Combatting Insider Misuse

Peter G. Neumann
Computer Science Laboratory
SRI International
The only way to address insider misuse sensibly is to make significant improvements to system and networking trustworthiness:

- Architecturally
- Developmentally
- Operationally
Definitions

• Insider: a system user that can misuse certain privileges
 – Determined relative to the boundaries of interest
• Other definitions in the literature:
 – Exclude outsiders who become insiders
 – Assume the reader “knows” what an insider is
 – Assume a perimeter separates “insider” and “outsider”
• Notion of a single perimeter unrealistic
Assumptions

• Physical presence irrelevant
 – Insider can be remote; outsider can be local
• Outsiders can become insiders
 – Break in (social engineering, holes, ...)
• Distinction between malicious, accidental misleading
 – Do something deliberately, other events accidentally occur
Classes of Insiders

• Entities can be both insiders and outsiders
 – Depends on frame of reference
• Example: system with partitioned administrator privileges
 – Trusted Xenix
• Implication: “insider” multidimensional
Classes of Insider Misuse

• Obviousness
 – Obvious vs. stealthy

• Intent
 – Accidental vs. intentional
Threats

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Outsiders</th>
<th>Insiders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access controls</td>
<td>Unprivileged exploitation of inadequate controls</td>
<td>Privileged manipulation of access controls</td>
</tr>
<tr>
<td>Confidentiality</td>
<td>Unencrypted password capture</td>
<td>National security leaks</td>
</tr>
<tr>
<td>Integrity</td>
<td>Untrustworthy Web code</td>
<td>Putting Trojan horses in trusted components</td>
</tr>
<tr>
<td>Denial of Service</td>
<td>Flooding, physical harm to exposed equipment</td>
<td>Disabling protected components</td>
</tr>
<tr>
<td>Authentication</td>
<td>Penetrations, attacks on PKI/authentication infrastructures</td>
<td>Usurpation of superuser, access to root keys</td>
</tr>
<tr>
<td>Accountability</td>
<td>Masquerading, attacks on accounting infrastructures</td>
<td>Hacking beneath the audit trails, altering audit logs</td>
</tr>
<tr>
<td>Other misuses</td>
<td>Planting pirated software on web</td>
<td>Running covert business, insider trading</td>
</tr>
</tbody>
</table>

July 22, 2008

Workshop on Countering Insider Threats
Role of Knowledge

• Outsiders: direct info and inferences from web info (such as penetration scripts), help files, social engineering; chats helpful

• Ordinary insiders: experience gained from normal use and experiments; familiarity with sensitive files, project knowledge; collusion easy

• Privileged insiders: deep knowledge from experience; ability to change and abuse privileges; ability to create invisible accounts; collusion dicier?
Exploiting Vulnerabilities

• Insider: attack may be close to expected behavior
 – Gradually shift statistical profile, defeating anomaly IDS
 – Better system security improves situation
Resulting Risks

• Differ between outsiders, insiders; but *effects* can be similar

• Examples
 – Outsiders becoming insiders may do as much, less, or more damage than existing insiders
 – Outsiders can create major havoc or damage especially if firewall, authentication, and server security is weak
Examples:
High Tech, Detailed Knowledge

• Autotote ex-programmer hacked willing Breeders’ Cup Pick Six horserace off-track betting system
• Hackers penetrated Russian Gazprom, controlled pipeline flow
• Rogue code in Microsoft software included rogue password to allow access to thousands of Web sites
Examples:
Low Tech, Government Privileges

• Aldrich Ames, spy in the US CIA
• Browsing by US IRS employees for curiosity, fraud
• Danish mailman intercepted postal mail, led to credit card fraud
• Nova Scotia worker deleted her speeding ticket
Examples:
Low Tech, Other Privileges

• Laptop stolen, financial records of customers for 4 banks compromised
• 4000-person AIDS database leaked to press
• Bank executive in Malaysia transferred $1,500,000
• Pakistani outsourcee of UCSF health-care group threatened to release personal data files unless paid back wages
Prevention

• Saltzer-Schroeder principles of secure design
 – Especially psychological acceptability
• Need meaningful, stated security policy
 – Must be implementable with existing security mechanisms
 – Fine-grained access controls critical to minimizing insider misuse
Security Policies

• Explicitly define both insider misuse and proper behavior
• Need to be appropriate to application domain
 – So that domain must be understood
• Existing audit trails generally inadequate for insider misuse detection
Detection, Analysis, Identification

• What to analyze depends on several things
 – Where insiders can come from
 – Goals of analysis

• Unknown types of insider attacks require new uses of statistical analysis
 – Emphasis on correlation on a wide-area (enterprise-wide) basis
 – Need to design, implement tools to do this

• **DANGER: false accusations!**
Responses

• Cut off attacks or let them continue?
 – Depends on goals

• If allowed to continue, must deal with continuing compromise of system
 – Simply restoring may not be enough
Decomposition of Insider Problem

• Development stages: system architecture and design
• Operational aspects: system administration, support; enterprise management
• Security issues: authentication, intrusion detection
• Psychological and other factors
 – Critical as detection relies on knowing expected normal behavior
 – Are there psychological traits that could be revealing?
• Responses: tailored to the misuse detected
Observations

• Gap between intended allowed uses and uses thought to be allowed
• Gap between what is thought to be allowed and what is actually possible
• Without a security policy, how do you know what constitutes misuse?
 – What does “unauthorized use” mean when everything authorized
Example: High-Integrity Elections

• Good paradigm that illustrates “insider” is hierarchical, distributed, context-dependent

• Many requirements;
 – Registration, authentication, authorization, voter information
 – Polling place availability, accessibility
 – Vote casting, counting
 – Monitoring (auditing), remediation of detected irregularities
Election Integrity Principles
(see Saltzer and Schroeder, 1975)

- Don’t use an OS, or minimize OS functions
- Security controls cannot be bypassed
- Do not depend on secrecy for security
- Keep vendor, election official privileges separate
- Apply least privilege
- Make systems easy to use, both for voters and election officials
- Provide pervasive, forensic-quality auditing
- If policy may need to be altered, do not embed that policy in a mechanism
Research and Development Directions

- Recognize commonalities in insider, outsider misuse
- Effort to define characteristic types of insider misuse
- Need fine-grained access policies, mechanisms
- Move focus of commercial tools to detecting unknown misuse, not just known misuse
- Address hierarchical, distributed correlation of results aggregated across different sensors, analytic tools, and systems
- Integrate this all with network management
- Systems used to manage this must be tamperproof and spoofproof
- Extend profiles to include extrinsic individual characteristics
What This Workshop Can Do

• Explore idiosyncracies of insider misuse
• Elaborate on the above, and other, research directions
Parting Thought

• COTS intrusion detection systems not useful for detecting unrecognized forms of insider misuse
• Proprietary monocultures dangerous in the long run
 – Just look at e-voting systems and how dependent counties and states are on the single vendor
• Robust, open source software could have tremendous payoffs
 – May inspire COTS developers to produce better systems
 – Here, “robust” is critical