Certitude and Rectitude

PeterG. Neumann
PrincipalScientist,ComputerSciencd.ab
SRl InternationalMenlo Park CA 94025-3493
Neumann@CSL.sri.corhitp://www.csl.sri.com
1-650-859-2375

Certi.tude:the stateof beingor feelingcertain;
Rec.ti.tudecorrectnessf judgmentor procedurgl]

Thereis a fundamentallifferencebetweencertification
(which is intendedto give you the feeling that someone
or somethings doing the right thing) and correctnesgfor
whichyou hopefullyhave somewell-founded reason to be-
lieve that someoneor somethings doing the right thing —
with respecto appropriatalefinitionsof whatis right). Cer
tification is typically nowherenearenough;correctnesss
somavhatcloserto whatis neededalthoughoftenunattain-
ablein thelarge— thatis, with respecto the entiresystem.
However, formal demonstrationshat somethingis correct
arepotentiallymuchmorevaluablethanlooselybasedcer
tification. So, a challengeconfrontingus hereis to endav
certification— of peopleand of systems— with a greater
senseof rigor andcredibility.

I havelongworkedonsystemswith critical requirements
for security reliability, and survivability in the faceof all
sortsof adwersities. Numeroussystemfailures[2] demon-
stratethevital importanceof people.Many casesreclearly
attributableto humanshortsightednessncompetenceig-
norancecarelessnessy otherfoibles. Ironically, accidents
resultingfrom badly designechumaninterfacesare often
blamedon operators(e.g., pilots) ratherthan developers.
Unfortunatelysoftware engineering aspracticedn muchof
theworld is merelya buzzword ratherthanan engineering
profession[3,4]. This is particularly painful with respect
to systemswith life-critical, mission-critical,or otherwise
stringentrequirements.Consequentlyvariousalternatves
desenre extensve exploration:

e Gooddevelopmenpractice gnforceableequirements,
and sensiblesystem architecturesare all valuable.
Their principleduseshouldearninsurancediscounts,
contractuabonusesandperhapgvenlegalrelieffrom
certain aspectsof liability. Bad developmentprac-
tice (includinglow biddergakingunwiseshortcutand
risks)mustnotbecondoned.

e Critical systemsshouldbe developedby personsand
companiewvith adequatdrainingandeducation.

Therecenty 2K fiasco[5] shouldremindusof how diffi-
cultit is to developdependablsystemgevenwith compe-
tentpeople)andhow muchbetterit is to have systemswell
designedandwell engineeredrom the outset. Much bet-
ter educatiorandtraining mustbecomeanintrinsic part of
the mainstreani6], especiallyaddressinghe foundations
for developing dependablesystems. Overall, we urgently
needto explore alternatveswithin the context of the en-
tire processof development,maintenanceand continued
evolution. Although lowest-common-denominataertifi-
cationof corventionalprogrammersndsimplistic metrics
for judging organizationatompetencarelikely to be pal-
liatives at best,sensibleproceduredor certifying require-
mentsengineerssystemengineerssoftwareengineersge-
buggers.etc., could be just oneof mary potentiallyuseful
stepstoward instilling greaterdisciplineinto the develop-
mentprocess- particularlyfor critical systems.

1. Abstractedrom Websters InternationaDictionary,

2. PeteiG. NeumannComputerRelatedRisks,Addison-
Wesley, 1995, with considerablesubsequentaterial
on-line. http://www.csl.sri.com/neumann

3. David L. Parnas,Software Engineering: An Uncon-
summatedviarriage,CACM 40, 9, Septembefl997.

4. Peterd. Denning,ComputeiScienceandSoftwareEn-
gineering: Filing for Divorce?,CACM 41, 8, August
1998.

5. PeterG. NeumannA Tale of Two ThousandsCACM
43, 3, March2000.

6. PGN, notesfor a courseon developinghighly surviv-
able systemsand networks, University of Maryland,
Fall 1999.http://wwwi.csl.sri.com/neumann/unmami



