringentrequirements.Consequentlyvariousalternatves
desenre extensve exploration:

e Gooddevelopmenpractice gnforceableequirements,
and sensiblesystem architecturesare all valuable.
Their principleduseshouldearninsurancediscounts,
contractuabonusesandperhapgvenlegalrelieffrom
certain aspectsof liability. Bad developmentprac-
tice (includinglow biddergakingunwiseshortcutand
risks)mustnotbecondoned.

e Critical systemsshouldbe developedby personsand
companiewvith adequatdrainingandeducation.

Therecenty 2K fiasco[5] shouldremindusof how diffi-
cultit is to developdependablsystemgevenwith compe-
tentpeople)andhow muchbetterit is to have systemswell
designedandwell engineeredrom the outset. Much bet-
ter educatiorandtraining mustbecomeanintrinsic part of
the mainstreani6], especiallyaddressinghe foundations
for developing dependablesystems. Overall, we urgently
needto explore alternatveswithin the context of the en-
tire processof development,maintenanceand continued
evolution. Although lowest-common-denominataertifi-
cationof corventionalprogrammersndsimplistic metrics
for judging organizationatompetencarelikely to be pal-
liatives at best,sensibleproceduredor certifying require-
mentsengineerssystemengineerssoftwareengineersge-
buggers.etc., could be just oneof mary potentiallyuseful
stepstoward instilling greaterdisciplineinto the develop-
mentprocess- particularlyfor critical systems.
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