
When Can Formal Methods

Make a Real Difference?

- -

Peter G. Neumann
Computer Science Laboratory
SRI International
Menlo Park, CA 94025-3493
Neumann@CSL.sri.com
www.csl.sri.com/neumann
Tel 1-650-859-2375
ICFEM, 10 November 2004

1

Some Regions in the FM Spectrum
- -
• Theorem proving
• Model checking
• Model-based design
• Formal specification
• Formal test-case generation
• Semi-formal approaches, heuristics
• Hand-waving ad-hoc-ery

These can be applied in the small up to
entire systems in the large (with increasing
effort). System-oriented analyses are
needed, especially for critical systems.

2

Scope of Analyses
- -
• Hardware/software life-cycle issues
• Requirements, architectures, algorithms,

specs, protocols, components, subsystems,
applications, total systems, enterprises

• Compositional soundness (for requirements,
policies, specs, code, proofs)

• Dependency analyses (modules, specs, code)
• Code/spec & spec/requirement consistency
• Static analysis of software (buffer overflows,

synchronization, race conditions, type safety,
memory leaks, memory residues, etc.).

3

Properties of Compositions
- -
We seek toevaluate properties of systems
developed as predictable compositions of
subsystems– e.g., emergent higher-level
properties such as system trustworthiness,
survivability, end-to-end security with
untrustworthy intermediates, avoidance of
propagating failures, interoperability, ...
Decomposability: byproduct of composability.
(Existing research is generally either
inadequate or ignored.)
See my CHATS report (URL follows).

4

System-Oriented Analyses
- -
• Horizontal (modular) composition
• Vertical (hierarchical) composition, with

state mappings and functional dependence
• Whole systems as subsystem compositions
• Temporal refinement consistency
• Other life-cycle considerations
• All of the above in coherently unified usage
• Focus here is on critical systems, but is

also relevant to mass-market systems.

5

Emergent Trustworthiness Properties:
- -
• Human safety in critical systems
• Total-system reliability
• System survivability despite adversities
• System/network security/privacy
• Interface usability/robustness/perspicuity/

compatibility/interoperability

Application areas: critical infrastructures,
aviation, space, DoD, health care, finance,
law enforcement, national security, etc.

6

Static Analysis
- -
Buffer/stack overflows and other flaw types are
ubiquitous. But we knew how to avoid many of
them in the 1960s. Useful tools include Crispin
Cowan’s StackGuard, Dave Wagner’s buffer
overflow analyzer, Ashcraft-Engler, Brian
Chess, RaceTrack, slint; spec#, slam, etc.
Hao Chen’s MOPS uses model checking,
and found some hitherto undetected bugs.
(See CHATS report App. A, Hao’s thesis.)

7

Model-Based Design Might Have Avoided?
- -
• Patriot system clock drift (req/spec/code)
• Yorktown divide by 0 outage (app/OS)
• Airbus A320 crashes (autopilot/pilot)
• Handley-Page Victor tailplane collapse

(3 independent but all erroneous
corroborating analyses)

• Therac 25 non-atomic mode change
• John Denver’s gas tank interface:

(Up for off, Right for L, Down for R)

8

Formal Test Generation Might Have Avoided?
- -
• Intel FDIV hardware flaw
• First Columbia shuttle synchronization
• Mariner 1 Venus probe (R dot bar sub n)
• Patriot system clock drift (spec/code)
• Yorktown divide by 0 outage (app/OS)
• Bell V-22 Osprey (correct sensor outvoted)
• Airbus 320 crashes (autopilot/pilot)
• Lauda Air crash (thrust-reversers)
• Automated train collisions/crashes
• Therac 25 non-atomic mode change

9

Anticipating Error Propagation Effects
- -
• 1980 ARPANET collapse: router memory

errors, weak status-message garbage
collection, node memory exhaustion

• 1990 AT&T longlines half-day collapse:
unvetted upgrade in recovery software

• Both thought to have been impossible!
• Power-grid propagation outages
• Identify enabling conditions; fault-tree

analysis? model checking? exhaustive
iterative closure? formal verification?
dependency analysis? combination of these?

10

Election Systems
- -
• Requirements include end-to-end integrity,

tamper-proofing, reliability, accountability,
nonsubvertible voter-verified auditing,
without compromising voter privacy, etc.

• We need strength in depth, but have
weakness in depth: faith-based elections.
Today’s standards are poor; evaluations
are proprietary, paid by vendors;
partisan oversight: Risks everywhere.

• FM in architectures, software engineering,
finding vulnerabilities, weak links?

11

What Are Realistic Expectations?
- -
• Historically, significant system promise in

the 1970s was too far ahead of its time,
e.g., SRI’s SIFT and PSOS, TSSEC A1.

• The potential gains are much greater now,
because of many other advances (CPU
speed/memory, model checking, tools,
increased scale of application).

• Intel, Microsoft, and others countries
are exhibiting renewed interest.
Many of you are the new generation!

12

General Lessons Learned

- -

• Computer development is an incremental
process, driven by marketplace forces. But
security research and high assurance are
slow to be adopted commercially —
despite many urgent critical needs.

• Good requirements, sound architectures,
principled developments, whole-system
analyses, experience, etc. are essential!
Enormous benefits await, sooner and later.

13

More Lessons Learned

- -

• Hierarchical design with modular
encapsulation is a powerful design aid. It
need not undermine efficiency, especially
with appropriate hardware.

• A formal methodology can be valuable
for increasing critical-function assurance,
especially security/reliability. Spec checks
can detect/prevent many flaws.Use
formal methods where most effective.

• Long-term global optimization is needed.

14

Very High Fault Tolerance (History 1)
- -
SIFT: Software Implemented Fault Tolerance
(SRI fly-by-wire system for NASA, 1973-80):
redundant system (7 CPUs, 7 memories,
7 buses, 7 power supplies) with 2-out-of-3
voting, 10−5 processor failure probability
leads to10−10 system failure probability.
Hierarchically layered abstractions, related
functionally to one another, with higher-layer
properties derived iteratively from the
hardware up through the application SW.

15

SIFT Abstraction Hierarchy
- -
• Markov model failure probability 10−10/hr
• I/O Model: System Safe (all tasks correct)
• Task Replication Model: values voted

upon on task completion
• Task Activity Model: startup, broadcast

of values, voting, synchronization
• OS specs: scheduler, voter, dispatcher,

buffer manager, etc.
• Pascal code for each routine
• BDX-930 Code

16

PSOS Design (1973-80, History 2)

- -

• Pervasive capability addressing, tagged and
nonforgeable in hardware, nonbypassable,
high-end OS/application security

• Hierarachical abstraction with modular
encapsulation, object oriented, strongly
typed, formally specified in SRI’s HDM:
Hierarchical Development Methodology.
Generic flaws avoided by spec language.

• Arbitrarily extensible

17

PSOS Capabilities
- -
• Only two operations create capabilities:

create new one, or create restricted copy.

• All objects typed, capability-addressed,
nonbypassably.

• Capabilities directly accessible unless
masked by some intervening layer.

• Capabilities can be tagged as propagation
limited to avoid secondary use.

18

PSOS Implementability

- -

• Many lower-layer ops * are executable
from above, although some are hidden []

• Multilevel security could be embedded
in layer 0 or as a secure object type.

• Hardware could have been easily retrofitted
in 1980s-style CPUs.

• PSOS-like typing is used in Honeywell/SCC
secure systems.

19

Formal Methodology: HDM/PVS/SAL/ICS

- -

• Use of HDM enabled formal specification:
modules, interlayer state mappings, abstract
implementations, system analyses.

• A complex design is conceptually simple
through its hierarchy and composable
modular abstraction with encapsulation.

• PVS “interpretations” now provide similar
ability to consider systems in the large.

20

Historical Perspectives

- -

• Butler Lampson in the 1970s:
Capability systems are the way of the
future, and always will be.

(Also said of formal methods!)

• Contrarian view from the 2000s:
Shortsightedness and local optimization are
the way of the future, and always will be.

21

URLs

- -

• PGN: www.CSL.sri.com/neumann/

• PGN: Principled Assuredly Trustworthy
Composable Architectures:
www.CSL.sri.com/neumann/
chats4.html, also .pdf, .ps

• Neumann-Feiertag PSOS paper, 2003:
www.csl.sri.com/neumann/psos03.pdf

• ACM Risks Forum archives: www.risks.org
• SRI Formal Methods (PVS, SAL, ICS, ...):

www.csl.sri.com/programs/formalmethods/

22

PSOS/HDM References
- -
• P.G. Neumann, R.S. Boyer, R.J. Feiertag,

K.N. Levitt, L. Robinson, A Provably
Secure Operating System: The System,
Its Applications, and Proofs, Computer
Science Laboratory, SRI International,
Menlo Park, California, May 1980.

• L. Robinson, K.N. Levitt, Proof Techniques
for Hierarchically Structured Programs,
CACM,20, 4, April 1977.

23

layer PSOS Abstraction or Function
17+ applications and user code (-)
16 user request interpreter *
15 user environments and name spaces *
14 user input-output *
13 procedure records *
12 user processes*, visible input-output*
11 creation and deletion of user objects*
10 directories (*)[c11]
9 extended types (*)[c11]
8 segmentation (*)[c11]
7 paging [8]
6 system processes, input-output [12]
5 primitive input/output [6]
4 arithmetic, other basic operations *
3 clocks [6]
2 interrupts [6]
1 registers (*), addressable memory [7]
0 capabilities *

Note:
* user-visible interface

(*) partially visible interface
(-) user-restrictable as desired

[c11] creation/deletion hidden by layer 11
[i] module hidden by layer i=6,7,8, or 12

24

layer PSOS Abstraction or Function
17+ applications and user code (-)
16 user request interpreter *
15 user environments and name spaces *
14 user input-output *
13 procedure records *
12 user processes*, visible input-output*
11 creation and deletion of user objects*
10 directories (*)[c11]
9 extended types (*)[c11]
8 segmentation (*)[c11]
7 paging [8]
6 system processes, input-output [12]
5 primitive input/output [6]
4 arithmetic, other basic operations *
3 clocks [6]
2 interrupts [6]
1 registers (*), addressable memory [7]
0 capabilities *

Note:
* user-visible interface

(*) partially visible interface
(-) user-restrictable as desired

[c11] creation/deletion hidden by layer 11
[i] module hidden by layer i=6,7,8, or 12

25

Group PSOS Abstraction layers
G user/application activities 17–...
F user abstractions 14–16
E community abstractions 10–13
D abstract object manager 9
C virtual resources 6–8
B physical resources 1–5
A capabilities 0

26

layer PSOS Abstraction or Function
8 segmentation (*)[c11]
7 paging [8]
6 system processes, input-output [12]
5 primitive input/output [6]
4 arithmetic, other basic operations *
3 clocks [6]
2 interrupts [6]
1 registers (*), addressable memory [7]
0 capabilities *

Ideally all in hardware.

27

layer PSOS Abstraction or Function
12 user processes*, visible I/O*
11 creation/deletion of user objects*
10 directories (*)[c11]
9 extended types (*)[c11]
8 segmentation (*)[c11]
4 arithmetic, other basic operations *
1 registers (*)
0 capabilities *

28

layer PSOS Abstraction or Function
17+ applications and user code (-)
16 user request interpreter *
15 user environments and name spaces *
14 user input-output *
13 procedure records *
12 user processes*, visible input-output*
11 creation and deletion of user objects*
10 directories (*)[c11]
9 extended types (*)[c11]
8 segmentation (*)[c11]
4 arithmetic, other basic operations *
1 registers (*)
0 capabilities *

29

layer Properties for Analysis
17+ Application-relevant properties
16 Soundness of user types
15 Search-path flaw avoidance
12 Process isolation, no residues,
11 No lost objects
9 Generic type soundness
8 Segmentation integrity
6 Interrupts properly masked
4 Correctness of basic operations
0 Nonforgeable, nonbypassable,

nonalterable capabilities

30

