
Certitude and Rectitude

PeterG. Neumann
PrincipalScientist,ComputerScienceLab

SRI International,MenloParkCA 94025-3493
Neumann@CSL.sri.com,http://www.csl.sri.com

1-650-859-2375

Cer.ti.tude:thestateof beingor feelingcertain;
Rec.ti.tude:correctnessof judgmentor procedure[1]

Thereis a fundamentaldifferencebetweencertification
(which is intendedto give you the feeling that someone
or somethingis doing the right thing) andcorrectness(for
whichyou hopefullyhavesomewell-founded reason to be-
lieve that someoneor somethingis doing the right thing –
with respecttoappropriatedefinitionsof whatis right). Cer-
tification is typically nowherenearenough;correctnessis
somewhatcloserto whatis needed,althoughoftenunattain-
ablein thelarge– that is, with respectto theentiresystem.
However, formal demonstrationsthat somethingis correct
arepotentiallymuchmorevaluablethanlooselybasedcer-
tification. So,a challengeconfrontingus hereis to endow
certification– of peopleand of systems– with a greater
senseof rigor andcredibility.

I havelongworkedonsystemswith critical requirements
for security, reliability, andsurvivability in the faceof all
sortsof adversities.Numeroussystemfailures[2] demon-
stratethevital importanceof people.Many casesareclearly
attributableto humanshortsightedness,incompetence,ig-
norance,carelessness,or otherfoibles.Ironically, accidents
resultingfrom badly designedhumaninterfacesare often
blamedon operators(e.g., pilots) rather than developers.
Unfortunately, software engineering aspracticedin muchof
theworld is merelya buzzword ratherthananengineering
profession[3,4]. This is particularlypainful with respect
to systemswith life-critical, mission-critical,or otherwise
stringentrequirements.Consequently, variousalternatives
deserveextensiveexploration:

� Gooddevelopmentpractice,enforceablerequirements,
and sensiblesystem architecturesare all valuable.
Their principleduseshouldearninsurancediscounts,
contractualbonuses,andperhapsevenlegalrelief from
certain aspectsof liability. Bad developmentprac-
tice(includinglow bidderstakingunwiseshortcutsand
risks)mustnotbecondoned.

� Critical systemsshouldbe developedby personsand
companieswith adequatetrainingandeducation.

TherecentY2K fiasco[5] shouldremindusof how diffi-
cult it is to developdependablesystems(evenwith compe-
tentpeople),andhow muchbetterit is to havesystemswell
designedandwell engineeredfrom the outset. Much bet-
ter educationandtrainingmustbecomeanintrinsic partof
the mainstream[6], especiallyaddressingthe foundations
for developingdependablesystems.Overall, we urgently
needto explore alternativeswithin the context of the en-
tire processof development,maintenance,and continued
evolution. Although lowest-common-denominatorcertifi-
cationof conventionalprogrammersandsimplisticmetrics
for judgingorganizationalcompetencearelikely to bepal-
liativesat best,sensibleproceduresfor certifying require-
mentsengineers,systemengineers,softwareengineers,de-
buggers,etc.,could be just oneof many potentiallyuseful
stepstoward instilling greaterdiscipline into the develop-
mentprocess– particularlyfor critical systems.

1. Abstractedfrom Webster's InternationalDictionary.

2. PeterG.Neumann,Computer-RelatedRisks,Addison-
Wesley, 1995,with considerablesubsequentmaterial
on-line.http://www.csl.sri.com/neumann

3. David L. Parnas,Software Engineering:An Uncon-
summatedMarriage,CACM 40, 9, September1997.

4. PeterJ.Denning,ComputerScienceandSoftwareEn-
gineering:Filing for Divorce?,CACM 41, 8, August
1998.

5. PeterG. Neumann,A Taleof Two Thousands,CACM
43, 3, March2000.

6. PGN,notesfor a courseon developinghighly surviv-
able systemsand networks, University of Maryland,
Fall 1999.http://www.csl.sri.com/neumann/umd.html


