
CDRL A001 Final Report December 28, 2004

Principled Assuredly Trustworthy
Composable Architectures

Final Report
Contract number N66001-01-C-8040
DARPA Order No. M132
SRI Project P11459

Submitted by: Peter G. Neumann, Principal Investigator
Principal Scientist, Computer Science Laboratory
SRI International EL-243, 333 Ravenswood Ave
Menlo Park, California 94025-3493, USA
Neumann@csl.sri.com; http://www.csl.sri.com/neumann
Phone: 1-650-859-2375; Fax: 1-650-859-2844

Prepared for:
Contracting Officer, Code D4121
SPAWAR Systems Center
San Diego, California

Approved:
Patrick Lincoln, Director
Computer Science Laboratory
William Mark, Vice President
Information and Computing Sciences Division

This report is available on-line for browsing
http://www.csl.sri.com/neumann/chats4.html

and also for printing or displaying
http://www.csl.sri.com/neumann/chats4.pdf
http://www.csl.sri.com/neumann/chats4.ps

Contents

Preface vii

Abstract viii

Executive Summary ix

1 The Foundations of This Report 1

2 Fundamental Principles of Trustworthiness 6
2.1 Introduction .. . 6
2.2 Risks Resulting from Untrustworthiness 7
2.3 Trustworthiness Principles 9

2.3.1 Saltzer–Schroeder Security Principles, 1975 10
2.3.2 Related Principles, 1969 and Later 13
2.3.3 Principles of Secure Design (NSA, 1993) 18
2.3.4 Generally Accepted Systems Security Principles (I2F , 1997) 20
2.3.5 TCSEC, ITSEC, CTCPEC, and the Common Criteria (1985 todate) 21
2.3.6 Extreme Programming, 1999 .. . 21
2.3.7 Other Approaches to Principled Development 22

2.4 Design and Implementation Flaws, and Their Avoidance 22
2.5 Roles of Assurance and Formalism 25
2.6 Caveats on Applying the Principles 26
2.7 Summary . 29

3 Realistic Composability 30
3.1 Introduction .. . 30
3.2 Obstacles to Seamless Composability 31
3.3 System Decomposition 33
3.4 Attaining Facile Composability 35
3.5 Paradigmatic Mechanisms for Enhancing Trustworthiness 42
3.6 Enhancing Trustworthiness in Real Systems 50
3.7 Challenges .. 54
3.8 Summary . 54

i

ii CONTENTS

4 Principled Composable Trustworthy Architectures 56
4.1 Introduction .. . 56
4.2 Realistic Application of Principles 57
4.3 Principled Architecture 59
4.4 Examples of Principled Architectures 71
4.5 Openness Paradigms .. . 73
4.6 Summary . 76

5 Principled Interface Design 78
5.1 Introduction .. . 78
5.2 Fundamentals .. 79

5.2.1 Motivations for Focusing on Perspicuity 80
5.2.2 Risks of Bad Interfaces .. . 81
5.2.3 Desirable Characteristics of Perspicuous Interfaces 82
5.2.4 Basic Approaches .84
5.2.5 Perspicuity Based on Behavioral Specifications 85
5.2.6 System Modularity, Visibility, Control, and Correctness 86

5.3 Perspicuity through Synthesis 87
5.3.1 System Architecture .. 87
5.3.2 Software Engineering .. . 89
5.3.3 Programming Languages and Compilers 90
5.3.4 Administration and System Operation 92
5.3.5 No More and No Less . 92
5.3.6 Multilevel Security and Capabilities 93

5.4 Perspicuity through Analysis 93
5.4.1 General Needs . 93
5.4.2 Formal Methods . 95
5.4.3 Ad-Hoc Methods . 95
5.4.4 Hybrid Approaches .95
5.4.5 Inadequacies of Existing Techniques 95

5.5 Pragmatics .. 96
5.5.1 Illustrative Worked Examples 96
5.5.2 Contemplation of a Specific Example 97

5.6 Conclusions .. 98

6 Assurance 99
6.1 Introduction .. . 99
6.2 Foundations of Assurance 100
6.3 Approaches to Increasing Assurance 104
6.4 Formalizing System Design and Development 106
6.5 Implementation Consistency with Design 108
6.6 Static Code Analysis 108
6.7 Real-Time Code Analysis 109
6.8 Metrics for Assurance 109

CONTENTS iii

6.9 Assurance-Based Risk Reduction 109
6.10 Conclusions on Assurance 112

7 Practical Considerations 114
7.1 Risks of Short-Sighted Optimization 114
7.2 The Importance of Up-Front Efforts 116
7.3 The Importance of Whole-System Perspectives 117
7.4 The Development Process 119

7.4.1 Disciplined Requirements 120
7.4.2 Disciplined Architectures 120
7.4.3 Disciplined Implementation 122

7.5 Disciplined Operational Practice 123
7.5.1 Today’s Overreliance on Patch Management 123
7.5.2 Architecturally Motivated System Administration 124

7.6 Practical Priorities for Perspicuity 125
7.7 Assurance Throughout Development 126

7.7.1 Disciplined Analysis of Requirements 127
7.7.2 Disciplined Analysis of Design and Implementation 127

7.8 Assurance in Operational Practice 128
7.9 Certification .. . 129
7.10 Management Practice 131

7.10.1 Leadership Issues .. . 131
7.10.2 Pros and Cons of Outsourcing 131

7.11 A Forward-Looking Retrospective 134

8 Recommendations for the Future 136
8.1 Introduction .. . 136
8.2 General R&D Recommendations 136
8.3 Some Specific Recommendations 141
8.4 Architectures with Perspicuous Interfaces 144
8.5 Other Recommendations 145

9 Conclusions 148
9.1 Summary of This Report .. . 148
9.2 Summary of R&D Recommendations 148
9.3 Risks . 149
9.4 Concluding Remarks .. . 150

Acknowledgments 152

A Formally Based Static Analysis (Hao Chen) 153
A.1 Goals of the Berkeley Subcontract 153
A.2 Results of the Berkeley Subcontract 153

iv CONTENTS

A.3 Recent Results .. 157
A.4 Integration of Static Checking into EMERALD 158

B System Modularity (Virgil Gligor) 159
B.1 Introduction .. . 159
B.2 Modularity .160

B.2.1 A Definition of “Module” for a Software System 161
B.2.2 System Decomposition into Modules 162
B.2.3 The “Contains” Relation .. . 163
B.2.4 The “Uses” Relation .163
B.2.5 Correctness Dependencies Among System Modules 164
B.2.6 Using Dependencies for Structural Analysis of Software Systems 165

B.3 Module Packaging .. 165
B.4 Visibility of System Structure Using Modules 166

B.4.1 Design Abstractions within Modules 166
B.4.2 Information Hiding as a Design Abstraction for Modules 167
B.4.3 Layering as a Design Abstraction Using Modules 168

B.5 Measures of Modularity and Module Packaging 169
B.5.1 Replacement Dependence Measures 169
B.5.2 Global Variable Measures .. . 169
B.5.3 Module Reusability Measures 170
B.5.4 Component-Packaging Measures 171

B.6 Cost Estimates for Modular Design 171
B.7 Tools for Modular Decomposition and Evaluation 172

B.7.1 Modularity Analysis Tools Based on Clustering 173
B.7.2 Modularity Analysis Tools based on Concept Analysis 174

B.8 Virgil Gligor’s Acknowledgments 174

Bibliography 181

Index 210

List of Tables

2.1 CHATS Relevance of Saltzer–Schroeder to CHATS Goals 12
2.2 CHATS Relevance of Extended-Set Principles to CHATS Goals 17
2.3 GASSP Cross-Impact Matrix 21

7.1 Pros and Cons of Outsourcing 133

v

List of Figures

B.1 Example of theContainsRelation . 176
B.2 Example of theContainsRelation and Module Hierarchy 177
B.3 Example of Refining theUsesRelation 1 . 178
B.4 Example of Refining theUsesRelation 2 . 179
B.5 Example of Refining theUsesRelation 3 . 180

vi

Preface

This document is the final report for Task 1 of SRI Project 11459, Architectural Frameworks
for Composable Survivability and Security, under DARPA Contract No. N66001-01-C-8040 as
part of DARPA’s Composable High-Assurance Trustworthy Systems (CHATS) program. Douglas
Maughan was the DARPA Program Manager through the first two years of the project. He has
been succeeded by Tim Gibson.

Acknowledgments are given at the end of the body of this report. However, the author would like
to give special mention to the significant contributions of Drew Dean and Virgil Gligor.

This report contains no proprietary or sensitive information. Its contents may be freely dissemi-
nated. All product and company names mentioned in this report are trademarks of their respective
holders.

vii

Abstract

This report presents the results of our DARPA CHATS project.We characterize problems in and
approaches to attaining computer system and network architectures. The overall goal is to be better
able to develop and more rapidly configure highly trustworthy systems and networks able to sat-
isfy critical requirements (including security, reliability, survivability, performance, and other vital
characteristics). We consider ways to enable effective systems to be predictably composed out of
interoperable subsystems, to provide the required trustworthiness — with reasonably high assur-
ance that the critical requirements will be met under the specified operational conditions, and (we
hope) that do something sensible outside of that range of operational conditions. This work thus
spans the entire set of goals of the DARPA CHATS program — trustworthiness, composability,
and assurance — and much more.

By trustworthiness,we mean simplyworthy of being trusted to fulfill whatever critical re-
quirements may be neededfor a particular component, subsystem, system, network, application,
mission, enterprise, or other entity. Trustworthiness requirements might typically involve (for
example) attributes of security, reliability, performance, and survivability under a wide range of
potential adversities. Measures of trustworthiness are meaningful only to the extent that (a) the
requirements are sufficiently complete and well defined, and(b) can be accurately evaluated.

This report should be particularly valuable to system developers who have the need and/or the
desire to build systems and networks that are significantly better than today’s conventional mass-
market and custom software. The conclusions of the report can also be useful to government
organizations that fund research and development efforts,and to procurers of systems that must be
trustworthy.

viii

Executive Summary

Anyone will renovate his science who will steadily look after the irregular phenomena.
And when the science is renewed, its new formulas often have more of the voice of the
exceptions in them than of what were supposed to be the rules.William James

In this report, we confront an extremely difficult problem — namely, how to attain demonstra-
bly trustworthy systems and networks that must operate under stringent requirements for security,
reliability, survivability, and other critical attributes, and that must be able to evolve gracefully
and predictably over time — despite changes in requirements, hardware, communications tech-
nologies, and radically new applications. In particular, we seek to establish a sound basis for the
creation of trustworthy systems and networks that can be easily composed out of subsystems and
components, with predictably high assurance, and also do something sensible when forced to oper-
ate predictably outside of the expected normal range of operational conditions. Toward this end, we
examine a set ofprinciplesfor achieving trustworthiness, considerconstraintsthat might enhance
composability, pursuearchitecturesandtrustworthy subsystemsthat are inherently likely to result
in trustworthy systems and networks, define constraints onadministrative practicesthat reduce
operational risks, and seek approaches that can significantly increaseassurance.The approach
is intended to be theoretically sound as well as practical and realistic. We also outline directions
for new research and development that could significantly improve the future for high-assurance
trustworthy systems.

With respect to the future of trustworthy systems and networks, perhaps the most important
recommendations involve the urgent establishment and use of soundly based, highly disciplined,
and principle-driven architectures,as well asdevelopment practices that systematically encompass
trustworthiness and assurance as integral parts of what must become coherent development pro-
cesses and sound subsequent operational practices.Only then can we have any realistic assurances
that our computer-communication infrastructures — and indeed our critical national infrastructures
— will be able to behave as needed, in times of crisis as well asin normal operation. The challenges
do not have easy turn-the-crank solutions. Addressing themrequires considerable skills, under-
standing, experience, education, and enlightened management. Success can be greatly increased
in many ways, including the availability ofreliable hardware components, robust and resilient
network architectures and systems, consistent use of good software engineering practices, careful
attention to human-oriented interface design, well-conceived and sensibly used programming lan-
guages, compilers that are capable of enhancing the trustworthiness of source code, techniques
for increasing interoperability among heterogeneous distributed systems and subsystems, methods
and tools for analysis and assurance, design and development of systems that are inherently easier
to administer and that provide better support for operational personnel, and many other factors.

ix

x EXECUTIVE SUMMARY

The absence or relative inadequacy with respect to each of these factors today represents a poten-
tial weak link in a process that is currently riddled with toomany weak links. On the other hand,
much greater emphasis on these factors can result in substantially greater trustworthiness, with
predictable results.

The approach taken here is strongly motivated by historicalperspectives of promising research
efforts and extensive development experience (both positive and negative) relating to the develop-
ment of trustworthy systems. It is also motivated by the practical needs and limitations of com-
mercial developments as well as some initial successes in inserting significantly greater discipline
into the open-source world. It provides useful guidelines for disciplined system developments and
future research.

This report cannot be everything for everyone, although it should have some appeal to a rel-
atively broad range of readers. As a consequence of the inherent complexity associated with the
challenges of developing and operating trustworthy systems and networks, we urge readers with
experience in software development to read this report thoroughly, to see what resonates nicely
with their experience. However, to the inexperienced developer or to the experienced developer
who believes in seat-of-the-pants software creation, we offer a few words of caution. Many of the
individual concepts should be well known to many of you. However, if you are looking for easy
answers, you may be disappointed; indeed, each chapter should in turn convince you that there
are no easy answers. On the other hand, if you are looking for some practical advice on how to
develop systems that are substantially more trustworthy than what is commercially available today,
you may find many encouraging directions to pursue.

Although there are some novel concepts in this report, our main thrust involves various ap-
proaches that can make better use of what we have learned overthe past many years in the research
community and that can be used to better advantage in production systems. Many of the lessons
relating to serious trustworthiness can be drawn from past research and prototype development.
However, those lessons have been largely ignored in commercial development communities, and
perhaps have also been insufficiently observed by the developers of source-available software.
There are many directions herein — both new and old — for fruitful research and development
that can help to fill in the gaps.

We believe that observance of the approaches described herewould greatly improve the present
situation. The opportunities for this within the open-source community are considerable, although
they are also applicable to closed-source proprietary systems (despite various caveats).

Roadmap of This Report

The outline of this report is as follows.� Chapter 1 presents some of the terminology and foundations on which this report is based.� Chapter 2 considers the roles of principles in the conceptualization, design, implementation,
operation, and use of information systems and networks having critical requirements for se-
curity, reliability, and survivability. On one hand, some of the principles under discussion
are well established in the literature and in certain educational curricula, and some are even

xi

intuitively appealing to experienced developers. On the other hand, very few of these princi-
ples are seriously observed in conventional commercial programming practice, and therefore
are sorely missing in many system architectures, system implementations, programming lan-
guages, compilers, software engineering disciplines, andsoftware development tools. Indeed,
although these principles are sometimes knee-jerkingly pooh-poohed as being impractical,
they are also potentially very valuable.� Chapter 3 outlines some of the obstacles to achieving facilecomposability and interoperabil-
ity, and considers approaches that can contribute to the development of significantly greater
composability in systems with critical requirements. In some cases, compositions of seem-
ingly compliant subsystems can actually compromise the ability of the resulting system to
satisfy its requirements. Of considerable interest is the concept of combining subsystems
in ways that actually increase the resulting trustworthiness, or at least do not diminish it.
Also relevant are the concepts of software engineering discipline, programming-language
constructs, execution compatibility and interoperability, and development tools.� Chapter 4 considers characteristics of architectures thatare likely to predictably satisfy the
CHATS goals, based on the discussion of principles and the analysis of composability. Al-
though various different architectures are needed for different classes of applications, they
can share many common principles and attributes.� Chapter 5 considers further characteristics of architectures for which the interfaces at various
layers are relatively perspicuous — that is, understandable because of the way in which they
have been designed and implemented.� Chapter 6 examines techniques for achieving the required trustworthiness with some signif-
icant measure of assurance. It stresses the importance of incorporating the principled use of
assurance techniques throughout development and operation.� Chapter 7 reexamines the collected wisdom of the earlier chapters in the light of experience,
and seeks to provide practical guidelines for applying thatwisdom to the system development
process.� Chapter 8 considers some potentially significant areas for future research and development.� Chapter 9 provides a summary of the report, the needs for future research and prototype
development, and conclusions.� Appendix A summarizes the work on formally based static codeanalysis carried out by Hao
Chen and David Wagner, under a project subcontract to the University of California at Berke-
ley. It also notes subsequent work carried out by Hao Chen.� Appendix B provides some useful background for the materialin Chapters 2, 3, and 4, and
particularly Chapter 5, relating to system structural and correctness properties associated with
modularity. Appendix B is based on material written by Virgil Gligor, in connection with
joint work he did with Drew Dean and Peter Neumann for Lee Badger’s Visibly Controllable
Computing initiative.

xii

Chapter 1

The Foundations of This Report

We essay a difficult task; but there is no merit save in difficult tasks.
Ovid

In the context of this report, the term “trustworthy” is usedin a broad sense that is meaningful
with respect to any given set of requirements, policies, properties, or other definitional entities. It
represents the extent to which those requirements are likely to be satisfied, under specified condi-
tions. That is, trustworthiness meansworthy of being trusted to satisfy the given expectations.For
example, typical requirements might relate to attributes of security, reliability, performance, and
survivability under a wide range of potential adversities.Each of these attributes has expectations
that are specific to each layer of abstraction (and differingfrom one layer to another) — for exam-
ple, with respect to hardware, operating systems, applications, systems, networks, and enterprise
layers.� Security has been defined in many different ways — some of which are rather general, and

some of which are meaningful only within their own specific contexts. In its strictest sense,
security might be thought of as the absence of some set of vulnerabilities. In a more op-
erational sense, it might be thought of as the absence of opportunities for misuse, despite
certain vulnerabilities. However, in the realities of expected use, essentially nothing is per-
fectly secure — particularly in the face of insider misuse. Consequently, security is more
commonly thought of as the result of a collection of attemptsto prevent bad things from hap-
pening and the integrated anticipation of being able to recover suitably when bad things do
happen. Security requirements typically specify properties relating to system integrity, data
integrity, data confidentiality, and the ability to withstand systemic denial-of-service attacks,
along with other more detailed properties such as user authentication, system authentication,
user access control, accountability, monitoring, real-time misuse detection, and appropriate
responses to detected security violations — among others. The list of detailed requirements
may be very inclusive. Security is a comprehensive notion, relevant throughout the pro-
cesses of system conceptualization, requirements formulation, design, development, use, and
operation; it applies to systems in the large as well as subsystems applications, and entire
enterprises. Measures of security often tend to be of questionable value — for example, prob-
abilistic measures of how secure something is, which may be meaningful in the small, but
almost useless in the large. In any event, there is a need for useful metrics.

1

2 CHAPTER 1. THE FOUNDATIONS OF THIS REPORT� Reliability requirements might include properties relating to the ability to tolerate hardware
failures and software flaws, the characterization of acceptable degradation in the face of untol-
erated faults, probabilities of success, expected mean times between failures, and so on. Mea-
sures of reliability typically represent the extent to which flaws, failures, and errors [26, 309]
can be avoided or tolerated.� Performancerequirements might include aggregate throughput measures, processing speeds,
storage capacities, and guaranteed real-time response (for example).� Survivability requirements typically address overall system or enterprise availability despite
numerous adversities that could compromise the intended goals, and thus (for example) nec-
essarily encompass relevant aspects of security, reliability, performance, and other critical re-
quirements (e.g., [264]). The range of anticipated adversities may be extensive in extremely
critical applications.� Trustworthiness can then be thought of as the well-founded assessment of the extent to
which a given system, network, or component will satisfy itsspecified requirements, and
particularly those requirements that are critical to an enterprise, mission, system, network, or
other entity. Trustworthiness is meaningful only with respect to those expectations.� Assuranceprovides some sort of measure or indication of the likelihood that the desired
trustworthiness isactually well founded, typically through a combination of well-specified
requirements, structured architectures, formal and nonformal evaluations, and operational
practices. A system can be said to be trustworthy only with respect to its stated requirements,
with some level of assurance that it will behave as expected relative to those requirements.
If the requirements are fundamentally incomplete, the concept of trustworthiness is similarly
inherently incomplete.� Risk is sometimes thought of as a mathematical product of aggregate measures of threats,
vulnerabilities, and potential quantifiable losses or asset values. However, reducing risk to
a single quantifiable number is almost always overly simplistic, because the space being
considered is highly multidimensional. More intuitively,risks are events that in one sense
or another are undesirable. Clearly, some risks are more important than others, and efforts
should be made to ensure that the most serious risks are avoided wherever practicable.

Note that these concepts are sometimes interrelated. Achieving survivability in turn requires
security, reliability, and some measures of guaranteed performance (among other requirements).
Human safety typically does as well. Many of these properties are meaningful in different ways at
various layers of abstraction. At the highest layers, they tend to be emergent properties of systems
in the large, or indeed entire enterprises — that is, they aremeaningful only in terms of the entire
system complex rather than as lower-layer properties.

The concept oftrustworthiness is essentially indistinguishable from what is termeddepend-
ability [24, 25, 26, 202, 309], particularly within the IEEE and European communities. In its
very early days, dependability was focused primarily on hardware faults, subsequently extended
to software faults, and then generalized to a notion of faults that includes security threats. In that
framework, dependability’s generalized notions of fault prevention, fault tolerance, fault removal,

3

and fault forecasting (the last of which has some of the elements of assurance) seem to encompass
everything that trustworthiness does, albeit with occasionally different terminology. However, a
recent paper, Basic Concepts and Taxonomy of Dependable andSecure Computing, by Avižienis,
Laprie, Randell, Landwehr [26] (which is a gold mine for serious researchers) attempts to dis-
tinguish security as a specifically identifiable subset of dependability, rather than more generally
treating it as one of various sets of application-relevant requirements subsumed under trustwor-
thiness, as we do in this report. (Their new reformulation ofsecurity encompasses primarily
confidentiality, integrity, and availability — which in this report are only part of the necessary
trustworthiness aspects that are required for security — although it also alludes to other attributes
of security. However, any differences between their paper and this report are largely academic —
we are each approaching the same basic problems.)

We make a careful distinction throughout this report between trustandtrustworthiness. Trust-
worthiness implies that something is worthy of being trusted.Trust merely implies that you trust
something whether it is trustworthy or not, perhaps becauseyou have no alternative, or because
you are näive, or perhaps because you do not even realize that trustworthiness is necessary, or be-
cause of some other reason. We generally eschew the termstrustandtrustedunless we specifically
mean trust rather than trustworthiness. (The slogan on an old T-shirt worn around the National
Security Agency was “In trust we trust.”)

A prophetic definition long ago due to Leslie Lamport can be paraphrased in the context of this
report as follows: adistributed systemis a system in which you have to trust components whose
mere existence may be unknown to you. This is increasingly a problem on the World Wide Web,
which is today’s ultimate distributed system.

There are many R&D directions that we believe are important for the short- and long-term
futures — for the computer and network communities at large,for DARPA developers, and for
system and network developers generally. (We outline some recommendations for future R&D in
Chapter 9.) The basis of our project is the exploration and exploitation of a few of the potentially
most timely and significant research and development directions.� Principles. We revisit fundamental principles of trustworthy system development, cull out

those likely to be most effective, explore their practical limitations, and seek a basis for prin-
cipled architectures, principled development, and principled operation.� Composability. We explore existing obstacles to achieving seamless composability and tech-
niques for attaining practical composability in the future. Composability is meaningful at
many layers of abstraction, for components, subsystems, networked systems, and networks
of networks. It is also applicable to policies, protocols, specifications, formal representations,
and proofs. Subsystem composability takes on a variety of forms, including sequential (with
or without feedback, with or without recursion, etc.) and parallel execution.� Reusability. One of the side benefits of the effort to ensure composabilityis the possibility
of easier reusability of modules, subsystems, and other components, and particular high-
assurance components — in contexts other than their initially conceived applicability.� Compatibility and interoperability. In this report,compatibilityimplies that different enti-
ties can coexist without adverse side effects, perhaps without even knowing of each other’s

4 CHAPTER 1. THE FOUNDATIONS OF THIS REPORT

existence. Interoperability further implies that different entities are actually able to work
constructively with one another.� Architecture. By the termarchitecture,we specifically encompass thestructureof systems
and networks at various layers of abstraction (in terms of composable components, subsys-
tems, etc.), the design of thefunctional interfacesparticularly at the visible layers of abstrac-
tion, and theinterdependenciesbetween, among, and within those components and layers
of abstraction. Architectures can be defined with increasingly refined degrees of specificity
— from conceptual coarse-grain representations down to extremely explicit schematics that
are sufficiently detailed to being transformed into precisedesign specifications from which
implementations may be carried out relatively unambiguously. In effect, successive degrees
of architectural specificity, design specifications, and implementations represent the iterative
development process of refinement, instantiation, and necessary revision.� Trustworthy principled composable architectures. We seek to establish principle-based
composable distributed-system network-oriented open architectures inherently capable of ful-
filling critical security, reliability, survivability, and performance requirements, while being
readily evolvable over time to accommodate widely differing applications, different hardware
and software providers, and changing technologies.� Trustworthy system development and its foundations. In addition to principled archi-
tectures, we seek to provide a sound basis for system requirements, specifications, system
development, implementation, trustworthiness, and assurance of that trustworthiness for com-
posable interoperable components, with predictable behavior when composed.� Trustworthy protocols. We need to develop new protocols and/or extend existing protocols
that effectively mask the peculiarities of various networking technologies wherever possible,
but are able to accommodate a wide range of technologies (e.g., wireless and wired, opti-
cal, and electronic), and capable of addressing all relevant critical requirements. Existing
protocols (e.g., IPv4, IPSEC, IPv6, secure routing, securename service) are not adequate for
critical-system and network trustworthiness. This is a very difficult challenge, and necessarily
needs the involvement of the IETF, NIST standards efforts, and development communities.� Principled operational practice. We need to bring the above concepts into the realm of
operational practice, which is seriously in need of greatertrustworthiness and controllability.
Many of the concepts considered here have considerable potential toward that end, particu-
larly for system and network management.

Throughout the history of efforts to develop trustworthy systems and networks, there is an
unfortunate shortage of observable long-term progress relating specifically to the multitude of re-
quirements for security. (See, for example, an interview with Richard Clarke [149] in theIEEE
Security and Privacy.) Blame can be widely distributed among governments, industries, and
users — both personal and corporate. Significant research and development results are typically
soon forgotten or else deprecated in practice. Systems havecome and gone, programming lan-
guages have come and (sometimes) gone, and certain specific systemic vulnerabilities have come
and gone. However, many generic classes of vulnerabilitiesseem to persist forever — such as

5

buffer overflows, race conditions, off-by-one errors, mismatched types, divide-by-zero crashes,
and unchecked procedure-call arguments, to name just a few.Overall, it is primarily only the prin-
ciples that have remained inviolable — at least in principle— despite their having been widely
ignored in practice. It is time to change that unfortunate situation, and honor the principles.

There is an unfortunate shortage of fundamental books that provide useful background for the
material discussed in this report. Two recent books by Matt Bishop,Computer Security: Art and
Science[47] and Introduction to Computer Security[48], are worthy of particular note — the
former for its rather comprehensive and somewhat rigorous computer-science-based treatment of
security, and the latter for its less formal approach that should be more accessible to others who are
not computer scientists. Chuck Pfleeger’sSecurity in Computing[303], Ross Anderson’sSecurity
Engineering[14], and Morrie Gasser’sBuilding a Secure Computer System[127] are also worthy
sources. A recent book by Ian Sommerville [359] provides extensive background on software
engineering.

A paper [266] summarizing our conclusions as of early 2003 ispart of the DISCEX3 proceed-
ings, from the April 2003 DARPA Information Survivability Conference and Exposition.

Chapter 2

Fundamental Principles of Trustworthiness

Synopsis

Enormous benefits can result from basing requirements, architectures, implementations, and oper-
ational practices on well-defined and well-understood generally accepted principles.

In this chapter, we itemize, review, and interpret various design and development principles that
if properly observed can advance composability, trustworthiness, assurance, and other attributes of
systems and networks, within the context of the CHATS effort. We consider the relative applica-
bility of those principles, as well as some of the problems they may introduce.

2.1 Introduction

Everything should be made as simple as possible — but no simpler.
Albert Einstein

A fundamental hypothesis motivating this report is that achieving assurable trustworthiness
requires much greater observance of certain underlying principles. We assert that careful attention
to such principles can greatly facilitate the following efforts.� Principled architectures. Establishment of composable open distributed-system network-

oriented architectures capable of fulfilling critical security, reliability, survivability, and per-
formance requirements, while being readily adaptable to widely differing applications, dif-
ferent hardware, heterogeneous software providers, and changing technologies. As noted in
Chapter 1,architecturehere specifically implies both the structure of systems and networks
and the design of their functional interfaces and interconnections, at various layers of abstrac-
tion.� Principled system development.Development of specifications, implementation, trustwor-
thiness, and assurance of that trustworthiness for composable interoperable components, with
predictable behavior when those components are composed.� Principled assurance.Attainment of assuredly trustworthy systems and networks,capable
of addressing all relevant critical requirements, with newor extended protocols that mask the
peculiarities of various networking technologies wherever advantageous.

6

2.2. RISKS RESULTING FROM UNTRUSTWORTHINESS 7

The benefits of disciplined and principled system development cannot be overestimated, espe-
cially in the early stages of the development cycle. Principled design and software development can
stave off many problems later on in implementation, maintenance, and operation. Huge potential
cost savings can result from diligently observing relevantprinciples throughout the development
cycle and maintaining discipline. But the primary concept involved is that of disciplined develop-
ment; there are many methodologies that provide some kind ofdiscipline, and all of those can be
useful in some cases.

In concept, most of the principles discussed here are fairlywell known and understood by
system cognoscenti. However, their relevance is often not generally appreciated by people with
little development or operational experience. Not wishingto preach to the choir, we do not dwell
on elaborating the principles themselves, which have been extensively covered elsewhere (see
Section 2.3). Instead, we concentrate on the importance andapplicability of these principles in the
development of systems with critical requirements — and especially secure systems and networks.
The clear implication is that disciplined understanding and observance of the most effective of
these principles can have enormous benefits to developers and system administrators, and also can
aid user communities. However, we also explore various potential conflicts within and among
these principles, and emphasize that those conflicts must bethoroughly understood and respected.
System development is intrinsically complicated in the face of critical requirements. For example,
it is important to find ways to manage that complexity, ratherthan to mistakenly believe that
intrinsic complexity is avoidable by pretending to practice “simplicity”.

2.2 Risks Resulting from Untrustworthiness

As noted above, trustworthiness is a concept that encompasses being worthy of trust with respect
to whatever critical requirements are in effect, often relating to security, reliability, guarantees of
real-time performance and resource availability, survivability in spite of a wide range of adversi-
ties, and so on. Trustworthiness depends on hardware, software, communications media, power
supplies, physical environments, and ultimately people inmany capacities — requirements spec-
ifiers, designers, implementers, users, operators, maintenance personnel, administrators, and so
on.

There are numerous examples of untrustworthy systems, networks, computer-related applica-
tions, and people. We indicate the extensive diversity of cases reported in the past with just a few
tidbits relevant to each of various categories. See Computer-Related Risks [260] and the Illus-
trative Risks index [267] for numerous further examples andreferences involving many different
types of system applications. (In the Illustrative Risks document, descriptors indicate relevance
to loss of life, system survivability, various aspects of security, privacy, development problems,
human interface confusions, and so on.) Some of these examples are revisited in Section 6.9, in
considering how principled architectures and assurance-based risk reduction might have avoided
the particular problems.� Safety

– Aviation disasters, attributable to problems with airframes, avionics computer hardware
and software, badly designed human interfaces, pilots, air-traffic control systems, air-

8 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF TRUSTWORTHINESS

traffic controllers, maintenance crews, airport security lapses, and so on: KAL 007 (fly-
ing on erroneous autopilot course), Air New Zealand crash into Mount Erebus (erroneous
course data), Lauda Air (thrust reverser accidentally deployed in flight), Iranian Airbus
shootdown (bad operational interfaces); Black Hawk helicopter problems, to name just a
few.

– Medical disasters, attributable to hardware flaws, malfunctions, software bugs, and con-
fusing human interfaces: Therac 25 (nonatomic transition from high-intensity to low-
intensity mode); database errors resulting in operation failures; electromagnetic interfer-
ence (pacemakers, defibrillators).� Reliability and availability

– Failures in defense systems, control systems, telecommunications systems, space, fi-
nancial systems, etc.: Patriot missiles missing Scuds (excessive clock drift); Yorktown
Aegis missile cruiser disabled (Windows NT crashed by divide by zero in an applica-
tion); ARPANET collapse (1980); AT&T long-distance collapse (1990); first Shuttle
launch (Columbia backup computer synchronization problem); massive electrical power
outages, with large-scale propagation (e.g., 13-hour northeast power outage of 9 Novem-
ber 1965; lower New York state outage on 13 July 1977; blackout of 10 western U.S.
states on 2 October 1984; western U.S. power blackouts on 2 July 1996; North Ameri-
can west-coast power outages on 10 Aug 1996, including eightstates, Canada and Baja;
massive northeast U.S. power-grid overload and blackout on14 August 2003.� Security

– Unintentional security flaws in delivered software, including many whose origins have
been well understood for many years but that keep recurring

– Intentionally installed trapdoors, Trojan horses, other malware

– Insider and outsider exploitations involving loss of confidentiality, loss of integrity, de-
nials of service, viruses, worms, spam, malware introducedby Web browsing, financial
frauds and misuse

– Operational problems, such as configuration errors, administrator oversights

– Many other problems. Overall, the situation here is truly deplorable and the risks very
diverse. The Illustrative Risks index [267] includes many cases of reported security
problems.� Survivability

– Survivability despite diverse adversities ultimately depends on system and network reli-
ability, security, computational adequacy and bandwidth,database availability, and vari-
ous other attributes. (For example, see [264].) Some of the problems noted above involve
failures of system and network survivability, as a result ofhardware and software mal-
functions, exploitations of security vulnerabilities, accidents, malice, electromagnetic
interference and other environmental events, etc.� Privacy

2.3. TRUSTWORTHINESS PRINCIPLES 9

– Privacy is often relegated to a second-order consideration. Privacy can in some cases
be aided by appropriate technology, but many of the misues are the result of misuse
by trusted insiders or are extrinsic — involving indirect misuse external to computer
systems. Identity theft is an increasingly pervasive example. (For example, see [11, 104,
342].)� Maintainability

– Design flaws and software bugs are ubiquitous, either lingering or emerging in upgrades.
Overrreliance on patch management is just one consequence.Inadequate architectural
approaches to managing complexity exacerbate the problems(such as bloatware with
inordinate interdependence on untrustworthy components), as does inattention to human
interfaces — particularly system and network administrators.

Many systems actually have critical requirements that spanmultiple areas such as security, re-
liability, safety, and survivability. Although the cases listed above generally result from a problem
in primarily one of these areas, there are many cases in whicha maliciously induced security
problem could alternatively have resulted from an accidentally triggered reliability problem, or
— similarly — where a reliability/availability failure could also have been triggered intentionally.
(For example, see Chapter 4 of [260].)

One such application area with critical multidisciplinaryrequirements has become of particular
interest since the 2000 November election, resulting from the emerging desire for completely elec-
tronic voting systems that ideally should have stringent requirements for system integrity, voter
privacy, and accountability, and — perhaps most important —the impossibility of uncontrolled
human intervention during elections. Some of today’s majorexisting all-electronic systems per-
mit unmonitored human intervention (to recover from election-day glitches and to “fix” problems
— including during the voting and vote-counting procedures!), with no meaningful accountability.
Some systems even routinely undergo code changesafter the software has been certified! Thus, we
are confronted with all-electronic paperless voting systems that have no independent audit record
of what has happened in the system internals, with no real assurance that your vote was correctly
recorded and counted, with no alternative recount, no systemic way of determining the presence
of internal errors and fraud, and no evidence in case of protests. The design specs and code are
almost always proprietary, and the system has typically been certified against very weak voluntary
standards that do not adequately detect fraud and internal accidents, with evaluations that are com-
missioned and paid for by the vendors. In contrast, gamblingmachines are regulated with extreme
care (for example, by the Nevada Gaming Commission), and held to extremely high standards.

For a partial enumeration of recorded cases of voting-system irregularities over the past more
than twenty years, see the online html version of [267], clicking onElection Problems,or see the
corresponding section in the .pdf and .ps versions.

Section 5.2.2 reconsiders some of the above cases as well as others in which problems arose
specifically because of problems involving the human interfaces.

2.3 Trustworthiness Principles

Willpower is always more efficient than mechanical enforcement, when it works. But

10 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF TRUSTWORTHINESS

there is always a size of system beyond which willpower will be inadequate.
Butler Lampson

Developing and operating complex systems and networks withcritical requirements demands
a different kind of thinking from that used in routine programming. We begin here by considering
various sets of principles, their applicability, and theirlimitations.

We first consider the historically significant Saltzer–Schroeder principles, followed by several
other approaches.

2.3.1 Saltzer–Schroeder Security Principles, 1975

The ten basic security principles formulated by Saltzer andSchroeder [334] in 1975 are all still
relevant today, in a wide range of circumstances. In essence, these principles are summarized with
a CHATS-relevant paraphrased explanation, as follows:� Economy of mechanism:Seek design simplicity (wherever and to whatever extent it

is effective).� Fail-safe defaults:Deny accesses unless explicitly authorized (rather than permitting
accesses unless explicitly denied).� Complete mediation:Check every access, without exception.� Open design:Do not assume that design secrecy will enhance security.� Separation of privileges: Use separate privileges or even multiparty authorization
(e.g., two keys) to reduce misplaced trust.� Least privilege: Allocate minimal (separate) privileges according to need-to-know,
need-to-modify, need-to-delete, need-to-use, and so on. The existence of overly
powerful mechanisms such assuperuseris inherently dangerous.� Least common mechanism:Minimize the amount of mechanism common to more
than one user and depended on by all users. Avoid sharing of trusted multipur-
pose mechanisms, including executables and data — in particular, minimizing the
need for and use of overly powerful mechanisms such assuperuserand FORTRAN
common. As one example of the flaunting of this principle, exhaustion of shared
resources provides a huge source of covert storage channels, whereas the natural
sharing of real calendar-clock time provides a source of covert timing channels.� Psychological acceptability: Strive for ease of use and operation — for example,
with easily understandable and forgiving interfaces.�Work factor: Make cost-to-protect commensurate with threats and expected risks.� Recording of compromises:Provide nonbypassable tamperproof trails of evidence.

Remember that these are principles, not hard-and-fast rules. By no means should they be inter-
preted as ironclad, especially in light of some of their potential mutual contradictions that require
development tradeoffs. (See Section 2.6.)

The Saltzer–Schroeder principles grew directly out of the Multics experience (e.g., [277]), dis-
cussed further at the end of this section. Each of these principles has taken on almost mythic
proportions among the security elite, and to some extent buzzword cult status among many fringe
parties. Therefore, perhaps it is not necessary to explain each principle in detail — although there

2.3. TRUSTWORTHINESS PRINCIPLES 11

is considerable depth of discussion underlying each principle. Careful reading of the Saltzer–
Schroeder paper [334] is recommended if it is not already a part of your library. Matt Bishop’s
security books [47, 48] are also useful in this regard, placing the principles in a more general con-
text. In addition, Chapter 6 of Matt Curtin’s book [89] on “developing trust” — by which he might
really hope to be “developing trustworthiness” — provides some useful further discussion of these
principles.

There are two fundamental caveats regarding these principles. First, each principle by itself
may be useful in some cases and not in others. The second is that when taken in combinations,
groups of principles are not necessarily all reinforcing; indeed, they may seem to be mutually in
conflict. Consequently, any sensible development must consider appropriate use of each principle
in the context of the overall effort. Examples of a principlebeing both good and bad — as well as
examples of interprinciple interference — are scattered through the following discussion. Various
caveats are considered in the penultimate section.

Table 2.1 examines the applicability of each of the Saltzer–Schroeder principles to the CHATS
goals of composability, trustworthiness, and assurance (particularly with respect to security, relia-
bility, and other survivability-relevant requirements).

12 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF TRUSTWORTHINESS

Table 2.1: CHATS Relevance of Saltzer–Schroeder to CHATS Goals
Principle Composability Trustworthiness Assurance
Economy of Beneficial within a sound Vital aid to sound Can simplify
mechanism architecture; requires design; exceptions mustanalysis

proactive design effort be completely handled
Fail-safe Some help, but not Simplifies design, Can simplify
defaults fundamental use, operation analysis
Complete Very beneficial with Vital, but hard Can simplify
mediation disjoint object types to achieve with no analysis

compromisibility
Open design Design documentation is Secrecy of design is, Assurance is mostly

very beneficial among a bad assumption; irrelevant in badly
multiple developers open design requires designed systems;

strong system security open design enables
open analysis (+/-)

Separation of Very beneficial if Avoids many Focuses analysis
privileges preserved by compositioncommon flaws more precisely
Least Very beneficial if Limits flaw effects; Focuses analysis
privilege preserved by compositionsimplifies operation more precisely
Least common Beneficial unless there is Finesses some Modularizes
mechanism natural polymorphism common flaws analysis
Psychological Could help a little — Affects mostly usability Ease of use
acceptability if not subvertible and operations can contribute
Work factor Relevant especially for Misguided if system Gives false sense

crypto algorithms, but not easily compromised of security under
their implementations; from below, spoofed, nonalgorithmic
may not be composable bypassed, etc. compromises

Compromise Not an impediment After-the-fact, Not primary
recording if distributed; real-time but useful contributor

detection/response needs
must be anticipated

In particular, complete mediation, separation of privileges, and allocation of least privilege are
enormously helpful to composability and trustworthiness.Open design can contribute significantly
to composability, when subjected to internal review and external criticism. However, there is
considerable debate about the importance of open design with respect to trustworthiness, with
some people still clinging tenaciously to the notion that security by obscurity is sensible — despite
risks of many flaws being so obvious as to be easily detected externally, even without reverse
engineering. Indeed, the recent emergence of very good decompilers for C and Java, along with
the likelihood of similar reverse engineering tools for other languages, both suggest that such
attacks are becoming steadily more practical. Overall, theassumption of design secrecy and the
supposed unavailability of source code is often not a deterrent, especially with ever-increasing

2.3. TRUSTWORTHINESS PRINCIPLES 13

skills among black-box system analysts. However, there areof course cases in which security by
obscurity is unavoidable — as in the hiding of private and secret cryptographic keys, even where
the cryptographic algorithms and implementations are public.

Fundamental to trustworthiness is the extent to which systems and networks can avoid being
compromised by malicious or accidental human behavior and by events such as hardware malfunc-
tions and so-called acts of God. In [264], we considercompromise from outside, compromise
from within, andcompromise from below, with fairly intuitive meanings. These notions appear
throughout this report.

There are other cases in theory where weak links can be avoided (e.g., zero-knowledge proto-
cols that can establish a shared key without any part of the protocol requiring secrecy), although
in practice they may be undermined by compromises from below(e.g., involving trusted and sup-
posedly trustworthy insiders subverting the underlying operating systems) or from outside (e.g.,
involving penetrations of the operating systems and masquerading as legitimate users). For a fasci-
nating collection of papers on vulnerabilities and ways to exploit weak links, see Ross Anderson’s
website:
http://www.cl.cam.ac.uk/users/rja14/

From its beginning, the Multics development was strongly motivated by a set of principles —
some of which were originally stated by Ted Glaser and Peter Neumann in the first section of the
very first edition of the Multics Programmers’ Manual in 1965. (See http://multicians.org.) It was
also driven by extremely disciplined development. For example, with almost no exceptions, no
coding effort was begun until a written specification had been approved by the Multics advisory
board; also with almost no exceptions, all of the code was written in a subset of PL/I just sufficient
for the initial needs of Multics, for which the first compiler(early PL, or EPL) had been developed
by Doug McIlroy and Bob Morris.

In addition to the Saltzer–Schroeder principles, further insights on principles and discipline
relating to Multics can be found in a paper by Fernando Corbató, Saltzer, and Charlie Clingen [85]
and in Corbató’s Turing lecture [84].

2.3.2 Related Principles, 1969 and Later

Another view of principled system development was given by Neumann in 1969 [255], relating
to what is often dismissed as merely “motherhood” — but whichin reality is both very profound
and difficult to observe in practice. The motherhood principles under consideration in that paper
(alternatively, you might consider them just as desirable system attributes) included automated-
ness, availability, convenience, debuggability, documentedness, efficiency, evolvability, flexibility,
forgivingness, generality, maintainability, modularity, monitorability, portability, reliability, sim-
plicity, and uniformity. Some of those attributes indirectly affect security and trustworthiness,
whereas others affect the acceptability, utility, and future life of the systems in question. Consid-
erable discussion in [255] was also devoted to (1) the risks of local optimization and the need for a
more global awareness of less obvious downstream costs of development (e.g., writing code for bad
— or nonexistent — specifications, and having to debug reallybad code), operation, and mainte-
nance (see Section 7.1 of this report); and (2) the benefits ofhigher-level implementation languages
(which prior to Multics were rarely used for the developmentof operating systems [84, 85]).

In later work and more recently in [264], Neumann consideredsome extensions of the Saltzer–

14 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF TRUSTWORTHINESS

Schroeder principles. Although most of those principles might seem more or less obvious, they
are of course full of interpretations and hidden issues. We summarize an extended set of principles
here, particularly as they might be interpreted in the CHATScontext.� Sound architecture.Recognizing that it is much better to avoid design errors early than to at-

tempt to fix them later, the importance of architectures inherently capable of evolvable, main-
tainable, robust implementations is enormous — even in an open-source environment. The
value of a well-thought-out architecture is considerable in open-source systems. The value in
closed-source proprietary systems could also be significant, if it were thought through early
on, although architectural foresight is often impeded by legacy compatibility requirements
that tend to lock system evolution into inflexible architectures. Good interface design is as
fundamental to good architectures as is their structure. Both the architectural structure and
the architectural interfaces (particularly the visible interfaces, but also some of the internal
interfaces that must be interoperable) benefit from carefulearly specification.� Minimization of what must be trustworthy. Appropriate trustworthiness should be sit-
uated where it is most needed, suitable to overall system requirements, rather than required
uniformly across widely distributed components (with potentially many weak links) or totally
centralized (with creation of a single weak link and forgetting other vulnerabilities). Trust-
worthiness is expensive to implement and to ensure, and as a consequence significant benefits
can result from minimizing what has to be trustworthy. This principle can contribute notably
to sound architectures. In combination with economy of mechanism, this suggests avoidance
of bloatware and unfortunate dependence on less trustworthy components.� Abstraction. The primitives at any given logical or physical layer shouldbe relevant to
the functions and properties of the objects at that layer, and should mask lower-layer detail
where possible. Ideally, the specification of a given abstraction should be in terms of ob-
jects meaningful at that layer, rather than requiring lower-layer (e.g., machine dependent)
concepts. Abstractions at one layer can be related to the abstractions at other layers in a
variety of ways, thus simplifying the abstractions at each layer rather than collapsing differ-
ent abstractions into a more complex single layer. Horizontal and vertical abstractions are
considered in Section 3.3. Six types of abstraction are discussed in Section B.4.1.� Encapsulation. Details that are relevant to a particular abstraction should be local to that
abstraction and subsequently isolated within the implementation of that abstraction and the
lower layers on which the implementation depends. One example of encapsulation involves
information hiding — for example, keeping internal state information hidden from the visible
interfaces. Another example involves masking the idiosyncrasies of physical devices from
higher-layer system interfaces. and of course from the userinterfaces as well.� Modularity. Modularity relates to the characteristic of system structures in which different
entities (modules) can be relatively loosely coupled and combined to satisfy overall system
requirements, whereby a module could be modified or replacedas long as the new version
satisfies the given interface specification. In general, modularity is most effective when the
modules reflect specific abstractions and provide encapsulation within each module. See
Section B.2 for an extensive discussion of modularity.

2.3. TRUSTWORTHINESS PRINCIPLES 15� Layered and distributed protection. Protection (and generally defensive design for secu-
rity, reliability, and so on) should be distributed to whereit is most needed, and should reflect
the semantics of the objects being protected. With respect to the reality of implementations
that transit entities of different trustworthiness, layers of protection are vastly preferable to
flat concepts such as single signon (that is, where only a single authentication is required).
With respect to psychological acceptability, single signon has enormous appeal; however, it
can leave enormous security vulnerabilities as a result of compromise from outside, from
within, or from below, in both distributed and layered environments. Thus, with respect to
the apparent user simplicity provided by single signon, psychological acceptability conflicts
with other principles, such as complete mediation, separation of privileges, and least common
privilege. (Of particular interest here are work in distributed system protection and digital cer-
tificates such as begun by SDSI/SPKI, and continuing throughrecent work on digital rights
management — e.g., [70, 71, 72, 151, 374] — all which are relevant in Chapter 4.)� Constrained dependency. Improperly guarded dependencies (see Section 3.4) on less trust-
worthy entities should be avoided. However, it is possible in some cases to surmount the
relative untrustworthiness of mechanisms on which certainfunctionality depends — as in
the types of trustworthiness-enhancing mechanisms enumerated in Section 3.5. In essence,
do not trust anything on which you must depend — unless you areseriously satisfied with
demonstrations of its trustworthiness.� Object orientation. The OO paradigm bundles together abstraction, encapsulation, modular-
ity of state information, inheritance (subclasses inheriting the attributes of their parent classes
— e.g., for functionality and for protection), and subtype polymorphism (subtype safety de-
spite the possibility of application to objects of different types). This paradigm facilitates
programming generality and software reusability, and if properly used can enhance software
development. This is a contentious topic, in that most of theOO methodologies and lan-
guages are somewhat sloppy with respect to inheritance. (Jim Horning notes that the only
OO language he knows that takes inheritance of specifications seriously was the DEC/ESL
OWL/Trellis, which was a descendant of CLU.)� Separation of policy and mechanism. Statements of policy should avoid inclusion of
implementation-specific details. Furthermore, mechanisms should be policy-neutral where
that is advantageous in achieving functional generality. However, this principle must never
be used in the absence of understanding about the range of policies that might be usefully
implemented. There is a temptation to avoid defining meaningful policies, deferring them
until later in the development — and then discovering that the desired policies cannot be
realized with the given mechanisms. This is a characteristic chicken-and-egg problem with
abstraction.� Separation of duties. In relation to separation of privileges, separate classes of duties of
users and computational entities should be identified, so that distinct system roles can be
assigned accordingly. Distinct duties should be treated distinctly, as in system administrators,
system programmers, and unprivileged users.� Separation of roles. Concerning separation of privileges, the roles recognizedby protection
mechanisms should correspond in some readily understandable way to the various duties. For

16 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF TRUSTWORTHINESS

example, a single all-powerful superuser role is intrinsically in violation of separation of du-
ties, separation of roles, separation of privilege, and separation of domains. The separation
of would-be superuser functions into separate roles as in Trusted Xenix is a good example of
desirable separation. Once again (as with single signon, noted above), there is a conflict be-
tween principles: the monolithic superuser mechanism provides economy of mechanism, but
violates other principles. In practice, all-powerful mechanisms are sometimes unavoidable,
and sometimes even desirable despite the negative consequences (particularly if confined to
a secure subenvironment). However, they should be avoided wherever possible.� Separation of domains. Concerning separation of privileges, domains should be able to
enforce separate roles. For example, a single all-powerfulsuperuser mechanism is inherently
unwise, and is in conflict with the notion of separation of privileges. However, separation of
privileges is difficult to implement if there is inadequate separation of domains. Separation of
domains can help enforce separation of privilege, but can also provide functional separation as
in the Multics ring structure, a kernelized operating system with a carefully designed kernel,
or a capability-based architecture.� Sound authentication. Authentication is a pervasive problem. Nonbypassable authentica-
tion should be applicable to users, processes, procedures,and in general to any active entity
or object. Authentication relates to evidence that the identity of an entity is genuine, that
procedure arguments are legitimate, that types are properly matched when strong typing is to
be invoked, and other similar aspects.� Sound authorization and access control.Authorizations must be correctly and appropri-
ately allocated, and nonsubvertible (although they are likely to assume that the identities of
all entities and objects involved have been properly authenticated — see sound authentica-
tion, above). Crude all-or-nothing authorizations are often riskful (particularly with respect to
insider misuse and programming flaws). In applications for which user-group-world autho-
rizations are inadequate, access-control lists and role-based authorizations may be preferable.
Finer-grained access controls may be desirable in some cases, such as capability-based ad-
dressing and field-based database protection. However, knowing who has access to what at
any given time should be relatively easy to determine.� Administrative controllability. The facilities by which systems and networks are adminis-
tered must be well designed, understandable, well documented, and sufficiently easy to use
without inordinate risks.� Comprehensive accountability.Well-designed and carefully implemented facilities are es-
sential for comprehensive monitoring, auditing, interpretation, and automated response (as
appropriate). Serious security and privacy issues must be addressed relating to the overall
accountability processes and audit data.

Table 2.2 summarizes the utility of the extended-set principles with respect to the three goals of
the CHATS program acronym, as in Table 2.1.

2.3. TRUSTWORTHINESS PRINCIPLES 17

Table 2.2: CHATS Relevance of Extended-Set Principles to CHATS Goals

Principle Composability Trustworthiness Assurance
Sound Can considerably Can greatly increase Can increase assurance
architecture facilitate composition trustworthiness of design and simplify

implementation analysis
Minimization of Beneficial, but not Very beneficial with Simplifies design and
trustworthiness fundamental sound architecture implementation analysis
Abstraction Very beneficial with Very beneficial Simplifies analysis

suitable independenceif composable by decoupling it
Encapsulation Very beneficial Very beneficial if Localizes analysis to

if properly done, composable, avoids abstractions and
enhances integration certain types of bugs their interactions

Modularity Very beneficial Very beneficial Simplifies analysis
if interfaces and if well specified; by decoupling it
specifications overmodularization and if modules are
well defined impairs performance well specified

Layered protection Very beneficial, but Very beneficial if Structures analysis
may impair noncompromisible from according to layers
performance above/within/below and their interactions

Robust dependency Beneficial: can Beneficial: can obviate Robust architectural
avoid compositional design flaws based on structure simplifies
conflicts misplaced trust analysis

Object orientation Beneficial, but Can be beneficial, but Can simplify analysis
labor-intensive; complicates coding of design, possibly
can be inefficient and debugging implementation also

Separation of Beneficial, but Increases flexibility Simplifies analysis
policy/mechanism both must compose and evolution
Separation of Helpful indirectly Beneficial if Can simplify analysis
duties as a precursor well defined if well defined
Separation of Beneficial if roles Beneficial if Partitions analysis
roles nonoverlapping properly enforced of design and operation
Separation of Can simplify Allows finer-grain Partitions analysis
domains composition and enforcement and of implementation

reduce side effects self-protection and operation
Sound Helps if uniformly Huge security benefits, Can simplify analysis,
authentication invoked aids accountability improve assurance
Sound Helps if uniformly Controls use, Can simplify analysis,
authorization invoked aids accountability improve assurance
Administrative Composability helps Good architecture Control enhances
controllability controllability helps controllability operational assurance
Comprehensive Composability helps Beneficial for Can provide feedback
accountability accountability post-hoc analysis for improved assurance

18 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF TRUSTWORTHINESS

At this point in our analysis, it should be no surprise that all of these principles can contribute
in varying ways to security, reliability, survivability, and other -ilities. Furthermore, many of
the principles and -ilities are linked. We cite just a few of the interdependencies that must be
considered.

For example, authorization is of limited use without authentication,whenever identity is impor-
tant. Similarly, authentication may be of questionable use without authorization. In some cases,
authorization requires fine-grained access controls. Least privilege requires some sort of separation
of roles, duties, and domains. Separation of duties is difficult to achieve if there is no separation of
roles. Separation of roles, duties, and domains each must rely on a supporting architecture.

The comprehensive accountability principle is particularly intricate, as it depends critically on
many other principles being invoked. For example, accountability is inherently incomplete with-
out authentication and authorization. In many cases, monitoring may be in conflict with privacy
requirements and other social considerations [101], unless extremely stringent controls are enforce-
able. Separation of duties and least privilege are particularly important here. All accountability
procedures are subject to security attacks, and are typically prone to covert channels as well. Fur-
thermore, the procedures themselves must be carefully monitored. Who monitors the monitors?
(Quis auditiet ipsos audites?)

2.3.3 Principles of Secure Design (NSA, 1993)

Also of interest here is the 1993 set of principles (or perhaps metaprinciples?) of secure design [56],
which emerged from an NSA ISSO INFOSEC Systems Engineering study on rules of system com-
position. The study was presented not as a finished effort, but rather as something that needed to
stand the test of practice. Although there is some overlap with the previously noted principles, the
NSA principles are enumerated here as they were originally documented. Some of these principles
are equivalent to “the system should satisfy certain security requirements” — but they are nev-
ertheless relevant. Others might sound like motherhood. Overall, they represent some collective
wisdom — even if they are fairly abstract and incompletely defined.� The security engineering of a system must not be done independently from the total engineer-

ing of the system.� A system without requirements cannot fail; it merely presents surprises [386].� The system is for the users and not the system designers.� A systems seldom fully satisfies all of its requirements.� Many failures of a system to meet its overall requirements are often obvious. However, fail-
ures to meet security requirements are often not obvious.� In an operational system, it is the users’ mission and information that are at risk, not the
developers’ or evaluators’ information. The accreditor accepts those risks when deciding to
use a system operationally.� It is only in the context of a system and a security policy thatthe “security characteristics” of
a component can be defined and evaluated.

2.3. TRUSTWORTHINESS PRINCIPLES 19� Every component in a system must operate in an environment that is a subset of its specified
environment; [in particular,] every component in a system must operate in a security envi-
ronment that is a subset of its specified security environment. (A component should not be
asked to respond to events for which it was not designed — and evaluated.) [This is a gross
oversimplification, particularly for systems relying on other components on the Internet.]� Security is a system problem.� Keep it simple to make it secure.� There is no security in uncertainty. [This needs to be reconsidered. Random keys — or at least
keys that have the appearance of randomness — are fundamental to cryptographic security.
Furthermore, random sampling — testing, inspections, etc.— can be effective.]� A system should be evaluatable and evaluated.� Architectural analysis should not be treated lightly.� A system is only as strong as its weakest link; the fortress walls of security should all be high
enough. (Note that weak links are often not obvious.) [A system may be even weaker than its
weakest link!]� A component should protect itself from other components by adhering to the principle of
mutual suspicion.� A system should be manageable and managed.� A system should be able to come up in a recognizably secure state.� A system should recognize error conditions.� Pay special attention to information flow.� Secure systems should protect the confidentiality of user data.� Secure systems should protect the integrity of user data.� Secure systems should protect the reliability of user processes.

Considerable discussion of these metaprinciples is warranted. For example, “Every component
in a system must operate in a security environment that is a subset of its specified environment”
implies iteratively that maximum trust is required throughout design and implementation of the
other components, which is a gross violation of our notion ofminimization of what must be trust-
worthy. It would be preferable to require that each component check that the environment in which
it executes is a subset of its specified environment — which isclosely related to Schroeder’s notion
of mutual suspicion [343], noted further down the list.

“A system is only as strong as its weakest link” is generally ameaningful statement. However,
some weak links may be more devastating than others, so this statement is overly simplistic. In
combination with least privilege, separation of domains, and some of the other principles noted
previously, the effects of a particular weak link might be contained or controlled. But then, you

20 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF TRUSTWORTHINESS

might say, the weak link was not really a weak link. However, to a first approximation, as we
noted above, weak links should be avoided where possible, and restricted in their effects otherwise,
through sound architecture and sound implementation practice.

2.3.4 Generally Accepted Systems Security Principles (I2F , 1997)

The 1990 report of the National Research Council study groupthat producedComputers at Risk[83]
included a recommendation that a serious effort be made to develop and promulgate a set of Gen-
erally Accepted Systems Security Principles (GASSP). Thatled to the creation of the International
Information Security Foundation (I2SF). A draft of its GASSP document [279] is available online.
A successor effort is under way, after a long pause.

The proposed GASSP consists of three layers of abstraction,nine Pervasive Principles (relating
to confidentiality, integrity, and availability), a set of 14 Broad Functional Principles, and a set of
Detailed Principles (yet to be developed, because the largely volunteer project ran out of steam, in
what Jim Horning refers to as a last gassp!). The GASSP effortthus far actually represents a very
worthy beginning, and one more approach for those interested in future efforts. The top two layers
of the GASSP principle hierarchy are summarized here as follows.

Pervasive Principles� PP-1.Accountability� PP-2.Awareness� PP-3.Ethics� PP-4.Multidisciplinary� PP-5.Proportionality� PP-6.Integration� PP-7.Timeliness� PP-8.Assessment� PP-9.Equity
Broad Functional Principles� BFP-1.Information Security� BFP-2.Education and Awareness� BFP-3.Accountability� BFP-4.Information Management� BFP-5.Environmental Management� BFP-6.Personnel Qualifications� BFP-7.System Integrity� BFP-8.Information Systems Life Cycle� BFP-9.Access Control� BFP-10.Operational Continuity and Contingency Planning� BFP-11.Information Risk Management� BFP-12.Network and Infrastructure Security� BFP-13.Legal, Regulatory, and Contractual Requirements of Info Security� BFP-14.Ethical Practices

The GASSP document gives a table showing the relationships between the 14 Broad Functional

2.3. TRUSTWORTHINESS PRINCIPLES 21

Principles and the 9 Pervasive Principles. That table is reproduced here as Table 2.3.

Table 2.3: GASSP Cross-Impact Matrix
PP: PP-1 PP-2 PP-3 PP-4 PP-5 PP-6 PP-7 PP-8 PP-9
BFP-1 X X X X X X X X X
BFP-2 X X X X X
BFP-3 X X X X X
BFP-4 X X X X
BFP-5 X X X X X X
BFP-6 X X X X
BFP-7 X X X X X X
BFP-8 X X X X X X
BFP-9 X X X X X X
BFP-10 X X X X X
BFP-11 X X X X X X X
BFP-12 X X X X X
BFP-13 X X X X X
BFP-14 X X X X

2.3.5 TCSEC, ITSEC, CTCPEC, and the Common Criteria (1985 todate)

Any enumeration of relevant principles must note the historical evolution of evaluation criteria over
the past decades — from the 1985 DoD Trusted Computer System Evaluation Criteria (TCSEC,
a.k.a. The Orange Book [249]) and the ensuing Rainbow Books,to the 1990 Canadian Trusted
Computer Product Evaluation Criteria (CTCPEC, [64]), and the 1991 Information Technology
Security Evaluation Criteria (ITSEC, [116]). These efforts have resulted in an international effort to
produce the Common Criteria framework (ISO 15408 [172]), which represents the current state of
the art in that particular evolutionary process. (Applicability to multilevel security is also addressed
within the Common Criteria framework, although it is much more deeply embedded in the higher-
assurance levels of the TCSEC.)

2.3.6 Extreme Programming, 1999

A seemingly radical approach to software development is found in the Extreme Programming (XP)
movement [33]. (Its use of “XP” considerably predates Microsoft’s.) Although XP appears to
run counter to most conventional programming practices, itis indeed highly disciplined. XP might
be thought of as very small chief programmer teams somewhat in the spirit of a Harlan Mills’
Clean-Room approach, although it has no traces of formalismand is termed alightweight method-
ology. It involves considerable emphasis on disciplined planningthroughout (documented user
stories, scheduling of relatively frequent small releases, extensive iteration planning, and quickly
fixing XP whenever necessary), designing and redesigning throughout (with simplicity as a driving
force, the selection of a system metaphor, and continual iteration), coding and recoding as needed

22 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF TRUSTWORTHINESS

(paired programmers working closely together, continual close coordination with the customer, ad-
herence to agreed-upon standards, only one programmer pairmay integrate at one time, frequent
integration, deferred optimization, and no overtime pay),and testing repeatedly throughout (code
must pass unit tests before release, tests must be created for each bug found, acceptance tests are
run often, and the results are published).

In essence, Extreme Programming seeks to have something running at the end of each period
(e.g., each week) by deferring less important concepts until later. There is a stated desire to let
business folks decide which features to implement, based onthe experience with the ongoing
development.

Questions of how to address architecture in the large seem not to be adequately addressed
within Extreme Programming (although these questions are absolutely fundamental to the ap-
proach that we are taking in this report, but perhaps are considered extraneous to XP). The con-
cept of deferring architectural design until later in the process may work well in small systems
(where dynamic changes tend to be relatively local), but canseriously complicate development of
highly complex systems. Perhaps if coupled with principledarchitectures recommended here, Ex-
treme Programming could be effective for larger development efforts. See the Web site noted
in [33] for considerable background on the XP movement, including a remarkably lucid Fre-
quently Asked Questions document contrasting XP with several other approaches (UML, RUP,
CMM, Scrum, and FDD — although this is a little like comparingapples and oranges). Wikipedia
also has a useful analysis of socalledagile or lightweightmethodologies, with relevant references
(http://en.wikipedia.org/wiki/Agilesoftwaredevelopment).

2.3.7 Other Approaches to Principled Development

There are too many other design and development methodologies to enumerate here, ranging from
very simple to quite elaborate. In some sense, it does not matter which methodology is adopted,
as long as it provides some structure and discipline, and is relatively compatible with the abilities
of the particular design and development team. For example,Dick Karpinski hands out a business
card containing his favorite, Tom Gilb’s Project Management Rules: (1) Manage critical goals
by defining direct measures and specific targets; (2) Assure accuracy and quality with systematic
project document inspections; (3) Control major risks by limiting the size of each testable deliv-
ery. These are nice goals, but depend on the skills and experience of the developers — with only
subjective evaluation criteria. Harlan Mills’ “Clean-Room” technology has some elements of for-
malism that are of interest with respect to increasing assurance, although not specifically oriented
toward security. In general,good development practice is a necessary prerequisite for trustworthy
systems, as are means for evaluating that practice.

2.4 Design and Implementation Flaws, and Their Avoidance

Nothing is as simple as we hope it will be.Jim Horning

Some characteristic sources of security flaws in system design and implementation are noted
in [260], elaborating on earlier formulations and refinements (e.g., [5, 271]). There are various

2.4. DESIGN AND IMPLEMENTATION FLAWS, AND THEIR AVOIDANCE 23

techniques for avoiding those flaws, including sound architectures, defensively oriented program-
ming languages, defensively oriented compilers, better runtime environments, and generally better
software engineering practice.� Identification and authentication. The lack of nonspoofable identities and inter-subsystem

authentication within user systems and network infrastructures presents some major obstacles
to the robust networking of systems. In addition to permitting denial-of-service attacks and
penetrations, it also makes it very difficult if not impossible for traceback abilities to iden-
tify the source of misuse — assuming that the misuse can be detected. The pervasive use of
fixed/reusable passwords (especially those that traverse networks unencrypted or are other-
wise exposed) is also a high-risk problem. Elaborate schemes for managing these passwords
(such as avoiding dictionary words) ignore many of the risks. An enormous improvement
can be achieved by using one-time authenticators such as cryptographic tokens, and — in
certain constrained user environments — biometrics, at least within supposedly trustworthy
subsystems and subnetworks. The pervasive use of unauthenticated IP addresses that are eas-
ily spoofed is another area of risk. Remote sites and remote users are frequently not properly
identified and authenticated. Meaningful authentication is a precursor to the avoidance or
restriction of many kinds of misuse.� Authorization. Our systems and networks suffer from a serious lack of context-sensitive
authorization. Monolithic access controls tend to grant all-or-nothing or extremely coarse
permissions. The development and consistent use of finer-grained authorization techniques
would be very helpful in enforcing separation of privilege and least privilege. In the classi-
fied world, gross levels (e.g., Top Secret, Secret, Confidential, and Unclassified) are clearly
too inclusive, which is why finer-grained compartments are invoked. An excellent article
on the principle of least privilege is written by David A. Wheeler [380], with specific appli-
cation to the FreeBSDjail() , Linux Security Modules (LSM), Security-Enhanced Linux
(SELinux), and Wietse Venema’s Postfix mail transfer agent.This article is mandatory read-
ing. (See also Wheeler’s free online book on secure programming for Linux and Unix [379].)� Initialization and allocation. Failures in the initialization of procedures, processes, and in-
deed stable system and network configuration management represent a large class of system
flaws. Consistency checking on entry, determination of suitable availability of appropriate
resources, and deletion of possible residues are examples of techniques that can provide im-
proved initialization and allocation.� Finalization. In many programming languages, the lack of graceful termination and com-
plete deallocation is inadequately recognized as a source of flaws. For example, deletion
of leftover residues from previous executions is often ignored or relegated to an initializa-
tion problem, rather than treated systematically on termination (perhaps on the grounds that
it might be avoided altogether in some circumstances). In general, finalization should be
symmetrically matched with initialization. Whatever is done in initialization may need to
be explicitly undone or at least checked for consistent status at finalization. Programming
languages that incorporate garbage collection (GC) attempt to do this implicitly, although not
always perfectly. For example, note that Java’s finalizers based on pointer unreachability are
inherently imprecise. Various other GC-based languages have subtle finalization problems, as

24 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF TRUSTWORTHINESS

do non-GC-based programming languages. Also, note that WinXP zeroizes free pages in an
idle loop, instead of waiting until reuse. Overall, the needfor secure and robust finalization
remains a research topic.� Runtime validation. A large class of flaws results from inadequate runtime validation. Care-
ful attention to techniques such as argument validation andbounds checks (especially to pre-
vent insertion of Trojan horses such as executables added toarguments, causing buffer over-
flows), divide-by-zero checks, and strong typing of arguments can have enormous benefits.
Brian Randell long ago suggested the benefits of moving checking closer to the operations
being performed (whether in space, in time, or in layer of abstraction), to reduce the interven-
ing infrastructure that must be trustworthy. This is also applicable to end-to-end checks and
end-to-end security.� Consistent naming.Aliases, pointers, links, caches, and dynamic changes without relinking,
and various redundant representations all represent common sources of security vulnerabil-
ities. Symmetric treatment of aliases, symbolic naming anddynamic linking, strong type
checking, use of globally unique names, and recognition of stale caches and cache invalida-
tion are examples of beneficial techniques.� Encapsulation. Exposure of procedure and process internals may allow leakage of suppos-
edly protected information or externally induced interference. Proper encapsulation requires
a combination of system architecture, programming language design, software engineering,
static checking, and dynamic checking.� Synchronization consistency.Many vulnerabilities arise as a result of timing and sequenc-
ing, such as dependence on relative ordering, race conditions, synchronization, and deadlocks
— in both synchronous and asynchronous contexts. Note that many of these problems arise
because of sharing of state information (particularly in real time or in sequential ordering)
across abstractions that otherwise seem disjoint. Atomic transactions, multiphase commits,
and hierarchical locking strategies noted in Section 3.4 are examples of constructive design
techniques. A classical kind of vulnerability is time-of-check to time-of-use (TOCTTOU)
flaws, which result from a lack of atomicity, to which inadequate encapsulation can also be a
contributing factor.� Adverse dependencies.Dependence on untrustworthy programs or subsystems is another
considerable source of vulnerabilities. It can emerge as a result of flawed compilers and
flawed runtime library programs, as well as program bugs — including those resulting from
improper program changes and upgrades, but also from Trojanhorses.� Other logic errors. There are also many common logic errors (such as off-by-one counting
and omitted negations) that need to be avoided. Many of thesearise in the design process, but
some involve bad implementation.

Useful techniques for detecting some of these vulnerabilities include defensive programming
language design, compiler checks, and formal methods analyzing consistency of programs with
specifications. Of particular interest is the use of static checking. Such an approach may be for-
mally based, as in the use of model checking by Hao Chen, Dave Wagner, and Drew Dean (in

2.5. ROLES OF ASSURANCE AND FORMALISM 25

the MOPS system, developed in part under our CHATS project).(See Appendix A.) Alterna-
tively, there are numerous approaches that do not use formalmethods, ranging in sophistication
from lint to LCLint (Evans) to Extended Static Checking (Nelson, Reino, et al.,DEC/Compaq
SRC). Note that ESC is completely formally based, includinguse of a theorem prover; indeed, it
is a formal method that has some utility even in the absence offormal software specifications.

Jim Horning notes that even partial specifications increasethe power of the latter two, and pro-
vide a relatively gentle way to incorporate additional formalism into development. Strong type
checking and model checking tend to expose various flaws, some of which are likely to be conse-
quential to security and reliability. For example,purify and similar tools are useful in catching
memory leaks, array-bound violations, and related memory problems. These and other analytic
techniques can be very helpful in improving design soundness and code quality — as long as they
are not relied on by themselves as silver bullets.

All of the principles have some bearing on avoiding these classes of vulnerabilities. Several
of these concepts in combination — notably modularity, abstraction, encapsulation, device inde-
pendence where advantageous, information hiding, complete mediation, separation of policy and
mechanism, separation of privilege, least privilege, and least common mechanism — are relevant
to the notion of virtual interfaces and virtual machines. The basic notion of virtualization is that
it can mask many of the underlying details, and makes it possible to change the implementation
without changing the interface. In this respect, several ofthese attributes are found in the object-
oriented paradigm.

Several examples of virtual mechanisms and virtualized interfaces are worth noting. Virtual
memory masks physical memory locations and paging. A virtual machine masks the represen-
tation of process state information and processor multiplexing. Virtualized input-output masks
device multiplexing, device dependence, formatting, and timing. Virtual multiprocessing masks
the scheduling of tasks within a collection of seemingly simultaneous processes. The Multics
operating system [277] provides early illustrations of virtual memory and virtual secondary stor-
age management (with demand paging hidden from the programs), virtualized input-output (with
symbolic stream names and device independence where commonalities exist), and virtual mul-
tiprogramming (with scheduling typically hidden from the programming interfaces). The GLU
environment [177] is an elegant illustration of virtual multiprocessing. GLU allows programs to
be distributed dynamically among different processing resources without explicitly programmed
processor allocation, based on precompiling of embedded guidance in the programs.

2.5 Roles of Assurance and Formalism

In principle, everything should be simple.
In reality, things are typically not so simple.
(Note: The SRI CSL Principal Scientist is evidently both a Principle Scientist and a
Principled Scientist, as well as Principal Scientist. PGN)

In general, the task of providing some meaningful assurances that a system is likely to do what
is expected of it can be enhanced by any techniques that simplify or narrow the analysis — for ex-
ample, by increasing the discipline applied to system architecture, software design, specifications,
code style, and configuration management. Most of the cited principles tend to do exactly that —

26 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF TRUSTWORTHINESS

if they are applied wisely. Techniques for increasing assurance are considered in greater detail in
Chapter 6, including the potential roles of formal methods.

2.6 Caveats on Applying the Principles

For every complex problem, there is a simple solution. And it’s always wrong.
H.L. Mencken

As we noted above, the principles referred to here may be in conflict with one another if each
is applied independently; in certain cases, the principlesare not composable. In general, each
principle must be applied in the context of the overall development. Ideally, greater effort might
be useful to reformulate the principles to make them more readily composable, or at least to make
their potential tradeoffs or incompatibilities more explicit.

There are also various potentially harmful considerationsthat must be considered — for exam-
ple, overuse, underuse, or misapplication of these principles, and certain limitations inherent in the
principles themselves. Merely paying lipservice to a principle is clearly a bad idea; principles must
be sensibly applied to the extent that they are appropriate to the given purpose. Similarly, all of the
criteria-based methodologies have many systemic limitations (e.g., [257, 372]); for example, for-
mulaic application of evaluation criteria is always subject to incompleteness and misinterpretation
of requirements, oversimplification in analysis, and sloppy evaluations. However, when carefully
applied, such methodologies can be useful and add discipline to the development process. Thus,
we stress here the importance of fully understanding the given requirements and of creating an
overall architecture that is appropriate for realizing those requirements, before trying to conduct
any assessments of compliance with principles or criteria.And then, the assessments must be taken
for what they are worth — just one piece of the puzzle — rather than overendowed as definitive
results out of context. Overall, there is absolutely no substitute for human intelligence, experience,
and foresight.

The Saltzer–Schroeder principle of keeping things simple is one of the most popular and com-
monly cited. However, it can be extremely misleading when espoused (as it commonly is) in
reference to systems with critical requirements for security, reliability, survivability, real-time per-
formance, and high assurance — especially when all of these requirements are necessary within
the same system environment. Simplicity is a very importantconcept in principle (in the small),
but complexity is often unavoidable in practice (in the large). For example, serious attempts to
achieve fault-tolerant behavior often result in roughly doubling the size of the overall subsystem
or even the entire system. As a result, the principle of simplicity should really be one of managing
complexity rather than trying to eliminate it, particularly where complexity is in fact inherent in
the combination of requirements. Keeping things simple is indeed a conceptually wonderful prin-
ciple, but often not achievable in reality. Nevertheless,unnecessarycomplexity should of course
be avoided. The back-side of the Einstein quote at the beginning of Section 2.1 is indeed both
profound and relevant, yet often overlooked in the overzealous quest for perceived simplicity.

An extremely effective approach to dealing with intrinsic complexity is through a combination
of the principles discussed here, particularly abstraction, modularity, encapsulation, and careful
hierarchical separation that architecturally does not result in serious performance penalties, well
conceived virtualized interfaces that greatly facilitateimplementation evolution without requiring

2.6. CAVEATS ON APPLYING THE PRINCIPLES 27

changes to the interfaces or that enable design evolution with minimal disruption, and far-sighted
optimization. In particular, hierarchical abstraction can result in relative simplicity at the inter-
faces of each abstraction and each layer, in relative simplicity of the interconnections, and perhaps
even relative simplicity in the implementation of each module. By keeping the components and
their interconnections conceptually simple, it is possible to achieve conceptual simplicity of the
overall system or networks of systems despite inherent complexity. Furthermore, simplicity can
sometimes be achieved through design generality, recognizing that several seemingly different
problems can be solved symmetrically at the same time, rather than creating different (and perhaps
incompatible) solutions. Such approaches are considered further in Chapter 4.

Note that such solutions might appear to be a violation of theprinciple of least common mech-
anism, but not when the common mechanism is fundamental — as in the use of a single uniform
naming convention or the use of a uniform addressing mode that transcends different subtypes of
typed objects. In general, it is riskful to have multiple procedures managing the same data structure
for the same purposes. However, it can be very beneficial to separate reading from writing — as in
the case of one process that updates and another process thatuses the data. It can also be beneficial
to reuse the same code on different data structures, although strong typing is then important.

Of considerable interest here is David Musser’s notion ofGeneric Programming,or program-
ming with concepts. His Web site defines aconceptas “a family of abstractions that are all related
by a common set of requirements. A large part of the activity of generic programming, particularly
in the design of generic software components, consists of concept development — identifying sets
of requirements that are general enough to be met by a large family of abstractions but still restric-
tive enough that programs can be written that work efficiently with all members of the family. The
importance of the C++ Standard Template Library, STL, lies more in its concepts than in the actual
code or the details of its interfaces.” (http://www.cs.rpi.edu/ musser/gp/)

One of our primary goals in this project is to make system interfaces conceptually simple while
masking complexity so that the complexities of the design process and the implementation itself
can be hidden by the interfaces. This may in fact increase thecomplexity of the design process,
the architecture, and the implementation. However, the resulting system complexity need be no
greater than that required to satisfy the critical requirements such as those for security, reliability,
and survivability. It is essential that tendencies toward bloatware be strongly resisted. (They seem
to arise largely from the desire for bells and whistles — extra features — and fancy graphics, but
also from a lack of enlightened management of program development.)

A networking example of the constructive use of highly principled hierarchical abstraction is
given by the protocol layers of TCP/IP (e.g., [169]). An operating system example is given by the
capability-based Provably Secure Operating System (PSOS)[120, 268, 269]) in which the func-
tionality at each of more than a dozen layers was specified formally in only a few pages each, with
at least the bottom seven layers intended to be implemented in hardware. The underlying address-
ing is based on a capability mechanism (layer 0) that uniformly encompasses and protects objects
of arbitrary types — including files, directories, processes, and other system- and user-defined
types. The PSOS design is particularly noteworthy because asingle capability-based operation
at layer 12 (user processes) could be executed as a single machine instruction at layer 6 (system
processes), with no iterative interpretation required unless there were missing pages or unlinked
files that require operating system intervention (e.g., fordynamic linking of symbolic names, à la
Multics). To many people, hierarchical layering instantlybrings to mind inefficiency. However, the

28 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF TRUSTWORTHINESS

PSOS architecture is an example in which the hierarchical design could be implemented extremely
efficiently — because of the power of the capability mechanism, strong typing, and abstraction,
and its intended hardware implementation.

We note that formalism for its own sake is generally counterproductive. Formal methods are not
likely to reduce the overall cost of software development, but can be helpful in decreasing the cost
of software quality and assurance. They can be very effective in carefully chosen applications, such
as evaluation of requirements, specifications, critical algorithms, and particularly critical code.
Once again, we should be optimizing not just the cost of writing and debugging code, but rather
optimizing more broadly over the life cycle.

There are many other common pitfalls that can result from theunprincipled use of principles.
Blind acceptance of a set of principles without understanding their implications is clearly inappro-
priate. (Blind rejection of principles is also observed occasionally, particularly among people who
establish firm requirements with no understanding of whether those requirements are realistically
implementable — and among strong-willed developers with a serious lack of foresight.)

Lack of discipline is clearly inappropriate in design and development. For example, we have
noted elsewhere [264, 265] that the open-source paradigm byitself is not likely to produce secure,
reliable, survivable systems in the absence of considerable discipline throughout development,
operation, and maintenance. However, with such discipline, there can be many benefits. (See
also [126] on the many meanings ofopen source,as well as a Newcastle Dependable Interdisci-
plinary Research Collaboration (DIRC) final report [125] ondependability issues in open source,
part of ongoing work.)

Any principle can typically be carried too far. For example,excessive abstraction can result in
overmodularization, with enormous overhead resulting from intermodule communication and non-
local control flow. On the other hand, conceptual abstraction through modularization that provides
appropriate isolation and separation can sometimes be collapsed (e.g., for efficiency reasons) in the
implementation — as long as the essential isolation and protection boundaries are not undermined.
Thus, modularity should be considered where it is advantageous, but not merely for its own sake.

Application of each principle is typically somewhat context dependent, and in particular de-
pendent on specific architectures. In general, principles should always be applied relative to the
integrity of the architecture.

One of the severest risks in system development involves local optimization with respect to
components or individual functions, rather than global optimization over the entire architecture, its
implementation, and its operational characteristics. Radically different conclusions can be reached
depending on whether or not you consider the long-term complexities and costs introduced by
bad design, sloppy implementation, increased maintenancenecessitated by hundreds of patches,
incompatibilities between upgrades, noninteroperability among different components with or with-
out upgrades, and general lack of foresight. Furthermore, unwise optimization (whether local or
global) must not collapse abstraction boundaries that are essential for security or reliability — per-
haps in the name of improved performance. As one example, real-time checks (such as bounds
checks, type checking, and argument validation generally)should be kept close to the operations
involved, for obvious reasons. This topic is pursued further in Sections 7.1, 7.2, and 7.3. As another
example, the Risks Forum archives include several cases in which multiple alternative communi-
cation paths were specified, but were implemented in the sameor parallel conduits — which were
then all wiped out by a single backhoe!

2.7. SUMMARY 29

Perhaps most insidious is thea priori lack of attention to critical requirements, such as any that
might involve the motherhood attributes noted in [255] and listed above. Particularly in dealing
with security, reliability, and survivability in the face of arbitrary adversities, there are few if any
easy answers. But if those requirements are not dealt with from the beginning of a development,
they can be extremely difficult to retrofit later. One particularly appealing survivability require-
ment would be that systems and networks should be able to reboot, reconfigure, and revalidate
their soundness following arbitrary outages, without human intervention. That requirement has
numerous architectural implications that are considered in Chapter 4.

Once again, everything should be made as simple as possible,but no simpler. Careful adherence
to principles that are deemed effective is likely to help achieve that goal.

2.7 Summary

In theory, there is no difference between theory and practice. In practice, there is an
enormous difference.(Many variants of this concept are attributed to various people.
This is a personal adaptation.)

What would be extremely desirable in our quest for trustworthy systems and networks is theory
that is practical and practice that is sufficiently theoretical. Thoughtful and judiciously applied ad-
herence to sensible principles appropriate for a particular development can greatly enhance the se-
curity, reliability, and overall survivability of the resulting systems and networks. These principles
can also contribute greatly to operational interoperability, maintainability, operational flexibility,
long-term evolvability, higher assurance, and many other desirable characteristics.

To illustrate some of these concepts, we have given a few examples of systems and system
components whose design and implementation are strongly principled. The omission of other
examples does not in any way imply that they are less relevant. We have also given some examples
of just a few of the potential difficulties in trying to apply these principles.

What are generally called “best practices” are often ratherlowest-common-denominator tech-
niques that have found their way into practice, rather than what might otherwise be thebest prac-
ticesthat would be useful. Furthermore, the supposedly best practices can be manhandled or wom-
anhandled by very good programmers, and bad programming languages can still be used wisely.
Unfortunately, spaghetti code is seemingly always on the menu, and bloatware tends to win out
over elegance. Overall, there are no easy answers. However,having sensible system and network
architectures is generally a good starting point, as discussed in Chapter 4, where we specifically
consider classes of system and network architectures that are consistent with the principles noted
here, and that are highly likely to be effective in fulfillingthe CHATS goals. In particular, we seek
to approach inherently complex problems architecturally,structuring the solutions to those prob-
lems as conceptually simple compositions of relatively simple components, with emphasis on the
predictable behavior of the resulting systems and networks— which is the essence of Chapter 3.

Chapter 3

Realistic Composability

Synopsis

One of the biggest obstacles to software development — and particularly system integration —
is the difficulty of predictably composing subsystems out ofmodules, systems out of subsystems,
and networks of systems out of systems and networking technology.

In this chapter, we outline some of the obstacles to achieving facile composability as well as
some of the approaches that can contribute to the development of significantly greater composabil-
ity in systems with critical requirements.

3.1 Introduction

The basic challenge confronting us is to be able to develop, configure, and operate systems and
networks of systems with high levels of trustworthiness with respect to critical requirements for
security, reliability, fault tolerance, survivability, performance, and other behavioral criteria, with-
out too seriously sacrificing the desired functionality. Asnoted in Chapter 1, both compatibility
and interoperability are important. Inherently high assurance that those systems will perform de-
pendably as expected is also extremely desirable. These attributes can be greatly aided by taking
pains to constrain architectures and the software development process.

To these ends, one of the most fundamental problems involvesassuring the ability to compose
subsystems to form dependable systems and to compose component systems to form dependable
networks — without violating the desired requirements, andwithout diminishing the resulting
trustworthiness. Composability problems are very old, relative to the youth of the computer field.
They exist throughout the life cycle, involving composability (and noncomposability) of require-
ments, policies, specifications, protocols, hardware subsystems, and software components (with
respect to their source code, compilers, object code, and runtime libraries), as well as arising in sys-
tem and network reconfiguration, upgrades, and maintenance(for example). Analogous problems
also arise with respect to the compositionality of assurance measures (including formal methods
and component testing) and their evaluations, and even moreso to the evolution of evaluations
over time as systems change. Ultimately, the degree to whichcomposability is attainable depends
strongly on the system and network architectures, but is also influenced by many other factors.

30

3.2. OBSTACLES TO SEAMLESS COMPOSABILITY 31

Unfortunately, many seemingly sound compositions can actually compromise the desired overall
requirements, as noted in Section 3.2.

Various approaches to decomposing systems into componentsare examined in Section 3.3,
whereas how to enhance composability is considered in Section 3.4. Of additional interest is the
concept of combining subsystems in ways that can actuallyincreasethe resulting trustworthi-
ness. This is explored in Sections 3.5 and 3.6, along with therelevance of concepts of software
engineering discipline, programming-language constructs, structural compatibility, execution in-
teroperability, and development tools — all of which can considerably improve the likelihood of
achieving seamless composability.

We include many references here and intentionally try to balance important early efforts that
deserve not to be forgotten with more recent efforts that continue toward the ultimately desired
research and development results.

3.2 Obstacles to Seamless Composability

A modular system is one that falls apart easily!E.L. (Ted) Glaser, 1965

Seamless composabilityimplies that a composition will have the desired beneficial properties,
with no uncontrollable or unpredictable side effects. Thatis, the composed system will do exactly
what it is expected to do —no more and no less.(Moreandlesscan both create potentially serious
problems.) In practice, many pitfalls are relevant to the composition of subsystems into systems
— often involving unanticipated effects (colloquially, “side effects”) that impede the ideal goal of
unencumbered composition and interoperability among the subsystems:� Inadequate requirements. If stated requirements do not explicitly demand that subsystems

and other components must be developed in ways that would encourage compatibility and
interoperability, composability is likely to be much more difficult to achieve. Furthermore,
poorly defined requirements are likely to hinder composability.� Nonexistent or inappropriate specifications.If system and subsystem specifications do not
adequately define the relationships among interfaces, inputs, internal state information and
state transitions, outputs, and exception conditions, andif those specifications are oblivious
to critical relationships with related functionality, determining to what extent composability
is possible becomes much more difficult. Composition of underconstrained specifications
is an inherent problem, because the extent to which the components compose is ill-defined;
supposed demonstrations of composability may actually be meaningless. Overly constrained
specifications (for example, including unnecessarily low-level and possibly incompatible de-
tails) are also often an impediment to composability. Shared state information across compo-
nents is also a particular source of potential problems.� Properties that exist beyond what is defined by stated individual subsystem interface
specifications. Assuming the presence of meaningful specifications, inadequacies of the
specifications and inconsistencies between specificationsand implementations are charac-
teristic problems. In general, specifications are always inherently incomplete with respect
to defining what shouldnot happen, even when they are fairly good at defining what should

32 CHAPTER 3. REALISTIC COMPOSABILITY

happen. (Abstraction is a very important technique for simplifying specifications, but it sup-
presses detail that may include undesirable aspects of behavior and may therefore negatively
affect compositional properties.) In addition, programming languages and compilers them-
selves provide very few if any guarantees that something beyond what is expected cannot
occur. Examples include shared-buffer interactions and unanticipated information residues
from one invocation of a subsystem to a subsequent or concurrent invocation of the same
subsystem; buffer overflows and other cases of inadequate bounds checks and inadequate
runtime validation; inadequate authentication; improperinitialization and finalization; im-
proper encapsulation, which can result in interference andother unexpected interactions; race
conditions; covert channels; and intentionally planted Trojan horses. This list represents just
the tip of a huge iceberg. All these problems can impair composability. As one example,
various Windows operating systems are actually relativelymodular (which is essential for
orderly development), but the modules are not sufficiently encapsulated to prevent adverse
effects resulting from composition. Drew Dean suggests that TCP over 802.11 and TCP over
TCP are also interesting examples of composition problems.� Properties that manifest themselves only as a result of combinations of subsystems.Ex-
amples include adverseemergentproperties (i.e., disruptive or even constructive effectsthat
are not evident in any of the individual subsystems but that arise only when the subsystems
are combined); adverse feedback interactions between subsystems, such as infinite loops or
dependence on functionality that is less trustworthy; emergent covert channels that do not ex-
ist in any of the subsystems in isolation; mutual incompatibilities in the interfaces — perhaps
resulting from internal state interference; global failure modes resulting from local faults,
as in the 1980 ARPANET collapse [320] and the 1990 AT&T long-distance collapse (e.g.,
see [260]); socalled “man-in-the-middle” attacks (which might alternatively be called un-
trustworthy interpositions), in which an interposer can simulate the actions of each compo-
nent; and other failure modes that arise only in the overall system context. A fascinating
noncomposability situation is noted in attempts to combineencryption with digital signa-
tures [12]: signatures are composable with public-key cryptography, butnot with symmetric
cryptography, in which case security may break down. These impediments to composabil-
ity can arise essentially everywhere throughout the development life cycle — for example,
incompatibilities among different requirements and policies, undesirable interactions in spec-
ifications and implementations, and difficulties in reconfiguration and maintenance. Compos-
ability of cryptographic libraries useful for automated proofs have been considered by IBM
Rüschlikon [27, 28].� Multivendor and multiteam incompatibilities. In the interests of having heterogeneous
that can mix and match alternative components, it would be desirable to use multiple sys-
tem developers. However, incompatibilities among interface assumptions, the existence of
proprietary internal and external interfaces, and extremeperformance degradations resulting
from the inability to optimize across components can resultin the inability to compose the
components.� Scalability issues. Composability typically creates many issues of scalability. For exam-
ple, performance may degrade badly or nonpredictably as multiple subsystems are conjoined.

3.3. SYSTEM DECOMPOSITION 33

Ideally, composability can result in a wide range of expected performance implications —
for example, linear, multiplicative, or exponential in thenumber of composed subsystems.
In practice, even further degradations can result — for example, from design or implemen-
tation flaws or indirect effects of the composition, such as unrecognized dependence on sub-
stantively slow interactions. Obviously, infinite loops and standstill deadlocks (“deadly em-
braces”) are limiting cases of degradation, and often ariseprecisely as a result of composing
subsystems.� Human issues.The supposed “good guys” can accidentally have profoundly negative effects
on composability, through poor system conception, inadequate requirements, lack of speci-
fications that are comprehensive and accurate, bad software-engineering practice, misuse or
bad choices of programming languages, badly managed development, and sloppy operational
practice (for example). Insider “bad guys” can have variousnegative effects on the desired
composability, such as installing Trojan horses during development, operation, and reconfig-
uration that impair interoperability and compromise security. Human activities can also di-
rectly impair enterprise interoperability [118]. Outsider “bad guys” are generally less likely to
negatively affect composability externally, except as a result of penetrations (through which
they become bad insiders), subversion of the development process, tampering, and denials of
service.

In common usage, there is considerable confusion surrounding the relative roles of compos-
ability, intercompatibility, and interoperability (see Chapter 1). In that it is easy to conceive of ex-
amples in which composability implies neither intercompatibility nor interoperability, or in which
neither intercompatibility nor interoperability impliescomposability, we avoid any attempts to tax-
onomize these three concepts. By avoiding the semantic distinctions, we focus primarily on seek-
ing a strong sense of composability, recognizing that interoperability and intercompatibility may
impose further constraints. From a practical point of view,what matters most is that the resulting
composed systems and networks must satisfy their desired requirements. If that is the case, then
we can simply say that the compositions satisfy whatever requirements exist for composability,
interoperability, and intercompatibility.

3.3 System Decomposition

Decomposition into smaller pieces is a fundamental approach to mastering complexity.
The trick is to decompose a system in such a way that the globally important deci-
sions can be made at the abstract level, and the pieces can be implemented separately
with confidence that they will collectively achieve the intended result. (Much of the art
of system design is captured by the bumper sticker “Think globally, act locally.”) Jim
Horning [259]

Given a conceptual understanding of a set of system requirements, or even a detailed set of
requirements, one of the most important architectural problems is to establish a workable structure
of the system that can evolve into a successful implementation. The architectural decomposition
of a network into subnetworks, a system into subsystems, or asubsystem into components, can
benefit greatly from the principles enumerated in Chapter 2.In particular, modularity together with

34 CHAPTER 3. REALISTIC COMPOSABILITY

encapsulation, hierarchical layering, constructive usesof redundancy, and separation of concerns
are examples of design principles that can pervasively affect the decomposability of a system
design — and thereby the modular composability.

The work of Edsger Dijkstra (for example, [105, 107]) and David Parnas (for example, [281,
283, 284, 290, 295] has contributed significantly to the constructive structural decomposition of
system architectures and system designs. In addition, Parnas [86, 282, 285, 287, 291, 292, 293,
294, 296, 297] provided definitive advances toward the formal specifications and analysis of real
and complex systems, beginning in the early 1970s. Of particular importance is Parnas’s enumer-
ation of various notions ofa usesb, and especially the concept of dependence [283] embodied in
the relationa depends onb for its correctness.Appendix B elaborates on theusesrelations.

Decomposition can take on several forms.Horizontal decomposition(modularization) is often
useful at each design layer, identifying functionally distinct components at that layer. Horizontal
decomposition can be achieved in various ways — for example,through coordination from higher
layers, local message passing, or networked interconnections. In addition, the development process
entails various temporal decompositions, such as abstraction refinement, in which the representa-
tion of a particular function, module, layer, or system interface undergoes successively increased
specificity — for example, evolving from a requirements specification to a functional specification
to an implementation. If any, additional functionality is added along the way, vulnerabilities may
arise whenever development discipline is not maintained.

Vertical decompositionrecognizes different layers of hierarchical abstraction and distinguishes
them from one another. A very simple layering of abstractions (from the bottom up) might be hard-
ware, operating system, middleware, application software, and users. Each of these conceptual
layers can in turn be split into multiple layers, according to the needs of an architectural design, its
implementation, and its assurance considerations.

Several important examples of vertical and horizontal system decomposition are found in Mul-
tics, the THE system, the Software Implemented Fault-Tolerant (SIFT) system, the Provably Se-
cure Operating System (PSOS), the type-oriented protection of the Honeywell and Secure Com-
puting Corporation lineage, multilevel secure (MLS) kernel-based architectures with trusted com-
puting bases (TCBs), and the MLS database management systemSeaView. These systems and
others are considered in Chapter 4.

Ideally, it should be relatively easy to remove all unneededsoftware from a broadly supported
general-purpose system, to achieve a minimal system configuration that is free of bloatware and its
accompanying risks. (In some of the server-oriented architectures considered in Chapter 4, there
is a fundamental need for highly trustworthy servers that are permitted to perform only a stark
subset of the functionality of a general-purpose system, with everything else stripped out.) In prac-
tice, monolithic mass-market workstation software and conventional mainframe operating systems
tend to defy, or at least greatly hinder, the subsetting of functionality. There are typically many
unrecognized interdependencies — especially in the areas of device drivers and GUIs. (Some-
what intriguingly, real-time operating system developersseem to have done a much better job in
realizing the benefits that can be obtained from stark subsetting, partly for reasons of optimizing
performance, partly because of historical memory limitations, but perhaps mostly because of the
importance of reducing per-unit hardware costs. However, their systems do not yet have adequate
security for many critical applications.)

If a system has been designed to be readily composable out of its components, then it is also

3.4. ATTAINING FACILE COMPOSABILITY 35

likely to be readilydecomposable— either by removal of the unnecessary subsystems, or by
the generation of the minimal system directly from its constituent parts. Thus, if composability
is dealt with appropriately (e.g., in system design, programming language design, and compiler
design), the decomposition problem can be solved as a by-product of composition. On the other
hand, the decomposition problem is potentially very difficult for complex conceptual systems that
are just being designed and for legacy software that was not designed to be either composable or
decomposable.

And then we have a wonderful quote from Microsoft’s Steve Ballmer, who said — in his 8
February 2002 deposition relating to the nine recalcitrantU.S. states — that it would be impossible
to get the operating system to run properly and still meet thestates’ demands.

“That’s the way good software gets designed. So if you pull out a piece, it won’t run.”
Steve Ballmer, Reuters, 4 March 2002.

(Modular, schmodular. That might be why many people consider “software engineering” to be
an oxymoron. But what is missing from much mass-market software is not modularity, but rather
clean abstraction and encapsulation.)

This is in contrast to a poignant e-mail quote from Cem Kaner,April 4, 2002: “The problem
with installing these [...] patches is that, as lightly tested patches will, they can break one thing
while fixing another. Last week I installed yet another Microsoft security patch for Win 2000,
along with driver patches they recommended. As a result, my modem no longer works, my screen
was screwed up until I reloaded the Dell driver, and my sound now works differently (and less
well). I accepted patches for MS Office and Acrobat and now I get messages asking me to enable
Word macros when I exit Word, not just when I open a document. (Given the widespread nature of
Word macro viruses, I disable the feature.) It wasn’t so longago that it was common knowledge
that patching systems reflects poor engineering and is risk prone. We should not be advocating a
structure like this or making a standard of it.”

3.4 Attaining Facile Composability

Ideally, we would like the development of complex hardware/software systems to be like
snapping Lego pieces together! Instead, we have a situationin which each component
piece can transmogrify its modular interface and its physical appearance — thereby
continually disrupting the existing structure and hindering future composability. An
appropriate analog would be if civil engineering were as undisciplined as software en-
gineering.PGN

Ideally, it should be possible to constrain hardware and software subsystems — and their com-
positions — so that the subsystems can be readily integratedtogether with predictable conse-
quences. This goal is surprisingly difficult. However, several approaches can help improve the
likelihood that composition will not create negative effects. (Note that Brad Cox achieved some-
thing like this in the mid-1980s with what he called softwareintegrated circuits; see
http://en.wikipedia.org/wiki/Softwarecomponent.)

36 CHAPTER 3. REALISTIC COMPOSABILITY

In hardware, address relocation, segmentation, paging, multiprocessing, and coprocessors have
helped. In software, virtual memory, virtual machines, distributed operating systems, modern soft-
ware engineering and programming languages better enforcing the principles of good software-
engineering practice, sound distributed programming, network-centered virtualized multiprocess-
ing, and advancing compiler technology can contribute to increased composability — if they are
properly used. In particular, virtual memory techniques have considerably increased the compos-
ability of both hardware and software. (It is lamentable that software engineering practice is so
seldom good!)� Compatibility and interoperability. As noted in Chapter 1, compatibility implies merely

the ability to coexist within a common framework, whereas interoperability additionally im-
plies the ability to work together without adverse side effects. Both are generally essential
prerequisites for composability.� Web interoperability. In recent years, considerable effort has been devoted toward estab-
lishing a common definition of aWeb portalconcept that would facilitate universal interop-
erability providing access to Web services. A recent article by Michael Alan Smith [355]
proposes a hierarchical General Portal Model that attemptsto unify 17 somewhat differing
definitions from the literature. From the top, the layers address process interfaces (process
identification, transformation), resource discovery (resource identification, resource location,
resource binding), and network interfaces (security, network access). In this context, a portal
implies an “infrastructure providing secure, customizable, personalizable, integrated access
to dynamic content from a variety of sources, in a variety of formats,wherever it is needed.”� Consistency and completeness of the interface specifications. It is desirable that there be
no externally discernible functional behavior other than precisely what is specified, implying
bilateral consistency of behavior with respect to the functional specifications. That is, the
subsystem must do what it is supposed to do,and nothing else beyond what is specified.
However, it is important to note that specifications are inherently incomplete, and that many
system failures (in security, reliability, performance, and so on) result from events that occur
outside of the scope of the specifications and thus are undetectable by any analyses based on
those specifications.� Independence of specification abstractions.As noted above, abstraction can be an enor-
mous aid to composability of specifications, as well as to assurance proofs. However, it is
essential that the details not explicitly represented by each abstraction be independent of the
details of other abstractions. Otherwise, composability will most likely be impaired. One
elegant example of provable composability is seen in the orthogonality theorem of Chan-
der, Dean, and Mitchell [72], which provides soundness and completeness proofs for a trust
management kernel with a clean separation between authorization and structured distributed
naming.� Timing and synchronization issues.In general, Lamport-style safety properties (i.e., noth-
ing bad happens) compose better than liveness properties (something good eventually hap-
pens with certainty) [197], but this boundary is blurred by the inclusion of timing constraints,
which are technically safety properties, but generally notcomposable. It is also blurred by

3.4. ATTAINING FACILE COMPOSABILITY 37

the existence of properties that are neither safety nor liveness — such as information flow.
Furthermore, time (whether real time or relative time) is typically common to different ab-
stractions, which is a reason that synchronization and timing constraints can present serious
impediments to facile composition. For example, see Kopetz[195] on composability in the
Time-Triggered Architecture.� Statelessness, total state visibility, object-oriented paradigms, and information hiding.
If a subsystem is stateless (that is, it does not remember anyof its own state information from
one incarnation to the next), then it may be less likely to have adverse interactions when that
subsystem is composed with other subsystems — although there are always issues such as
noncommutativity of operations and interference during concurrent execution. In addition,
nontrivial recovery, as in selective rollback, may be unnecessary. However, statelessness is
often not a desirable goal — although stack disciplines can effectively separate the state in-
formation from the subsystem itself. Assuming that a subsystem is stateful (that is, it retains
at least some of its own state information from one incarnation to the next), there is a choice
between the classical notion of information hiding and external visibility of state information.
External state visibility of each subsystem at least makes state information explicit, and also
tends to make explicit any residues that might impair compositionality. On the other hand,
because information hiding typically masks internal stateinformation, it can hinder facile
composability. For example, internal state information can be in conflict across the imple-
mentation of different subsystems even if invisible in the specifications — and particularly so
if the subsystems share any concrete state attributes that are not separately specified and as-
sured (as in the case of virtual machines and virtual memory). (For example, pointers, loosely
bound aliases, and other indirect references tend to createproblems.) Thus, the separation of
common stateful entities can greatly facilitate composition. Nevertheless, information hid-
ing is very desirable for other reasons, including isolation, security, system integrity, and
tamperproofing. One interesting historical approach is found in the formal specifications of
PSOS, in which certain state information is hidden but from which the state information that
is explicitly visible at the module interface is derived. Because the hidden state information
cannot be accessed outside of the module (information hiding), it cannot be referenced in any
other module specification. As a result, there can be no module state residues or other state
information that can be accessible to other modules or subsequent invocations of the same
module beyond what is explicitly declared as visible. This greatly increases the composabil-
ity of modules and the analysis of potential interactions. It also rules out certain characteristic
flaws simply because it is impossible to include them in the specifications! This approach is
discussed further in Section 6.4.

The object-oriented paradigm (especially with meticulously strong typing) can also contribute
significantly to composability, based on abstraction, encapsulation, subtype inheritance with
respect to specifications, and polymorphism. Note that the seeming inheritance of implemen-
tations without strict inheritance of specification subclasses runs counter to composability.
Every subclass instance must meet the specifications of all its superclasses, or else all veri-
fications of uses of the superclasses are unsupported. In anycase, any internal state (resid-
ual or otherwise) of a subsystem should be demonstrably independent of the internal states
of other subsystems with which it is to be composed. In essence, the required analysis is

38 CHAPTER 3. REALISTIC COMPOSABILITY

somewhat similar to that used in multilevel-security flow analysis and noninterference, as in
the work of Owicki–Gries and Goguen–Meseguer [139, 140]. A variant of ML, Objective
Caml is an outstanding example of a programming language that contributes very substan-
tially to increasing composability; this results from Objective Caml’s module system and
approach to object orientation, in addition to the type system, exception handling, and au-
tomatic memory management provided by ML. (See http://caml.inria.fr and its associated
FAQ pages http://caml.inria.fr/FAQ/general-eng.html.)See also Bertrand Meyer’s Eiffel pro-
gramming by contract (http://www.inf.ethz.ch/ meyer/). There are also some similarities with
programming-language analyses done by compilers and debugging tools. However, although
such an independence condition would be theoretically desirable, it is also not sufficient in
practice — because of the inherent incompleteness of the specifications and the presence of
emergent properties. Modula 3 also has a modular system conducive to composability.� Policy composition. Serious problems can result when different policies do not compose
properly — especially if that lack of composability is not discovered until much later in
development. Furthermore, attempting to compose policiesoften results in emergent prop-
erties that are not evident from the constituent policies. For example, see recent work by
Virgil Gligor et al. with respect to the composability of separation-of-duty policies [135]
and application-specific security policies [134]. Gligor notes (among other things) that pol-
icy composability does not necessarily imply the usefulness of the resulting policies, and
that existing compositionality criteria are not always realistic. Denial of service is a partic-
ularly thorny policy; besides, policies that do not addressdenials of service are inherently
incomplete. Of considerable interest is recent work by Heiko Mantel relating to the general
composability of secure systems [220] and on flow propertiesthat are preserved under refine-
ment [219]. Also relevant here are earlier papers on the difficulties of composing policies for
multilevel security [368] and restrictiveness [222, 223, 225] (the nondeterministic generaliza-
tion of noninterference), as is other work on policy composition (e.g., [3, 36, 37, 147, 162,
218, 224, 226, 230, 238, 319, 325, 363, 388, 389]).

Jim Horning notes that policy composition is an instance of the general problem of building
axiomatic systems. Consistency is difficult to demonstratein practice (and impossible to
demonstrate in general), and surprises emerge even from thecomposition of a few simple
axioms. For example, the axiomatization of rational numbers in terms of 0, 1, +, –, *, and /
was incorrect in the published versions of the Larch Shared Language Handbook, despite its
scrutiny by numerous colleagues, and despite the fact that this is an extensively studied and
axiomatized domain. Every axiom seems to make sense in isolation, but their combination
leads to a contradiction or otherwise unacceptable conclusion.� Proof composition. An extraordinary book on compositionality of proofs [94] isworth
careful reading for anyone interested in formal verification and high assurance of systems.
Composability of proofs is also an attribute of the Berkeleystatic analysis discussed in Ap-
pendix A.� Certification composition. Rushby [322] has characterized some of the main issues relating
to the modular certification of aircraft derived from separate certification of its components,
based on an extension of a formal verification approach. The crucial elements involve sepa-

3.4. ATTAINING FACILE COMPOSABILITY 39

ration of assumptions and guarantees (based on “assume-guarantee reasoning”) into normal
and abnormal cases.� Protocol composition. There is also ongoing work on protocol composability by Nancy
Lynch at MIT, Dushko Pavlovic at Kestrel, John Mitchell at Stanford, and others — for ex-
ample, see [93]. Several of the cited works include further references for anyone aspiring to
be the Compleat Composability Maven. An interesting research challenge might be to con-
sider a particular collection of protocols (e.g., for authentication, encryption, and integrity
preservation) and prove that they are mutually composable,subject to certain constraints; the
proofs could also be extended to demonstrating that their modular implementations would be
composable.� Other past research on composition.There was a significant flurry of activity on system
composition in the early 1990s [7, 55, 203, 204], including some works specifically address-
ing principles of secure design [56], specification [160], and design and evaluation [365].� Dependency analysis.In many systems, there are unrecognized interdependenciesamong
different components that hinder composability. Similar comments are relevant to contradic-
tory or otherwise incompatible interdependencies among policies, models, separately com-
piled software, and even proofs. Identifying such dependencies and removing them or other-
wise neutralizing them would be a considerable aid to composability, The role of dependency
analysis as an assurance technique is considered in Section6.2.� Constrained and guarded dependency strategies.Deterministic linearization or other suit-
able prioritization of intersubsystem dependencies can avoid many adverse dependency prob-
lems, such as often result from misguided locking strategies and search strategies, upgrade
compatibility mismatches, and unanticipated distributedinteractions. For example, in Dijk-
stra’s THE system paper [106], the use of a linearly ordered hierarchical locking structure
guaranteed that no deadly embraces could occurbetweentwo different layers of abstraction
(although in subsequent years a deadly embrace was occasionally discoveredwithin a particu-
lar layer). As another example, Ken Biba’s multilevel integrity [43] (MLI) requires in essence
that no computational entity (e.g., user, program, process, or data) may depend on any other
entities that are deemed less trustworthy (i.e., that are potentially less highly trusted) with
respect to integrity. (MLI is considered further in Section4.3.) In the broadened sense of de-
pendence considered here, the strict lattice ordering of multilevel integrity attributes implied
by Biba may be relaxed if any relative untrustworthiness canbe masked by creative system
architecture or otherwise transcended. This notion of guarded acceptability of dependence on
less trustworthy components is systematized in [264] (where it is referred to asgeneralized
dependence). Here referred to asguarded dependence, this concept is explored further in
the next two sections. See Abadi et al. [1] for a recent formalization of dependency.� Functional consistency among layers of abstraction.The 1977 Robinson–Levitt paper [316]
on hierarchical formal specifications introduced the concept of formal mappings between dif-
ferent layers of functional specifications that represent abstract implementations of each layer
as a function of the lower layers. Formal proofs at one layer can be derived by using the map-
ping functions together with the formal specifications at appropriate layers. The relatively

40 CHAPTER 3. REALISTIC COMPOSABILITY

unsung Robinson–Levitt mapping analysis is actually quitefar-reaching, and can be used di-
rectly to relate properties of a composed system to individual properties of its subsystems.
As noted above with respect to correctness and completenessof interface specifications, this
approach is of course limited by any incompleteness in the functional specifications and map-
ping functions. The Robinson–Levitt approach was part of the SRI Hierarchical Development
Methodology (HDM) [318] used in the Provably Secure Operating System [120, 268, 269]
project in the 1970s. A comparable facility exists in the interpretation mechanism of PVS, the
current ongoing SRI formal verification environment, as noted further in Section 6.4. An in-
formal application of explicit interlayer relationships is found in the analysis of the interlayer
dependencies in the Honeywell/Secure Computing Corporation (SCC) LOgical Coprocessor
Kernel (LOCK) [335].� Operating system and programming language approaches.Program modularity, recur-
sive and nested procedure-call protocols, clean stack disciplines, and the absence of unin-
tended residues can all greatly enhance composability. Virtualized multiprocessing (e.g., [175,
176, 177, 178]) has considerable possibilities in enablingextremely efficient distributed pro-
cessing by abstracting out many of the usual pitfalls, especially when distributed across net-
worked systems. There is an important role for sound programming languages that naturally
enforce modular separation with abstraction and encapsulation, compilers that efficiently
enforce the programming-language modularity and strong typing, systems that provide ef-
ficient interprocedure and interprocess control flow, and optimizing compilers that do not
throw out the baby with the bathwater (e.g., by prematurely binding entities that need to
remain separated until later, creating less easily analyzed object code, seriously impeding de-
bugging, or compromising security separations provided byarchitectural encapsulations and
programming languages). (However, well-implemented aggressive optimizers are less likely
to violate security than programmers are.) As one example, SPARK [30] (the SPADE Ada
Kernel, based on the Southampton Program Analysis Development Environment) provides a
language-based approach to improving security and safety.(A review of [30] is included in
the Risks Digest 23(01): http://catless.ncl.ac.uk/Risks/23.01.html.) Correctness-preserving
transformations that survive compilation and optimization are another approach with signifi-
cant promise. In particular, optimizing compilers must be fairly farsighted not to compromise
the integrity of source code in the context of its system execution, although careful mod-
ularity with abstraction and encapsulation can diminish some of those possible effects. An
alternative approach to assuring the soundness of the optimization is the translation validation
approach considered at NYU [391], in which a validation toolconfirms that the object code
produced by the optimizer is a correct translation of the source code.� Principled designs, implementations, and use.The Saltzer-Schroeder principles [345] and
the subsequent extensions enumerated in Section 2.3 are often cited as extremely beneficial
to the attainment of security. Techniques particularly relevant to composability include ab-
straction, hierarchical layering, encapsulation, the object-oriented paradigm, design diversity,
composability, pervasive authentication and access control as well as administrative and oper-
ational controllability, pervasive accountability and recovery, separation of policy and mech-
anism, assignment of least privilege, separation of concerns, separation of roles, separation
of duties, and separation of domains.

3.4. ATTAINING FACILE COMPOSABILITY 41� Holistic architectures. Historically, certain institutions — for example, SRI’s Computer
Science Laboratory and the University of Newcastle upon Tyne — have long stressed the
importance of system architectures thata priori address the notion of dependability, which
encompasses high-assurance approaches to security, reliability, availability, survivability, hu-
man safety, interoperability, maintainability, composability, and so on. See Chapter 4.� Research in predictable composition.Sascha Romanovsky at Newcastle noted the rele-
vance of ongoing work by Ivica Crnkovic (http://www.idt.mdh.se/ icc/) and Magnus Larsson
in Sweden [88]. This work is extremely interesting and bearsclose watching.

The above approaches are in a sense all part of what should be commonly known as good
software-engineering practice. Unfortunately, system architecture and programming development
seldom observe good software-engineering practice. However, the constructive aspects of software
engineering — including establishment of requirements, careful specifications, modularity and en-
capsulation, clean hierarchical and vertical abstraction, separation of policy and mechanism, object
orientation, strong typing, adherence to the basic security principles (e.g.,separation of privileges,
allocation of least privilege, least common mechanism, assumptions of open source rather than re-
liance on security by obscurity), suitable choice of programming language and development tools,
and (above all) sensible programming practice — can all makepositive contributions to compos-
ability.

The potential importance of formal methods is largely underappreciated, including formal state-
ments of requirements and specifications, and formal demonstrations (e.g., rigorous proofs and
model checking) of consistency of specifications with requirements, consistency of source code
with specifications, correctness of a compiler, and so on. The formal methods community has
for many years dealt with consistency between specifications and requirements, and with consis-
tency between code and specifications, although that work isseldom applied to real systems. The
specifications tend to idealize behavior by concentrating on only the obviously relevant behav-
ioral properties. Formal approaches can provide enormous forcing functions on composability and
system correctness, even if applied only in limited ways — such as model checking for certain
properties relating to composability or security. They canalso be extremely valuable in efforts to
attain high assurance. However, because of their labor-intensive nature, they should generally be
applied particularly where they can be most effective. (SeeChapter 6.) Once again, architectures
that minimize the extent of necessary trustworthiness are important.

The set of assumptions as to what threats must be defended against is itself almost always in-
herently incomplete, with respect to what might actually happen. Nominal security requirements
often ignore reliability and survivability issues (for example, see [264], which seeks to address
relevant requirements within a common and more comprehensive architectural framework). Even
detailed security requirements often tend to ignore the effects of buffer overflows, residues, and —
even more obscurely — emanations such as those exploitable by Paul Kocher’s differential power
analysis [192, 193] (whereby cryptographic keys can be derived from the behavior of hardware
devices such as smart cards) and external interference thatcan result in internal state changes (or
even the ability to derive cryptographic keys, as in Dan Boneh’s RSA fault injection attack [54]
— which resulted in a faulted version that when subtracted from the correct version allowed a
linear search instead of an exponential search for the private key!). Attempting to enumerate ev-
erything that isnot supposed to happen is almost always futile, although relatively comprehensive

42 CHAPTER 3. REALISTIC COMPOSABILITY

canonical checklists of potential threats and characteristic flaws to be avoided can be very useful
to system architects and software developers. Various partial vulnerability and threat taxonomies
exist (e.g., [201, 260, 271]), although a major effort wouldbe worthwhile to define broad equiva-
lence classes that at least give extensive coverage, and forwhich effective countermeasures would
be available or incorporated into new system and network architectures. It is important in con-
sidering composability that all meaningful requirements and functional behaviors be adequately
specified and assured.

3.5 Paradigmatic Mechanisms for Enhancing Trustworthiness

You can’t make a silk purse out of a sow’s ear.
But in a sense, maybe we can — in certain cases!

It is clear that the ideal goals of unencumbered composability and easy interoperability are
rather abstract and potentially unrealistic in many practical applications. Indeed, much of the re-
search on properties that compose in some sense (e.g., strict lattice-based multilevel security) is
extremely narrow and not generally applicable to common real-world situations. Consequently, we
seek a more realistic notion that enables us to characterizethe consequences of compositions, es-
sentially seeking to anticipate what would otherwise be unanticipated. That is, we seek a discipline
of composition.

On one hand, we would like to be able to compose subsystems in such a way that the result-
ing system does not lose any of the positive properties of itssubsystems — in some sense, a weak
compositional monotonicity property in which trustworthiness cannot decrease with respect to cer-
tain attributes. (We refer to this asnondecreasing-trustworthiness monotonicity.) This is indeed
theoretically possible if there is suitable independence or isolation among the subsystems. In the
literature of multilevel security, we are familiar with an architectural abstraction hierarchy begin-
ning with a security kernel that enforces a basic multilevelseparation property, then trustworthy
extensions that are privileged in certain respects, then application software that need not be trusted
with respect to multilevel security, and finally user code that cannot compromise the multilevel
security that is enforced by the underlying mechanisms. However, this hierarchy assumes that the
kernel is absolutely nonsubvertible and nonbypassable. Inthe real world of conventional operating
systems, such an assumption is totally unrealistic — because the underlying operating system is
typically easily subverted.

On the other hand, a fundamental hope in designing and implementing systems is that it should
be possible to build systems with greater trustworthiness out of less trustworthy concepts — that is,
making the proverbial silk purse out of the sow’s ear, as noted above in the discussion on guarded
dependence in Section 3.4. This also suggests a stronger kind of monotonicity property in which
trustworthiness can actually increase with respect to certain attributes under composition and lay-
ered abstraction. (We refer to this ascumulative-trustworthiness monotonicity.) To this end,
it is in some cases possible to relax certain assumptions of noncompromisibility of the underly-
ing mechanisms — assumptions that are absolutely essentialto the nondecreasing-trustworthiness
monotonicity typified by multilevel security noted in the preceding paragraph. On theotherother
hand, desire for some sort of compositional monotonicity must be tempered by the existence of

3.5. PARADIGMATIC MECHANISMS FOR ENHANCING TRUSTWORTHINESS 43

emergent properties that cannot be fully characterized in terms of lower-layer properties. That is,
the properties at one layer must be superseded by related butdifferent properties at higher layers.

What is perhaps most important in this context is the abilityto make the dependencies explicit
rather than allowing them to be unidentified and latent.

Fundamentally, trustworthiness is multidimensional. Increasing trustworthiness with respect to
one set of attributes does not necessarily imply increasingtrustworthiness with respect to other at-
tributes. For example, increasing fault tolerance may decrease security and performance; increas-
ing security may decrease reliability, interoperability,and performance. Furthermore, emergent
properties must also be considered — particularly those related to trustworthiness. Once again,
we must be very explicit as to the properties under consideration, and cognizant of how those
properties relate to other system properties.

Approaches to increasing trustworthiness are explored next. The following list is the outgrowth
of earlier work by Neumann inPractical Architectures for Survivable Systems and Networks[264],
which enumerates paradigmatic mechanisms by which trustworthiness and the ensuing assurance
can be enhanced by horizontal compositions at the same layerof abstraction and by vertical compo-
sitions from one layer of abstraction to the next. Each of these paradigms for guarded dependence
demonstrates techniques whereby trustworthiness can be enhanced above what can be expected of
the constituent subsystems or transmission media. (References given in the following enumeration
are suggestive, and by no means exhaustive.)

1. Error-correcting codes. Hamming’s early paper on single-error-correcting codes [158] in-
spired a large body of work on error-correcting codes, with several books providing useful
overviews (for example, [9, 302, 354]) of an extensive literature. Most of the advances are
based on solid mathematics (abstract algebra) — as is also the case with public-key cryp-
tographic algorithms (e.g., abstract algebra and number theory). The constructive use of
redundancy can enable correct erroneous communications despite certain tolerable patterns
of errors (e.g., not only single errors, but also random multiple errors, bursts of errors, or
otherwise correlated patterns, as well as codes that are optimized for asymmetric errors such
as 1-to-0 bit-dropping errors only or erasure errors), in block communications or even in
variable-length or sequential encoding schemes, as long asany required redundancy does
not cause the available channel capacity to be exceeded (following the guidance of Shan-
non’s information theory). In addition, error-correctingcoding can also be used in arithmetic
operations (e.g., [274, 310]). Gilbert et al. [131] also considered the problem of detecting
intentional deception. With suitable choices of redundancy and mathematically based code
construction, error-detecting and error-correcting codes can permit arbitrarily reliable com-
munications over unreliable communication media.

2. Fault-tolerance mechanisms.Traditional fault-tolerance algorithms and system concepts
can tolerate certain specific types of hardware and softwarefailures as a result of constructive
use of redundancy [16, 87, 183, 212, 232, 247, 270, 378]. There is an extensive literature
on fault-tolerance algorithms that permit systems to withstand arbitrary failures up to the
maximum intended fault-tolerance design coverage, with various modes of operation such
as fail-safe, fail-soft, fail-fast, and fail-secure. Indeed, many of the fault-tolerance concepts
have been around for many years, as for example the 1973 report [270] that discusses the ad-
vantages of distributing appropriate techniques according to hierarchical layers of abstraction

44 CHAPTER 3. REALISTIC COMPOSABILITY

and different functionality. However, failures beyond that coverage may result in unspeci-
fied failure modes. This in turn can be addressed by progressively invoking different fault
tolerance techniques, for diagnosis, rollback, forward recovery, repair, reconfiguration, and
so on. In terms of communications and processing, error-detecting codes and other forms of
error detection combined with possible retransmittal, instruction retry in hardware, or other
remediation, can be effective whenever it is not already toolate. The early work of John
von Neumann [370] and of Ed Moore and Claude Shannon [242] showed how reliable sub-
systems in general (von Neumann) and reliable relay circuits in particular (Moore–Shannon)
can be built out of unreliable components — as long as the probability of failure of each
component is not precisely one-half and as long as those probabilities are independent from
one another. With suitable configurations of components (e.g., “crummy relays” in the case
of the Moore–Shannon paper), high reliability can be achieved out of low-reliability compo-
nents. Also relevant is the 1960 paper of Paul Baran [29] on making reliable communications
despite unreliable network nodes, which was influential in the early days of the ARPANET.
For a recent highly relevant work, see the Guruswami-Sudan approach to achieving a signif-
icant improvement in decoding techniques for Reed-Solomoncodes [152] and a subsequent
system-theoretic formulation by Kuijper and Polderman [196].

3. Byzantine fault tolerance.Byzantine faults are those in which no assumptions or constraints
are placed on the nature of the faults locally. In contrast toconventional fault tolerance,
Byzantine fault tolerance architecturally enables a system to be able to withstand Byzan-
tine fault modes [198, 331, 337], providing successful operation despite the arbitrary and
completely unpredictable behavior (maliciously or accidentally) of up to some ratio of its
component subsystems (for example,k out of 3k + 1 in various cases). Thus, with no lim-
itations on the failure modes of individual component subsystems, Byzantine systems can
perform correctly even if the up tok bad subsystems fail in optimally contrived and mali-
cious ways. Examples in the literature include Byzantine clocks and Byzantine network-layer
protocols [299].

4. Redundancy-based total-system reliability.SRI’s Software-Implemented Fault Tolerance
(SIFT) fly-by-wire avionics system from the 1970s is an earlyexample of achieving a total-
system (including application software) probability of failure of 10�10 per hour out of seven
off-the-shelf avionics processors with probability of failure of 10�5 per hour [60, 63, 232,
247, 248, 377, 378]. SIFT is discussed further in Section 4.3.

5. Self-synchronization. Self-synchronizing techniques can result in rapid resynchronization
following nontolerated errors that cause loss of synchronization, including intrinsic resyn-
chronizability of sequentially streamed codes. Common approaches involve adding explicit
framing bits. Also found in the early literature are redundant serial codes with implicit syn-
chronization properties that are decodable only if in the correct block synchronization — as
in the case of comma-free codes (block codes that can have only one correct framing bound-
ary when strung together), and even error-correcting comma-free codes. A rather different
approach uses inherent self-synchronizing properties of finite-state machines that are used
to generate variable-length and sequential codes [252, 253, 254], enabling eventual resyn-
chronization without having to add any redundancy to the codes. This approach applies to

3.5. PARADIGMATIC MECHANISMS FOR ENHANCING TRUSTWORTHINESS 45

variable-length Huffman codes [167] (as in [252, 253]) as well as Huffman-style information-
lossless sequential machines [168] (as in [254]). In both ofthese schemes, it is typically
possible to recover from arbitrarily horrible errors, after a period of time that depends on
the resynchronizing properties of the generating sequential machine. Yet another example of
self-stabilization is given by Dolev [110]. Cipher-block chaining (CBC) cryptographic modes
are another example in which synchronization can be a serious problem.

6. Robust synchronization algorithms and atomic transactions. Various approaches exist
for robust synchronization, including hierarchically prioritized locking strategies as in the
T.H. Eindhoven THE system [106], two-phase commitments [367], stable storage abstrac-
tions [200], nonblocking atomic commitments [312], and fulfillment transactions [231] such
as fair-exchange protocols guaranteeing that payment is made if and only if goods have been
delivered.

7. Alternative-computation architectural structures. When failure in a computation can be
detected, satisfactory but nonequivalent results can be achieved (with possibly degraded per-
formance), despite failures of hardware and software components and failure modes that ex-
ceed planned fault coverage. For example, the Newcastle Recovery Blocks approach [15, 16,
166] provided recursively for explicit alternative procedures in case the primary procedures
failed their acceptance tests.

8. Alternative-routing schemes.The early ARPANET routing protocols (e.g., [8]) introduced
the notion of dynamic reconfiguration in packet-switched networks, with good performance
and eventual successful communications despite major outages among intermediate nodes
and disturbances in the communications media. Much earlierwork at Bell Laboratories on
nonblocking telephone switching networks was an intellectual precursor of this concept (al-
though dynamic routing did not appear in telephone networksuntil the 1980s), and also led
to the 1960s work at SRI on the butterfly design for fast Fourier transforms and other appli-
cations.

9. Cryptographic secrecy. Encryption can be applied in many ways — for example, to an
open transmission medium [340] or to specific applications such as e-mail [390], or to a stor-
age medium [373]. It can result in content that is arbitrarily difficult to interpret, even if the
communications are intercepted or the stored data acquired. Note that cryptography and cryp-
tographic protocols by themselves do not provide complete solutions, and are indeed subject
to numerous attacks [13, 184, 192, 193, 258, 341] including subversions of the underlying
operating systems.

10. Cryptographic integrity checks. Secret- and public-key encryption can both be used for
cryptographic checksums that have a very high probability of detecting alterations to soft-
ware, data, messages, and other content [171, 340], assuming no subversions of the underly-
ing mechanisms (e.g., operating systems).

11. Cryptographic authentication. Public-key and secret-key encryption can both be used to
verify the authenticity of the alleged identity of a user, subsystem, system, or other entity, and
can greatly enhance overall security and integrity [157, 171, 340], once again assuming no
subversions of the underlying mechanisms (e.g., operatingsystems).

46 CHAPTER 3. REALISTIC COMPOSABILITY

12. Fair public-key and secret-sharing cryptographic schemesand robust crypto. Examples
include [51, 236]. Various multi-key crypto schemes require different parties to cooperate
via the simultaneous presentation of multiple keys — allowing cryptographically based op-
erations to require the presence of multiple authorities for encryption, sealing, verification of
authenticity, access controls, and so on. These might be calledn-out-of-n schemes, where all
of then entities must participate. Closely related are multiperson access-control schemes that
do not require cryptography, and two-person business procedures. Multi-agent schemes are
intended to increase the trustworthiness and integrity of the resulting action, although there
can be additional risks involved as in the case of potential misuses of key escrow [6]. See
also recent work on self-healing key distribution with revocation [362] and multicast packet
authentication [280].

13. Threshold multi-key-cryptography schemes. A generalization of then-out-of-n multi-
agent schemes requires the presence of a sufficient proportion of trustworthy entities —
perhaps in which at leastk out of n keys are required. This is applicable to conventional
symmetric-key cryptography, public-key cryptography, authentication, and escrowed retrieval
(sometimes euphemistically called “key recovery”). Examples include a Byzantine digital-
signature system [102]; a Byzantine key-escrow system [313] that can function successfully
despite the presence of some parties that may be untrustworthy or unavailable; a signature
scheme that can function correctly despite the presence of malicious verifiers [300]; and
Byzantine-style authentication protocols that can work properly despite the presence of some
untrustworthy user workstations, compromised authentication servers, and other questionable
components (see Chapter 7 of [264]).

14. Security kernels and Trusted Computing Bases.The so-called “trusted” computing bases
(TCBs) should ideally betrustworthycomputing bases. Constructive use of kernels and TCBs
in multilevel-secure (MLS) systems can lead to nonsubvertible MLS application properties,
such as the MLS database security in SeaView [100, 213, 214],which demonstrated how a
multilevel-secure database management system can be implemented on top of a multilevel-
secure kernel — with absolutely no requirement for multilevel-security trustworthiness in
the Oracle database management system. (This is the notion of balanced assurance, which
requires composability of policies and of components.) Another approach was the tagged
capabilities of PSOS [120, 268, 269] (see Section 4.3), in which the hardware has only two
instructions creating capabilities — creating a new capability for a new object of a particular
type, and creating a restricted copy with access privilegesthat would be at most as power-
ful, but never more powerful. This design rather simply avoided the ability to manipulate
capabilities in hardware and software. Distributed systems need special care, especially MLS
systems (e.g., [108]).

15. Architecturally reduced dependence on trustworthiness. Closely related to kernelized
systems in principle, but radically different in their practical implications, are architectural
approaches that starkly reduce the extent to which subsystems must be trusted, or the extent to
which all phases of the development process must be trusted.Instead, the focus is on certain
critical properties of selected subsystems or critical stages of the development process. In
many cases, trustworthiness can be judiciously isolated within centralized systems or among

3.5. PARADIGMATIC MECHANISMS FOR ENHANCING TRUSTWORTHINESS 47

distributed subsystems. In this way, the perimeters aroundwhat must be trustworthy can be
reduced, which in turn reduces what is sometimes referred toas the attack surface.

Several quite different examples are worth mentioning to illustrate this concept:� Layered protection. Kernels (noted above), rings of protection, and properly imple-
mented capability-based addressing can protect themselves against compromise from
above, as in the Multics operating system [91, 150, 277, 333,344] and various capability-
based architectures [117, 143, 186, 120, 268, 269].� MLS enforcement. Multilevel-secure systems and networks can be designed andimple-
mented in which critical security properties such as MLS areenforced in selected servers,
but in which there is no MLS dependence in the end-user systems [264, 308].� PCC. Proof-carrying code [250] can enable the detection of unexpected alterations to
systems or data and thus hinder the tampering of data and programs, and resulting con-
tamination — irrespective of where in the development process malicious code is intro-
duced prior to the establishment of the proof obligations.� Proof checking.Proof-checkers can provide assurance that theorem provershave arrived
at correct proofs, without having to trust the provers. Proof-checkers tend to be orders of
magnitude simpler to develop, to assure, and to use than theorem provers.� Independent accountability. There is enormous contention regarding the integrity of
closed-source proprietary electronic systems for castingballots, recording votes, and de-
termining the results of elections, particularly those systems that are self-auditing with
no external assurance. These systems reflect the need for a collection of critical re-
quirements for security (e.g., system integrity, vote integrity, vote confidentiality, voter
privacy, anonymity, accountability, nondenial of service, and overall system verifiability)
as well as reliability and and other -ilities. Unfortunately, existing touch-screen direct-
recording self-auditing electronic voting systems provide no assurances whatsoever that
the vote that is cast is identical to the vote that is subsequently recorded and counted,
and no meaningful recount is possible because there is no truly independent audit trail.
Rebecca Mercuri’s PhD thesis [233, 234] suggests the incorporation of a voter-verified
electronically readable independent hard-copy image of the ballot as cast. This relatively
simple mechanism almost by itself can surmount numerous potential weak links in the
electronic stages of the election process, and could thereby enable detection and pre-
vention of many kinds of internal fraud. This is a seemingly rare example of where the
highly distributed weak-link nature of security and reliability can be overcome by a rel-
atively simple conceptual mechanism. An entirely different approach has been proposed
by David Chaum [73] that has a similar result — providing a small mechanism relative
to the overall voting process that provides for each voter’sability to verify that a private
ballot was correctly recorded, despite the potential untrustworthiness of any front-end
system for vote casting. (Chaum’s approach is applicable toa variety of voting-machine
types.) Mercuri’s and Chaum’s methods both allow far greater trustworthiness of the
overall voting systems despite potential untrustworthiness of the voting machines them-
selves.

48 CHAPTER 3. REALISTIC COMPOSABILITY

16. Mutual suspicion. The ability to operate properly despite a mutual lack of trust among var-
ious entities was explored in 1972 in Mike Schroeder’s doctoral thesis [343]. There seems
to have been relatively little work along those lines since.Unfortunately, in practice, imple-
mentations typically tend to implicitly assume that some orall of the participating entities are
trusted, irrespective of whether they are actually trustworthy.

17. Interposition of trustworthy intermediation. In principle, interposing cross-domain pro-
tection mechanisms such as firewalls (e.g., [80]), guards (which are generally much simpler
than firewalls — perhaps only preventing content with undesirable keywords from being dis-
seminated; for example, see [40, 66, 307]) and proxies (which also act as trusted interme-
diaries) can supposedly mediate between regions of potentially unequal trustworthiness —
for example, ensuring that sensitive information does not leak out and that Trojan horses and
other harmful effects do not sneak in, despite the presence of untrustworthy subsystems or
mutually suspicious adversaries. For example, intermediation of network connectivity can
increase the trustworthiness of internal secrecy (controlling the outbound direction) and in-
ternal integrity (controlling the inbound direction). However, care must be taken not to allow
unrestricted riskful traffic, such as Java- and JavaScript-enabled Web content, PostScript, Ac-
tiveX, and other executable content that might execute if there are flaws in the underlying
systems or in the virtual-machine environments.

18. Type enforcement, object-oriented domain enforcement, and advanced access-control
techniques. Architecturally integrated access controls can effectively mediate or otherwise
modify the intent of certain attempted operations, depending on the execution context [120,
268, 269, 343] — for example, the confined environment of the Java Virtual Machine [146,
148] and related work on formal specification [95, 142] for the analysis of the security of
such environments. Such enforcement can be implemented in acombination of hardware
and system software (as in the strong type enforcement of PSOS and Secure Computing Cor-
poration systems), programming languages, and compilers.Other forms of static analysis
are of course also relevant, particularly when embedded in the compilation process (includ-
ing language pre- and post-processors) and are valuable in enhancing the trustworthiness of
architectures, implementations, and system operation.

19. Integrated internal checks. A combination of static (e.g., design-time and compile-time)
and dynamic (runtime) analysis can prevent or mediate execution in questionable circum-
stances — for example, embedded in programming languages and compilers within the de-
velopment process, and in resulting operating-system software and application programs, as
in the cases of argument validation, bounds checks, strong typing and rigorous type checking,
consistency checks, redundancy checks, and independent cross-checks. Static and dynamic
checks can be used to significantly increase the trustworthiness of a subsystem or system,
with respect to security, reliability, and performance. Bill Arbaugh’s trustworthy bootload
protection [18, 19] is an example of a bootload-time check.

20. External runtime checks. Addition of wrappers (e.g., [381]) (without modifying the source
or object code of the wrapped module) can in principle enhance survivability, security, and
reliability, and otherwise compensate for deficient components — such as adding a “trusted
path” to an inherently untrustworthy system, enabling monitoring of otherwise unmonitorable

3.5. PARADIGMATIC MECHANISMS FOR ENHANCING TRUSTWORTHINESS 49

functionality, or providing compatibility that was not of wrapped legacy programs with other
programs. However, the utility of the wrapper approach may be subverted if the wrapper does
not completely encapsulate the underlying mechanisms (e.g., operating systems).

21. Real-time analysis.Anomaly and misuse detection to diagnose real-time threats(e.g., from
insiders, outsiders, internal malfunctions, and externalenvironmental failures) can provide
rapid analyses of actual failures and potential misuses in progress. As one example of such
a system for anomaly and misuse detection, the EMERALD system [208, 207, 272, 304,
306] represents the most recent results of more than two decades of research at SRI. (See
http://www.csl.sri.com/intrusion for extensive background.)

22. Real-time response.Given the results of real-time analysis as noted above, it ispossible
to trigger automated or semiautomated rapid responses — including dynamic alterations of
system and network configurations, carefully controlled automated software upgrades in re-
sponse to detected flaws, and enforced alterations in certain user processes, based on evalu-
ations of the perceived real-time events. (Note that the alternative-computation architectures
of technique 7 and the alternative-routing schemes of technique 8 have a similar flavor, ex-
cept that the alternatives tend to be more closely integrated into the architecture, rather than
dynamically variable.)

This enumeration is undoubtedly not exhaustive, and is intended to be representative of a wide
variety of trustworthiness-enhancing types of mechanisms. Furthermore, these techniques do not
necessarily compose with one another, and may in fact interfere with one another — especially
if used unwisely. On the other hand, many efforts to attain trustworthy system for security and
reliability need to rely on a combination of the above techniques — as is the case with IBM’s
concept of autonomic systems that can continue to operate largely without system administra-
tion. (For example, see IBM’s Architectural Blueprint for Autonomic Computing, http://www-
3.ibm.com/autonomic/index.shtml.)

It is clear that reliability enhancement is often based on solid theoretical bases; furthermore,
that enhancement is quite tangible, but only if we assume that the underlying infrastructures are
themselves not compromisible — for example, as a result of security violations or uncovered
hardware malfunctions. However, in cases of mechanisms forwould-be security enhancement, the
dependence on the assumption of noncompromisibility of theunderlying infrastructures is much
more obviously evident; if we are trying to create somethingmore secure on top of something that
might be totally compromisible, we are indeed trying to build sandcastles in the wet sand below
the high-water mark. Thus, security enhancement may critically depend on certain measures of
noncompromisibility in the underlying hardware and software on which the implementation of the
enhancement mechanisms depend.

So far, little has been said here about the relevance of thesetechniques to open-source software.
In principle, all these techniques could be applied to closed-source proprietary software as well
as open-source software. However, in practice, relativelyfew of these techniques have found
their ways into commercial products — error-correcting codes, atomic transactions, some fault
tolerance, alternative routing, cryptography, and some dynamic checking are obvious examples.
The opportunities are perhaps greater for appropriate techniques to be incorporated into open-
source systems, although the incentives may be lacking thusfar. (The relevance of open-source

50 CHAPTER 3. REALISTIC COMPOSABILITY

paradigms is considered in Section 4.5.)
Although we suggest that the above techniques can actually enhance trustworthiness through

composition, there are still issues to be resolved as to the embedding of these techniques into
systems in the large — for example, whether one of these trustworthiness-enhancing mechanisms
might actually compose with another such mechanism. Even more important is the question of
whether the underlying infrastructures can be compromisedfrom above, within, or below — in
which we have just another example of building sandcastles in the wet sand below the high-tide
level.

3.6 Enhancing Trustworthiness in Real Systems

Bad software lives forever. Good software gets updated until it goes bad, in which form
it lives forever.Casey Schaufler

Several conclusions can be drawn from consideration of the paradigmatic approaches for en-
hancing trustworthiness enumerated in Section 3.5.� Security versus reliability. Enhancing reliability is in many ways quite different from en-

hancing security, although there are also commonalities. Quantitative probabilistic assess-
ments are straightforward and meaningful with respect to reliability in the small, although
somewhat less definitive in the large — that is, when applied to entire systems. Reliability
enhancements can typically make reasonably realistic assumptions about the stability of the
underlying infrastructures, and derive reasonably accurate measures of the resulting reliabil-
ity — as well as satisfying real-time checks that the assumptions remain valid. However, in
many cases, the assumptions are inaccurate.

On the other hand, quantitative assessments of security areusually highly suspect. The as-
sumptions on which they are based are generally not probabilistic in nature; each of those
assumptions can be vitiated by a wide variety of circumstances — including insider misuse,
penetrations that exploit design flaws and code bugs, and other forms of subversion, as well as
nontolerated failures in hardware and software, power failures, interference, acts of God, and
squirrelcides. As a result, measures of security derived from questionable assumptions are
extremely questionable. Worse yet, measures derived from apparently sensible assumptions
are still questionable if any of those assumptions is violated, and the assumption that real-time
checks could ensure the continued validity of those assumptions is itself questionable.

Thus, in our efforts to enhance trustworthiness, there are some consequential differences be-
tween reliability and security that must be taken into account. We believe that some of the
approaches outlined in Section 3.5 can be extremely effective when used together. In par-
ticular, a combination of architectural techniques (1 to 18) and real-time measures to ensure
continued validity of reliability and security assumptions (as in techniques 18 through 22)
can be most effective. Above all, security and reliability must both be considered together
architecturally. Even if composability arguments might allow them to be implemented with
some separability, there are tradeoffs that must be addressed in architecture and system de-
velopment.

3.6. ENHANCING TRUSTWORTHINESS IN REAL SYSTEMS 51� Achieving both security and reliability. With respect to attaining both security and reliabil-
ity at the same time, very few of the paradigmatic techniquesare capable of addressing both
classes of requirements at the same time. However, achieving both security and reliability is
a nontrivial exercise in composition.

Techniques 1 through 8 are aimed primarily at hardware and software reliability, although
these techniques do provide some resistance to active threats. Technique 3 (Byzantine agree-
ment) is applicable to certain modes of unreliability and malicious attacks, typically if not
more thank out of 3k + 1 subsystems are compromised. (However, note paradoxicallythat
if we could somehow verify dynamically that at mostk subsystems had been compromised,
the Byzantine protocol itself would be gratuitous! But perversely, if k of the subsystems
can be compromised — from below or from within, or even from outside — then it seems
highly likely that more thank subsystems — or indeed alln — could be compromised, thus
completely undermining the effectiveness of the Byzantineprotocol.) Techniques 9 through
18 are aimed primarily at security. Technique 10 is overkillif used merely for reliability,
for which hashing or cyclic redundancy checks may be adequate. In their stated forms, only
techniques 18 through 22 have any significant potential for addressing both classes of require-
ments simultaneously.

It is possible to develop hybrid techniques that combine several of these paradigmatic tech-
niques in combination, such as the integrated use of encryption and error correction. In such
cases, composability is once again a critical issue. For example, although cryptography and
error-correcting coding might seem to be commutative in a perfect mathematical world, they
are not commutative in the real world. If a message were encoded for error correctionbefore
being encrypted, then decryption would have to precede error correction, and any errors in the
transmission could then result in errors in decrypted text that would produce totally erroneous
error correction. Even more important is the reality that error correction before encryption
adds redundancy, and thereby increases the opportunities for cryptographic attacks. On the
other hand, if a message were encoded for error correctionafter being encrypted, then de-
cryption would follow error correction, and the decrypted message would be correct if the
transmission errors did not exceed the coverage of the errorcorrection; however, if the errors
exceeded the coverage, the error-corrected encrypted textwould be in error, and would re-
sult in disruptions to the decryption — potentially long-lasting in the case of certain cipher
block chaining. Unfortunately, the use of sequential (re)synchronization techniques (as in
techniques 5 and 6 above) could further muddy the waters. In practice, it seems advisable to
compress first (to reduce the redundancy), then encrypt, andthen provide error correction!

In fact, the general situation with compositions involvingcryptography is quite complex.
For example, the composition of two sound cryptographic techniques can make the resulting
system susceptible to cracking. Similarly, the composition of a cryptographic algorithm with
a random-number generation scheme seems to be a fertile areafor bad implementations.
Furthermore, embedding good cryptographic implementations into weak systems is clearly
riskful.� Survivability. With respect to attaining high availability and survivability in the face of re-
alistic adversities, security and reliability are both necessary requirements. Neumann’s ARL
report [264] on architectures for survivability is extremely relevant to the development and

52 CHAPTER 3. REALISTIC COMPOSABILITY

operation of systems and networks that must be highly available and dependably survivable.
The reader interested in attaining survivable systems and networks is encouraged to study that
work, rather than our having to repeat much of it here.� Multilevel security and multilevel integrity. With respect just to the various aspects of
security, confidentiality is quite different from system integrity and data integrity. This is
illustrated nicely by the concepts of mandatory security and integrity, considered in greater
detail in Chapter 4. Bell & LaPadula’s multilevel security [35] (basically a set of confi-
dentiality properties) and Biba’s multilevel integrity [43] are formal duals (e.g., see [264]).
Simply stated, the former demands that there be no adverse information flow for confiden-
tiality, whereas the latter demands that there be no adversecontrol flow for integrity. The
former implies that information never leaks to anything that is less trusted for confidential-
ity (to a lower secrecy level), whereas the latter implies that no computational entity ever
depends on anything that is less trusted for integrity (at a lower integrity level). There are
various ways of viewing the formal dual. Intuitively, a similar dual exists between conven-
tional (discretionary) confidentiality and conventional forms of integrity. For example, the
spread of integrity-defeating e-mail viruses is similar tothe potential for unrestricted dis-
semination of sensitive information. In the case of confidentiality, once the cat is out of the
bag, the information may have already escaped in unknown ways — and once it is outside of
the local system purview, all bets may be off. It may be possible to identify suspicious user
authentication and suspicious augmentation of privileges, but it may be too late to stop the
undesired loss of confidentiality. In the case of integrity,the failure of a given integrity check
(e.g., a cryptographic checksum on software or on data) is immediate grounds for suspicion
of tampering, accidental corruption, or other contamination. By incorporating and enforc-
ing integrity checks on subsystems, systems, data, and especially applications, damage can
potentially be prevented, blocked, or otherwise confined before it can occur — once again as-
suming that those mechanisms are not compromised. An example of an end-to-end approach
to security and integrity among collaborating entities is found in the SRI Enclaves work of
Li Gong [144], subsequently reimplemented in Java [191], and then extended to provide a
Byzantine form of intrusion-tolerant robustness [111].� Layered applicability. Each of the above approaches is potentially applicable at various
different layers of abstraction, upward from hardware to microcode to kernels to operating
systems to middleware to application packages to user software. Each concept may have
different interpretations at each hierarchical layer, with different types of objects, different
access control rules and different notions of type enforcement, different protective measures
for reliability, confidentiality, data integrity, system integrity, availability, ultimately culmi-
nating in properties such as survivability and human safetywith respect to the overall systems
and networks. However, each approach will have its own associated costs at each layer of ap-
plication, and undisciplined use is likely to result in multiplicative escalation of overhead.
Where security and reliability are critical, it may be worththe effort. Incidentally, although
much effort is typically devoted to operating systems, specification and evaluation of prop-
erties of application software gets short shrift. The Robinson–Levitt type of analysis noted
above is applicable to characterizing the specifications and properties of each hierarchical
layer, and relating them one to another.

3.6. ENHANCING TRUSTWORTHINESS IN REAL SYSTEMS 53� Importance of architectural approaches. Approaches that appear to have great promise
must be considered within the framework of the overall system/network architecture. Efforts
to concentrate security and reliability in application software can often be undermined by
operating-system compromises from below. Efforts to use operating-system enforcement may
be compromised from outside and from within — or even from below, in the hardware. The
sense of integrity derived from proofs of source-code satisfying requirements and proofs of
compiler correctness can be circumvented by Trojan horses inserted into the object code of the
compiler, as so elegantly demonstrated by Ken Thompson [364], and revisited more formally
by Wolfgang Goerigk [138]. Proof-carrying code can be subverted by compromising the
proof-checker (for example). In turn, each of the above techniques for potentially increasing
trustworthiness must be looked on as a potential increase incomplexity, and therefore as
an opportunity for new design flaws, new implementation bugs, new operational hazards,
and new modes of failure. Indeed, some of the techniques themselves can potentially create
platforms that act as high-value weak-link targets for adversaries, or platforms from which
new types of attacks can be launched. Thus, poorly designed defensive measures can actually
result in increasing the relative vulnerability of the system.� Risks of automated responses.One of the potentially most riskful techniques in Section 3.5
is the final technique (22), particularly as it relates to automated responses that involve recon-
figurations or remotely inserted upgrades. Ideally, automated responses to perceived security
and reliability threats could provide the adaptive abilityto surmount, or at least recover from,
arbitrarily bad events. However, slightly misconceived responses are very likely to result in
increased rather than decreased chaos. Furthermore, maliciously induced automated upgrades
provide a fertile opportunity for destructive denials of service. Because trying to control the
actions of possible responses itself entails high risks, this approach might best be used with
human intervention in all but the most clear-cut cases. However, in that people are demon-
strably a major contributor — if not the most prevalent cause— of security violations and
unreliability, human intervention should always be grounds for suspicion.

Overall, it seems likely that generic approaches for automated response may not compose
easily with other techniques; they run the risk of overwriting critical data or interfering with
critical software, failing to interoperate because of versioning problems, or overreacting when
only a simple remediation is required. For example, shutting down the ARPANET to MIL-
NET connection in an attempt to block the 1988 Internet Worm resulted in the MILNET not
receiving the information provided by the Worm’s creator onhow to defuse it. Similar self-
inflicted denials of service have also occurred on various occasions since then. Furthermore,
platform-dependent effects must be considered, such as theneed to reboot in a Microsoft en-
vironment because of the interactions with DLLs — as opposedto the greater flexibility of
shared libraries and resourcing in Unix/Linux systems. Consequently, efforts to incorporate
such approaches are likely to need special care.� Humility. Above all, considerable humility is required in any effortsto design, implement,
and operate systems and networks with stringent requirements for security, reliability, and
guaranteed performance levels. Anyone who believes that a perfect or even completely suf-
ficient solution has been achieved is suspect. Indeed, it maybe advisable to include in any

54 CHAPTER 3. REALISTIC COMPOSABILITY

effort a few resident skeptics and borderline paranoids with obsessions regarding the possi-
bilities of errors and user malice. Above all, great discipline is needed throughout design,
development, operation, maintenance, and management.

In general, the above discussion illustrates that composition — of different specifications, poli-
cies, subsystems, techniques, and so on — must be done with great care. We have begun to char-
acterize some of the pitfalls and some of the approaches thatmight result in greater compositional
predictability. However, the problem is deceptively open ended.

3.7 Challenges

The components that are cheapest, lightest, and most reliable are the ones that are not
there.Gordon Bell

Efforts to achieve much greater composability present manyopportunities for future work.� Exploring the theoretical limits and practical implications of policy composition.� Establishing realistic policy composability criteria, and formalizing them to make them amenable
to formal analysis.� Enhancing programming languages, and constraining program writing and compiler usage
with effective preprocessors and analyzers.� Developing a suite of software engineering tools that wouldgreatly increase composability.� Establishing some illustrative applications demonstrating effective system compositions, such
as an implementation of the Enclaves Java code that would compose nicely with a wide range
of cryptography and networking protocols.� Developing easily subsettable secure operating systems that could be tailored effectively to
special-purpose applications such as critical servers andreal-time control. Better yet would
be the ability to develop minimal systems that could be configured by composing just the
needed components. (See Chapter 4 for an elaboration of thatapproach. As observed in
Section 3.3, real-time system developers have increasingly been working toward this goal,
although the resulting systems are still lacking with respect to security.)

3.8 Summary

This chapter outlines various techniques for enhancing compositionality, and for enhancing the
resulting trustworthiness that can be achieved by various forms of compositions. Interoperable
composability is a pervasive problem whose successful achievement depends on many factors
throughout the entire life cycle. It clearly requires much more consistent future efforts in system
design, language design, system development, system configuration, and system administration. It
requires a highly disciplined development process that intelligently uses sound principles, and it
cries out for the use of good software engineering practice.Sound system architecture can also

3.8. SUMMARY 55

play a huge role. Designing for composability throughout can also have significant payoffs in
simplifying system integration, maintenance, and operations. However, seamless composability
may be too much to expect in the short term. In the absence of a major cultural revolution in
the software development communities, perhaps we must begin by establishing techniques and
processes that can provide composability sufficient to meetthe most fundamental trustworthiness
requirements.

Overall, we believe that the approaches outlined here can have significant potential benefits, in
commercial software developments as well as in open-sourcesoftware — in which the specifica-
tions and code are available for scrutiny and evolution and in which collaborations among different
developers can benefit directly from the resulting composability. Ultimately, however, there is no
substitute for intelligent, experienced, farsighted developers who anticipate the pitfalls and are able
to surmount them.

Chapter 4

Principled Composable Trustworthy
Architectures

Synopsis

Virtue is praised, but is left to starve.Juvenal,Satires,i.74. (Note: The original Latin is
Probitas laudatur et alget;“probitas” (probity) is literally rendered as “adherence to the
highest principles and ideals”.)

Many system developments have stumbled from the outset because of the lack of a well-defined
set of requirements, the lack of a well-conceived and well-defined flexible composable architecture
that is well suited to satisfy the hoped-for requirements, the lack of adherence to principles, and the
lack of a development approach that could evolve along with changing technologies and increased
understanding of the intended system uses.

In this chapter, we draw on the principles of Chapter 2 and thedesire for predictable compos-
ability discussed in Chapter 3. we consider attributes of highly principled composable architectures
suitable for system and network developments, appropriately addressing composability, trustwor-
thiness, and assurance within the context of the CHATS program goals.

4.1 Introduction

It ain’t gonna be trustworthy if it don’t have a sensible architecture.
(With kudos to Yogi Berra’s good sense of large systems)

The following goals are appropriate for truswtworthy architectures.� Predictable composability.It is highly desirable that systems and networks be conveniently
developed out of subsystems and subnetworks that by themselves have certain desirable prop-
erties and that when combined can contribute constructively and predictably to the satisfac-
tion of the overall requirements. As noted in Section 3.2, composability is a concept that is
meaningful with respect to requirements, policies, specifications, designs, protocols, and im-
plementations, among others. Seamless composability implies that a composition will have

56

4.2. REALISTIC APPLICATION OF PRINCIPLES 57

the desired beneficial properties, with no uncontrollable or unpredictable side effects. That is,
the composed system should do exactly what it is expected to —no more, and no less. (An
early software-engineered system approach to networked systems is found in [256], which
may be of some historical relevance to this report, but probably little practical value today.)� Trustworthiness. In the present context, the concept of trustworthiness is meaningful only
with respect to a set of critical requirements whose continued satisfaction is necessary for suc-
cess, under anticipated operating conditions. Trustworthiness might typically encompass at-
tributes of security, reliability, survivability, real-time performance, and other vital attributes.
In critical systems, failure to meet the trustworthiness requirements can result in serious con-
sequences. Linguistically, trustworthiness means worthyof being trusted to do what it is
supposed to do (and nothing else), with some level of assurance.� Assurance. In the present context, assurance provides some measures ofconfidence that
the requirements (and in particular, the trustworthiness requirements) will be satisfied by an
architecture and its implementation. The properties of an overall system should ideally be
largely derivable from the properties of the subsystems, incorrespondence with the nature of
the compositions. Measures of assurance may range (for example) from hand-waving (proof
by emphatic assertion), through testing and pervasive red-teaming, to the extensive use of
formal methods for verification or model checking of properties of requirements, policies,
architectural structures, module and system specifications, protocols, implementation, and
real-time configuration management. Reasoning about system upgrades and code patches is
also relevant. (See an earlier report [259] on what formal methods can do for secure system
architecture, some conclusions from which are reprised here.)

Thus, we seek principled composable architectures that cansatisfy the trustworthiness goals,
with some meaningful assurance that the resulting systems will behave as expected.

4.2 Realistic Application of Principles

A system is not likely to be trustworthy if its development and operation are not based
on well-defined expectations and sound principles.

We next examine combinations of the principles discussed inChapter 2 that can be most ef-
fective in establishing robust architectures and trustworthy implementations, and consider some
priorities among the different principles.

From the perspective of achieving a sound overall system architecture, the principle of mini-
mizing what must be trustworthy (Section 2.3) should certainly be considered as a potential driving
force. Security issues are inherently widespread, especially in distributed systems. We are con-
fronted with potential questions of trustworthiness relating to processing, multiple processors, pri-
mary memory and secondary storage, backup and recovery mechanisms, communications within
and across different systems, power supplies, local operating environments, and network commu-
nication facilities — including the public carriers, private networks, wireless, optical, and so on.
Whereas different media have differing vulnerabilities and threats, a trustworthy architecture must
recognize those differences and accommodate them.

58 CHAPTER 4. PRINCIPLED COMPOSABLE TRUSTWORTHY ARCHITECTURES

As noted in Section 2.6, systems and networks should be able to reboot or reconstruct, re-
configure, and revalidate their soundness following arbitrary outages without violating the trust-
worthiness requirements — and, insofar as possible, without human intervention. For example,
automated and semiautomated recovery have long been a goal of telephone network switches. In
the early Electronic Switching Systems, an elaborate diagnostic dictionary enabled rapid human-
aided recovery; the goal of automated recovery has been realistically approached primarily only
in the previous two decades. The Plan 9 directory structure provides an interesting example of
the ability to restore a local file system to its exact state asof any particular specified time —
essentially a virtualized rollback to any desired file-system state. In addition, two recent efforts
are particularly noteworthy: the IBM Enterprise Workload Manager, and the Recovery-Oriented
Computing (ROC) project of David Patterson and John Hennessy (as an outgrowth of their earlier
work on computer architectures — e.g., [161, 298]).

There are of course serious risks that the desired autonomous operation may fail to restore
a sound local system, distributed system, or network state —perhaps because the design had
not anticipated the particular failure mode that had resulted in a configuration that was beyond
repair. Developing systems for autonomous operation thus seriously raises the ante on the critical
importance of system architecture, development methodology, and operational practice.

This if course works for malware as well! For example, Brian Randell forwarded an observation
from Peter Ryan, who noted that the Lazarus virus places two small files into the memory of any
machine that it infects. If either one of these files is manually deleted, its partner will resurrect
the missing file (ergo, the symbolism of rising from the dead). Ryan added, “Now there’s fault-
tolerance and resilience through redundancy and self-healing (and autonomic design!?)!”

A system in which essentially everything needs to be trusted(whether it is trustworthy or not)
is inherently less likely to satisfy stringent requirements; it is also more difficult to analyze, and
less likely to have any significant assurance. With respect to security requirements, we see in
Section 4.3 that trustworthiness concerns for integrity, confidentiality, guaranteed availability, and
so on, may differ from one subsystem to another, and even within different functions in the same
subsystem. Similarly, with respect to reliability and survivability requirements, the trustworthiness
concerns may vary. Furthermore, the trustworthiness requirements typically will differ from one
layer of abstraction to another (e.g., [270]), depending onthe objects of interest. Trustworthiness
is therefore not a monolithic concept, and is generally context dependent in its details — although
there are many common principles and techniques.

Many of the principles enumerated in Chapter 2 fit together fairly nicely with the principle of
minimizing the need for trustworthiness. For example, if they are sensibly invoked, abstraction,
encapsulation, layered protection, robust dependencies,separation of policy and mechanism, sep-
aration of privileges, allocation of least privilege, least common mechanism, sound authentication,
and sound authorization all can contribute to reducing whatmust be trusted and to increasing the
trustworthiness of the overall system or network. However,as noted in Section 2.6, we must be-
ware of mutually contradictory applications of those principles, or limitations in their applicability.
For example, the Saltzer–Schroeder principle of least common mechanism is a valuable guiding
concept; however, when combined with strong typing and polymorphism that are properly con-
ceived and properly implemented, this principle may be worth downplaying in the case of provably
trustworthy shared mechanisms — except for the creation of aweak link with respect to untrust-
worthy insiders. For example, sharing of authentication information and use of single signon both

4.3. PRINCIPLED ARCHITECTURE 59

create new risks. Thus, this Saltzer-Schroeder principle could be reworded to imply avoidance
of untrustworthy or speculative common mechanisms. Similarly, use of an object-oriented pro-
gramming language may backfire if programmers are not extremely competent; it may also slow
down development and debugging, and complicate maintenance. As a further example, separation
of privilege may lead to a more trustworthy design and implementation, but may add operational
complexity — and indeed often leads to the uniform operational allocation of maximum privilege
just to overcome that complexity. As noted in Section 2.3, the concept of a single sign-on certainly
can contribute to ease of use, but can actually be a colossal security disaster waiting to happen,
as a serious violation of the principles of separation of privilege and least common mechanism
(because it makes everything accessible essentially equivalent to a single mechanism!). In gen-
eral, poorly invoked security design principles may seriously impede the user-critical principle of
psychological acceptability (e.g., ease of use). (See Chapter 2 for discussion of further pitfalls.)

From an assurance perspective, many of the arguments relating to trustworthiness are based on
models in which inductive proofs are applicable. One important case is that of finite-state ma-
chines in which the initial state is assumed to be secure (or,more precisely, consistent with the
specifications) and in which all subsequent transitions aresecurity preserving. This is very nice
theoretically. However, there are several practical challenges. First of all, determining the sound-
ness of an arbitrary initial state is not easy, and some of theassumptions may not be explicit or
even verifiable. Second, it may be difficult to force the presence of an known secure state, es-
pecially after a malfunction or attack that has not previously been analyzed — and even more
difficult in highly distributed environments. Third, the transitions may not be executed correctly,
particularly in the presence of hardware faults, software flaws, and environmental hazards. Fourth,
system reboots, software upgrades, maintenance, installation of new system versions, incompati-
ble retrievals from backup, and surreptitious insertion ofTrojan horses are examples of events that
can invalidate the integrity of the finite-state model assumptions. Indeed, software upgrades —
and, in particular, automated remote upgrades — must be looked on as serious threats. Under mal-
functions, attacks, and environmental threats, the desired assurance is always likely to be limited
by realistic considerations. In particular, adversaries have a significant advantage in being able to
identify just those assumptions that can be maliciously compromised — from above, from within,
and from below. Above all, many failures to comply with the assumptions of the finite-state model
result from a failure to adequately comprehend the assumptions and limitations of the would-be
assurance measures. Therefore, it is important that these considerations be addressed within the
architecture as well as throughout the development cycle and operation, both in anticipating the
pitfalls and in detecting limitations of the inherently incomplete assurance processes.

4.3 Principled Architecture

There are two ways of constructing a software design: one wayis to make it so simple
that there are obviously no deficiencies, and the other way isto make it so complicated
that there are no obvious deficiencies.
Sir Charles Anthony Robert Hoare

Tony Hoare’s comment is obviously somewhat facetious, especially when confronted with com-
plex requirements; he has chosen two extremes, whereas the kind of realistic system designs for

60 CHAPTER 4. PRINCIPLED COMPOSABLE TRUSTWORTHY ARCHITECTURES

inherently complex system requirements that we consider inthis report obviously must lie some-
where in between. Nevertheless, Hoare’s two extremes are both prevalent — the former in theory
and the latter in practice.

We next seek to wisely apply the principles to the establishment of robust architectures capable
of satisfying such complex requirements. Our conceptual approach is outlined roughly as follows,
in a rather idealized form.

1. For each representatively comprehensive and realistic range of related system requirements,
and with some working understanding of the relative importance of the desired principles rel-
evant to those requirements, establish a spanning set of predictably composable trustworthy
components from which systems of varying complexity, varying trustworthiness, and varying
assurance can be developed, configured, administered, and maintained. Where generality is
not naturally achievable — for example, within a particularly narrow range of requirements
and applicable principles — separate architectural families should be considered instead of
trying to lump everything into a common family. That is, we seek to establish some main-
line families of architectures capable of attaining high security, reliability, survivability, and
other critical attributes, as desired, but also to allow thegeneral architectural framework to be
adapted to special-purpose dedicated uses.

2. For a particular set of requirements within any particular architecture or family of architec-
tures, seek to minimize what functionality must be trustworthy with respect to each of vari-
ous criticalities (reliability, integrity, nondenial of service, guaranteed real-time performance,
etc.).

3. Determine a minimal subset of components necessary for each specific set of requirements,
and analyze it for consistency with the given requirements.(We use “minimal” to imply
“minimum-like” but not necessarily the absolute minimum.)This is the notion ofstark sub-
settingintroduced in Section 3.3 — that is, avoiding or eliminatingunneeded functionality
and (hopefully) unneeded complexity and bloatware.

4. Examine the extent to which the chosen principles are satisfied, and consider the conse-
quences. As appropriate, recycle through the previous steps for various families of archi-
tectures, further splitting families as suggested in the first step, reexamining the attainable
trustworthiness as in the second step, and refining the minimal subset as in the third step,
with corresponding refinements of the priorities for the principles and the architectures them-
selves.

5. In parallel, evaluate the extent to which the desired trustworthiness might be achieved. If high
assurance is required, the requisite approaches and evaluations should be applied throughout
each iteration through the development stages, and at various layers of abstraction, as appro-
priate. However, whereas formal analysis can be especiallyvaluable in the development of
high-assurance critical systems (and then particularly inthe early development stages), it is
not likely to be fruitful in the absence of a principled development. Thus, it is often unwise
to attempt to apply formalisms to badly conceived designs and developments. That would be
throwing good money after bad, unless it adds significantly to the awareness of how bad the
architecture might be — which can usually be realized much more economically. (Formal

4.3. PRINCIPLED ARCHITECTURE 61

analysis of the software implementation in such cases is generally much less rewarding than
analyses of requirements and architectures, especially ifit is the design that is flawed.)

The notion of stark subsetting relates to the paired notionsof composability and decomposabil-
ity discussed in Section 3.3. The primary motivation for stark subsetting is to achieve minimization
of the need for trustworthiness — and, perhaps more important, minimization of the need for un-
justifiable (unassured) trust. Stark subsetting can also dramatically simplify the effort involved in
development, analysis, evaluation, maintenance, and operation.

For a meaningfully complete stark subset to exist for a particular set of requirements, it is
desirable that the stark subset originate from a set of composable components. As we note in
Section 3.3, “If a system has been designed to be readily composable out of its components, then
it is also likely to be readilydecomposable— either by removal of the unnecessary subsystems, or
by the generation of the minimal system directly from its constituent parts. Thus, if composability
is attainable, the decomposition problem can be consideredas a by-product of composition ...”

One of the architectural challenges is to attempt to capturethe fundamental property of the
multilevel-integrity concept, namely, that an application must not be able to compromise the in-
tegrity of the underlying mechanisms. However, there is an inherent difficulty in the above five-step
formulation, namely, that satisfaction of overall system properties such as survivability and human
safety depends on application software and users, not just on the integrity of the operating systems.
Therefore, it is not enough to be concerned only with the architecture of the underlying infrastruc-
ture; it is also necessary to consider the entire system. (The Clark–Wilson application integrity
model [82] is an example that requires such an analysis.)

Primarily for discussion purposes, we next consider two extreme subspaces in a highly multi-
dimensional space of architectures, each with its own ranges of trustworthiness and corresponding
ranges of trustedness, and with associated ranges of assurance, composability, evolvability, princi-
ple adherence, and so on. (Note that these dimensions are notnecessarily orthogonal, although that
is unimportant here.) Of course, there are many interestingsubspaces somewhere in between these
two extremes, although it is not useful to attempt to itemizethem here. Within each subspace in
the overall multidimensional space, there are wide variations in what properties are relevant within
the concept of trustworthiness, whether the implied trust (if any) is explicit or implicit, in what
kinds of assurance might be provided, and so on.

The two illustrative extremes are as follows:� Maximal trust: More or less uniform trust, irrespective of a ctual trustworthiness. In
conventional systems in which security and reliability arenot deemed fundamental or are
only casually addressed by the architecture, potentially every component can depend on ev-
ery other component (including all application code, user programs, compilers, libraries, and
system test code), and therefore must be trusted whether it is trustworthy or not, even if its
failure or subversion can result in total compromise of the system, its applications, and other
networked systems. (The notions ofcompromise from outside, compromise from within,and
compromise from belowin Section 2.3 encompass systemic as well as human causes.) An ar-
chitecture of this kind is likely to be relatively unstructured and unprincipled. Maximal trust
typically implies few if any explicit assumptions in the architecture about possibly untrust-
worthy components, and the entire system is implicitly assumed to behave as expected. (In

62 CHAPTER 4. PRINCIPLED COMPOSABLE TRUSTWORTHY ARCHITECTURES

many cases, trust is blind, or even worse, uniformly blind.)Although this extreme maximal-
trust subspace might seem somewhat artificial, it is in reality representative of surprisingly
many software products. However, it exhibits a relatively clear-cut contrast with the principle-
inspired notion of minimal trust, considered next.� Minimal trust: Selectively wisely placed trust, based on relative trustworthiness where
needed.In an architecture that is motivated by the principle of minimization of what must be
trustworthy, the architecture can ensure that greater trust need be placed primarily in certain
trustworthy components, with respect to whichever requirements must be trustworthy. An
overly simple example is given by a trustworthy guard that sits between two (or among more
than two) systems with potentially unequal trust or with mutual suspicion (that is, bilaterally
questionable trustworthiness); the guard mediates all intersystem traffic — for example, at-
tempting to ensure no outbound leakage of sensitive information and no inbound insertion of
Trojan horses; however, the trustworthy guard may typically assume little or nothing about the
trustworthiness of any of the systems that it is guarding. (Some of the early guards were based
rather simply on keyword scanning.) A firewall provides another instance of minimal trust,
where the assumption is made that the systems on the inside cannot be compromised by the
systems on the outside, even if the interior systems are not trustworthy; the firewall is trusted
to satisfy only certain requirements. Wrappers provide yetanother example. (Suitable use of
real-time monitoring and anomaly/misuse detection may be desirable, although some of that
functionality itself needs to be trustworthy with respect to system integrity, data confidential-
ity, and nondenials of service.) More generally, overall system architectures considered below
involve reliance on certain trustworthy servers, with lesstrustworthiness required elsewhere.

Minimal trust is generally compatible with the notions of judicious modularity and stark sub-
setting. On the other hand, maximal trust is usually a consequence of badly designed systems —
in which it is very difficult to achieve trustworthy subsets,let alone to remove large amounts of
bloatware that in a well-designed system would conceptually not have to be trustworthy. (Compare
this with the quote from Steve Ballmer given in Section 3.3.)

What might at first seem to be a hybrid minimax approach to trust and trustworthiness is given
by Byzantine agreement, discussed in this context in Section 3.5: even if at mostk out ofn subsys-
tems may misbehave arbitrarily badly, the overall system still behaves correctly (for suitablek andn). Byzantine agreement makes a negative assumption that some portion of the components may
becompletely untrustworthy— that is, arbitrarily bad, maliciously or otherwise — and a positive
assumption that the remaining components must becompletely trustworthy. However, Byzantine
agreement is in a strict mathematical sense an example ofminimum(rather thanminimal) trust: in
the case of Byzantine clocks, the basic algorithm [198, 331,337] provably minimizes the number2k + 1 of trustworthy clock subsystems for any given numberk of arbitrarily untrustworthy clock
subsystems, with the resulting3k + 1 subsystems forming a trustworthy clock system. (Note that
the assumption that at mostk of the clocks may be arbitrarily untrustworthy is explicit,although
the nature of the untrustworthiness can be completely unspecified.)

Purely for purposes of discussion, we next consider two extreme alternatives with respect to
homogeneity versus heterogeneity of architecture, centralization and decentralization of physical
configurations, logical control, trust, and trustworthiness. There are many combinations of these
aspects of centralization versus decentralization, but for descriptive simplicity we highlight only

4.3. PRINCIPLED ARCHITECTURE 63

two extreme cases. For example, we temporarily ignore the fact that centralized control could be
exerted over highly distributed systems — primarily because that is generally very unrealistic in
the face of events such as unexpected outages and denial-of-service attacks. Similarly, centralized
systems could have distributed control.� Centralized homogeneous systems, centralized control, centralized trust, and central-

ized trustworthiness. Centralized trustworthiness is largely a relic of the stand-alone batch-
processing mainframe systems of the past and the centralized time-sharing systems that began
emerging in the 1960s. It can be very effective in nonnetworked systems, but is impractical in
any highly distributed processing environment. However, it is used effectively in stand-alone
classified systems and others that must be highly secure, physically isolated from other sys-
tems and networks, and physically protectable; in such environments, administrative control
is generally centralized.� Decentralized heterogeneous systems, distributed control, distributed trust, and dis-
tributed trustworthiness. In general, today’s systems and networks tend to be increasingly
heterogeneous in the diversity of their constituent subsystems and networked components,
increasingly distributed in the dispersion of their physical locations, of their users, and their
maintainers, and thus necessarily distributed in their logical control. Architectures that de-
pendably structure the relative trustworthiness of the subsystems are therefore of considerable
interest.

Note that a collection of centralized subsystems may be coordinated into a decentralized sys-
tem, so the boundaries of our simplified descriptive dichotomy are not always sharp. However, the
trustworthiness issues in heterogeneous systems and networks (particularly with respect to secu-
rity, reliability, and survivability) are significantly more critical than in homogeneous systems and
networks, even though the generic problems seem to be very similar. In fact, the vulnerabilities,
threats, and risks are greatly intensified in the presence ofhighly diverse heterogeneity.

With respect to the principled approach of minimizing what must be trustworthy, the next set of
bulleted items provides some motivating concepts for structuring robust systems with noncentral-
ized trustworthiness, irrespective of whether the actual systems have centralized or decentralized
control. (For example, fault tolerance and multilevel security are meaningful in centralized as well
as distributed systems.)� Layered trust, with layered trustworthiness. Trustworthiness can be layered in system

architectures in a variety of ways, and has been in several historically important systems.
This approach was used for both security and reliability in the 1960s in theMultics domain-
based ring structure [91, 150, 277, 333], in which faults, errors, or failures of Ring 1 would
not affect the operation of Ring 0, and thus would not crash the system although they could
crash the executing process; similarly, problems in Ring 2 would not affect the operation of
Ring 1, and thus would not crash the executing process, although they could abort the execut-
ing command. A similar approach was used in the 1970s in the design of the hierarchically
structured capability-based strongly typed object-oriented Provably Secure Operating System
(PSOS) [120, 268, 269], in which the lowest layers (to be implemented in hardware) could
be executed directly from higher layers without compromiseof the access control and strong

64 CHAPTER 4. PRINCIPLED COMPOSABLE TRUSTWORTHY ARCHITECTURES

typing of the capability mechanisms. (Acapability is in essence a potentially portable and
nonforgeable token whose possession permits some sort of specified access to a particular
object or class of objects. Capability-based systems have along history, and provide consid-
erable potential as an alternative architecture. However,a pithy quote by Butler Lampson is
perhaps telling: “Capability systems are the way of the future, and always will be.”)

Layered trustworthiness was also found in theTHE operating system (see Dijkstra’s 1968
paper [106]), with respect to hierarchical locking strategies, as noted in Section 3.5. It was
also used to ensure human safety of real-time flight-controlin the 1970s in SRI’s fly-by-wire
Software Implemented Fault Tolerant (SIFT) [232, 247, 378]) system, with a hierarchy in-
cluding real-time scheduling, a broadcast protocol, and majority voting. Furthermore, layered
trustworthiness is a fundamental basis of implementationsof multilevel security (MLS) in a
typical system with an MLS kernel, an MLS-trusted computingbase, and MLS-untrusted ap-
plications, including the Multics kernel retrofit [344] anda higher-layer abstract type manager
approach suggested as an alternative to the basic PSOS architecture. Ideally, no application
software should be able to compromise the enforcement of theMLS information flow con-
straints — from above or from outside. In each of these cases,the trust that is either explicitly
or implicitly associated with each layer can also be layered. In systems based on protection
rings or MLS kernels, relatively greater trust is given to lower layers — which, because of
the constructive nature of the architecture, must be relatively more trustworthy than higher
layers.

In a different sense of hierarchy, trust can also be layered with respect to policies. For ex-
ample, the basic multilevel security policy [35] provides for lattice-ordered levels of trust for
confidentiality (e.g., a linear ordering of Top-Secret, Secret, Confidential, and Unclassified,
with associated nonlinear compartments), whereas a Biba-like multilevel integrity (MLI) pol-
icy [43] provides a similar partial ordering for integrity.Briefly, under an MLS policy, infor-
mation may not flow from one entity to another entity that has alower (or lattice-sense incom-
parable) security level; in MLI, no entity may depend on another entity that has a lower (or
lattice-sense incomparable) integrity level (that is, is considered less trustworthy). Of course,
when we attempt to compose policies such as MLS and MLI withMLA (multilevel avail-
ability) andMLX (multilevel survivability), composability problems and general operational
confusion may arise. (MLA and MLX are suggested in [264].)

MLS is of course a fundamental approach to avoiding adverse information flows, irrespective
of the complexities of its implementation and operation. Onthe other hand, MLI, MLA, and
MLX appear to be of limited usefulness in the real world — although they are of consider-
able interest as examples of the principled notion of tryingto avoid dependence on anything
less trustworthy (with respect to integrity, availability, and survivability, respectively), and
enabling explicit analyses of soundness wherever such dependence cannot be avoided. A pos-
sibly more useful alternative approach is the notion of policy factoring that arises in Secure
Computing Corporation’s notion of type enforcement, in which separate type-related policies
are designed to be seamlessly composable because of the essential disjointness of the types.
(This is actually a logical outgrowth of the pervasive use ofstrongly typed objects throughout
the hierarchical layers of PSOS [120, 268, 269].) Incidentally, another alternative use of com-
partmented MLS would be a single-level system with compartments. (In 1982, Lipner [209]

4.3. PRINCIPLED ARCHITECTURE 65

provided a discussion of how MLS and MLI concepts might be used in commercial practice,
even in compartmented single-level environments.)

The SeaView database system [100, 213, 214] discussed in Section 3.5 is another example of
architectural layering in which the entire database management system is effectively multi-
level secure without the off-the-shelf DBMS itself having to be trusted for multilevel security.� Partitioned trust, with partitioned trustworthiness. Closely associated with the concept of
layered trustworthiness is the notion of partitioned trustworthiness — on which layered trust-
worthiness can be built, or with which higher-layer functionality can be isolated from other
functionality at the same layer. Multilevel-security kernels provide such a basic partitioning.
Even more fundamental is Rushby’s separation kernel [323, 324], which provides a basis for
nonsubvertible isolation that can be perpetuated throughout higher layers. (See also [321], in
which Rushby applies the partitioning concept to avionics architectures.) This is in essence
the basis for virtual machine monitors. For example, NSA’s NetTop combines SCC’s SELin-
uxindexSELinux (multilevel security combined with strongtyping) and VMWare (which pro-
vides virtual machine monitors).

Two other forms of logical and physical separation are also worth noting — Multiple Inde-
pendent Levels of Security (MILS) and Multiple Single-Level (MSL) systems, whose inter-
communications are carefully controlled (discussed in thefollowing bullet). MILS systems
are expected to provide truly independent partitions that could function at different security
levels, with no information flow across multilevel securityboundaries except for perhaps
some exceptions that are carefully controlled by the underlying virtual machine monitors.
MSL systems are expected to function with each partition operating strictly within a single
level, with no exceptions. These constrained modes providerestricted alternatives to a strict
multilevel-security architecture, although they may typically be significantly less flexible and
much less useful in general applications.

An even stronger isolation is provided by the physical airgap approach (also referred to as
sneaker-net), where there is absolutely no direct electronic connection between hardware
components (ignoring electromagnetic interference and emanations). However, that approach
seriously impedes interoperability; although physical separation may be exactly what is de-
sired for extremely sensitive multilevel security compartments, it is antithetical to widespread
information sharing and increasingly impractical except in extremely critical embedded sys-
tem applications. Besides, sneaker-nets notoriously seemto be subverted by people carrying
electronic media from one partition to another (including games bearing malicious code!).� Emphasis on trustworthy servers and constrained interfaces (TS&CI). The general archi-
tecture family begun by John Rushby and Brian Randell [327] in the Newcastle multilevel-
secure Distributed Secure System (see also [329] for a summary and [328] for the Newcastle
report) relies heavily on trustworthy servers. This type ofcontrolled access in a multiple-
single-level (MSL) architecture was extended by Proctor and Neumann [273, 308], permit-
ting user-covert-channel-free multilevel-secure accessto information with no MLS trustwor-
thiness required for end-user systems, and allowing single-user single-level end-user systems
that need not be trusted for MLS separation or for multiuser multiplexing. Instead, architec-
tures of this family rely heavily on sharable trustworthy servers (e.g., file servers, network

66 CHAPTER 4. PRINCIPLED COMPOSABLE TRUSTWORTHY ARCHITECTURES

servers, crypto servers, and authentication servers) thatcan operate as multilevel secure sub-
systems and enforce multilevel security; they also have highly constrained interfaces to those
servers that are controlled subject to the constraints imposed by the architecture. (In [259],
that architecture type is characterized by the acronym RISSC, for Reduced Interfaces for Se-
cure System Components; however, in this report, we avoid the use of the RISSC acronym
because of its pronounced confusions withRISCandrisk, and instead useTS&CI , represent-
ing Trustworthy Servers and Controlled Interfaces.)
The same concept of placing relatively less trust on end-user systems and much greater trust-
worthiness on servers is of course also applicable to systems that do not require any multilevel
security, although this architectural concept appears to be much less widely appreciated in the
conventional single-level case. Placing strong emphasis on trustworthy servers is a fundamen-
tal approach to minimizing the need for trustworthiness in systems and networks. Note that
the trustworthiness requirements may differ considerablyfrom one server to another, partic-
ularly among the various requirements for security (e.g., integrity, confidentiality, reliability,
survivability, and prevention of denial-of-service attacks and so-called “man-in-the-middle
attacks”). Furthermore, some of the nonserver components may have very specific but less
stringent requirements for trustworthiness. For example,a user platform might have only
a thin-client operating system that is auto-rebooted in a trustworthy manner from an unal-
terable read-only memory, but otherwise with no long-term storage and some integrity in
its networking software. However, the essential characteristic of such architectures is that
trustworthiness with respect to certain attributes need not be dispersed uniformly everywhere
throughout a distributed system or network of systems. Thisapproach can be particularly ef-
fective because in a relatively clean way it decouples the networking abstraction (strong and
supposedly robust but presumably not necessarily secure) from the computer systems (which
are separated physically rather than virtually, except forthe server software).� Emphasis on certain trustworthy clients. In some cases (such as control-system environ-
ments or intrinsically multilevel applications), it may bedesirable to have completely self-
contained or almost completely self-contained end-user platforms, in which case relatively
less trustworthiness may be needed elsewhere. For example,if a thin-client system never
needs to download software from elsewhere (except for upgrades, which might be handled
off-line or otherwise constrained), and can be assured of never executing potentially exe-
cutable content (such as active e-mail attachments), then perhaps it can satisfy stringent re-
quirements for trustworthiness within its tightly constrained perimeters. This may be particu-
larly desirable in architectures for certain handheld wireless devices with highly constrained
and controllable communications, but also with inherentlyrisky functionality such as being
able to send and receive e-mail with executable attachments, and to browse the Internet. Also,
significant simplifications can result whenever the local systems can be stateless, or else nec-
essary state information can be quickly retrieved in an intact demonstrably sound state from
a remote server. On the other hand, with the advent of inexpensive supercomputing power,
we can expect handheld wireless devices with enormous operating systems that are not ade-
quately trustworthy, in which case other architectural approaches must be considered.� Network-centric architectures. The need to trust various network media can be greatly (but
not entirely) reduced if a network-centric architecture considers networks as virtual entities

4.3. PRINCIPLED ARCHITECTURE 67

(for example, multi-system backplanes), with appropriatetrustworthiness among the attached
systems as needed (e.g., for reliability, integrity, confidentiality, and nondenials of service
of the critical system functionality, and especially whatever networking software must be
trustworthy). Typically, the network media themselves canbe generally untrusted; the con-
tent can be protected cryptographically (for integrity andconfidentiality); reliable delivery
and defenses against denials of service can be enhanced through alternative routing, error-
correcting codes, synchronization, monitoring, dynamic reconfiguration, and so on, all of
which would be suitably trustworthy according to the specified requirements. Preventing or
hindering denial-of-service attacks is a particularly nasty problem, which suggests that design
of the networking should not put much trust on the dependability of the network media —
other than in the Byzantine sense above (namely, that some portion of the communications
functionality work according to its specifications) or via alternative routing. However, even
when the networking has been established as an end-to-end orsystem-to-system encrypted
virtualized backplane, there are still serious security and particularly integrity risks that re-
late to both the network media and the networking software. Although it is an example of a
simplistic and popular approach with real applicability, the network-centric view is still only
a partial solution.� Emphasis on trustworthy networking. Several alternatives exist relating to trustworthy
networking, including physically isolated dedicated networks and trustworthy subnetworks
of perhaps less trustworthy networks. In concept, the idea of isolated trustworthy subnet-
works with stringent user authentication is very appealing, such as the Navy Marine Corp
Intranet (NMCI) or GOVNET. The goal is to have connectivity in and out of the subnet-
work that is either extremely tightly constrained (e.g., bytrustworthy firewalls with rigidly
enforced security and integrity policies) or else completely nonexistent. In reality, the trust-
worthiness of the security and integrity of such subnetworks is extremely difficult to assure,
especially in the presence of trusted insiders and the need for remote maintenance paths such
as the outsourcing of system administrators that seems so desirable from the perspectives of
reducing costs and manpower requirements. Alternatively,the creation of virtual trustwor-
thy subnets (e.g., virtual private networks) implemented on less trustworthy networks can
be pursued, using appropriate cryptography and some trustworthy servers, with other tech-
niques such as assured alternative routing, and anti-jamming and increased prevention against
denial-of-service attacks.� Trustworthiness enhancement. the techniques enumerated in Section 3.5 for increasing
system trustworthiness despite less trustworthiness of the constituent subsystems are all po-
tentially relevant within trustworthy architectures. In essence, each of those techniques allows
for the reduction in the need for trust that can reasonably beplaced on the subsystems, while
at the same time potentially increasing the trustworthiness that can be achieved in the sys-
tem as a whole. Indeed, by using some of these trustworthiness-enhancing mechanisms, the
trustworthiness of the system as a whole can be significantlygreater than that of the subsys-
tems individually. As a rather dramatic example, the Software-Implemented Fault-Tolerant
(SIFT) system [232, 247, 378] involved the highly redundantcomposition of seven off-the-
shelf avionics processors, and resulted in a probably of failure five orders of magnitude less
than that of a single processor for the entire fly-by-wire avionics system, as noted in Sec-

68 CHAPTER 4. PRINCIPLED COMPOSABLE TRUSTWORTHY ARCHITECTURES

tion 3.5. So-called trusted paths and trustworthy bootloads (e.g., [18, 19]) are both very
important potential techniques for enhancing security (see below). Trusted paths are essential
in a variety of contexts (e.g., user-to-system, system-to-user, system-to-system), particularly
to prevent “man-in-the-middle”, and other spoofing attacks, as well as denial-of-service at-
tacks. Cryptographic authentication can significantly increase trustworthiness. Finer-grained
authorization can be very helpful, particularly relating to separation of privileges and least
privilege, as well as in reducing opportunities for insidermisuse. Anything that enhances the
ability to perform tracebacks can be helpful to misuse detection and response. The ability to
have trustworthy paths for code distribution and dynamic updates will also be helpful.

Each of these concepts can potentially be useful by itself orin combination with other ap-
proaches. However, it is important to realize that one approach by itself may be compromisible
in the absence of other approaches, and that multiple approaches may not compose properly and
instead interfere with one another. Thus, an architecture (or a family of architectures) must have
considerable effort devoted to combining elements of multiple concepts into the effective devel-
opment of trustworthy systems, with sufficiently trustworthy networking as needed. However,
although these concepts are not necessarily disjoint and may potentially interfere with one another,
each of these concepts is generally compatible with the notion of stark subsetting — which of
course itself benefits greatly from extensive composability (and its consequence, facile decompos-
ability).

Many other system properties of course can also contribute to achieving our desired goals. A
few of these are discussed next. These items are somewhat second-order in nature, because they
rely on the trustworthiness of the design and implementation of the architectural concepts in the
above list — although they also can each contribute to increased trustworthiness.� Dramatically improved user authentication is needed to overcome many of the common

risks of reusable fixed passwords. Nonreusable and difficult-to-forge cryptographic tokens,
nonreusable one-time pass phrases (as in the primitive but erstwhile transitionally useful S-
key system), and biometrics are all potentially useful in increasing authentication trustwor-
thiness, but are nevertheless vulnerable if embedded in flaky operating systems or insecure
applications. Clearly, a multipronged approach is needed,rather than just relying on a single
factor. Furthermore, user authentication needs to be fairly nonintrusive from the perspective
of the user; otherwise, it tends to be avoided, bypassed, or trivialized.� Dramatically improved message authenticationis also important. A recent paper [360]
(one in a chain of research efforts) is aimed at defining and analyzing effective mechanisms
for authenticating each network packet against malicious and erroneous disruptions; the paper
includes numerous references to previous efforts in that direction.� Fine-grained authorization (e.g., differential or context-dependent access controls) can nar-
row down the extent of misuse, and can bring actual system behavior more closely in line with
policies of intended behavior. It is particularly relevantin enabling access controls to more
closely implement security policies — which may be particularly important whenever insider
misuse is a serious concern. It is also helpful in constraining outsiders who have effectively
become insiders as a result of system penetrations. However, it is rendered rather limited in
effectiveness if the authentication is not trustworthy.

4.3. PRINCIPLED ARCHITECTURE 69� Trustworthy bootloads can provide assurance of the genuineness and integrity of the under-
lying operating systems (e.g., Arbaugh [18, 19]). Authentication, authorization, monitoring,
and accountability will always be suspect if the underlyingoperating systems are not trust-
worthy, but especially if tampering has resulted in the presence of trapdoors or Trojan horses.� “Trusted paths” (or, more appropriately,trustworthy paths) can provide protected commu-
nication links in which there is at least a unilateral direction of dynamic confidence, namely
that a user is truly in contact with the intended system (rather than a spoofed version of that
system); in some cases, a trustworthy path may need to be bilateral — that is, also providing
dynamic confidence that a given system is truly in contact with its intended user (rather than
an interloper or imposter). In each of these directions, thetermusermay apply to systems or
subsystems as well as people. Trustworthy paths themselvesrequire considerably improved
authentication of computational entities (e.g., systems,subsystems, processes, network com-
ponents), trustworthy bootloads, and in some cases even dedicated physical resources.� Systemic support for traceback(especially in packet-based networked systems) requires
some ability to determine the origins of an attack and its misusers. Traceback in turn depends
on meaningful authentication of users, routers, operatingsystems applications, some trust-
worthy bootloads, some trustworthy paths, and so on. In the foreseeable future, trustworthy
traceback seems feasible at best only within relatively self-contained subnetworks. Dean et
al. [97] provide an algebraic formulation of a practical approach to IP traceback during a
denial-of-service attack; this paper should be very usefulas a basis for future research on
traceback. See also a subsequent optimization by Micah Adler [10] that reduces the required
overhead to an extra bit per packet!� Trustworthy code distribution is essential to provide assurance that downloaded software
as delivered is in fact genuine and untampered, and has the expected provenance (pedigree).
This is of particular importance in networked and Web-basedenvironments and in thin-client
system architectures in which software is normally downloaded dynamically.� Real-time monitoring and misuse detectionare fundamental to sound operation of systems
and networks. Ideally, system monitoring might seem unnessary if all the above mechanisms
were perfectly designed and properly working, but that of course is unrealistic. Actually,
even if everything else in the above list worked perfectly (which, as we know, is an extremely
unwise expectation), detecting, identifying, and responding to insider misuse would still be
desirable. Furthermore, network monitoring is always important from the perspectives of
reliability and availability as well as security (for example, see [34]). Partially automated
responses to emergencies could also be useful, although they should be used with great care
— especially if they can be used to induce denial-of-serviceattacks! (Drew Dean notes a
similarity with game theory, in attempting to prevent the attacker from having the last move in
an arms race.) See also work on intrusion tolerance (e.g., [103, 124]) as opposed to intrusion
detection.� Alternative hardware might be desirable in certain circumstances — for example, for crit-
ical servers in systems that require very high trustworthiness and very high assurance. Sig-
nificant benefits can be derived from building critical software systems on high-assurance,

70 CHAPTER 4. PRINCIPLED COMPOSABLE TRUSTWORTHY ARCHITECTURES

robust, and more easily secured hardware platforms. Although special-purpose hardware
in recent years seems to have been going the way of the dodo bird, there are applications
in which customized hardware could be very useful — for example, in constraining what
the software can do. Special-purpose co-processors are oneexample, as for example in the
LOgical Coprocessor Kernel (LOCK), or more recently the Trusted Computing Platform
Alliance (TCPA)/Trusted Computing Group (TCG), Intel’s LaGrande technology, and Mi-
crosoft’s Palladium/Next Generation Secure Computing Base (NGSCB), presumably to be
used in Microsoft’s next-generation operating system, Longhorn. (For some provocative
background, particularly on potential limitations, see Ross Anderson’s Trusted Computing
FAQ, http://www.cl.cam.ac.uk/˜rja14/tcpa-faq.html.) The “No Execute” (NX) facility also
has some merit, although it can in principle better be achieved with sensible domain architec-
tures. In addition, there is some hope that newer hardware architectures, such as the IBM/HP
efforts in blade computers (which can combine multiple conventional processors into a sin-
gle circuit board) might actually lead to some efficient hardware isolation kernels and in the
long run to the possibility of high-assurance multilevel secure systems. This remains a very
interesting possibility for the future.� Preventing or at least hindering denial-of-service attacks presents some enormous chal-
lenges for system and network architectures, particularlyin highly distributed systems and
networks in which communications are already vulnerable. Authentication and access con-
trol become extremely important in preventing unwanted access and facilitating traceback
within perimeters of trustworthiness. However, attempts to achieve end-to-end security across
untrustworthy networks are always vulnerable to denial-of-service attacks. Furthermore, net-
working protocols must provide some means of limiting adverse traffic in situations in which
authentication and access control cannot. Monitoring and real-time analysis become increas-
ingly important, particularly in providing early detection and rapid remediation in the pres-
ence of suspected denial-of-service attacks.

Appropriate architectures are then likely to be some sort ofcombination of the above ap-
proaches, encompassing (for example) heterogeneous subsystems and subnetworks, trustworthy
servers and controlled interfaces (TS&CI) that that ensuresatisfaction of cross-domain security
and integrity, dramatic improvements in system and network-wide authentication, trustworthy
bootloads, trusted paths, traceback, trustworthy code distribution, and other concepts included
in the above enumeration, particularly in observance of theprinciples of Chapters 2 and 3. Such
architectures (referred to herein as theEnlightened Architecture Conceptwould provide a basis
for a wide class of systems, networks, and applications thatcan heterogeneously accommodate
high-assurance security. This is particularly relevant concerning desires for multilevel security,
which realistically are likely to involve collections of MLS clients, MSL clients, and MILS clients,
all controllably networked together with a combination of servers, subject to the multilevel con-
straints, and with a similar assortment of assurance techniques for both conventional security and
multilevel security. In that true multilevel security is overkill for many applications, this vision
would provide that functionality only where essential.

4.4. EXAMPLES OF PRINCIPLED ARCHITECTURES 71

4.4 Examples of Principled Architectures

In our experience, software exhibits weak-link behavior; failures in even the unimportant
parts of the code can have unexpected repercussions elsewhere. David Parnas et al. [292]

The pervasive nature of weak links is considered in Section 2.3.1 in connection with principles
for avoiding them, and again in Section 3.5 in connection with the desire for reduced dependence
on trustworthiness. In concept, we like to espousestrength in depth; however, in practice, we
find weakness in depthin many poorly architected systems — where essentially every component
may be a weak link. Even well-designed systems are likely to have multiple weak links, especially
in the context of insider misuse. As a result, there is a fundamental asymmetry between defenders
and attackers. The defenders need to avoid or protect all of the vital weak links; on the other hand,
the attackers need to find only one or just a few of the weak links.

Several historically relevant systems are particularly illustrative of the concept of principled
architectures that have sought to avoid weak links in one wayor another. These are discussed next.� Multics. Multics [277] (noted above in Section 4.3) was perhaps the first operating system to

make extensive use of structure within the operating systemitself. The eight concentric rings
and protection domains permitted process protection within the operating system and allowed
multiple application layers to be separated from the operating-system layers, and also allowed
iterative implementation of policy-mechanism separation[150, 334, 345]. It also facilitated
the subsequent retrofit of multilevel security [344], with only relatively minor repartitioning
of Ring 0 and Ring 1. The multilayered directory hierarchy [92] permitted sensible directory
structuring, symbolic file names, directory search strategies, and dynamic linking, along with
access-control lists to permit finer-grained access controls. The virtual memory implemen-
tation [91] demanded separation of symbolic and physical addressing, where all real objects
in memory are accessed by means of symbolically named virtual objects and dynamically
linked on demand. Multics is considered in further detail inthis context in [259]. An im-
portant contribution to the evaluation of Multics securityis given by Paul Karger and Roger
Schell in two papers [188, 189], the first from 1974 and the second revisiting that early paper
in 2002. Among other things, the later paper notes the relevance of the choice of PL/I as the
programming language for implementation and the relevanceof the underlying hardware seg-
mentation, paging, and protection, specifically in avoiding buffer overflows, data interpreted
as executables, Trojan horses, and other characteristic security problems — and generally
greatly enhancing security. See also Fernando Corbató’s Turing lecture [84] for a survey of
some of the lessons learned from the Multics development.� THE. The hierarchically layered Eindhoven operating system THE[106] (noted in Sec-
tions 3.5 and 4.3) demonstrated that a strict hierarchical locking strategy could avoid deadly
embraces between layers. This concept is important in preventing denials of service as well
as ensuring high system availability.� PSOS and SIFT.The concepts of abstraction and hierarchical layering, along with the work
of Dijkstra and Parnas, were very influential in two SRI system efforts from the 1970s. These
two efforts were the so-called Provably Secure Operating System (PSOS) [120, 268, 269]
(noted in Section 4.3) and the Software-Implemented Fault-Tolerant System (SIFT) [232,

72 CHAPTER 4. PRINCIPLED COMPOSABLE TRUSTWORTHY ARCHITECTURES

247, 378] (also noted in Section 4.3), both of which were formally specified according to
the SRI Hierarchical Development Methodology (HDM). The object-oriented strongly typed
hierarchically layered PSOS design is considered in Section 4.3. The SIFT design and pro-
totype implementation represented a seven-processor fly-by-wire avionics system that was
resistant to hardware faults or even complete outages of individual processors and memories;
in the presence of extensive faults, it was self-diagnosingand self-reconfiguring.� SAT/LOCK/Sidewinder type-based protection. The strongly typed PSOS design (which
in several senses an early system adhering to the principle of minimization of the need for
trustworthiness) was the immediate ancestor of the sequence of developments beginning with
the Honeywell Secure Ada Target (SAT), which then led to the Honeywell/Secure Computing
Technology Corporation (SCTC)/Secure Computing Corporation (SCC) LOgical Coproces-
sor Kernel (LOCK) [123, 153, 154, 155, 156, 335, 347, 348] andthe notion of trustworthy
pipelines [53] — in which each stage in a pipeline can have itsown security policy. The SCC
Sidewinder firewall is another example using type-based protection.� Trustworthy servers. A rather different lineage that adheres to the principle of minimal need
for trustworthiness begins with the Rushby–Randell Newcastle Distributed Secure System
DSS [327], which involved a collection of single-level Unixsystems linked via trustworthy
network interface units (TNIUs). A descendent of DSS is now also commercially available
(DRA) in the United Kingdom. See also the TS&CI concept considered earlier in this section,
which is a further refinement of DSS. The Gemini GEMSOS and Trusted Network Proces-
sor (GTNP) multilevel-security gateway efforts also bear considerable kinship with Multics
and PSOS, and with the principle of minimizing the need for trustworthiness. Both LOCK
and GTNP are operational systems with potential usefulnessin the DoD Trusted Computer
System Evaluation Criteria B3/A1-rated applications.� Kernel-based systems.A TCSEC-orthodox system lineage [249] includes end-user systems
with multilevel-secure kernels and associated trusted computing bases (TCBs) (a misnomer
for trustworthy computing bases), such as the Ford Aerospace Kernelized Secure Operating
System (Unix-based) KSOS [39, 221], the MITRE [336] and UCLASecure Unix kernels, and
the kernelized virtual-machine system KVM for IBM’s VM [141, 332]. Rushby’s separation
kernel [323, 324] concept represents a minimalized lower-layer version of that approach, in
which certain isolation properties are enforced, and on which other properties such as mul-
tilevel security or system safety can be implemented. This approach represents an important
realization of the principle of separation of policy and mechanism, as does MIT’s Exokernel
operating system architecture [113, 114].� SeaView. The SeaView DBMS noted in Section 4.3 provides a further example, especially
in its ability to avoid having to trust the DBMS and user application software to enforce
multilevel security — because of the constraints imposed bythe MLS kernel.� EMERALD. The architecture of SRI’s EMERALD system [272, 304] for anomaly and mis-
use detection (also noted in Section 3.5) makes considerable use of hierarchical structure in
providing the ability to correlate over multiple entities at various layers of abstraction.

4.5. OPENNESS PARADIGMS 73

4.5 Openness Paradigms

Closed-source paradigms often result in accidentalopen-sesames.
Canopen kimonasinspire better software?

[This section is adapted from Neumann’s paper for the 2000 IEEE Symposium on Security and
Privacy, entitled “Robust Nonproprietary Software” [265].]

Various alternatives in a spectrum between “open” and “closed” arise with respect to many
aspects of the system development process, including the availability of documentation, design,
architecture, algorithms, protocols, and source code. Theprimary differences arise among many
different licensing agreements. The relative merits of various paradigms of open documentation,
open design, open architecture, open software development, and available source code are the
source of frequent debate, and would benefit greatly from some incontrovertible and well docu-
mented analyses. (For example, see [210, 227, 263, 265, 338]for a debate on open source-code
availability. See also [126] on the many meanings ofopen-source.) The projects in the DARPA
CHATS program
(http://www.darpa.mil/ipto/research/chats/index.html) provided some strong justifications for not
only the possibilities of openness paradigms, but also somerealistic successes.

As noted throughout this report, our ultimate goal is to be able to develop robust systems and
applications that are capable of satisfying critical requirements, not merely for security but also for
reliability, fault tolerance, human safety, survivability, interoperability, and other vital attributes
in the face of a wide range of realistic adversities — including hardware malfunctions, software
glitches, inadvertent human actions, massive coordinatedattacks, and acts of God. Also relevant
are additional operational requirements such as interoperability, evolvability and maintainability, as
well as discipline in the software development process and assurance associated with the resulting
systems.

Despite extensive past research and many years of system experience, commercial development
of computer-communication systems is decidedly suboptimal with respect to its ability to meet
stringent requirements. This section examines the applicability of some alternative paradigms to
conventional system development.

To be precise about our terminology, we distinguish here betweenblack-box(that is, closed-
box) systems in which source code is not available, andopen-boxsystems in which source code
is available (although possibly only under certain specified conditions). Black-box software is
often considered as advantageous by vendors and believers in security by obscurity. However,
black-box software makes it much more difficult for anyone other than the original developers to
discover vulnerabilities and provide fixes therefor. It also hinders open analysis of the development
process itself (which, because of extremely bad attention to principled development in many cases,
is something developers are often happy to hide). Overall, black-box software can be a serious
obstacle to having any objective confidence in the ability ofa system to fulfill its requirements
(security, reliability, safety, interoperability, and soon, as applicable). In contrast, our use of the
termopen-box softwaresuggests not only that the source code is visible (as inglass-box software),
but also that it is possible to reach inside the box and make modifications to the software. In
some cases, such as today’s all-electronic (e.g., paperless) voting systems, in which there is no
meaningful assurance that votes are correctly recorded andcounted, and no useful audit trails that

74 CHAPTER 4. PRINCIPLED COMPOSABLE TRUSTWORTHY ARCHITECTURES

can be used for a recount in the case of errors or system failures (for example, see [194, 233,
235]), black-box software presents a significant obstacle to confidence in the integrity of the entire
application. On the other hand, completely open-box software would also provide opportunities
for arbitrary software changes — and, in the case of electronic voting systems, that enable elections
to be rigged by malicious manipulators (primarily insiders). Thus, there is a need for controls on
the provenance of the software in both open-box and closed-box cases — tracking the history of
changes and providing evidence as to where the code actuallycame from.

We also distinguish here betweenproprietaryandnonproprietarysoftware. Note that open-box
software can come in various proprietary and nonproprietary flavors, with widely varying licensing
agreements regarding copyright, its supplemental conceptof copyleft,reuse with or without the
ability to remain within the original open-source conditions, and so on.

Examples of nonproprietary open-box software are increasingly found in the Free Software
Movement (such as the Free Software Foundation’s GNU systemwith Linux) and the Open Source
Movement, although discussions of the distinctions between those two movements and their re-
spective nonrestrictive licensing policies are beyond thecurrent scope. In essence, both move-
ments believe in and actively promote unconstrained rightsto modification and redistribution of
open-box software. (The Free Software Foundation Web site is
http://www.gnu.org , and contains software, projects, licensing procedures, and background
information. The Open Source Movement Web site ishttp://www.opensource.org/ ,
which includes Eric Raymond’s “The Cathedral and the Bazaar” and the Open Source Definition.)

The potential benefits of nonproprietary open-box softwareinclude the ability of good-guy
outsiders to carry out peer reviews, add new functionality,identify flaws, and fix them rapidly —
for example, through collaborative efforts involving geographically dispersed people. Of course,
the risks include increased opportunities for evil-doers to discover flaws that can be exploited, or
to insert Trojan horses and trap doors into the code.

Open-box software becomes particularly interesting in thecontext of developing robust sys-
tems, in light of the general flakiness of our information system infrastructures: for example, the
Internet, typically flawed operating systems, vulnerable system embeddings of strong cryptogra-
phy, and the presence of mobile code. Our underlying question of where to place trustworthiness
in order to minimize the amount of critical code and to achieve robustness in the presence of the
specified adversities becomes particularly relevant.

Can open-box software really improve system trustworthiness? The answer might seem some-
what evasive, but is nevertheless realistic:Not by itself, although the potential is considerable.
Many factors must be considered.Indeed, many of the problems of black-box software can also
be present in open-box software, andvice versa. For example, flawed designs, the risks of mobile
code, a shortage of gifted system developers and intelligent administrators, and so on, all apply
in both cases. In the absence of significant discipline and inherently better system architectures,
opportunities may be even more widespread in open-box software for insertion of malicious code
in the development process, and for uncontrolled subversions of the operational process. However,
in essence, many of the underlying developmental problems tend to be very similar in both cases.

Ultimately, we face a basic conflict between (1) security by obscurity to slow down the ad-
versaries, and (2) openness to allow for more thorough analysis and collaborative improvement
of critical systems — as well as providing a forcing functionto inspire improvements in the face
of discovered attack scenarios. Ideally, if a system is meaningfully secure, open specifications

4.5. OPENNESS PARADIGMS 75

and open-box source should not be a significant benefit to attackers, and the defenders might be
able to maintain a competitive advantage! For example, thisis the principle behind using strong
openly published cryptographic algorithms, protocols, and implementations — whose open analy-
sis is very constructive, and where only the private and/or secret keys need to be protected. Other
examples of obscurity include tamperproofing and obfuscation, both of which have very serious
realistic limitations. Unfortunately, many existing systems tend to be poorly designed and poorly
implemented, and often inherently limited by incomplete and inadequately specified requirements.
Developers are then at a decided disadvantage, even with black-box systems. Besides, research ini-
tiated in a 1956 paper by Ed Moore [241] reminds us that purelyexternalGedankenexperiments
on black-box systems can often determine internal state details. Furthermore, reverse engineering
is becoming quite feasible, and if done intelligently can result in the adversaries having a much
better understanding of the software than the original developers.

Static analysis is a vital contributor to increasing assurance, and is considered in Section 6.6.
Behavioral application requirements such as safety, survivability, and real-time control can-

not be realistically achieved unless the underlying systems are adequately trustworthy. It is very
difficult to build robust applications on either proprietary closed-box software or nonproprietary
open-box software that is not sufficiently trustworthy — once again this is like building castles in
the sand. However, it may be even more difficult for closed-box proprietary systems.

Unless the fantasy of achieving security by obscurity is predominant, there seem to be some
compelling arguments for open-box software that encourages open review of requirements, de-
signs, specifications, and code. Even when obscurity may be deemed necessary in certain respects,
some wider-community open-box approach may be desirable. For system software and applica-
tions in which security can be assured by other means and is not compromisible within the appli-
cation itself, the open-box approach has particularly great appeal. In any event, it is always unwise
to rely primarily on security by obscurity.

So, what else is needed to achieve trustworthy robust systems that are predictably dependable?
The first-level answer is the same for open-box systems as well as closed-box systems: serious
discipline throughout the development cycle and operational practice, use of good software engi-
neering, rigorous repeated evaluations of systems in theirentirety, and enlightened management,
for starters.

A second-level answer involves inherently robust and secure evolvable composable interopera-
ble architectures that avoid excessive dependence on untrustworthy components. One such archi-
tecture is noted in Section 4.3, namely, thin-client user platforms with minimal operating systems,
where trustworthiness is bestowed where it is essential — typically, in starkly subsetted servers and
firewalls, code distribution paths, nonspoofable provenance for critical software, cryptographic co-
processors, tamperproof embeddings, preventing denial-of-service attacks, runtime detection of
malicious code and deviant misuse, and so on.

A third-level answer is that there is still much research yetto be done (such as on techniques
and development practice that enables realistic predictable compositionality, inherently robust ar-
chitectures, and sound open-box business models), as well as more efforts to bring that research
into practice. Effective technology transfer seems much more likely to happen in open-box sys-
tems.

Above all, nonproprietary open-box systems are not in themselves a panacea. However, they
have potential benefits throughout the process of developing and operating critical systems. Never-

76 CHAPTER 4. PRINCIPLED COMPOSABLE TRUSTWORTHY ARCHITECTURES

theless, much effort remains in providing the necessary development discipline, adequate controls
over the integrity of the emerging software, system architectures that can satisfy critical require-
ments, and well-documented demonstrations of the benefits of open-box systems in the real world.
If nothing else, open-box successes may have an inspirational effect on commercial developers,
who can rapidly adopt the best of the results. We are already observing some of the major commer-
cial system developers exploring some of the alternatives for open-box source-code distribution.
The possibilities for coherent community cooperation are almost open-ended (although ultimately
limited in scale and controllability), and offer considerable hope for nonproprietary open-box soft-
ware — if the open-box community adopts some concepts of principled architectures such as those
discussed here.

Of course, any serious analysis of open-box versus closed-box and proprietary versus non-
proprietary must also take into account the various business models and legal implications. The
effects of the federal Digital Millennium Copyright Act (DMCA), the state Uniform Computer
Information Transactions Act (UCITA), shrink-wrap restrictions, and other constraints must also
be considered. However, these considerations are beyond the present scope.

A recent report [163] of the Carnegie-Mellon Software Engineering Institute provides a useful
survey of the history and motivations for open-source software.

4.6 Summary

If carpenters built the way programmers program, the arrival of the first woodpecker
would mean the end of civilization as we know it.Gerald Weinberg

In summarizing the conclusions of this chapter, we revisit and extend the quasi-Yogi Berra
quote at the beginning of Section 4.1. A system is unlikely tobe trustworthy if it does not have
a sufficient supply of good designers, good programmers, good managers, and good system ad-
ministrators. However, it is also not likely to be secure, reliable, generally trustworthy, evolvable,
interoperable, and operationally manageable if the development does not begin with feasible re-
quirements that are well specified and realistically representative of what is actually needed,and
if it does not involve good specifications and good documentation, and if it does not use good
compilers, good development tools, and lots more. Note thatif a set of requirements is trivial or
seriously incomplete, the fact that a system satisfies thoserequirements is of very little help in the
real world.

Thus, appropriately well defined and meaningful requirements for trustworthiness are essential.
Good system and network architecture is perhaps the most fundamental aspect of any efforts to
develop trustworthy systems, irrespective of the particular set of requirements whose satisfaction
is necessary. Wise adherence to a relevant set of principlescan be extremely helpful. Architec-
tural composability and implementation composability areof enormous importance, to facilitate
development and future evolution. Policy composability isalso useful if multiple policies are to
be enforced. Good software engineering practice and the proper use of suitable programming lan-
guages are also vital. The absence or inadequacies of some ofthese ideals can sometimes be over-
come. However, sloppy requirements and a fundamentally deficient architecture represent huge
impediments, and will typically result in increased development costs, increased delays, increased
operational costs, and future incompatibilities.

4.6. SUMMARY 77

As we note at the end of Chapter 3, seamless composability is probably too much to expect
overall, particularly in the presence of legacy software that was not designed and implemented to
be composable; instead, we need to establish techniques that can provide composability sufficient
to meet the given requirements. If that happens to be seamless in the particular case, so much the
better.

We believe that the approaches considered in this report have almost open-ended potential for
the future of trustworthy information systems. They are particularly well suited to the development
of systems and networking that are not hidebound by compatibility with legacy software (and, to
some extent, legacy hardware), but many of the concepts are applicable even then. We hope that
these concepts will be adopted much more widely in the futureby both open-box and closed-box
communities. In any case, much greater discipline is neededin design, development, and operation.

Chapter 5

Principled Interface Design

Perspicuous:plain to the understanding, especially because of clarity and precision of
presentation.(Webster’s International Dictionary)

Synopsis

This chapter considers system architecture from the viewpoint of external and internal system
interfaces, and applies a principled approach to interfacedesign.

5.1 Introduction

Interfaces exist at different layers of abstraction (hardware configuration, operating systems, sys-
tem configurations, networking, databases, applications,control system complexes such as SCADA
systems and air-traffic control, each with both distributedand local control) and should reflect the
abstractions of those layers and any security issues peculiar to each layer, suitable for the specific
types of users. In general, security considerations shouldbe hidden where possible, except where it
is necessary for control and understandability of the interfaces. In addition, some sort of automated
(or at least semiautomated) intelligent assistance is essential, according to specific user needs.

Operators, administrators, and users normally have different needs. Those needs must be re-
flected in the various interfaces — some of which must not be accessible to unprivileged users.
In particular, operators of control systems, enterprises,and other large-system applications need
to be able to see the big picture at an easily understood layerof abstraction (e.g., dynamic status
updates, configuration management, power-system error messages), with the ability on demand
to drill down to arbitrarily fine-grained details. As a consequence, it is generally necessary that
greater detail must be available to certain privileged users (for example, system and network ad-
ministrators or system operators), according to their needs — either through a separate interface or
through a refinement mechanism associated with the standardinterface.

In general, it is important that the different interfaces for different roles at different layers be
consistent with one another, except where that is preventedby security concerns. (This is a some-
what subtle point: in order to minimize covert channels in multilevel secure systems, it may be
deemed advisable that different, potentially inconsistent, versions of the same information content

78

5.2. FUNDAMENTALS 79

must be accorded to users with different security levels. This multiplicity of content for seemingly
the same information is known aspolyinstantiation.) Most important is that the interfaces truly
reflect the necessary trustworthiness issues.

Requirements must address the interface needs at each layer, and architectures must satisfy
those requirements. This is very important, and should be mirrored in the requirements and archi-
tecture statements. In general, good requirements and goodarchitectures can avoid many otherwise
nasty administrative and user woes — viruses, malcode, patch management, overdependence and
potential misuse of superuser privileges. As an example, the Trusted Xenix system requirements
demanded a partitioning of privileged administrator functions rather than allowing a single supe-
ruser role. This illustrates the principles of separation of duties and a corresponding separation of
roles.

In attempting to simplify the roles of adminstrators and operators, automated vendor-enforced
updates are becoming popular, but represent a huge source ofsecurity risks. Their use must be
considered very carefully – commensurate with the criticality of the intended applications. Re-
mote maintenance interfaces are vital, especially in unmanned environments, but also represent
considerable security risks that must be guarded against.

The rest of this chapter as well as Sections 7.6 and 8.4, and some of Section 7.11 are adapted
from the body of a self-contained report, “Perspicuous Interfaces”, authored by Peter Neumann,
Drew Dean, and Virgil Gligor as part of a seedling study done for Lee Badger at DARPA under
his initiative to develop a program relating to Visibly Controllable Computing. That seedling
study was funded as an option task associated with SRI’s CHATS project. Its report also included
an appendix written by Virgil Gligor, entitled “System Modularity: Basis for the Visibility and
Control of System Structural and Correctness Properties”,which is the basis for Appendix B of
this report, courtesy of Virgil Gligor.

5.2 Fundamentals

The Internet is arguably the largest man-made information system ever deployed, as
measured by the number of users and the amount of data sent over it, as well as in terms
of the heterogeneity it accommodates, the number of state transitions that are possible,
and the number of autonomous domains it permits. What’s more, it is only going to grow
in size and coverage as sensors, embedded devices, and consumer electronics equipment
become connected. Although there have certainly been stresses on the architecture, in
every case so far the keepers of the Internet have been able tochange the implementation
while leaving the architecture and interfaces virtually unchanged. This is a testament
to the soundness of the architecture, which at its core defines a “universal network
machine”. By locking down the right interfaces, but leavingthe rest of the requirements
underspecified, the Internet has evolved in ways never imagined. Larry Peterson and
David Clark [301]

This chapter seeks to provide guidelines for endowing system interfaces and their administrative
environments with greater perspicuity, so that designers,developers, debuggers, administrators,
system operators, and end users can have a much clearer understanding of system functionality and
system behavior than is typically possible today. Althoughthe primary concern is for interfaces

80 CHAPTER 5. PRINCIPLED INTERFACE DESIGN

that are visible at particular layers of abstraction, the approach is immediately also applicable to
internal interfaces.

As is true with security in general, the notion of perspicuity is meaningful primarily only with
respect to well-defined criteria (assuming suitable definitions). Some desirable perspicuity criteria
and characteristics are considered in Section 5.2.3.

The approach here considers the traditional problems of design, implementation, operation, and
analysis, and suggests ways to achieve the basic goal of perspicuity. It spans source-code analy-
sis, the effects of subsystem composition, debugging, upgrades and other program enhancements,
system maintenance, code generation, and new directions. It addresses the relevance of specifi-
cation languages, programming languages, software engineering development methodologies, and
analysis tools. It is applicable to multiple layers of abstraction, including hardware, operating
systems, networks, and applications. It considers formal methods, ad-hoc techniques, and combi-
nations of both. Other relevant architectural and system-oriented considerations are characterized
in Chapter 4.

The main emphasis here is on the understandability of the interfaces and the functionality that
they represent. Toward that end, we first seek evaluation criteria for and constraints on relevant
interfaces (and on development processes themselves) thatcan help avoid many of the commonly
experienced problems relating to security and reliability. We then explore a range of tools that
might help detect and eliminate many of the remaining problems and that might also improve the
perspicuity of critical software. It is clear that this problem is ultimately undecidable in a strict
sense, but nevertheless much can be done to advance the developmental and operational processes.

This report is not intended as a detailed treatise on the subject of perspicuous interfaces. Instead,
it provides an enumeration of the basic issues and some consideration of relative importance of
possible approaches, as well as an understanding of how interface design fits into the overall goal
of principled assuredly trustworthy composable architectures.

5.2.1 Motivations for Focusing on Perspicuity

There are several reasons for expending efforts on enhancing perspicuity.� Criticality of the roles of security administration and system administration. Surveys
from the mid-1990s suggested that security administrationwas the top DoD security concern.
This appears still to be true, and perhaps even more so. DoD’sincreased outsourcing of
system/security administrators (attributed to the complexities that their job responsibilities
entail and the difficulties of paying them competitively) reflects an ever-increasing risk. The
popular press suggests that buffer overflows may be our biggest security problem, but that
supposition is clearly a gross oversimplification, and is dwarfed by the critical dependence on
admins.� The growing numbers of SysAdmins.In the United States, there are apparently more indi-
viduals listing their occupation as computer and network “system administrators” than indi-
viduals listing their occupation as “teacher” — according to an association of systems admin-
istrators. Even if this is not true, it would be nice to make the life of systems administrators
significantly easier, wherever possible. Perhaps their votes should count more heavily when
it comes to picking winners and losers in security research!(Extrapolating the present rate

5.2. FUNDAMENTALS 81

of growth, assuming that the current course does not change dramatically, one could estimate
that by 2020 there would be more SysAdmins than people working in computer system R&D,
although they all may be outsourced by then!)� Benefits of perspicuity. Increased interface perspicuity can contribute to ease of use, scala-
bility, maintainability, system evolution, and robustness of security administration. Each of
these attributes has direct and indirect implications withrespect to security and reliability —
as well as other aspects of trustworthiness. As with many of these aspects, interface perspicu-
ity clearly needs to be reflected in requirements and fully integrated into system architectures.
However, some of the most significant benefits of this will remain largely invisible until sys-
tems and networks break, or are subjected to attack, or must be reconfigured. Overall, it seems
that enlightened self-interest dictates that we devote development resources to usability and
particularly to security administration, putting emphasis on interface perspicuity.

In addition to the above reasoning on the potential reasons for focusing on perspicuity related
to SysAdmins, numerous benefits can accrue to system programmers, application program-
mers, and a wide variety of users – particularly with respectto increased ease of use, program
understandability, debuggability, maintainability, interoperability, and ease of integration —
and of course the ability to explain unexpected errors and effects of malicious misuse.

5.2.2 Risks of Bad Interfaces

The archives of the Risks Forum are replete with examples of badly conceived and badly imple-
mented interfaces, with consequential losses of life, injuries, impairment of human well being,
financial losses, lawsuits, and so on. A few examples are summarized here — for which references
and further details can be found in the RISKS archives at http://www.risks.org, a topical index for
which is found in the ever-growing Illustrative Risks document [267]:
http://www.csl.sri.com/neumann/illustrative.html. (Some of the pre-1994 incidents are also de-
scribed in [260].)� In many aircraft accidents, airplane manufacturers have tended to place blame on pilots and

air-traffic controllers, although in many of those cases thepilots and controllers have justi-
fiably blamed the human interfaces of the computer-communication systems. However, as
systems become increasingly automated, aircraft crew reliance on automation is considered a
major future risk.� Deficiencies in human-computer interfaces were directly implicated in various plane crashes
and resulting deaths, including a China Air A300-600, the French Air Inter A320, and the
Airbus A320 at the Paris Air Show — which involved a conflict between the pilot and the
autopilot.� Iran Air flight 655 (an Airbus) was shot down by the Vincennes’Aegis system, in part as a
result of a seriously flawed human-computer interface that was missing several critical pieces
of information, and that misidentified the Airbus as a fighterplane that had previously been
co-linear on the runway before takeoff.

82 CHAPTER 5. PRINCIPLED INTERFACE DESIGN� A British Midland 737 crash was caused when the pilot shut offthe good engine rather than
the failing one, as a result of a cross-wired display.� The KAL 007 shootdown has been attributed to the plane havingflown on an erroneous
autopilot course apparently missed by the pilot, who then left the cabin.� An F-16 landing gear was retracted while the plane was on the runway, as a result of a missing
interlock.� A Special Forces GPS system accidentally targeted itself after a battery replacement that by
default reset the target information to its own location, unbeknownst to the operator.� Poorly designed interfaces on heart pacemakers, heart monitors, defibrillators, anesthesia con-
trols, and so on, have resulted in patient deaths.� In an experiment conducted from the Shuttle Discovery, a mirror intended to reflect a laser
beam from the top of Mauna Kea was positioned upside down, focused upward to 10,023
milesinstead of downward to 10,023feetelevation, due to a confusion of units.� A heart monitoring device with a standard wall-plug connector for connecting the probes to
the monitoring device was discovered unplugged by a hospital attendant, who plugged it into
a wall socket — electrocuting the patient.

Neumann’s Inside Risks column from the March 1991Communications of the ACM(“Putting
Your Best Interface Forward”) includes more detailed discussions of several examples, and is the
basis for [260], pp. 206–209.

There are many other emerging applications that will have serious risks associated with non-
perspicuity of their human interfaces, especially in systems intended to be largely autonomic. One
critical application involves adaptive automobile cruise-control that adjusts to the behavior of the
preceding car(s) (including speed and acceleration/deceleration, lane changes, and so on). Some
of this functionality is beginning to emerge in certain new cars. For example, BMW advertises
an automobile with an 802.11 access point that would enable downloading of new software (pre-
sumably by the factory or mechanic, but perhaps even while you are driving?). The concept of a
completely automated highway in the future will create someextraordinary dependencies on the
technology, especially if the human interfaces provide foremergency overrides. Would you be
comfortable on a completely automated networked highway system alleged to be safe, secure, and
infallible, where your cruise-control chip is supposedly tamperproof, is supposed to be replaced
only by approved dealers, is remotely reprogrammable and upgradeable, and can be monitored and
controlled remotely by law enforcement — which can alter itsoperation in a chase among many
other vehicles?

5.2.3 Desirable Characteristics of Perspicuous Interfaces

The major issues underlying our main goal require a characterization of the requirements that must
be met by system architectures and by their visible and hidden interfaces, as well as constraints
that might be considered essential.

5.2. FUNDAMENTALS 83

A popular belief is that highly trustworthy systems with nontrivial requirements are inherently
complex. However, we observe in Chapter 4 that — in a well-designed system — complexity
can be addressed structurally, yielding apparent simplicity locally even when the overall system
is complex. To this end,abstractional simplicity is highly desirable. It can be achieved as a
by-product of sound system design (e.g., abstraction with strong typing and strong encapsulation),
well conceived external and internal interfaces, proactive control of module interactions, and clean
overall control flow. For existing legacy systems in which abstractional simplicity may not be
attainable directly, it may still sometimes be attainable through wrappers whose interfaces provide
appropriate abstraction. In any case, aids to analysis can help significantly. Thus, a sensible
approach to perspicuous computing needs to address the system design structure, all of the relevant
interfaces (visible or not), and the implementation. Thus,techniques for analyzing interfaces for
perspicuity and other characteristics would be very valuable.

We begin with a consideration ofdesirable interface characteristics:� Interfaces should representlayered modular abstractions,with encapsulation and informa-
tion hiding. Architecturally, each interface should mask the complexity within its imple-
mentation, hiding internal data structures and state information, and completely represent-
ing all visible inputs, outputs, expected behavior, and possible exception conditions. The
module structure and the module interfaces should be constrained to avoid unspecified cross-
dependencies. This can greatly simplify the apparent complexity of an interface, and can
mask the complexity of the underlying implementation — particularly any unavoidable inter-
actions among different modules or different instantiations of the same module.� Interfaces should bewell defined,with complete, accurate and consistently maintained doc-
umentation of all inputs, outputs, expected behavior, and possible exception conditions.� Uniform conventionsshould exist within each interface and among different interfaces. This
is particularly important for visible interfaces, but can also be beneficial to developers for
hidden and internal interfaces.� The existence of supposedlyhidden interfacesshould be truly invisible — except when they
are explicitly needed (as in the case of debugging, integration, and remediation).� Interface arguments (and their symbolic names or other identifiers) should reflectstrong typ-
ing of objects to minimize errors arising from type mismatching.� Certain interfaces may benefit fromself-defining arguments,either as an alternative option
or as a standard, particularly in the absence of or as a possible alternative to sensible typing.
Ideally, strong typing can be enforced through a combination of programming language con-
structs, programming style, precompiler and compiler discipline, programming discipline,
and possibly hardware support.� Some interfaces or combinations of interfaces represent state information that is inherently
complex, for example a network manager dealing with traffic density, security, reliability, and
so on. Certain graphical techniques can display in two or three dimensions various projections
of multidimensional spaces.

84 CHAPTER 5. PRINCIPLED INTERFACE DESIGN� Interface design should be anintegral part of system design. In particular, sufficient in-
formation regarding internal states should be maintained in a suitably accessible form —
to facilitate whatever analysis needs to be done externally. If this is not done properly, the
real-time analysis tasks will be extremely difficult and costly, if not impossible.� Assurance is desired that the implementation at any particular interface is consistent with
the interface requirements and specifications. Ideally, the implementation should meet the re-
quirements, and do precisely what is specified — and no more. However, the concept of doing
nothing else (Section 3.2) is an extremely difficult one to assure, because of typically incom-
plete specifications and possible hidden side effects. (SeeLillibridge’s dissertation [159] for
a discussion of the spectrum from opaque to transparent types.)� Composability of perspicuity is also a desirable characteristic. If two modules A and B
satisfy certain perspicuity criteria, it will not in general follow that the composition of A and B
will also follow those criteria — for example, because of emergent properties or various types
of negative interactions. Similar lack of composability iscommon with respect to security
properties.

Desired properties of specifications, architectures, and implementations are considered in sub-
sequent sections.

5.2.4 Basic Approaches

There are several different approaches to increasing perspicuity. Ideally, a combination of some of
the following might be most effective, but each by itself cansometimes be helpful.

First, consider proactive efforts. Ideally, it would be most appropriate to develop new systems
that satisfy all of the above desirable characteristics — and much more. However, suppose you
have an existing system that fails to satisfy these characteristics, or is in some ways difficult to
understand. Let us assume that you have identified an interface that is seriously confusing.� What can be done proactively?

– If source code is available and is modifiable, fix it.

– If source code is not available, decompile the object code, fix the decompiled source
code, and recompile.

– If decompiling and recompiling are not possible (e.g., if decompiling is proscribed by
licensing constraints, or if the code is so extensively obfuscated to hinder conventional
reverse-engineering tools, or if no compiler is available), then patch the object code.

For the most part in this study, we assume that source code is available. However, we also
include some approaches that apply to object code when source code may or may not be available
on the fly.

Analytic efforts at enhancing perspicuity of software interfaces can also be useful even if they do
not require modification of either the source code or the object code implementing those interfaces.� What else can be done?

5.2. FUNDAMENTALS 85

– Create a general environment within which code execution can be embedded that signif-
icantly enhances understandability of control flow. Interactive debuggers and Interlisp
come to mind as examples.

– Create a wrapper for a specific interface, encompassing inputs, outputs, and all exception
information that must be visible to the interface user, but otherwise hiding anything that
does not need to be visible. If sufficient internal state information can be gleaned from the
interface, the wrapper might have a chance of cognitively augmenting understandability.
Eunice (which was essentially a Tenex/TOPS-20 command emulator for Unix) comes to
mind.

– Assemble a collection of analysis tools that can staticallyand dynamically analyze the
behavior of programs in the specific machine code language. In certain cases, input-
output experiments can derive sufficient information aboutthe internal structure to enable
an external fix to be created (for example, along the lines begun in 1956 by Ed Moore’s
Gedanken experiments [241]). On the other hand, black-box testing is inherently incom-
plete in almost all systems with nontrivial state spaces. Thus, source-code availability is
vastly preferable.

5.2.5 Perspicuity Based on Behavioral Specifications

At the IBM Almaden Institute conference on human interfacesin autonomic systems, on June 18,
2003, Daniel M. Russell stressed the importance of shared experience between users and system
developers. The following speaker then continued that chain of thought:

People and systems are not separate, but are interwoven intoa distributed system that
performs cognitive work in context.David D. Woods

An enormous burden thus rests on the human interfaces. As noted in Section 5.2.1, perspicuous
interfaces offer their greatest advantage when something has gone wrong, and the system is not
working as intended. To really gain leverage from perspicuous interfaces, we need three primary
areas of support:� Behavioral specifications in interfaces.Most programming languages support type infor-

mation only in interfaces. Furthermore, the type systems inuse in popular modern languages
are insufficient to express rich behavioral properties of code. (Recall that all of logic can be
cast into type theory. Such type systems are generally undecidable, and require far greater
expertise in type theory than possessed by most software engineers. As such, they are of
theoretical interest rather than practical importance today. However, further research could
be helpful.)� Debuggers that can work with behavorial specifications(e.g., dynamically verifying that
all invariants hold). Ideally, we should be able to query a module to determine whether or not
it is internally consistent. If there are bugs inside a single module, that’s valuable information
– particularly if modules have been written defensively, with proper attention to information
hiding. Otherwise, we might assume that a module’s client must have behaved “improperly”
— i.e., not following specified rules for using the interface. (Model checking could help here
as well.)

86 CHAPTER 5. PRINCIPLED INTERFACE DESIGN� Language support and other tools for multiple views of modules. Debuggers andother
code analysis tools often need access to the internal representation of data structures, among
other implementation artifacts that are properly hidden from module clients. For example,
Standard ML of New Jersey and its compilation manager CM, offer an implementation of the
necessary functionality [50]. As an extension of these ideas, mechanisms for secure modular
programming in Java are considered in [32]. Working throughall of the security implications
of such language constructs may not be trivial, but needs to be considered up front.

Together, these capabilities could revolutionize the system debugging experience, by combining
tool support with machine-usable documentation of what is supposed to happen, enabling compar-
isons of theory and practice.

5.2.6 System Modularity, Visibility, Control, and Correctness

To establish a baseline for the investigation of system modularity as a basis for establishing the
visibility of a system’s structural and correctness properties, a brief analysis of prior art was per-
formed by Virgil Gligor, resulting in an appraisal of which methodologies and tools have and have
not been effective in defining and analyzing system modularity in the past and to what extent. That
analysis is the basis for Appendix B of this report.

Gligor’s analysis investigates the following topics related to modular system structures:

1. A generally accepted definition of a module (and of module instances such as subsystem,
submodule, service, layer, and type manager)

2. The separation of module interface from the module implementation

3. Replacement independence property of modules

4. Structural relations among modules (e.g., thecontains anduses relations)

5. The correctness dependencies among modules and their manifestation as causal relations
among module interfaces (e.g., “service,” “data,” and “environment”, along with other de-
pendencies) that could lead to some sort of calculus of dependencies.

Gligor’s analysis also presents the relationships betweenmodule definition and its packaging
within a programming and configuration management system, and outlines measures (i.e., metrics)
of modularity based on the extent of replacement independence and the extent of global variable
use, as well as measures of module packaging defects.

The intent of this analysis is to identify pragmatic tools and techniques for modularity analysis
that can be used in practice. Of particular interest are tools that can be used to produce tangible
results in the short term and that can be extended to produce incrementally more complex depen-
dency analyses in the future.

Virgil Gligor notes that Butler Lampson [199] argues that module reusability has failed and will
continue to fail, and that “only giant modules will survive.” If we believe Butler’s arguments (and
they are usually hard to dismiss), this means that “visibility into giants” is more important than
ever. [Thanks to Virgil Gligor for that gem.]

5.3. PERSPICUITY THROUGH SYNTHESIS 87

5.3 Perspicuity through Synthesis

We summarize here the main concepts and issues relating to system architecture, software engi-
neering, program languages, and operational concerns. However, no one of those areas is sufficient
for ensuring adequate perspicuity, security, reliability, and so on. Indeed, all of these areas should
be important contributors to the overall approach.

From the synthesis perspective, there are two different manifestations of perspicuity: (1) making
interfaces understandable when they are to be used under normal operation, and (2) making the
handling of exceptional conditions understandable when remediation is required (e.g., recovery,
reconfiguration, debugging, aggressive responses). Both of these are considered, although the
most significant payoffs may relate to the second case. Note that perspicuity can also be greatly
aided during development by the appropriate use of static analysis tools.

5.3.1 System Architecture

Issues: Hardware protection and domain isolation, software abstraction, modularity, encapsula-
tion, objects, types, object naming and search strategies,multiprogramming, processes, domains,
threads, context changes, concurrency, interprocess communication, multiprocessing, interproces-
sor communication, networking, wrappers, and so on.

Useful historical examples:Two system architectures are noted in which great emphasis was
devoted to interface design within a hierarchical structure.� The Multics development emphasized novel hardware and software. Its development was

carefully reviewed, iterated, and approved, before any code could be written — with attention
to detailed software module specifications, analysis of dependencies on other modules, and
specific interfaces. Some critical modules were rewritten as many as ten times, each version
being reviewed before coding, and again before integration. (Multics-related principles are
noted in Sections 2.3 and 2.4; its architecture is considered in Sections 4.3 and 4.4.)

Several aspects of Multics are particularly relevant to this discussion of perspicuous inter-
faces. The hardware-enforced hierarchical ring/domain separation meant that much greater
attention had to be paid to the specific interfaces. Symbolicnaming of objects (such as virtual-
memory segments and virtualized input-output streams) plus the invisibility of paged mem-
ory implied that machine addresses were never visible to programmers. Dynamic linking
of symbolic file names and dynamic paging provided an abstraction of virtual memory that
completely hid physical locations in memory and secondary storage media (as well as the
associative memory). There were strict interface standards for arguments and formats. A
constrained subset (EPL) of the full PL/I language enabled almost all programming to be
done in a higher-level language. Programming styles were rigidly enforced, and changed
for the better as the compiler improved — enabling certain ugly language primitives to be
avoided entirely. The stack discipline inherently avoidedstack buffer overflows by making
the out-of-frame stack elements nonexecutable, and reversing the direction of stack growth
(e.g., see [188, 189]). Each of these concepts contributed to the abstraction, encapsulation,
and cleanliness of the interfaces.

88 CHAPTER 5. PRINCIPLED INTERFACE DESIGN� SRI’s Provably Secure Operating System(PSOS) design was based on a hierarchically
layered object-oriented architecture with special attention to unified interface design at each
layer, largely based on the pervasive use of strongly typed tagged objects and formal speci-
fications for each module at each layer. The specifications provided an essentially complete,
self-contained, and relatively easily understood description of every interface, including for-
mal definitions of all arguments, inputs, outputs, and exception conditions. The abstract
implementations relating the functions at each layer to those of lower layers added to the
perspicuity of each interface, providing an intuitive high-level description of each function in
terms of lower-layer functions — despite the complexity of the overall system. For example,
see [120, 268, 269].

Other systems also pursued various aspects that addressed the importance of proactive inter-
face design — for example, some other capability-based architectures, Secure Computing Corp.’s
strongly typed systems, and to some extent others such as SE-Linux, Plan-9, and some of the
multilevel-secure kernels.

The following concepts are relevant to the development of perspicuous interfaces.� Architectural structure. System structure is layered, from hardware to operating systems to
applications to user programs, with abstraction and encapsulation at each usable layer inter-
face. At different layers, usable interfaces include microcode, instructions, internal operating
system primitives restricted to privileged software, operating system commands, application
primitives, and so on. Thoughtful layering, abstraction, and encapsulation can greatly en-
hance perspicuity, without necessarily diminishing performance.� System interfaces.Each of the system layers has potentially multiple interfaces, including
operating systems, user commands and other visible interfaces, kernelized architectures, do-
main isolation, process separation, authentication, access controls (some of which are clearly
not perspicuous), accountability, administrative interfaces and other protected internal inter-
faces, concurrency management (deadlocks, race conditions, synchrony-dependent security
flaws), device drivers, stack disciplines, object naming, shared library management, and so
on.� Application interfaces. Even if the underlying operating system interfaces are not user-
friendly, application interfaces can be made so — to the extent that the appropriate application
state information is adequate to explain behavior relevantto the application interface, and to
the extent to which the operating system is hidden.� Interdependencies.Dependency analysis among system specifications and detailed architec-
tures in the design stage can greatly enhance the perspicuity of the resulting system interfaces,
allowing simplification or removal of unwanted dependencies, and enabling documentation
to accurately characterize the remaining dependencies.� Wrappers. The introduction of a wrapper can mask the complexities of a particularly gnarly
interface. However, it can also easily provide a false senseof perspicuityanda false sense
of security. Perspicuity is reduced if (for example) vital details are hidden that are needed to

5.3. PERSPICUITY THROUGH SYNTHESIS 89

determine the state of the implementation underlying an interface. Security is reduced (for
example) if the wrapper fails to mask security flaws, or creates new flaws, or if its supposed
mediation can be compromised from within or below.� Multilevel security and integrity. If an environment is expected to enforce multilevel se-
curity, the architecture and all of its interfaces should mask the existence of all information
at higher security levels. If an environment is to enforce multilevel integrity (as in the Biba
model), the architecture and all of its interfaces should prevent — and thereby both mask
and prevent — dependence on all activities at lower integrity levels. If designed properly
(e.g., [308], these constraints can greatly increase the perspicuity of the various interfaces,
although possibly complicating the real-time analysis of poorly designed applications. These
issues are considered further in Section 5.3.6.� Networking issues.Perspicuity issues arise extensively with respect to almost every aspect of
networking, including reliability, security, integrity,availability, fault tolerance, survivability,
connectivity, specific protocols, routing, stability of cooperating parallel executions, concur-
rency, and so on. Hiding unnecessary details is of paramountimportance, but not suppressing
error conditions without properly handling them is a critical need.

Relevance for perspicuity: All of these issues can seriously affect interface perspicuity.

5.3.2 Software Engineering

Unfortunately, “software engineering” is a term applied toan art form, not to an engineering disci-
pline. Nevertheless, there are many principles (such as those in Chapter 2) of sound architectures,
good software engineering, and good development practice,which — if they were followed wisely
— can result in systems with much greater security, reliability, and so on, much greater assurance
that those properties are indeed satisfied statically, and much greater perspicuity when something
goes wrong.

Issues: architecture, distributed systems, real-time systems, requirements, specification, soft-
ware development methodologies, abstract implementations, composability, abstraction, modular-
ity, encapsulation, information hiding, uniform handlingof objects, object-oriented approaches,
development practices, integration, debugging, testing,modeling, simulation, fault injection, for-
mal methods for specification and analysis of functional andnonfunctional properties, formal veri-
fication and model checking, performance analysis, tools for static and dynamic analysis, software
process technology, Clean Rooms, Extreme Programming, andso on. Development environments,
component technologies, and related approaches such as theCommon Object Request Broker Ar-
chitecture (CORBA), CORBA Component Model, the Component Object Model (COM), DCOM,
ActiveX, Enterprise Java Beans (EJB), Java Remote Method Invocation (RMI), and so on.

For example, CORBA provides some basic help in dealing with the interface definitions of pro-
prietary closed-source components without having access to the source code. CORBA defined the
Interface Definition Language (IDL) as a method to provide language-independent interface defi-
nitions. IDL types are then mapped into corresponding typesin each language; there are standard

90 CHAPTER 5. PRINCIPLED INTERFACE DESIGN

mappings for some languages (C++, Java, Smalltalk). While greatly aiding cross-language inter-
operability, to date, it has not been widely applied to COTS software. (Note: Netscape based much
of its architecture in the mid-to-late 1990s on the goal of being a “platform” on CORBA. There
are rumors that a good bit of custom, in-house software in large corporations uses CORBA.) In the
open-source world, its greatest success has been in the GNOME project. Like other existing tech-
nologies, IDL does not support behavorial specifications. While the CORBA folks discuss using
IDL to structure the interfaces of a monolithic program, this does not appear to be very popular.
CORBA’s success, rather, has been in providing object-oriented RPC services, where IDL is used
as the RPC specification language.

Relevance for perspicuity: All of these issues can seriously affect interface perspicuity. In
particular, bad software engineering practice can result in systems that are extremely difficult to
understand, at all layers of abstraction (if there are any!). On the other hand, intelligently applied
good software engineering practice can greatly enhance perspicuity, particularly for software for
which human interface design is an integral part of the system architecture. However, the best pro-
gramming analysis tools can not overcome inherently bad architectures, bad software engineering
practice, and sloppy testing.

5.3.3 Programming Languages and Compilers

Issues.We begin with a brief enumeration of the most relevant issuesthat affect interface perspicu-
ity. (Some of the items — particularly those relating to programming languages — are merely
collections of thoughts for further discussion.)� Language issuesinclude modularity, abstraction, encapsulation, objects, types, strong typ-

ing, dynamic linking, tasks, threads, sharing of resources(files, address spaces, objects, li-
braries), intertask, interprocess and interuser communication, garbage collection, stack dis-
ciplines, executable specifications, analysis of source code versus analysis of object code,
comments and interpretable annotations, and so on.� Compiler issuesinclude overzealous compiler optimization that obfuscates the analysis that
can be done from the interfaces, especially if it eliminatessecurity boundaries such as protec-
tion boundaries and reliability measures such as intentional redundancy. There is a need for
programming language features that can prevent such overzealous optimization. In addition,
tools for dependency analysis can also identify interfacesin which perspicuity is likely to be
poor.� Execution issuesinclude execution environments, integrity of virtual-machine monitors, run-
time support (libraries, search strategies), hand-tinkered byte-code (in the case of Java), and
implications of decompilers where source code is not available.� Programming language characteristics.Programming languages that have many bells and
whistles and attempt to be all things to all programmers (Adacomes to mind) tend to have
too many opportunities for introducing program flaws. On theother hand, extremely simple
languages (Basic) seem to introduce too many opportunitiesfor learning bad programming
practice. Functional, declarative, applicative, constraint, object-oriented, aspect-oriented,

5.3. PERSPICUITY THROUGH SYNTHESIS 91

rewrite-logic languages, and so on all have their own benefits and quirks. Is it time for a
new programming language that really makes it difficult to write bad code — for example,
inherently avoid buffer overflows and other characteristicflaws? Perhaps we just need better
education stressing many of the concepts in this report.� Mostly positive examples.PL/I (tasks, stacks, explicit exceptions), Modula 3, Java and JVM
(threads, re-entrant monitors), CCured, Occam, CSP, Concurrent Pascal, Standard ML [239],
Standard ML of New Jersey [17], Extended ML, Concurrent programming in ML [314],
Eiffel, Common Lisp, typed assembly language and corresponding assemblers.� Mostly negative examples.Untyped languages, environments that make characteristicflaws
(such as buffer overflows) too easy, lack of bounds checks andargument validation, wild
pointers, poor exception handling, lack of finalization, unsound concurrency primitives, etc.
C, COBOL ALTER verb, GOTOs, ComeFrom(!).� Mixed examples. C++ (use with STL helps somewhat in overcoming its complexity), C#
(C# types are similar to those in COM), Ada (rendezvous), andso on.� Other examples.Eiffel’s method of signatures including pre- and post-conditions overriding
inherent pre- and post- (unlike Java).� Concurrency. Primitives for atomic transactions, interprocess communication, shared-memory
locks, precedence protocols, consistent finalization, automated rollback and recovery, and so
on.

Here are several guidelines for increasing perspicuity through good program languages and
compiler-related tools, as well as good programming practice.� Choice of programming language.Given any particular development effort or subsequent

redevelopment, one of the most important decisions may be the choice of suitable program-
ming languages and supporting tools.� Modularity. As noted in Sections 5.3.1 and 5.3.2, well-chosen architectural modularity (e.g.,
abstraction and minimized interdependencies, particularly with careful encapsulation) can be
very beneficial, as long as it is enforced by suitable programming languages and compiler-
related tools that can aid in not compromising the architectural structure and interdependen-
cies.� Concurrency. Poorly implemented concurrency is particularly likely to diminish perspicuity
in multiprogramming and multiprocessing systems, typically because of badly constructed
primitives for sharing, locking, and isolating processes and objects. On the other hand, this
tendency can be greatly diminished through well-conceivedprogramming languages and suit-
able analysis tools (plus highly disciplined programming style).� Transactional programming. In multiprogramming and multiprocessing environments, trans-
actionally based programming has enormous advantages withrespect to perspicuity, as well
as robustness.

92 CHAPTER 5. PRINCIPLED INTERFACE DESIGN� Static analysis.Compilers that are augmented with static analysis tools canhelp significantly
— if they go well beyond routine flow analyzers, dependency analyzers, and debuggers. How-
ever, compiler optimization can greatly reduce perspicuity, particularly if it destroys or masks
the integrity of the architecture and the program structure.� Application-specific tools. Several areas are particularly well suited to application-specific
tools, such as detecting flaws in bounds checks, concurrency, and cryptographic protocols.
For example, Static analysis tools for developing and implementing cryptographic protocols,
such as BAN Logic [61, 4], Spi Calculus [2], and the recent work of Jon Millen and Grit
Denker on CAPSL and MuCAPSL [99, 237] (see
http://www.csl.sri.com/˜millen/capsl for further background) at SRI.

Analysis tools that can aid in determining the perspicuity of interfaces are considered in Sec-
tion 5.4.

5.3.4 Administration and System Operation

Administrative-interface issues include ease of maintenance, autonomic system behavior and
what happens when the autonomic mechanisms fail, self-diagnosing systems, configuration con-
sistency analysis, and many other topics.

User-interface issuesinclude ease of diagnosing system failures, ease of debugging application
code, analysis tools, and so on. Of particular concern are the users who have critical responsibil-
ities — for example, operators of SCADA systems and other critical infrastructure components,
control systems, financial systems, and so on. In these cases, real-time monitoring and analysis for
anomalous system behavior become part of the interface purview.

Relevance for perspicuity: Today’s system adminstrator interfaces tend to put an enormous
burden on the administrators. Simplistic would-be solutions that attempt to interpret and explain
what has gone wrong are likely to be inadequate in critical situations that go beyond the low-
hanging fruit.

5.3.5 No More and No Less

“What you see is what you get” might be considered as a basic mantra of perspicuity — especially
if it is taken seriously enough and assuredly implies that what you get isno more and no lessthan
what you see. (Recall this dictum at the beginning of Section3.2, in the context of the effects of
composition.) The extent of typical exceptions tono more and no lessis astounding.

There are many examples ofmore, many of which can be very damaging: hidden side ef-
fects, Trojan horses, undocumented and unadvertised hardware instructions and software primi-
tives (sometimes with powerful override abilities), lurking race conditions and deadly embraces,
blue screens of death, frozen windows, misleading URLs (forexample, a cyrillic o instead of a
roman o, or a Zero in MICROS0FT waiting to take you somewhere else), and so on, ad infinitum.
Les Lamport’s definition of a distributed system noted in Chapter 1 suggests that what you might
have expected to happen won’t.

5.4. PERSPICUITY THROUGH ANALYSIS 93

There are also various examples ofless,many of which are likely to be frustrating or debilitat-
ing: expected resources that do not exist or are temporarilyunavailable, such as URLs that point
nowhere, even though they worked previously.

Perhaps the most insidious cases are those in which something more and something less both
occur at the same time.

5.3.6 Multilevel Security and Capabilities

Several of the system architecture approaches in Chapter 4 provide elegant ways of achievingWhat
you see is exactly what you get:multilevel-secure (MLS) systems and capability-based addressing.

In particular, if a multilevel-secure object is at a higher security level or in an inaccessible com-
partment to the would-be user, then the user simply is not supposed to know of the existence of
that object; any attempt to name it or list a directory in which it exists is greeted with a single rela-
tively neutral undifferentiated standard exception condition such as “no such object” that conveys
no information. Note that any exception condition indicator that provides a variety of possible
context-dependent error messages is likely to be subject toexploitable covert channels through
which information can be signaled.

Similarly in capability-based addressing, if a user does not have a proper capability for an
object, that object is logically equivalent to being nonexistent.

In a sense, this is a very satisfactory goal in terms of perspicuity of naming and accessing
system resources. On the other hand, if anything goes wrong,life can become quite complicated.
From a user’s perspective, everything that supposedly needs to be visible is visible — except
when it isn’t. From an application developer’s perspective, simply plunking a legacy software
system into the multilevel environment may cause the application to break, perhaps as a result of
short-sighted assumptions in the legacy code or a configuration problem in the installation of that
code. From a system administrator’s perspective, access across security levels may be necessary to
determine what went wrong — unless the system is well designed and single-level analysis tools
can suffice. Otherwise, there is a risk of violating the MLS properties. Thus, MLS and capabilities
can improve perspicuity when things go well, and can decrease it when things go wrong — unless
the architecture and implementation are well conceived in the first place and the analysis tools
are effective. Furthermore, in the absence of some sort of multilevel integrity in an MLS system,
hidden dependencies on untrustworthy components can undermine the integrity of the MLS levels.

5.4 Perspicuity through Analysis

5.4.1 General Needs

From the dynamic analysis perspective, there are again two different manifestations of perspicu-
ity: (1) using static and dynamic analysis of a given interface to provide greater understandability
as the interface is being used under normal operation, and (2) interpreting real-time exceptional
conditions and making them understandable contextually— for example, whenever remediation
is urgently required (as in the cases of recovery, reconfiguration, debugging, and aggressive auto-
matic responses). Both of these cases are considered in thissection, where we seek to identify,
characterize, and exploit analysis techniques for definingand analyzing system interfaces so that

94 CHAPTER 5. PRINCIPLED INTERFACE DESIGN

the behavior of the systems and the dependencies among thosesystems can be more easily under-
stood and controlled.

This is a multidimensional challenge. Some of the dimensionare outlined as follows.� Nature of software openness:Potential differences in perspicuity arise between available
source code (under any of various licensing agreements) andthe general unavailability of
proprietary closed-source code, with respect to operatingsystems, libraries, applications, ex-
ecution environments, and analysis tools.Although tools for reverse engineering are becom-
ing more effective, analysis of source code is generally much easier than analysis of object
code.� Range of analysis methods:Many analytic techniques are relevant, from completely formal
models to more conventional ad-hoc approaches, with ample middle ground between the two
extremes. Skills required to use the methods and tools vary widely, as do the costs and impact
on delivery schedules. Similarly, techniques vary from static to dynamic, with hybrids in be-
tween. Static analysis is useful in development and in facilitating dynamic analysis; dynamic
analysis is often essential when something goes wrong. (SeeChapter 6.)A combination of
analysis methods is likely to be most effective.� Range of possible modalities:For example, static analyses can provide feedback toward im-
proving perspicuity through augmentations of the interfaces and their implementation. Static
techniques can improve understandability and maintainability without altering existing sys-
tem interfaces. Static analyses can contribute directly tomore effective dynamic analyses.
Dynamic analyses can facilitate rapid recovery, reconfiguration, restoration of service, and so
on. There are many possibilities.� Possible results:There are many possible by-products of perspicuity-increasing analyses.
The results may include enhanced operational security, reliability, survivability, and satisfac-
tion of real-time performance requirements, as well as easier system adminstration.

In general, it is advantageous to address the problem of interface perspicuity up front, and then
consistently follow through. This suggests an approach that encompasses the entire development
cycle and operations, which can make the analysis challenges much more accessible.� Establish clear requirementsfor what is desired, including with respect to interface per-

spicuity.� Provide unambiguous behavioral specificationsfor software components, paying partic-
ular attention to the interrelationships among componentsat each layer and the interfaces.
Develop tools for analyzing these specifications.� Develop tools for identifying and analyzing inconsistencies between behavioral specifi-
cations and actual behavior,for example, resulting from failures or misuse.� Develop analysis of implementationsthat use soundly based (e.g., strongly typed and well
structured) languages that are more amenable to analysis. Develop tools for analyzing the
resulting software, statically and dynamically.

5.4. PERSPICUITY THROUGH ANALYSIS 95� Develop toolsfor dynamically analyzing behavior of systems in executionand would-be
operational responses of system administrators.

5.4.2 Formal Methods

Issues:Methods and tools for demonstrating consistency of specifications with requirements, and
consistency of code with specifications; formal verification and model checking; analysis tools for
detecting characteristic security flaws, buffer overflows,and so on.

Examples: HDM hierarchical abstraction, formal specifications, state mapping functions, and
abstract implementations; PVS and PVS interpretations; CCS,�-calculus, and so on.

Of particular recent interest are Drew Dean’s PhD thesis [95], the Wagner-Dean paper [98] on
static analysis of C source code, the work of Giffin, Jha, and Miller [130] on analyzing binaries for
mobile code (extending the Wagner-Dean approach), and Hao Chen’s effort [75, 77, 78] at formal
model checking to search for characteristic flaws. (Of course, it is much easier to do analysis on
source code, if it is available.) Also, see Mitchell and Plotkin [240] for a highly readable paper
on theoretical foundations of abstract data types with existential types; it is of particular interest to
type theorists. See Chapter 6.

5.4.3 Ad-Hoc Methods

Issues:Informal methods and tools for testing for the inconsistency of specifications with require-
ments and the inconsistency of code with specifications; other tools.

5.4.4 Hybrid Approaches

Purely formal tools tend to be difficult to use for ordinary mortals. Purely ad-hoc tools are limited
in what they can achieve. Semiformal tools may provide a bridge between these two approaches.
Examples include formally based testing (e.g., mechanically deriving test conditions) and machine-
assisted code inspections.

5.4.5 Inadequacies of Existing Techniques

Some of the above existing techniques can have significant effect in the near-term future, if applied
wisely. However, in the longer-term future, those techniques are not nearly adequate. Thus, in this
section we consider several areas in which there are seriousgaps in existing approaches.

Many problems are made worse by a lack of perspicuity:� Flaws and bugs:Certain characteristic design flaws and software bugs (e.g., [260], Chapter
3) seem to recur pervasively, including security- and concurrency-related flaws and failures.� Interdependencies:Complex interdependencies typically exist among different design en-
tities, different source-code modules, and different object-code components, especially in
poorly architected and poorly implemented systems.

96 CHAPTER 5. PRINCIPLED INTERFACE DESIGN� System administration: Enormous complexity typically arises in system administration,
partly because of complex systems and partly because of bad interface design. This tends to
induce configuration errors, upgrade inconsistencies, operational oversimplifications, and so
on.� Proprietary bloatware: Proprietary code is often an obstacle all by itself. Bloatedpropri-
etary code is of course generally even less perspicuous. Exigencies of backward compatibility
with nonperspicuous legacy systems certainly do not help.

5.5 Pragmatics

5.5.1 Illustrative Worked Examples

We foresee various possibilities for something that can be described conceptually without having
to do much implementation, or whose implementation could beoutlined and be pursued in detail.
Some of these examples can demonstrably enhance perspicuity both statically and dynamically.
It might also be possible to characterize some measures of perspicuity that could be analytically
determined, although this is deemed less likely and probably less realistic.

One possible overarching approach is the following. Given acombination of specifications,
source code, and perhaps some knowledge of the possible operating environments, statically ana-
lyze them and transform them into a body of knowledge that canbe interrogated dynamically, for
example, when an environment is under stress. A combinationof dynamically interpreted pre- and
post-conditions could then directly produce analysis results that would facilitate the understanding
of attacks and malfunctions, based on which conditions fail. Such an approach would provide help
in recommending autonomic responses and human-aided responses, as appropriate. Note that this
is not really a new concept. For example, the ESS Number 2 telephone switching systems had
a diagnostic dictionary that covered almost all possible failure modes and suggested appropriate
remedies. However, in the context of more modern programming language and operating system
technologies, such an approach could now be significantly more effective — albeit significantly
more complicated.

Several specific examples come to mind as candidates for worked examples.� System administrator example. Sketch of an environment for system administrators that
could draw on the analysis results of the tools under discussion here, for example, for Linux
or a BSD system.� TCP/IP multilayer example. At multiple layers, characterize the TCP/IP specificationsand
source code (e.g., [382]), and develop a framework within which effective dynamic analysis
can be carried out largely automatically.� MLS example. Develop a prototype multilevel secure environment (for example, based on
the Proctor-Neumann architecture [308] and other conceptsin Chapter 4, including possibly
with some aspects of multilevel security and multilevel integrity) in which facile perspicuity
is a major design requirement. In particular, such a development should pay careful attention
to increasing the simplicity of subsequent application development and dynamic analysis

5.5. PRAGMATICS 97

tools that facilitate recovery from errors, without compromising the desired MLS (and MLI)
properties.� Transactional example.Specify and sketch the implementation of a small but realistic ap-
plication in a transactional system and in a nontransactional system, and compare the two
under a variety of circumstances — such as aborting a processin midstream, disabling an
input stream, clobbering a temporary file, or performing a security attack.� Model-checking example.Analysis of a system or subsystem, using available tools (includ-
ing, for example, extensions of the Chen-Wagner model-checking approach) and identifying
models that are missing but that could be added with relativeease and effectiveness.

5.5.2 Contemplation of a Specific Example

When we went looking for examples where behavioral specifications would be useful, the BSD
TCP/IP stack seemed like a logical place to start: not only isthe software open-source, but there is
excellent documentation as well [229, 382]. Unfortunately, this plan did not succeed as originally
hoped. Our first idea was to examine the implementation of theAddress Resolution Protocol
(ARP). Up through 4.3BSD, the ARP implementation was a smallmodule with a simple interface
to the rest of the TCP/IP stack. In 4.4BSD, a new, generalizedrouting table structure that integrated
ARP was introduced. The ARP implementation no longer has a simple, clean interface to the rest
of the kernel — it is now part and parcel of the routing code, a much larger and more complicated
piece of the TCP/IP stack. (Of course, it is conceptually nice to deal with ARP-resolved Ethernet
addresses in the routing framework, and eliminate the special handling of Ethernet addresses for
machines on the local network.)

Our next target was the UDP implementation. UDP is a nice simple protocol, and would appear
to be an ideal example. The networking code in the kernel usesan object-oriented design similar to
that of the file system code, although the actual implementation is in plain C. The implementation
combines both a message-passing style, à la naı̈ve objectsin Scheme, and a record of functions
style more similar to C++. The message-passing style is usedon output, and the record of functions
style on input. With better language support, these paradigms could result in an extremely clean
implementation, but with C requiring manual implementation of all the details, some generally
difficult layering issues explicitly raise their ugly heads.

On output, the handoff from the socket layer occurs to theudp usrreq function, which takes
as arguments a socket, a command (i.e., message), and threembuf chains: the data to be sent,
the address to send it to, and some control information that is not used by UDP and will not be
discussed further. If the command isPRUSEND, thenudp output is called. Inudp output
is where things start to get ugly, making a behavioral specification less elegant than one would
desire: either the socket has been connected to a destination (Yes, this makes sense for UDP!),
or a destination address has been supplied — but not both. Thecode, most unfortunately, knows
details aboutall of the data structures, and peeks around inside them to enforce this addressing
invariant. With better language support, including eithermethod overloading on argument type, as
in Java, or full multiple-dispatch, as in CLOS, this could bevery elegant: whether or not a socket
is connected to a destination, as well as whether or not a destination address is supplied, could
easily be encoded in the type system. Then, there would be four separate implementations, three

98 CHAPTER 5. PRINCIPLED INTERFACE DESIGN

of which simply signal an error, with the fourth function prepending the UDP header, generating
the UDP checksum, and eventually callingip output . The main implementation would not
need explicit code to check the addressing invariant, as everything would be guaranteed correct by
the programming language.

On input, things are much simpler. The code checks various validity conditions on the input
packet, and assuming the packet is valid, then checks whether the packet is destined for a unicast
or broad/multicast address. If the packet is destined for a unicast address, the code searches for a
socket to deliver the packet to. Assuming that an appropriate socket is found, the data is appended
to its receive queue, and the process is woken up. For broad/multicast packets, the data can be
delivered to more than one socket, and the appropriate process(es) are woken up. If no socket is
found, an ICMP error packet is sent back to the source of the packet.

5.6 Conclusions

This chapter is perhaps the most speculative in the report, based more on hopes for the future that
are less supported by the past than was the case regarding thechapters on principles, composability,
and architectures — all of which have long histories in the research and development communi-
ties. Interface architectures have seemingly been neglected, relegated to an afterthought of system
design and implementation.

Chapter 6

Assurance

Synopsis

Even if requirements and architectures have been created composably and with serious observance
of the most important principles, questions must be considered as to the trustworthiness of the
resulting systems and their uses in applications. However,such analysis can be extremely difficult
unless assurance has been an integral consideration throughout the development.

Thus far, we have considered how to achieve principled composable architectures and to infor-
mally provide integrity of an architecture and its implementation throughout the system develop-
ment process, in attempting to develop, configure, and maintain trustworthy systems and networks.
In this chapter, we consider assurance aspects associated with the development process and with its
artifacts and end products. We seek a collection of assurance techniques and measures of assurance
that can be associated with requirements, specifications, architectures, detailed software designs,
specifications, implementations, maintenance, and operation, as appropriate.

6.1 Introduction

Regarding trustworthiness of critical systems, assuranceis in the eye of the beholder.
However, it is better to depend on systems worthy of being trusted rather than to be
beholden to seriously flawed software and unknown components. PGN

We seek to achieve trustworthy systems and networks, with some demonstrably sound mea-
sures of assurance — that is, rigorously addressing the question of how worthy really is the in-
tended trustworthiness. Measures of assurance can be sought in a variety of ways, throughout the
development cycle — and thereafter as well. For example, they might involve analyses applied
to requirements, architectures and detailed system designs of operating system and application
software, compilers, hardware, and operational practices. With respect to software developments,
thorough formal analyses throughout the development cyclecan provide some significant levels
of assurance, although less formal techniques such as code inspection, testing, and red-teaming
are complementary techniques that can also be very useful. Generally much less satisfying if not
unworthy from a serious assurance point of view are measuresof institutional goodness (as in the
Capability Maturity Model) and individual programmer competence (as in certification of software

99

100 CHAPTER 6. ASSURANCE

engineers). Overall, no one assurance technique is adequate by itself; each — including those that
are formally based — has inherent limitations that must be recognized and surmounted.

Perhaps the most important conclusion of this report in our efforts to attain sound and robust
systems and networks is that the assurance associated with trustworthiness must be a pervasive and
integral part of the development cycle and the subsequent operational use and long-term evolution
of the resulting systems and networks. We repeat this conclusion emphatically, referring to it as
the notion ofPervasively Integrated Assurance (PIA).

Attaining some nontrivial measures of assurance is seemingly a labor-intensive process, but then
so is conventional software development — including testing, debugging, integration, red-teaming,
maintenance, and evolution. Ideally, assurance techniques should be incorporated into existing
tools for software and hardware development. Furthermore,new tools for enhancing assurance
should also be added to the development process. On the otherhand, there are grave dangers in
believing in the infallibility of development tools. Once again, we must depend on the intelligence,
training, and experience of our system architects, designers, implementers, application system
operators, administrators, and — in many cases — end users themselves.

Typically, there are enormous benefits from techniques thatcan be applied upfront in the devel-
opment process, such as formal specifications for critical requirements, principled architectures,
and formal or semiformal design specifications. It is clearly preferable to prevent flaws early that
would otherwise be detected only later on in the development. However, there are many flaws
that cannot be detected early — for example, those introduced during implementation, debugging,
and maintenance that can nullify earlier assurance techniques. Consequently, assurance must be
a distributed and temporal concept throughout development, maintenance, and operation, where
constituent assurance techniques and isolated analyses must themselves be consistent, compos-
able, and carefully coordinated. For example, careful documentation, disciplined development
methodologies, coding standards, and thoughtful code inspection all have a place in helping in-
crease assurance — as well as having secondary effects such as reducing downstream remediation
costs, and improving interoperability, system flexibility, and maintainability. However, when it
comes to providing meaningful assurance, the usual dictum applies: There are no easy answers.

6.2 Foundations of Assurance

“If a program has not been specified, it cannot be incorrect; it can only be surprising.”
W.D. Young, W.E. Boebert, and R.Y. Kain [386]

Several basic issues immediately come to mind in seeking increased assurance. (See also a
report by Rushby [326] on providing assurance relating to reliability and safety in airborne systems,
whose conclusions are also applicable here.)� Requirements analysis.Developing a system based on incomplete, incorrect, or infeasible

requirements is clearly wasteful. Efforts to increase assurance are meaningful only when
meaningful requirements have been established. However, having a well-defined relevant
and extensive set of requirements is a very important beginning to increasing the assurance
of the resulting systems. Detailed analyses of requirements (and particularly formal analyses
where the requirements are formally defined) can be enormously beneficial.

6.2. FOUNDATIONS OF ASSURANCE 101� Pervasively Integrated Assurance (PIA).As noted above, techniques to provide assurance
related to all relevant aspects of trustworthiness need to be an integral part of the development
cycle and persistently invoked during operation, maintenance, administration, and long-term
evolution.� Guarantees. Although we can make carefully couched conclusions based ontightly con-
strained assumptions about paper designs and software, there can never be any absolute guar-
antees with respect to the behavior of computer-communication technology in actual use.
No matter how careful we may be, we cannot anticipate all possible deleterious events —
including hardware malfunctions, software flaws, human mistakes, malicious actions, and
environmental disruptions. As a consequence, assurance techniques should never be used to
create a sense of perfection. Instead, they should be used todelimit the imperfections and
reason about the implications of what might go wrong.� Analyses of composability and specific compositions.As noted in Section 3.1, compos-
ability is meaningful with respect to many entities, including requirements, specifications,
protocols, implemented components, and proofs. Analysis of composability is important for
each of these entities. Looking to a future in which special-purpose and general-purpose sys-
tems and applications might become routinely composable out of more-or-less compatible
demonstrably trustworthy components, a new type of analysis tool would be highly desir-
able: analytically determining the composability (among other properties) of (ideally, well-
designed and well-specified) software components — not justfor the initial creation of a
composed system, but also in subsequent reconfigurations, upgrades, and even dynamic in-
stallation of mobile code. This approach could (for example) take advantage of specifications
and software formally shown to be consistent with those specifications, including descrip-
tors relating to previously evaluated characteristics of the components — such as internal
locks that might cause deadly embraces in certain contexts,assumptions regarding relative
dependencies, identified interface limitations, and otherattributes that might affect the com-
positionality. Ideally, this approach could then be used iteratively — for example, initially
pairwise orn-wise, and then over successively wider scopes, possibly ascertaining obstacles
to the desired compositions, or even potential failure modes that would suggest that a specific
composition should not be permitted in certain types of environments because of the identi-
fied deficiencies. Other properties could also be included, such as dynamic trustworthiness,
configuration stability, and operational factors. We realize that there are all sorts of limitations
of such an approach, but even small steps forward could be very useful.� Analysis of dependencies.In any would-be architecture, as well as in implementations, it
is desirable to be able to identify explicitly all potentialdependencies, and, in particular, all
potentially adverse dependencies — that is, components or subsystems that rely on other
entities that are less trustworthy or of unknown trustworthiness. It is also useful to identify
cyclic dependencies, especially those that can result in indefinite looping. This would be
especially useful in avoiding dependency problems in largesoftware systems. (Of course, the
use of structured architectures with modular encapsulation can also avoid such problems in
the first place, rather than having to rectify them later.) Similar techniques apply to undesired
dependencies among policies, specifications, and proofs. Also relevant here is the notion

102 CHAPTER 6. ASSURANCE

of guarded dependence and its intuitive relationship with multilevel integrity, considered in
Section 3.4.� Detecting and eliminating vulnerabilities. Assurance techniques in general, and formal
methods in particular, are most fruitfully applied when they can dramatically improve the
process of detecting and eliminating significant system flaws and vulnerabilities, and dramat-
ically improve the quality of the resulting systems. To thisend, it is appropriate to ascer-
tain that critical requirements soundly represent their intended purpose, and to demonstrate
by formal (or even semiformal) reasoning that critical properties are satisfied by particular
components or subsystems with respect to their formal specifications. It is also appropriate to
examine critical aspects of the resulting system and of the implementation process itself, seek-
ing to derive or prove properties of the system in terms of properties of its subsystems. The
essence of this process is to provide cumulatively increasing confidence in the system design
and its implementation, by identifying inadequate requirements and flawed designs, and over-
coming them. Steps that do not add substantively to this process are generally less effective.
In particular, if the requirements are flawed and the specifications are flawed, then attempting
to carry out code proofs that demonstrate consistency between code and specifications is of
very questionable value. Once requirements are properly established, formal analyses and
supporting tools can be of considerable value if they can identify certain types of flaws in
designs, source code, and executables, whether or not they are formally based. In particular,
formal techniques can be very useful in identifying flaws in authentication algorithms, access
control mechanisms, network protocols, cryptographic embeddings, and trustworthiness in
general.� Software and hardware consistency analysis.We prefer here to avoid use of the term “cor-
rectness”, and instead refer to more precise statements such as “consistency of specifications
with respect to requirements” or “consistency of code with respect to specifications” (assum-
ing that there are any specifications!). It is generally unwise to overemphasize the process of
trying to prove “correctness” of software and hardware.Correctnessis meaningful only with
respect to a set of presumed conditions that must be met — and those stated conditions can
themselves often be wrong or incomplete. (The quote at the beginning of this section is par-
ticularly pithy, and also applies to requirements for trustworthiness as well as specifications.)
Besides, code correctness proofs are premature unless the requirements and the design are
sensible and demonstrably sound. The same is true of hardware enchipments. Thus, efforts
to increase the assurance with which system dependability can be attained by the implementa-
tion should be up-front concerns but not overly stressed at least until the continual discovery
of new flaws in requirements and the design has dwindled considerably. However, at that
point, code proofs and other forms of analyzing the implementation can be very valuable
— especially if they are able to show the absence of nonspecified effects such as surrepti-
tious Trojan horses or potential timing faults. In particular, there is an enormous potential
for the use of formal methods in hardware implementations — for example, in specifica-
tions, mask layouts, and fabrication, and especially for critical coprocessors or chips such as
cryptographic devices.� System-oriented analyses.What is critically needed overall is a system-oriented viewof

6.2. FOUNDATIONS OF ASSURANCE 103

assurance that coherently encompasses temporal beginning-to-end life-cycle issues as well as
analyses across all layers of abstraction. Whether the analyses are linearly continuous (e.g.,
top to bottom, or bottom to top, or strictly beginning to end)or merely done piecewise and
then joined together as appropriate is not so important as whether the separate analyses enable
all of the pieces to fit together.

Continuing on the subject of composition (see the fourth previous item), horizontal (modular)
composition and vertical (hierarchical abstraction) composition (discussed in Section 3.3) are
both important subjects of analysis for the purpose of increasing assurance. Various past ef-
forts are of considerable theoretical and practical interest, such as proving consistency within
a successive refinement thread throughout the development effort, and proving consistency
from top-level requirements through detailed design specifications to software implemen-
tation, and perhaps even subsequent operation and evolution, particularly when applied to
large and complex systems. Similarly, when dealing with vertical and horizontal abstrac-
tions, efforts such as that of Robinson–Levitt [316] and theBoyer-Moore-Hunt-Young CLInc
stack [244, 245] (including five papers, [41, 42, 170, 243, 385]) enable the functionality of
higher-layer abstractions to be explicitly related to the functionality of lower-layer abstrac-
tions, iteratively across all layers as desired — for example, from applications to hardware —
as well as the relationships among different modules at the same layer. However, those efforts
must be considered as overkill unless it can be demonstratedthat all the relevant critical paths
can thus be encompassed and that no serious vulnerabilitiescan exist in other threads. Then,
the comprehensive analysis can be very compelling, even if labor intensive.� Transformations. Considerable value can accrue from transformations that demonstrably
preserve desired properties, such as maintaining the consistency of specifications with re-
quirements despite changes to requirements, or maintaining the consistency of code to speci-
fications despite the machinations of optimizing compilers. Being able to demonstrate that a
transformation is property preserving can significantly simplify subsequent analysis. Trans-
formations that result from nontrivial compositions, hierarchical layerings, and interpositions
of mediators such as firewall systems and trusted guards are of considerable value. The
transformational approach should also permit parametric architectural representations — for
example, what simplifications or complications might result when a particular architecture
undergoes a particular change in design, such as making a fileserver multilevel secure instead
of having multiple single-level file servers. The effects ofsuch changes should be formally
derivable, if possible.� Methodology. The choices of methodologies, specification languages, andprogramming lan-
guages are important to the success of a development effort and to the effective application of
formal methods. However, those choices are generally less critical if the architecture is poorly
chosen and if the properties to be satisfied are not appropriate — for example, seriously in-
complete, or too abstract, or badly overconstrained, or toolow-level. Thus, considerable
effort may be worth devoting to establishing an architecture that is amenable to selective uses
of formal methods. However, there is also a danger that premature choices of methodol-
ogy, approach, and programming languages will lock the development into a nonconstructive
path. Thus, it is essential that all these factors be considered early in the system devel-
opment process. (Historically important documents on formalism in software development

104 CHAPTER 6. ASSURANCE

include [58, 129, 190], and most recently [182].)� Development tools.Various approaches to static analysis are considered in Section 6.6. Also
of considerable interest here is the July 2004 special issueof ERCIM News [23], published by
the European Research Consortium for Informatics and Mathematics. That issue is devoted
to Automated Software Engineering, and includes sections on requirements, program under-
standing and architecture, testing, verification, aspectsof language technology, configuration
management and deployment, and models. (That issue also includes a section containing 16
contributions on R&D technology transfer.)� Research and development.Consistent with the ability to apply formal methods to critical
aspects of complex and critical systems, research must continue to explore the frontiers of the
technology, and development must be carried out that employs formal methods constructively
as suggested in these conclusions. Some specific suggestions for future R&D are given in
Sections 8.2 and 8.3.� Composability within the evaluation process. A remarkable paper by Paul Karger and
Helmut Kurth [187] addresses the essential needs for cooperation and communication within
various components of the evaluation process, particularly as it relates to the notion of Com-
posite Evaluation within the Common Criteria. One major point of the paper is that the results
of hardware evaluations must flow to the software developersand software evaluators, irre-
spective of proprietary constraints. The consequences of not doing this can be quite dire. This
is a very important paper, and deserves considerable attention.

There have been many advances in assurance techniques, and particularly in formal methods,
over the past thirty years. However, major successes are still awaited in the fruitful application
of these methods. We conclude that, whereas considerable potential remains untapped for for-
mal methods applied to security, we are now actually much closer to realizing that potential than
previously. Many of the pieces of the puzzle — theory, methods, and tools — are now in place.
It is unwise to put all your eggs in one basket (such as testingor penetrate-and-patch efforts).
Thus, a more comprehensive combination of approaches is recommended, especially if the desired
paradigm shifts are taken and if the considerations of the following section are observed.

6.3 Approaches to Increasing Assurance

Providing meaningful assurance of trustworthiness is itself a very complex problem, and needs
to be spread out across the development process as well as into operational practice. Various
approaches can be used in combination with one another to enhance assurance.� Assurance-enhancing principles.Disciplined adherence to certain useful assurance-enhancing

principles would be beneficial throughout system development. The notion of Pervasively In-
tegrated Assurance is fundamental.� Sound requirements. As we have noted already, anything that is done to increase the
soundness, completeness, and specificity of the requirements would be very valuable. As-
sessments of the realistic implementability of the requirements long before any development
is undertaken can have significant payoffs later in the development.

6.3. APPROACHES TO INCREASING ASSURANCE 105� Sound system architectures.Considerable assurance can result directly from an inherently
sound architecture and analytic techniques for determining whether an architecture is capa-
ble of satisfying the given requirements. Such techniques can have enormous payoffs — as
already noted, simplifying developments, reducing costs and overruns, and greatly increasing
the likelihood of development success.� Sound algorithms and protocols.Analysis can determine consistency with requirements for
trustworthiness (security, reliability, and so on), with respect to both designs and implemen-
tations.� Analysis of subsystem compositions.Chapter 3 characterizes some of the difficulties that
need to be avoided in system composition (Section 3.2) and some of the desiderata for achiev-
ing predictable compositionality (Sections 3.3 and 3.4). Analytic techniques for increasing
assurance can determine the existence or absence of unspecified side effects, as well as the
satisfaction of higher-layer properties resulting from composition, with respect to both de-
signs and implementations.� Analysis of properties.Functional and nonfunctional properties of subsystems, systems, and
networks are subject to analysis, at different layers of abstraction. For example, subsystems,
operating systems, application packages, and entire enterprises can all be modeled and an-
alyzed, formally and informally, with respect to designs and implementations. Hierarchical
dependence analyses can uncover design flaws and implementation bugs and architectural
inconsistencies in adverse trust relationships. Higher-layer properties — including emergent
properties — can be analyzed hierarchically (e.g., as in theRobinson–Levitt approach [316]
noted in Sections 3.4 and 6.2), relating lower- and higher-layer abstraction to one another, to
permit analysis of systems in the large.� Software engineering. Soundly based development methodologies can encompass tech-
niques and tools for whatever measures of assurance are desired. Inherently sound program-
ming languages that are formally based and about which properties can be proven are also
helpful. Considerably improved assurance can result therefrom.� Code inspection, testing, and debugging.The use of formally based tools can be highly
beneficial for code inspection, testing, and debugging. Conventional uses of code inspection
and testing are labor intensive and subjective, and very much dependent on the intelligence,
education, training, and experience of the individuals involved; although those techniques can
be aided by automated or semiautomated tools, there is always a risk that the weaknesses of
the tools will prevail over the limitations of the people using those tools.� Red-teaming.So-calledred teamscan also be used to increase assurance, if they can provide
truly independent and objective assessments. (Beware of Accenture-Enronitis.) Although red
teams have tended to be ratherad hocin the past, the use of disciplined tool sets could actually
be very helpful. The PIA concept noted in Section 6.1 suggests that the red-team concept be
substantially broadened to include pervasive interactiveassessments throughout. However,
despite the desire for pervasive integration, it is important that the red team be independent
of the development efforts — although still capable of proving valuable feedback. It is also
important that the red team have direct access to project management, whether the concerns

106 CHAPTER 6. ASSURANCE

involve functional assurance, security assessments, quality assurance, and so on, to avoid the
feedback being stonewalled.� Operational practice. At present, system administration and operational practice are gen-
erally not thought of as amenable to high-assurance techniques. There are some potential
opportunities for progress in this area.

Judicious use of formalisms and formal methods can add significantly to development and op-
eration, but also can add complexity, delays, and cost overruns if not used wisely. Although formal
models and formal specifications may seem to complicate the design process (with delays, in-
creased costs, and greater intellectual demands), they canalso substantively improve assurance,
and also lead to earlier identification of problems that might otherwise be uncovered only in late
stages of the development and use cycles. However, they needto be used with considerable care,
primarily where they can accomplish things that design reviews, testing, and operational disci-
pline cannot. In that errors in requirements formulation, design, and specification are perhaps the
most difficult and costly to repair, formalisms can be particularly valuable in the early stages of
development. Although some readers will consider assurance issues to be pie in the sky and un-
realistic from the perspective of increased costs, projectdelays, and increased needs for education
and training, the spectrum of assurance techniques does have something for everyone.

6.4 Formalizing System Design and Development

Historically, early examples of the use of formalism in system design and implementation are
found in two SRI efforts during the 1970s. These rather earlyinstances of uses of formal methods
are reconsidered here for yet another visit because they represent some significant advances in the
ability to analyze systems in the large that seem to have beenotherwise ignored in recent years.
(Please excuse a little duplication for contextual ease of reading.)� The Provably Secure Operating System (PSOS).The PSOS architecture [120, 268, 269]

— see Sections 2.6, 4.3, 4.4, and 5.3.1 — spanned layers of abstraction of hardware and
operating system functionality that were extensively and precisely defined in a formal spec-
ification language. This approach enabled a complex hardware/software system to be repre-
sented as a horizontal and vertical composition of surprisingly simple but perspicuous formal
specifications at each layer, with explicit mappings between the state spaces at different lay-
ers, and abstract programs that explicitly related the functionality at each particular layer to
the functionality at lower layers. Various assurance properties were characterized and some
proofs were outlined. The PSOS project developed and used SRI’s Hierarchical Development
Methodology (HDM) [119, 120, 268, 269, 316, 317, 318, 361], and its formal SPECIfication
and Assertion Language (SPECIAL), which together in a unified way encompassed the writ-
ing of the specifications, state mappings, and abstract programs; it also provided the ability
to carry out formal proofs of consistency between specifications and requirements — as well
as formal proofs of consistency between code and specifications, if desired.� The Software-Implemented Fault-Tolerant System (SIFT).The SIFT [232, 247, 378]) de-
sign and implementation abstraction hierarchy consisted of a model for hardware behavioral

6.4. FORMALIZING SYSTEM DESIGN AND DEVELOPMENT 107

properties (seven Bendix BDX-930 avionics processors), Pascal code for the basic software,
formal specifications for a real-time operating system (encompassing the scheduler, the 2-out-
of-3 voter, dispatcher, buffer manager), a task activity model (dealing with system startup,
broadcasting of results to other processors for voting, vote execution, and synchronization),
a replication model (which produced the results of the 2-out-of-3 voting), and an I/O model
that produced an overall indication that the current systemconfiguration was safe). The hier-
achical analysis concluded that given the individual processor probability of failure of10�5
per hour, the resulting seven-fold redundant system had a probability of failure of10�10 per
hour.

A general argument against such efforts seems to be that it istoo difficult to deal with big-system
issues, and much easier to focus on components. However, it is often the analysis of compositions
and system integration that in the long run can be most revealing.

Incidentally, HDM’s 1970s ability to analyze vertical compositions of hierarchical abstractions
has been incorporated in SRI’s PVS (beginning with version 3.0), in the form of PVS theory in-
terpretations [278]. See http://pvs.csl.sri.com for PVS documentation, status, software downloads,
FAQ, etc. See also http://fm.csl.sri.com for further background on SRI’s formal methods work,
including SAL (the Symbolic Analysis Laboratory, which includes three model checkers) and ICS
(the Integrated Canonizer and Solver, a decision procedure). Symbolic analysis involves auto-
mated deduction on abstract models of systems couched in formal logic, and is the basis for much
of CSL’s formal methods work.

Some further early work on formal methods and verification applied to security is summarized
in the proceedings of three VERkshops [275, 276, 205], from 1980, 1981, and 1985, respectively.
(The titles of all of the papers in those three VERkshop proceedings are given in the appendix
of [259].)

Considerable benefit can accrue from rigorous specifications — even if they are not formally
checked, although clearly much better if they are. Specifications of what is and is not needed are
generally more succinct than literal descriptions of how something should be implemented. Speci-
fications can provide an abstraction between requirements and code that enable early identification
of inconsistencies — between specifications and requirements, and between code and specifica-
tions. Furthermore, specifications can be more readable andunderstandable than code, especially
if they can be shown to mirror the requirements explicitly early in the development process, before
any code is written.

The long history of fault-tolerant computing has put significant effort on fault prevention (rel-
ative to whatever scope of faults was intended — from hardware to software faults to faults that
included security misuse). Clearly, all of those assuranceefforts relating to the avoidance of bad
designs and bad implementations are relevant here, including the assurance that can result from
inherently sound system and network architectures and goodsoftware-engineering practice.

With respect to the importance of programming languages in security, see Drew Dean’s paper
on The Impact of Programming Language Theory on Computer Security [96]. As a further useful
reference, Chander, Dean, and Mitchell [69, 70] have some interesting recent work on formalizing
the modeling and analysis of access-control lists, capabilities, and trust management.

108 CHAPTER 6. ASSURANCE

6.5 Implementation Consistency with Design

The HDM approach noted in Section 6.4 is one methodology in which formal proofs could be
carried out demonstrating the consistency of a software component with its formal specifications.
The intent is that such proofs would be carried out only afterproofs had shown that the specifi-
cations were consistent with the stated requirements (possibly subject to certain exceptions that
would have to be tolerated or monitored, as in the case of unavoidable covert channels).

6.6 Static Code Analysis

Ideally, the up-front philosophy suggests that disciplineembededded in the software development
process can have considerable payoff. For example, programming languages that inherently en-
force greater discipline would be very beneficial. Compilers and related pre- and post-processor
tools that provide rigorous checking would also be useful. However, the integrity that can be
provided by the best methodologies, programming languages, and compiler tools is potentially
compromisible by people involved in design and implementation, debugging, integration, mainte-
nance, and evolution.

Early efforts in the 1970s by Abbott [5] and the ISI team of Bisbey, Carlstedt, Hollingworth, and
Popek [44, 45, 46, 67, 68, 165] attempted to identify a few characteristic flaws noted in Section 2.4
and to devise means of detecting their presence in source code. The conclusions at that time were
generally rather discouraging, except in very constrainedcircumstances.

Contemporary analytic techniques and tools are much more promising. They are particularly
appropriate for open-box source code, but of course also applicable to closed-box software — even
if only by the proprietors. Examples include (among others), with varying degrees of effectiveness
and coverage:� Crispin Cowan’s StackGuard (http://immunix.org)�David Wagner’s buffer overflow analyzer (http://www.cs.berkeley.edu/˜daw/papers/)�@Stake’s L0pht security review analyzer slint� Cigital’s ITS4 function-call analyzer for C and C++ code

(http://www.cigital.com/its4/)� Ken Ashcraft and Dawson Engler’s system-specific approach [20]� Brian Chess’s extended static checking [79]� Purify� Yuan Yu and Tom Rodeheffer’s RaceTrack, for detecting race conditions in multi-threaded code
(Microsoft Research)�Hao Chen’s MOPS (with some assistance from Dave Wagner and Drew Dean, whose earlier joint
work [98, 371] provided a starting point); MOPS takes a formally based, approach to static code
analysis (see Appendix A), in which formal models of undesirable vulnerability characteristics are
the basis for formal model checking of the software, thus identifying software flaws.

There has also been some effort on formally based testing. (This work is particularly interesting
when applied to hardware implementations.) However, the early results of Boyer, Elspas, and
Levitt [57] suggest that formal testing is in some sense essentially equivalent to theorem proving in
complexity. Nothing since that paper has fundamentally altered their conclusion, although formal

6.7. REAL-TIME CODE ANALYSIS 109

derivation of test cases can be extremely effective in increasing the assurance that testing will cover
a realistic span of cases. In particular, formal test-case generation has become increasingly popular
in the past few years. (As just one example, see [49].)

6.7 Real-Time Code Analysis

There has been relatively little exploitation of formalismrelating to real-time analysis in the past,
but this area represents a potentially fertile ground for the future. One example might involve run-
time checks derived from formally based analyses of potential vulnerabilities in source code, above
and beyond what might take place in a compiler, or in a preprocessor — such as buffer-overflow
checks and Trojan-horse scans that cannot be done prior to execution. Proof-carrying code [250]
and checking of cryptographic integrity seals are two specific examples. Many other concepts
remain to be considered.

6.8 Metrics for Assurance

In order to have any concrete measures of assurance, it is necessary to establish well-defined met-
rics against which requirements, architectures, specifications, software, tools, and operational prac-
tice can be measured. This is a very complicated area. We believe that it is unwise to do research
on metrics for the sake of the metrics themselves, although it is important to establish parameteri-
zable metrics with general applicability. The various metrics then need to be tailored specifically
to the development stage in which they are invoked, and applied explicitly to those development
efforts.

6.9 Assurance-Based Risk Reduction

The assurance techniques summarized in the previous sections of this chapter can have significant
effects in reducing risks, particularly with respect to theextent to which critical system require-
ments are likely to be satisfied by system designs and implementations. These techniques may be
applicable in many different ways, all of which are potentially relevant here. In particular, analysis
at all development stages and all layers of abstraction within a development can contribute. (See
Section 6.3.)

Several examples may help to illustrate how assurance techniques might be applied. In partic-
ular, we examine some of the cases summarized in Section 2.2 and Section 5.2.2, and consider
what might have been done to prevent the effects that actually resulted. This is intended not as an
exercise inhindsight,but rather as an explicit representation of what types of assurance might be
applicable in future developments of a similar nature.� Human safety

– Design reviews and testing could have detected the missing interlock that allowed the
Lauda Air thrust reverser to be deployed during flight, although more careful require-
ments, design, and implementation might have prevented theproblem altogether.

110 CHAPTER 6. ASSURANCE

– Analytic comparison with topographic data might have revealed the erroneous course
that caused the Air New Zealand crash into Mount Erebus. (In that case, a data error had
been detected, but not yet fixed.)

– Testing a medical device such as the Therac 25 for a race condition (which resulted from
implementing the Therac 20 hardware interlock in software)or a heart pacemaker or de-
fibrillator for electromagnetic interference would seem tobe standard practice; yet these
failure modes were not considered until a few people had died. Again, better attention to
requirements, architecture, and good software engineering practice could have avoided
the problems altogether. EMI problems clearly must be addressed through explicit re-
quirements, threat models, and testing.� Reliability and availability

– The Patriot missile excessive clock drift could have been prevented through any of sev-
eral assurance measures, for example, requirements that insisted that the systems should
operate correctly if not rebooted for weeks, or alternatively, operational requirements that
explicitly specified that the launch platforms had to be rebooted once a day. (On the other
hand, it is surprising that a demonstrably more robust clockalgorithm was not used, ir-
respective of the requirements. Apparently the implementers tacitly assumed the launch
platform would be moved frequently — at least once a day — to reduce the likelihood of
it being targeted by the enemy.)

– The Yorktown Aegis missile cruiser disabled for 2.75 hours as a result of a divide-by-zero
in an application could have been prevented by observing theshrink-wrap disclaimers
(don’t use this operating system in critical applications,and don’t put engine controls
inline with a system with poor survivability), or at least understanding their implications
during requirement specification, development, and systemcertification. Fundamentally,
the use of an operating system that cannot protect itself properly is unwise. The obvi-
ous answer is that we need better operating systems that adhere to the principles and
structured architectures described in this report.

– The backup computer synchronization problem on the very first Columbia Shuttle launch
was apparently known to the designers, but not to the launch support team. The two-
day delay could have been avoided by a simple retry that wouldhave skipped over the
one-in-64 known failure mode — if the documentation had noted this problem, or if the
launch crew and the developers had been in closer contact. However, the synchronization
problem could also have been prevented altogether by a more robust design, or explicitly
diagnosed by a variety of analysis tools.� Avoidance of propagation effects.The 1980 ARPANET collapse, the 1990 AT&T long-

distance collapse, and numerous massive electrical power outages noted in Section 2.2 all
share a common failure pattern — the propagation of a local failure into a system-wide out-
age. In each case, it had been widely believed by the developers and operators that single-
point failures could not bring down the entire network. At the least, some detailed modeling of
the interactions among components could have demonstratedthe possibility of mutual con-
tamination and propagating outages, enabled further analysis to determine what conditions

6.9. ASSURANCE-BASED RISK REDUCTION 111

might trigger such effects, and inspired resulting architectural changes necessary to prevent
such problems. Some combination of fault-tree analysis andmodel checking would presum-
ably have exhibited specific failure modes that could trigger such outages. (In the case of
one of the extended System 7 telephone outages, detailed laboratory simulation environments
were normally invoked, but because a particular change affected only a few lines of code, it
was not thought to be necessary to recycle through the entireanalysis process.)� Security. The Risks archives are littered with security vulnerabilities and exploitations thereof.
Buffer overflows, erroneous or missing bounds checks, and other annoying types of security
flaws that seem to recur much too frequently are easily avoided with sensible system archi-
tectures and a variety of static and dynamic assurance techniques. Similarly, the insertion and
execution of malicious code such as Trojan horses, Web- and e-mail-based executables, and
so on need to be combatted by sound architectures and operational practice. Authentication
problems can be avoided by eschewing the use of fixed passwords, instead using demonstra-
bly robust cryptographically based authentication and analyses that demonstrate the security
of their embedding into systems. Real-time misuse detection and response can also increase
assurance of trustworthiness, especially with respect to integrity violations, insider misuse,
denials of service, and so on.� Integrity of electronic election systems.Election systems provide a paradigmatic example
of the need for a wide range of requirements, including end-to-end security, system surviv-
ability, system integrity, data integrity, and voter privacy. Extensive use of formal methods,
open standards, open testing, open evaluations, and — aboveall — the addition of cryp-
tographic checksums on data and programs, as well as nonsubvertible voter-verified audit
trails, could greatly increase the assurance of today’s unauditable all-electronic election sys-
tems, thereby providing strong evidence that votes are processed correctly throughout. (Such
assurance is almost totally absent in almost all of the currently used systems, and especially
in the all-electronic systems.) In addition to demonstrating the integrity of the election soft-
ware by itself, the architecture of the overall system should be such that formal proofs could
provide assurances that no adverse compromises of the application software and the election
data could occur as a result of manipulations of the underlying operating system or externally
— for example, from dial-up lines, wireless communications, or networked connections. Fur-
thermore, if such systems were composed out of components from independent vendors, it
might be possible to overcome the potential untrustworthiness of one vendor’s components —
for example, having a separate system to provide a voter-verified nonspoofable recountable
audit trail. Unfortunately, there is enormous resistance to such assurance from almost all of
the commercial vendors.� Operational assurances.More careful analysis of human interfaces would be particularly
valuable with respect to system administrators, both statically (e.g., leading to warnings be-
fore permitting certain questionable upgrades and configuration changes) and dynamically
(in anticipating needs for emergency response).� Sound user interfaces.As noted in Section 5.2.2, numerous serious accidents have resulted
from poorly designed human interfaces, as well as from misguided internal system interfaces.
Assurance techniques analyzing human interfaces could perhaps have avoided many of the

112 CHAPTER 6. ASSURANCE

cases noted there. Testing should have caught the cross-wiring in maintenance of the British
Midland 737, which caused the pilot to shut off the good engine rather than the failing one.
Testing might have detected the missing interlock in the F-16 landing gear that allowed re-
traction on the ground. Sensible interface design might have proactively recognized the risk
of using a GPS unit that reset the intended target after a battery change, but the designers of
the weapons system might have anticipated the need for a warning. The heart-monitoring de-
vice should have had standards that prevented the developerfrom using a standard electrical
wall-plug connector, and the certification process should have prevented that device from be-
ing available to the hospital. The Discovery laser-beam experiment failure (with the elevation
of the target to be specified in feet, not miles) could easily have been avoided by a human
interface that explicitly insisted on an input in feet, or that insisted on self-defining input def-
initions. Self-defining input types may seem like a low-assurance programming technique,
but it would have avoided several past problems in the annalsof the Risks Forum.

The above illustrative enumeration suggests that, among the wide variety of assurance tech-
niques (some almost obvious, some more subtle), each potential system risk can benefit from the
application of some subset of the total collection of approaches to increasing assurance. Estab-
lishment of sound requirements, sensible architectures, and good software development practice
would undoubtedly avoid many of the problems discussed throughout this report, and could be sig-
nificantly aided by formal or even semiformal requirements analysis, model-based design, model
checking, formal test-case generation, static analysis, and so on. Of course, there is no one size
that fits all; the particular techniques must be used in various coherent combinations, according
to the circumstances, the development challenges and risks, and the competence of the developers
and analysts. Once again, it is clear that there is a significant need for pervasively integrated as-
surance, throughout development and operation. However, the amount of resources and effort to
be devoted to assurance needs to be commensurate with the overall long-term and nonlocal risks.
Unfortunately, most risk assessments relating to how much effort to devote to assurance tend to be
short-term and local. (The risks of short-sighted optimization are considered further in Section 7.1,
and the importance of up-front efforts are discussed in Section 7.2.)

6.10 Conclusions on Assurance

Opportunities for seriously increasing the assurance associated with software development and
system operations are abundant, but largely unfulfilled. Much greater commitment is needed to
providing assurance of trustworthiness. Assurance techniques seem to have greater use and greater
payoffs in hardware development than in software development, with heavier emphasis on the use
of formalisms. However, assurance applied to operational practice lags far behind either hardware
or software assurance.

The potential benefits of formal methods remain undiminished, particularly with respect to
hardware and software, but perhaps also integrated into operational practice. The need for formal
methods in the specification and analysis of critical systems and system components remains enor-
mous. In the light of past events — including rampant system flaws and detected vulnerabilities,
system failures, experienced penetrations, and flagrant system misuses — formal methods remain
a potentially important part of the system development and assurance process. Their systematic

6.10. CONCLUSIONS ON ASSURANCE 113

use at appropriate places throughout the system life cycle can be extremely productive, if used
wisely.

Recommendations for future research and development encompassing increased assurance for
trustworthy systems and networks are discussed in Chapter 8.

Chapter 7

Practical Considerations

Synopsis

There’s many a road ’twixt the need and the code.
(It’s an especially rough road in the absence of requirements, design specifications, care-
ful programming, sensible use of good development tools, documentation, and so on!)

The previous chapters pursue approaches that have significant potential to enable the develop-
ment and operation of useful meaningfully trustworthy systems — if these approaches are applied
wisely. This chapter considers various potential obstacles to the application of these approaches,
and explores how they might be overcome. Some of the apparentobstacles are merely perceived
problems, and can be readily avoided. Other potential obstacles present genuine concerns that can
be circumvented with some degree of knowledge, experience,discipline, and commitment.

In this chapter, we address such topics as how an architecture can accommodate its relevant
requirements (including requirements to be able to adapt tochanging requirements!); whether
inherently robust architectures are possible given today’s mainstream hardware platforms and
computer-communications infrastructures; the extent to which discipline can be effectively and
pervasively introduced into the development process — for example, through methodologies, pro-
gramming languages, and supporting tools; the relative effectiveness of various methodologies;
problems peculiar to legacy systems; the practical applicability of formal methods; various alter-
native paradigms; management issues; relevant pros and cons of outsourcing and offshoring; and
so on.

7.1 Risks of Short-Sighted Optimization

Many people (for example, system procurers, developers, implementers, and managers) continue
to ignore the long-term implications of decisions made for short-term gains, often based on overly
optimistic or fallacious assumptions. In principle, much greater benefits can result from far-sighted
vision based on realistic assumptions. For example, serious environmental effects (including global
warming, water and air pollution, pesticide toxicity, and adverse genetic engineering) are gener-
ally ignored in pursuit of short-term profits. However, conservation, alternative energy sources,
and environmental protection appear more relevant when considered in the context of long-term

114

7.1. RISKS OF SHORT-SIGHTED OPTIMIZATION 115

costs and benefits. Similarly, the long-term consequences of dumbed-down education are typically
ignored — such as diminution of scientific, engineering, andgeneral technical expertise, poor sys-
tem development practices, and many social consequences such as higher crime rates, increased
reliance on incarceration, and so on. Governments tend to bebesieged by intense short-sighted
lobbying from special-interest groups. Insider financial manipulations have serious long-term eco-
nomic effects. Research funding has been increasingly focusing on short-term returns, seemingly
to the detriment of the future. Overall, short-sightednessis a widespread problem.

Conventional computer system development is a particularly frustrating example of this prob-
lem. Most system developers are unable or unwilling to confront life-cycle issues up front and in
the large, although it should by now be obvious to experienced system developers that up-front
investments can yield enormous benefits later in the life cycle. As described in earlier chapters,
defining requirements carefully and wisely at the beginningof a development effort can greatly
enhance the entire subsequent life cycle and reduce its costs. This process should ideally antici-
pate all essential requirements explicitly, including (for example) security, reliability, scalability,
and relevant application-specific needs such as enterprisesurvivability, evolvability, maintainabil-
ity, usability, and interoperability. Many such requirements are typically extremely difficult to
satisfy once system development is far advanced, unless they have been included in early plan-
ning. Furthermore, requirements tend to change; thus, system architectures and interfaces should
be designed to be relatively flaw-free and inherently adaptable without introducing further flaws.
Insisting on principled software engineering (such as modular abstraction, encapsulation, and type
safety), sensible use of sound programming languages, and use of appropriate support tools can sig-
nificantly reduce the frequency of software bugs. All of these up-front investments can also reduce
the subsequent costs of debugging, integration, system administration, and long-term evolution —
if sensibly invoked. (Note that a few of the current crop of software development methodologies
do address the entire software life cycle fairly comprehensively, such as the Unified Software De-
velopment Process (USDP) [174], whose three basic principles are use-case driven, architecture
centric, and iterative and incremental; USDP is based on theUnified Modeling Language (UML).)

Although the potential fruitfulness of up-front efforts and long-term optimization is a decades-
old concept, a fundamental question remains: Why has the sagest system development wisdom of
the past half-century not been more widely and effectively used in practice? Would-be answers are
very diverse, but generally unsatisfactory. These concepts are often ignored or poorly observed, for
a variety of offered reasons — such as short-term profitability while ignoring the long-term; rush to
market for competitive reasons; the forcing functions of legacy system compatibility; lack of com-
mitment to quality, because developers can get away with it,and because customers either don’t
know any better or are not sufficiently organized to demand it; lack of liability concerns, because
developers are not accountable (shrink-wrap license agreements typically waiver all liability, and
in some cases warn against using the product for critical applications); ability to shift late lifecycle
costs to customers; inadequate education, experience, andtraining; and unwillingness to pursue
anything other than seemingly easy answers. Other reasons are also offered, as well.

Overly optimistic development plans that ignore these issues tend to win out over more realis-
tic plans, but can lead to difficulties later on — for developers, system users, and even innocent
bystanders. The annals of the Risks Forum (http://www.risks.org; see [267]) are replete with ex-
amples of systems that did not work properly and people who did not perform according to the
assumptions embedded in the development and operational life-cycles. (One illustration of this

116 CHAPTER 7. PRACTICAL CONSIDERATIONS

is seen in the mad rush to paperless electronic voting systems with essentially no operational ac-
countability and no real assurances of system integrity.) The lessons of past failures and unresolved
problems are widely ignored. Instead, we have acaveat emptorculture, with developers and ven-
dors disclaiming all warranties and liability, and users who are at risk. (In the case of electronic
voting systems, the users include election officials and voters.)

We need better incentives to optimize over the long term (seeSection 7.2) and over whole-
system contexts (see Section 7.3), with realistic assumptions, appropriate architectural flexibility to
adapt to changing requirements (Chapter 4), and sufficient attention paid to assurance (Section 6.9).
Achieving this will require some substantive changes in ourresearch and development agendas,
our software and system development cultures, our educational programs, our laws, our economies,
our commitments, and perhaps most important — in obtaining well documented success stories to
show the way for others. Particularly in critical applications, if it’s not worth doing right, perhaps
it’s not worth doing at all — or at least not worth doing without rethinking whatever might be
problematic with the requirements, architecture, implementation, and/or operational practice. As
an example, the essence of Extreme Programming (Section 2.3.6) seems interesting in achieving
working partial systems throughout development, but wouldbe applicable to critical systems only
if it converges on products that truly satisfy the critical requirements. Once again, the emphasis
must be on having well-defined requirements.

David Parnas has said, let’s not just preach motherhood — let’s teach people how to be good
mothers. Indeed, the report you are reading seems to be preaching applicable motherhood. (Al-
though the author of the report you are reading wrote in 1969 about the risks of overly narrow
optimization and the importance of diligently applying generally accepted motherhood princi-
ples [255], the basic problems still remain today.)

One of the most ambitious efforts currently in progress is the U.S. Department of Defense
Global Information Grid (GIG), which envisions a globally interconnected completely integrated
large-scale fully interoperable end-to-end multilevel-secure networking of computer systems by
2020, and capable of providing certain measures of guaranteed services despite malicious adver-
saries, unintentional human errors, and malfunctions. Theplanning and development necessary
to attain the desired requirements suggest the need for long-term vision, nonlocal optimization,
and whole-system perspectives (see Sections 7.1, 7.2, and 7.3, respectively) — without which you
realistically cannot get there from where we are today. The desirability of observing the principled
and disciplined developments described in this report becomes almost self-evident, but still not
easy to satisfy, especially with the desire to use extensivelegacy software. However, the Enlight-
ened Architecture concept noted at the end of Section 4.3 is fundamental to the success of any
environment with the ambitious goals of the GIG.

7.2 The Importance of Up-Front Efforts

Perhaps the most important observation here is that if systems and applications are developed
without an up-frontcommitment toandinvestment inthe principles discussed here, very little that
is discussed in this report is likely to be applied effectively. The commitment and investment must
be both intellectual and tangible — in terms of people, funding, and perseverance. Looking at
the recommended approaches as an investment is a vital notion, as opposed to merely relying on

7.3. THE IMPORTANCE OF WHOLE-SYSTEM PERSPECTIVES 117

the expenditure of money as a would-be solution. Admittedly, the long-term arguments for up-
front investment are not well understood and not well documented in successful developments —
for example, with respect to the positive return on investment of such efforts compared with the
adverse back-end costs of not doing it better in the first place: budget overruns, schedule delays,
inadequacy of resulting system behavior, lack of interoperability, and lack of evolvability, to cite
just a few deleterious results.

It would seem completely self-evident that the long historyof system failures would suggest
the need for some radical changes in the development culture. For example, this report strongly
advocates realistically taking advantages of the potential benefits of up-front efforts (e.g., careful
a priori establishment of requirements, architectures, and specifications). Certainly, this is not
a new message. It was a fundamental part of the Multics development beginning in 1965 [84,
85], and it was fundamental to the PSOS design specificationsfrom 1973 to 1980 [268, 269].
Nevertheless, it is a message that is still valid today, as for example in a new series of articles in
the IEEE Security & Privacy[228] on building security into the development process, edited by
Gary McGraw. Unfortunately, the fact that this is not a new message is in part a condemnation of
our education and development processes, and in part a sign that our marketplace is not fulfilling
certain fundamental needs.

A recent global survey of software development practices (Cusumano et al. [90]) strongly sup-
ports the wisdom and cost benefits of up-front development. Their survey includes some rather
startling conclusions based on a sampling of software projects. For example, detailed design spec-
ifications were reportedly used in only 32% of the U.S. projects studied, as opposed to 100% of
the projects in India. Furthermore, 100% of the Indian projects reported doing design reviews,
and all but one of those projects did code reviews; this was characteristically untrue of the U.S.
projects studied. Although it is unwise to draw sweeping generalizations from this survey, the
issues considered and the results drawn therefrom are extremely relevant to our report. Besides,
if the effectiveness of resulting foreign software developments is actually significantly better, then
the rush to outsource software development might in some cases also be motivated by quality con-
siderations, not just cost savings. This has very significant long-term implications — for the U.S.
and for other nations with rapidly developing technology bases.

7.3 The Importance of Whole-System Perspectives

If you believe that cryptography is the answer to your problems, then you don’t under-
stand cryptography and you don’t understand your problems.
Attributed by Butler Lampson to Roger Needham and by Roger Needham to Butler
Lampson

Unfortunately, up-front effort is not enough by itself. Perhaps equally important is a system-
oriented perspective that considers all of the pieces and their interactions in the large, with respect
to the necessary requirements. Such a perspective should include (for example) the ability to have
an overall conceptual understanding of all relevant requirements and how they relate to particular
operational needs; an overall view of the entire development process and how it demands the ability
to carry out cyclical iterations; and an overall view of any particular system-network architecture
as representing a single virtual system in the large as well as being a composition of systems with

118 CHAPTER 7. PRACTICAL CONSIDERATIONS

predictable properties relating to their interconnections and interoperability. The challenge from
the perspective of composability is then to understand the big picture as well as to understand the
components and their interrelationships, and to be able to reason from the small to the large — and
from the large to the small. Purely top-down developments are typically limited by inadequate an-
ticipation of the underlying mechanisms, and purely bottom-up developments are typically limited
by inadequate anticipation of the big picture.

There are many would-be short-term “solutions” that emergein part from the lack of big-picture
understanding, but that then take on lives of their own. For example, trusted guards, firewalls, virus
checkers, spam filters, and cryptography all have benefits, but also have many problems (some
intrinsic, some operational).� Trusted guards (e.g., dirty-word filters or sensitive content checkers based on key words or

security labels) represent a simple strategy for controlling undesired dissemination of docu-
ments. However, they tend to be overly simplistic, and oftencan be fooled into violating their
own desired policies.� Firewalls could be more effective if they were not configuredto pass many types of executable
content, such as ActiveX and JavaScript. However, many users want those features enabled,
thus opening up some serious security holes.� Viruses, worms, and other active content would be much less harmful in a well-architected
environment that could confine executable content to a so-called sandbox in which it remains
harmless (as can be accomplished in a domain-based or layered architecture or in a restricted
virtual machine). Instead, vendors attempt to keep rule-based malware detectors up to date to
recognize continual streams of new attacks and new attack types, which somehow seems to
be the wrong battle to be fighting. Incidentally, to date, viruses and worms have been rather
benign, considering the full potentials of really malicious code. Much more serious malware
including insider-planted Trojan horses is lurking.� Spam filters are also a potentially losing battle, as the spammers seem very adept at adapting
to whatever defenses they encounter — new rules, Bayesian detectors, even certain simple
challenge-response techniques. Legislation seems too simplistic to make real inroads against
them, and may simply drive the spammers offshore. Major changes may be required — for
example, to Internet-connected systems and to network architectures and protocols, facilitat-
ing traceback and accountability, as well as possibly to whopays for what services. (One
possible alternative that may be of possible interest is Tripoli [376] — a user-Empowered E-
Mail Environment, or Triple-E — which gives end users control over security, privacy, sender
authentication, and spam defenses.)� Cryptography is absolutely fundamental to the design and implementation of trustworthy dis-
tributed systems and networks. However, its effectivenesscan be compromised by being
poorly implemented or poorly embedded in a vulnerable environment (e.g., improperly en-
capsulated hardware or a flawed operating system), vulnerable to out-of band attacks (e.g.,
electromagnetic sensors, acoustic sensors [21, 349], differential power analysis [192, 193],
light [13], and noise insertion [54]), or simply poorly used. (A DES crypto product consid-
ered over a decade ago comes to mind in which a pass-phrase wasintended to generate a

7.4. THE DEVELOPMENT PROCESS 119

56-bit key, but actually seemed to yield about 9 bits of key strength. We hope it is no longer
on the market!)

The quote at the beginning of this section is symptomatic of the problem that the best cryptog-
raphy in the world can still be compromised if not properly embedded and properly used. This
entire section can be summed up by polymorphizing the quote at the beginning of this section,
as symptomatic of the risks of overly simplistic solutions:for many different instantiations ofX,
If you believe that X is the answer to your problems, then you don’t understand X and you don’t
understand your problems.

On the other hand, total systems awareness is a very rare phenomenon. It is not taught in most
universities. Perhaps systems are considered to be lackingin theory, or uninteresting, or unwieldy,
or dirty, or too difficult to teach, or perhaps just frustrating, or a combination of all of these and
other excuses. As a result, system-oriented perspectives are slow to find their way into practice.

As a historical note, Edsger Dijkstra provides an example ofa true pioneer who apparently lost
interest in trying to deal with the big picture. In his earlier years, he was particularly concerned
with the scalability of his elegant analytic methods to larger systems (for example, his work on
structured programming [107], CSP [105], and the THE system[106] noted in previous chapters).
Perhaps out of frustration that practitioners were not heeding his advice, he later became increas-
ingly focused only on very elegant small examples (cf. [121]), trying to teach his beliefs from
those examples in the hopes that others would try to extrapolate them to systems in the large. The
essential thrust of this report is that systems in the large can be effectively developed and analyzed
as compositions of smaller components, but only if you can see and comprehend the big picture.

One of the frequently heard arguments against spending moreeffort up front and optimizing
over a longer term relates to situations in which there has never previously been an attack of such
a magnitude that the need for extraordinary actions became totally obvious. This is the mental-
ity that suggests that because we have not had a Pearl-Harboror 9/11 equivalent in cybersecurity,
there is no real urgency to take proactive action against hypothetical possibilities. This mentality
is compounded by the use of statistical arguments that attempt to demonstrate that everything is
just fine. Unfortunately, events that seemingly might occurwith very low probabilities but with
extremely serious consequences tend to be very difficult to comprehend. In such cases, quantita-
tive risk assessments are particularly riskful, because ofthe uncertainty of the assumptions. For
example, see Neumann’sComputer-Related Risksbook [260]. The entire book suggests a much
greater need for realistic risk assessments and corresponding proactive actions. More specifically,
pages 255–257 of the book provide a discussion of the risks ofrisk analysis (contributed by Robert
N. Charette), and pages 257–259 consider the importance of considering risks in the large.

7.4 The Development Process

I would not give a fig for the simplicity this side of complexity, but I would give my life
for the simplicity on the other side of complexity.Oliver Wendell Holmes

Returning once again to the Einstein quote at the beginning of Section 2.1, we note that the
common tendency to oversimplify complex entities is perverse and usually counterproductive. The

120 CHAPTER 7. PRACTICAL CONSIDERATIONS

ability to clearly represent complexity in a simpler way is an art form, and usually very instructive
— but difficult to achieve.

This section considers perceived and real difficulties withtrying to use the concepts of the
previous chapters, relating to requirements, architectures, and implementation. It suggests how
the development process can be made much more effective, andhow it can give the appearance of
local simplicity while dealing with complexity more globally.

7.4.1 Disciplined Requirements

Well-understood and well-defined requirements are absolutely vital to any system development,
and most particularly to those systems that must satisfy critical requirements such as security, reli-
ability, safety, and survivability. They are also useful inevaluating the effects of would-be subse-
quent changes. Unfortunately, such requirements are seldom precisely defineda priori. Even more
difficult are somewhat more subtle requirements, such as pervasive ease of use, interoperability,
maintainability, and long-term evolvability — of the requirements as well as of the architectures
and implementations. Jim Horning suggests that evolvability is to requirements as specification is
to code, although at a higher level of abstraction. That is, if you don’t delineate the space of possi-
ble future changes to requirements, you are likely to wind upwith requirements that are as difficult
to evolve as is code for which there are no specifications or specifications that do not anticipate
change. However, well-understood and well-defined requirements are not common.

Even less common are explicit requirements for required software engineering sophistication,
operational constraints, and specified assurance (such as the EAL levels of the Common Criteria).
Requirements engineering should play a more prominent rolein computer system development,
which would necessarily entail adding discipline to both the process of defining requirements and
to the statement of requirements themselves.

For example, the archives of the Risks Forum are littered with cases attributable to requirements
problems that propagated throughout the development process into operational use. (See partic-
ularly the items denoted by the descriptorr in the Illustrative Risks compendium index [267].
Noteworthy examples include the Vincennes Aegis system shootdown of an Iranian Airbus, the
Patriot missile clock-drift problem, and even the YorktownAegis missile cruiser dead in the water.
See Section 6.9 for these and other cases.) Many lessons needto be learned from those cases. It is
generally agreed that efforts to define and systematically enforce meaningful requirements early in
system developments can have enormous practical payoffs; however, there seems to be enormous
resistance to carrying that out in practice, because it increases up-front costs and requires greater
understanding (as noted in Section 7.1).

7.4.2 Disciplined Architectures

The material in the foregoing chapters is basic to sound system architectures for trustworthy sys-
tems and their implementation. As a reminder of what we have thus far, Section 2.6 summarizes
some of the primary caveats that must be observed in applyingthe principles of Chapter 2; these
principles are not absolute, and must be used intelligently. Chapter 3 discusses constraints on sub-
systems and other components that can enhance composability, with Section 3.2 outlining obstacles
that must be avoided. Chapter 4 considers further directions that can contribute to principled com-

7.4. THE DEVELOPMENT PROCESS 121

posable architectures. Chapter 5 stresses the importance of interface design. Chapter 6 discusses
techniques for achieving higher assurance.

In this section we consider how to apply the approaches of theprevious chapters into architec-
tures that are inherently more likely to lead to trustworthyimplementations. For example, realistic
architectures should proactively avoid many problems suchas the following:� Risks of architectural oversimplification, such as systemswhose requirements are seriously

incomplete, systems that are implemented without a sensible architecture, operating systems
that do not adequately react to hardware failure modes or that do not properly embed cryp-
tography (whether implemented in hardware or in software),application software that does
not properly encapsulate the operating system, systems andnetworking that ignore reliability
and denial of service attacks, and so on.� Risks of architectural overcomplexification, such as the immense bloatware common in vari-
ous mass-market software products, the excessive interdependence and lack of encapsulation
among different components.� Risks of commonly observed flaws (for example, affecting security and reliability), malicious
code, and so on.� Popular but often mistaken beliefs, such as the belief that principles, hierarchical structures,
modularity, encapsulation, and so on, are inherently inefficient or unworkable. (Constructive
approaches are considered in Section 4.3.)� Perceived and real problems with structural decompositionand composition, such as risks of
modularization, overmodularization, modularity withoutencapsulation, modularity without
separation of concerns, prematurely frozen modularity, and so on. As noted in Section 3.3,
increased trustworthiness can result from stark subsetting, which can be achieved through
composition rather than through efforts to decompose poorly designed systems or to use only
restricted subsets of poorly conceived system interfaces.Well-defined component interfaces
and clean encapsulation can contribute to increased trustworthiness.

Topics whose consideration might make critical system developments more realistic include the
following.� Emphasizing constructive architectures that are proactively designed to be better able to sat-

isfy the given requirements, such as discussed in Chapter 4.� Exploiting the potentials of architectural analysis tools, in early stages of development as well
as in response to subsequent design changes later in the development cycle. However, risks
of overendowing the soundness of such tools must be avoided.� Pursuing fully worked and carefully documented successfulexamples of the practical effects
of proactively sound architectures.

From a practical point of view, it may seem unrealistic to expect rigorous specifications —
especially formal specifications — to be used in developments that are not considered to have
critical requirements. However, even the informal English-language specification documents that

122 CHAPTER 7. PRACTICAL CONSIDERATIONS

were required in the Multics development (for example) had avery significant effect on the secu-
rity, reliability, modular interoperability, and maintainability of the software — and indeed on the
discipline of the implementation.

7.4.3 Disciplined Implementation

Technique is a means, not an end, but a means that is indispensable. Maurice Allard,
renowned French bassoonist in the Paris Opera from 1949–1983

The best architectures and the best system designs are of little value if they are not properly im-
plemented. Furthermore, properly implemented systems areof little value if they are not properly
administered. In each case, “proper” is a term that implies that the relevant requirements are satis-
fied. Thus, risks abound throughout development and operation. However, the notion of principled
composable architectures espoused here can contribute significantly to proper implementation and
administration. The notion of stark subsetting discussed in previous chapters can aid significantly
in simplifying implementation, configuration, and administration.

Many security flaws that typically arise in design and/or implementation (such as those enu-
merated in Section 2.4) lend themselves to exploitation. Indeed, each of the enumerated problem
areas tends to represent opportunities for design flaws and for implementation bugs (in hardware
just as well as software). Buffer overflows represent just one very common example. For some
additional background on buffer overflows and how to preventthem, see the discussion in the
Risks Forum, volume 21, numbers 83 through 86, culminating in Earl Boebert’s provocative con-
tributions in volume 21, numbers 87 and 89. Boebert refers toRichard Kain’s 1988 book on soft-
ware and hardware architecture [185], which provides considerable discussion of unconventional
system architectures for security — including the need for unconventional hardware platforms.
Furthermore, the Multics operating system architecture constructively avoided most stack buffer
overflows. The combination of hardware, the PL/I language subset, the language runtime environ-
ment, the stack discipline (nonexecutable stack frames; also, the stack grew to higher addresses,
making the overflow of a buffer unlikely to clobber the returnaddress in the stack frame), and
good software engineering discipline helped prevent most buffer overflows in Multics. (See Tom
Van Vleck’s comments in the Risks Forum, volume 23, issues 20and a follow-up in issue 22.)
For other background, see also Bass [31] for architecture generally, Gong [145, 146] for the Java
JDK architecture intended to provide secure virtual machines, and Neumann [264] for survivable
architectures.

Many implementation issues create serious problems. Establishing sensible policies and sound
configurations is an enormously complicated task, and the consequences to security, reliability,
functionality, and trustworthiness generally are very difficult to predict. We need better abstractions
to control and monitor these policies and configurations, and to understand them better.

Various popular myths need to be considered and debunked — for example, the fantasy that
a perfect programming language would be able to prevent security bugs. Another myth is that
precompile and postcompile tools can detect and remove manyclasses of bugs. In general, for
nontrivial programming languages, both of these myths can be true in principle only for certain
types of bugs, although even the best programmers still seemto be able to write buggy code.

7.5. DISCIPLINED OPERATIONAL PRACTICE 123

7.5 Disciplined Operational Practice

System programming is like mountain climbing: It’s not a good idea to react to surprises
by jumping — that might not improve the situation.Jim Morris

Principled composable architectures can contribute not only to trustworthy implementation (as
noted at the beginning of Section 7.4.3), but also to sound operational practice — particularly
if considerable attention is paid to system interface design that addresses the needs of system
administrators. However, for existing (e.g., legacy) systems that have resulted from inadequate
attention to human operational interfaces, other approaches must be taken — even if only better
education and training.

Operational issues represent enormous potential problems, such as considerable operational
costs, shortages of readily available in-house staff, risks of excessive complexity, poorly defined
human interfaces, and typically systems that require an ever-present demand for system adminis-
trators — especially in crisis situations. This last concern may be escalated by increasing pressures
to oursource operations and administration personnel.

One concept that in principle would greatly improve operational practice and operational assur-
ance would be the notion of automatic recovery, mentioned inSection 4.2. The ability to recover
from most deleterious state-altering events (whether malicious or accidental) without human in-
tervention would be an enormous benefit. Autorecovery requirements have serious implications
for system architectures, and would be greatly simplified bythe principle of minimizing the need
for trustworthiness. Assurance associated with that recovery (e.g., based on the soundness of the
architecture itself and on real-time revalidation of the soundness of the system state) would also be
valuable. However, making autonomic systems realistic will require further research and extremely
disciplined development.

7.5.1 Today’s Overreliance on Patch Management

Dilbert: We still have too many software faults. We’ll miss our ship date.
Pointy-Haired Manager:Move the list of faults to the “future development” column and
ship it.
PHM, aside:90% of this job is figuring out what to call stuff.
Scott Adams, three-panel Dilbert comic strip, 4 May 2004

Mass-market software as delivered in the past and in the present tends to have many flaws that
can compromise the trustworthiness of systems, networks, and applications. As a result, system
purveyors and system administrators are heavily dependenton patch management — that is, de-
velopers must continually identify vulnerabilities, create would-be fixes, test them, make those
fixes available, and hope that further flaws will not be created thereby. Operational installations
must install the patches in the correct order in a timely fashion, at the risk of breaking or otherwise
affecting existing applications.

Patch management is an example of a slippery-slope rathole.Systems should be designed
much more carefully and implemented with much greater care and attention to good software en-
gineering practice, easily usable operational and system administration interfaces, and composable
upgrade procedures that are integral to the architecture, applications, and user software. Better

124 CHAPTER 7. PRACTICAL CONSIDERATIONS

design and implementation must also be coupled with comprehensive testing, evaluations, and
other analyses such as advanced tools to detect serious vulnerabilities; developers should do this
before release, rather than simply foisting buggy softwareon unsuspecting customers who be-
come the Beta testers. However, in the commercial rush to marketplace, essentially none of this
happens. Thus, pouring palliative efforts into improving patch management completely misses
the much more fundamental point that patches should ideallybe minimized through better design
and implementation, so that they become rare exceptions rather than frequent necessities. Putting
the burden on patch management is somewhat akin to believingin better management of fixed
reusable passwords — that merely increasing password length, including nonalphabetic charac-
ters, and changing passwords often will improve authentication; such simplistic approaches totally
ignore the risks of fixed passwords that transit networks unencrypted or are otherwise exposed
and the risks of exploitable vulnerabilities in systems that allow the password system to be com-
pletely bypassed. A better solution for authentication is of coursenot to rely onconventional fixed
passwords as the primary means of authentication, and instead to move to trustworthy systems
and trustworthy networking, cryptographically protectedtokens or smartcards within the context
of trustworthy systems, combined with layered protection,separation of privileges, and judicious
observance of the applicable principles noted in Chapter 2,plus a much greater commitment to
better system security and reliability throughout development and operation.� One problem with many patches is that they require shutting down some services (or, indeed,

rebooting the entire machine) for a noticeable period of time. This is not always acceptable,
as in a hospital’s telephone system and operational support. There are ways of engineering
around this problem, but they tend to require enlightened system architectures, and hence are
rarely developed — and even more rarely deployed.� Patches are often faulty, and tend to break other functionality for some users. Research exists
on how long you should wait before installing a patch, to enable other people test it for you
before you have to, but the assumptions are often suspect. Inthe absence of an imminent
threat, it may be wiser to wait — assuming that the experiences of others are available to you.� No matter how wonderful an automated patch management system might seem, 100% de-
ployment is very unlikely. Anticipating all sorts of patch problems rapidly leads to a com-
binatorial explosion of various multiple patches installed in the field, and makes testing the
next patch and its interactions with previous patches nearly impossible. Besides, automated
remote patching is extremely riskful.

Although it may be necessary evil, dependence on patch management as a major component of
security defenses seems too much like micromanaging the rearranging of deckchairs on the Titanic.
The barn door is already wide open, and the barn is empty of more fundamental ideas. See [375]
for another view of patch management.

7.5.2 Architecturally Motivated System Administration

Clearly alternative approaches are needed that simplify system administration and minimize the
downsides of patch management. Perhaps we need not just better software engineering in gen-
eral, but also a methodology that encompasses “design for patching” when “design for avoiding

7.6. PRACTICAL PRIORITIES FOR PERSPICUITY 125

patches” fails — just as hardware vendors have moved to “design for test” and “design for verifica-
tion” methodologies. Design for patching should encompasssystem architecture (e.g., modularity
and encapsulation) as well as operational characteristics(e.g., bilateral trusted paths for upgrades).
Inherently sound architectures can minimize the need for patching — as for example in carefully
designed autonomic systems and fault-tolerant systems that anticipate the need for rollback, hot
standbys, or other alternative measures in response to detected anomalies. Greater attention to the
human interfaces (see Chapter 5 and the next section) is alsoessential.

According to some reports, patch management is on the order of a $5-billion dollar problem
per year. It is probably responsible for much more than that if hidden costs are included, such
as down-time and lost work resulting from failed patches. Jim Horning notes that all automobile
drivers once had to know how to patch an inner tube (or at leasthow to change a tire to drive
someplace and get one patched). Today inner tubes are gone, and we go years between flat tires.
That seems preferable to a highly efficient patching system.

7.6 Practical Priorities for Perspicuity

Returning to the notion of perspicuous interfaces considered in Chapter 5, this section considers
some of the practical issues relating to interface design. Given the range of material addressed
in this report, one important question that remains to be addressed is this: Where are the biggest
potential payoffs, and what priorities should be allocatedto possible future efforts, with respect to
dramatically increasing the understandability of systemsand their interfaces — especially under
crisis conditions. The same question also applies to subsystem interfaces that may be invisible to
end users but vital to application developers, integrators, and debuggers. It is important to note that
good interface design is essential not only to human users, but also internally to systems themselves
— especially autonomic systems.

One of the most important challenges relates to the roles that administrators play in configuring
and maintaining operating systems, application software,networks, control systems, and so on.
Even with the hoped-for advent of autonomic systems and networks, significant burdens will rest
on admins when something fails or is under attack. Thus, perspicuity for admins must be a high-
priority concern. This concern must be twofold: (1) System interfaces must be better designed with
admins in mind. (2) Analysis tools must greatly facilitate the critical roles of admins. The potential
payoffs for better perspicuity for admins are enormous, in terms of reducing operational costs,
increasing speed of remediation, minimizing dependence oncritical human resources, increasing
job satisfaction, and — above all — improving system security and survivability.

A second challenge has to do with dealing with legacy systemsthat were not designed with ad-
equate security, reliability, robustness, and interface perspicuity, and that therefore cannot be easily
retrofitted with such facilities. This is an unfortunate consequence of many factors, including the
inability of the marketplace to drive needed progress, generally suboptimal software development
practices, and constraints inherent in closed-source proprietary software — such as a desire on
the part of system developers to keep internal interfaces hidden and making it more difficult for
competitors to build compatible applications. In this situation, much more perceptive analysis
methods and tools are needed, although those tools would be applicable to closed-source as well
as source-available software. To the extent that analysis tools can be applied to available source

126 CHAPTER 7. PRACTICAL CONSIDERATIONS

code (whether proprietary or not) rather than object code, the more effective they are likely to be.
A third challenge is that, whichever approaches are taken, they must include criteria and tech-

niques for measuring and evaluating their effectiveness. This again suggests the need for better
analysis methods, but in the long run also necessitates system developments that anticipate the
needs of improved measurability of success.

Thus, our suggestions for realistic priorities are as follows, in several dimensions:

Prioritized Approaches for Achieving Greater Perspicuity

1. A combination of constructive interface design and analysis tools for newly developed soft-
ware, recognizing a leverage advantage for available source code (the most effective alterna-
tive)

2. Analysis tools that rely on system source code to enhance interface perspicuity for legacy
systems, but not on any substantially new or modified interfaces (an intermediate alternative)

3. Analysis tools that are restricted to see only object codeto enhance interface perspicuity (a
less desirable and often less effective alternative, although possibly useful when source code
is not available)

Prioritized Human Targets for Enhanced Perspicuity

1. System developers, debuggers, and integrators (with highest payoff)

2. System administrators (with very high payoff)

3. Conventional application developers (with very high payoff) and users (with considerable
payoff)

Potential System Targets for Enhancing Perspicuity

1. Linux or one of the BSD operating systems (attractive because of availability of source code)

2. TCP/IP related behavior (complex, but potentially very useful)

3. A realistic multilevel security system (less accessible, but with considerable potential use)

7.7 Assurance Throughout Development

The whole is greater than the sum of its parts.This can be true particularly in the
presence of effort devoted to sensible architectures, interface design, principled devel-
opment, pervasive attention to assurance, and generally wise adherence to the contents
of this report. In this case, emergent properties tend to be positive, providing evidence
of trustworthiness.

The whole is significantly less than the sum of its parts.This can be true whenever there
is inadequate attention devoted to architecture, interface design, principled development,
assurance, or foresight — for example, resulting in seriousintegration difficulties and the
lack of interoperability, delays, cost overruns, design flaws, implementation bugs, overly

7.7. ASSURANCE THROUGHOUT DEVELOPMENT 127

complex operations, deadly embraces, race conditions, hazards, inadequate security and
reliability, and so on. In this case, emergent properties tend to be negative, providing
evidence of untrustworthiness.

This section reassesses the approaches of Chapter 6 with respect to the practical thrust of the
present chapter. In particular, Section 7.7.1 considers assurance related to the establishment and
analysis of requirements. Section 7.7.2 reconsiders assurance related to system development, for
example, potentially fruitful techniques for assuring theconsistency of software and hardware with
their respective specifications (Section 6.5). Section 7.8then considers the practicality of assurance
techniques applied to operational practice.

7.7.1 Disciplined Analysis of Requirements

It is a common misconception that establishing requirements carefully is generally not worth the
effort. Nevertheless, further evidence would be useful in dispelling that myth, especially concern-
ing formal requirements and formal analyses thereof, and particularly in cases of critical systems
and outsourcing/offshoring of software development (see Section 7.10.2).

From a practical point of view, it is immediately obvious that the disciplined use of formal or
semiformal analysis methods and supporting tools would have a significant up-front effect that
would greatly reduce the subsequent costs of software development, debugging, integration, and
continual upgrades. There is a slowly growing literature ofsuch approaches, although there are
still relatively few demonstrated successes. One example is provided by the use of formal methods
for NASA Space Shuttle requirements [109] — where the mission is critical and the implications
of failure are considerable.

7.7.2 Disciplined Analysis of Design and Implementation

Existing analysis techniques and supporting tools for system architectures and for software and
hardware implementations tend to be fairly narrowly focused on specific attributes, certain types of
design flaws, and specific classes of source-code and object-code bugs (the U.C. Berkeley MOPS
analyzer,purify, trace tools, debuggers), security vulnerabilities (e.g.,attack graph analysis
using symbolic model checking [180, 352]), and hardware mask layout properties. Most of these
approaches are limited to static analysis — although they may sometimes be helpful in understand-
ing dynamic problems.

One of the most important problems raised in this report is the ability to determine analytically
the extent to which systems, modules, and other components can be composed — that is, identi-
fying all possible deleterious interactions. As discussedin Section 6.2, providing a set of analytic
tools to support the practical analysis of the composability of requirements, specifications, pro-
tocols, and subsystems would be extremely valuable. For example, analysis should consider the
interference effects of improper compositions, or else demonstrate the invariance of basic proper-
ties and the appropriateness of emergent properties under composition.

Static checking tools along the lines oflint, splint, ESC, Aspect, Alloy [173]
(and, in general, what are referred to as “80/20 verifiers”) can be extremely helpful. However,
their infallibility and completeness should never be overendowed. Although all low-hanging fruit
should certainly be harvested, what is harder to reach may have even more devastating effects.

128 CHAPTER 7. PRACTICAL CONSIDERATIONS

A set of tools for the analysis of safety specifications [311]has been sponsored by NASA
Langley, and is also worth considering — not only for safety,but for its potential application to
other elements of trustworthiness.

7.8 Assurance in Operational Practice

Operational practice — for example, system administration, routine maintenance, and long-term
system evolution — represents an area in which assurance techniques have not been used much in
the past. There are various approaches that might be taken, some fairly ad hoc, and some formally
based.� Configuration management and configuration analysis tools.Configuration management

and network management could both benefit greatly by the introduction of some assurance-
enhancing methodologies and supporting tools — for example, assessing the consistency and
the compliance with requirements for each configuration change, issuing warnings for poten-
tially riskful changes, requiring confirmation for those changes, and tracking the historical
record of all configuration-related actions. COPS and SATANare examples of existing static
analysis tools for detecting system and network configuration errors or suspicious irregulari-
ties.� Anomaly/misuse detection and automated responses.Some of the research-oriented anomaly
and misuse analysis systems are fairly effective at detecting potential misuse, although the
false-positive and false-negative measures vary widely according to the desired application.
However, there has been relatively little effort on understanding the meaning of the detected
events and the actual intent of attackers. (For an example ofa recent project on determining
attacker intent, see [305] — which provides an additional analysis capability within SRI’s
EMERALD.) Furthermore, there has been relatively little serious work on intelligent near-
real-time responses, particularly under emergency conditions and after detected anomalies.
The risks of underreacting and overreacting are both important concerns. Although the po-
tential benefits of intelligent response systems would be considerable, the effectiveness of
such systems will depend heavily on the range of approaches discussed here for construc-
tive system development and suitable analysis aimed at perspicuous interfaces. As a caution,
iatrogenic reactions in response to would-be cures (wherein the remedy is worse than the
disease) are often symptomatic of such problems.� Automated recovery from outages.We note in Section 7.4.3 the desirability of the ability to
recover from a wide variety of deleterious state-changing events, without human intervention
except in the most difficult cases. There are numerous opportunities for assurance techniques
associated with revalidation of the forward- or backward-recovery state. Any such mecha-
nisms should also be coupled with the configuration management assurance. Effective hierar-
chical recovery strategies may be particularly important,as recommended to (D)ARPA [270]
in 1973, in the context of fault-tolerant systems.� Incremental-closure analysis of would-be actions.Every operational change has the po-
tential to invalidate earlier analyses based on the previous software and the previous system

7.9. CERTIFICATION 129

configurations; ideally each change should result in reevaluation of the new configurations.
Determination of the scope of what has changed and the minimum extent to which reevalu-
ation must be done would be extraordinarily helpful in narrowing down the resulting analy-
sis. (This approach also can apply to all changes throughoutthe development cycle, where
a change to requirements typically results in the invalidation of certain specifications, and
where a change to specifications typically invalidates certain software.)� Secrecy and privacy violations. Privacy problems also need to be considered, precisely
because they are so often ignored in analysis environments in which access to potentially
sensitive state information is required. For example, the dynamic implications of who is ac-
cessing which data and which state information, and under what circumstances, has important
privacy implications that could benefit from carefully controlled real-time analysis. Analyses
of broken systems can often reveal sensitive information.

In addition, there are also many system architectural concepts that can contribute to assurance
aspects of operations.

Significant effort is needed to harness existing analysis tools and to pursue new analysis tech-
niques and tools, to accommodate dynamic understandability of systems in execution. For exam-
ple, such effort would be valuable in responding to anomalous real-time system behavior and to
evaluate the would-be effects of possible system changes, particularly regarding flawed systems
and complications in operation and administration.

Configuring security policies into applicable mechanisms is a particularly important problem.
To this end, Deborah Shands et al. are developing the SPiCE translation system[350] at McAfee
Research. SPiCE automatically translates high-level access policies to configurations of low-level
enforcers,

7.9 Certification

Cer.ti.tude: the state of being or feeling certain;
Rec.ti.tude: correctness of judgment or procedure
(Abstracted from Webster’s International Dictionary)

Certification is generally considered as the process of applying a kind of blessing to a system
or application, implying some kind of seal of approval. The meaning of that certification varies
wildly from one environment to another, as noted in the following two paragraphs (which are
adapted from [262], along with the definitions noted above).

There is a fundamental difference between certification (which is intended to give you thefeel-
ing that someone or something is doing the right thing) and trustworthiness (for which you would
need to have somewell-founded reasons for trustingthat someone or something is doing the right
thing — always interpreted with respect to appropriate definitions of what is right). Certification
is typically nowhere near enough; an estimate of trustworthiness is somewhat closer to what is
needed, although ideal trustworthiness is generally unattainable in the large — that is, with respect
to the entire system in operation. Formal demonstrations that something is consistent with expec-
tations are potentially much more valuable than loosely based certification. (Recall the discussion
of consistency versus correctness in Section 6.2.) So, a challenge confronting us here is to endow

130 CHAPTER 7. PRACTICAL CONSIDERATIONS

the process and the meaning of certification — of systems and possibly of people (see below) —
with a greater sense of rigor and credibility.

Numerous system failures (e.g., [260]) demonstrate the vital importance of people. Many cases
are clearly attributable to human shortsightedness, incompetence, ignorance, carelessness, or other
foibles. Ironically, accidents resulting from badly designed human interfaces are often blamed on
operators (e.g., pilots, system administrators, and users) rather than developers. Unfortunately,
software engineeringas practiced in much of the world is merely a buzzword rather than an engi-
neering profession [288, 289]. This is particularly painful with respect to systems with life-critical,
mission-critical, or otherwise stringent requirements. Consequently, some of the alternatives dis-
cussed in this report deserve extensive exploration, such as these:� Principled development practice, enforceable requirements, and sensible system architectures

are all valuable. Their principled use should earn insurance discounts, contractual bonuses
for on-time and under-budget delivery as well as satisfactory attainment of requirements,
and perhaps even legal relief from certain aspects of liability (although this is not generally
recommended). Bad development practice (including low bidders taking unwise shortcuts
and risks) must not be condoned, and should somehow be strongly disincentivized.� Critical systems should be developed by persons and companies with commensurate educa-
tion, training, and experience.

Software certification is a slippery slope that can raise false hopes. However, its usefulness
can be greatly enhanced somewhat if all of the following are present: (a) well-defined detailed re-
quirements; (b) architectures that anticipate the full setof requirements and that can be predictably
composed out of well-conceived subsystems; (c) highly principled development techniques, in-
cluding good software engineering disciplines, serious observance of important principles such
as layered abstraction with encapsulation, least privilege, defensive analytic tools, and so on; (d)
judiciously applied assurance measures, pervasively invoked throughout development and evolu-
tion, including formal methods where applicable and effective; (e) meaningful evaluations such as
consistency between specifications and requirements, consistency between software and specifica-
tions, and dynamic operational sanity checks. In this way, certification might have some real value.
However, in practice, certification is far short of implyingtrustworthiness.

One horrible example of the inadequacy of certification in practice is provided by the currently
marketed fully electronic voting machines without a voter-verified audit trail (for example, a pa-
per record of the ballot choices, which remains within the system and is not kept by the voter);
all of today’s all-electronic paperless voting machines lack any meaningful trustworthiness with
respect to system integrity, accountability, auditability, or assurance that your vote goes in cor-
rectly. These proprietary closed-source systems are certified against very weak voluntary criteria
by a closed process that is funded by the developers. In addition, recent disclosures demonstrate
that software used in the 2002 and 2003 elections was not the software that was certified; in many
cases, potentially significant changes were introducedsubsequent to certification.

However, simplistic strategies for institutional certification (such as the Capability Maturity
Model) and personnel certification (such as the Certified Information Systems Security Profes-
sional — CISSP — examination and personal designation) are also slippery slopes. Reviews by
Rob Slade of numerous books on the limitations of the CISSP exam can be found in the Risks Fo-
rum athttp://www.risks.org; for example, see volume 21, issues 79 and 90, and volume 22, issues

7.10. MANAGEMENT PRACTICE 131

08, 10, 36, 49, and 57 (the last of these covering four different books!). (Note: The Risks Forum
moderator stopped running Slade’s reviews on this subject after all of the above-mentioned books
seemed to have similar flaws reflecting difficulties inherentin the CISSP process itself; there are
many other books on CISSP than these.)

Although there is some merit in raising the bar, unmitigatedbelief in these simplistic approaches
is likely to induce a false sense of security — particularly in the absence of principled development
and operation. In the case of the CMM, the highest-rated institutions can still develop very bad
systems. In the case of the CISSP, the most experienced programmers can write bad code, and
sometimes the least experienced programmers can write goodcode.

7.10 Management Practice

7.10.1 Leadership Issues

Some of the biggest practical problems relate to the role of Corporate Information Officers (CIOs)
in corporate institutions, and their equivalents in government institutions. (Note: There is still no
Federal CIO for the U.S. Government, which is increasingly causing certain problems.)

CIOs are generally business driven, wherein cost is often considered to represent the primary,
secondary, and tertiary motivating forces. The advice of Corporate Technical Officers (CTOs) is
often considered as close to irrelevant. The business issues generally motivate everything, and may
override sound technological arguments. This has some unfortunate effects on the development and
procurement of trustworthy systems and networks, which tend to be reinforced by short-sighted
optimation and bottom-up implementations.

7.10.2 Pros and Cons of Outsourcing

Outsourcing is a real double-edged sword, with many benefitsand risks, and with many problems
that result from trying to optimize costs and productivity —both in the short term and in the
long term (e.g., as suggested by the last paragraph of Section 7.2). It is seemingly particularly
cost-advantageous where cheaper labor can be effectively employed without adverse consequences
— for example, for software development, hardware fabrication, operations and administration,
maintenance, documentation, business process work, and other labor-intensive services (such as
call centers). However, there are many hidden costs; indeed, several recent studies suggest that the
case for overall cost savings is much less clear-cut. Furthermore, other considerations may also be
important, such as the ability to innovate compatibly, integrated workforce development, planning,
coordination, intellectual property, security, and privacy. These tend to be less tangible and less
easily represented in cost metrics.

From the perspective of a would-be controlling enterprise,we consider two orthogonal dimen-
sions that relate to the extent ofoutsourcingandoffshoring.Outsourcing typically involves con-
tracts, subcontracts, or other forms of agreements for workperformed by entities outside of the
immediate controlling enterprise. Offshoring involves some degree of work performed by nondo-
mestic organizational entities such as foreign subsidiaries, foreign companies, or foreign individ-
uals. Thus, we can have widely varying degrees of both outsourcing and offshoring, with a wide
range of hybrid strategies. The situation is simplified hereby considering four basic cases:

132 CHAPTER 7. PRACTICAL CONSIDERATIONS� DI: Domestic in-house control (wholly internal)� DO: Domestic outsourcing (on-shore outsourcing)� FI: Foreign subsidiaries (e.g., wholly owned; in-house offshoring)� FO: Foreign outsourcing (offshore outsourcing)

Table 7.1 outlines some of the issues that arise in each of these four cases. The left half of the table
representsIn-house top-level control (I), and the right half represents some degree ofOutsourcing
(O). The upper half of the table represents whollyDomestic efforts (D), and the lower half involves
some degree ofForeign offshoring (F).

The pros and cons summarized in the table are intended to be suggestive of concerns that should
be raised before engaging in outsourcing and/or offshoring, rather than being dichotomous black-
and-white alternatives. Indeed, the pros and cons for all quadrants other than the upper left tend to
vary depending on the degree of outsourcing and/or offshoring, as well as such factors as relative
physical locations, ease of communications, language barriers, standard-of-living differentials, job
marketplaces, government regulation, and so on. Even the upper-left quadrant has variations that
depend on management strength, centralization versus distributed control, employee abilities, and
so on.

Several conclusions are suggested by the table.� When considering outsourcing and/or offshoring of any normally in-house, hands-on, or
up-front activities (and especially those that require close attention and possible substan-
tive changes during development or subsequent use and evolution), beware of situations in
which requirements, business models, and management plansare incompletely defined and
inadequately specified.� Beware of security and privacy problems resulting from offshoring, including Trojan horses,
system integrity, accountability, and so on. Many of these problems typically remain hidden
until much later.� Beware of situations in which contractor or subcontractor discipline would be essential but
difficult to ensure.� Beware of weak links in chains of command. These are particularly riskful in outsourced
and/or offshored efforts.� Disciplined development and all of the other concepts discussed in this report remain vital
irrespective of which quadrant of the table applies. Each quadrant has its own particular
pitfalls.� Serious attention needs to be devoted to better management of risks associated with outsourc-
ing and offshoring. For example, see [369], which also examines a broad range of problems
associated with defense acquisitions (which are themselves a serious source of risks).

7.10. MANAGEMENT PRACTICE 133

Table 7.1: Pros and Cons of Outsourcing

DI: Domestic In-House Control DO: Domestic Outsourcing
Pros: Pros:
Closer access to business knowledgeResource balancing
Tighter reins on intellectual propertyPotential cost savings,
Tighter control of employees and particularly for labor
development efforts Offloading less desirable jobs
Cons: Cons:
U.S. education often inadequate Loss of business sense
for system engineering, security, Increased burden on contracting
reliability, and trustworthiness Potential loss of control
Bad Government records Bad records in managing
in managing developments contracted procurements
(Large corporations are sometimes Possible hidden offshore subcontracts
not much better!) (as in the ATC Y2K remediation)

Greater security/privacy concerns
FI: Foreign Subsidiaries FO: Foreign (Offshore) Outsourcing
Pros: Pros:
Potential cost savings (esp. labor) Potential cost savings (esp. labor),
In-house control largely retained at least in the short term
Resource/labor balancing Resource/labor balancing
Choices exist for well-educated Potential pockets of good education
and disciplined labor. and disciplined labor in some cases
Up-front emphasis on requirements/Up-front emphasis on requirements/
specs can increase product quality. specs can increase product quality.
Cons: Cons:
Some loss of direct control Considerable loss of direct control
More difficult to change Even more difficult to change
requirements/specs/code/operationsrequirements/specs/code/operations
More risks of Trojan horses Greater risks of Trojan horses
Possible language problems Possibly severer language problems
Hidden long-term costs Possibly more hidden long-term costs
Domestic job losses Domestic job losses
Loss of GNP and tax revenues Loss of GNP and tax revenues
Foreign laws generally apply, Foreign laws may cause conflicts with
in addition to domestic laws. domestic laws.
Potential political risks Greater potential political risks
Privacy problems and other risks More privacy problems and other risks
Risks of hidden subcontracts Further loss of control of subcontracts
Some intellectual property concernsIntellectual property control degradation

Hidden indirected (nth-party) outsourcing

134 CHAPTER 7. PRACTICAL CONSIDERATIONS

7.11 A Forward-Looking Retrospective

Pandora’s cat is out of the barn, and the genie won’t go back inthe closet.
Peter G. Neumann

In the same way in which the quote at the beginning of Section 7.3 can be parameterized to apply
to many narrow would-be “solutions” for complex problems, the above polymorphic Pandoran
multiply-mixed metaphor can be variously applied to cryptography, export controls, viruses, spam,
terrorism, outsourcing, and many other issues.

Over the past forty years, many important research and development results have been specif-
ically aimed at achieving trustworthy systems and networks. However, from the perspective of
applications and enterprises in need of high trustworthiness, those results have mostly not been
finding their way into commercial developments. Reasons given variously include increased de-
velopment costs, longer delays in development, extreme complexity of adding significant levels of
assurance, lack of customer interest, and so on. Perhaps even more important are factors such as
the inadequacy of educational curricula and training programs that minimize or ignore altogether
such issues as highly principled system engineering and system development, software engineer-
ing, system architecture, security, reliability, safety,survivability, formal methods, and so on. A
lack of knowledge and experience among educators fosters a similar lack in their students, and is
particularly riskful when also found among managers, contracting agents, legislators, and system
developers. Perhaps the most important challenge raised bythis report is finding ways of bringing
the concepts discussed here realistically and practicallyinto mainstream developments.

A strong sense of history is not inconsequential, particularly in understanding how badly com-
puter software development has slid down a slippery slope away from perspicuity. Much of the
work done in the 1960s to 1980s still has great relevance today, although that work is largely
ignored by commercial developments and by quite a few contemporary researchers.� Christopher Strachey’s Axiom on Prognostication:“It is impossible to foresee the conse-

quences of being clever.” As a consequence, it is very difficult to identify the great technolo-
gies of the future and pursue them aggressively ahead of their time.� Myth. There is a popular myth to the effect that if a particular technology fails to make it
in the real world for more than a decade or two, then it is probably not worth remembering:
“Let others advocate it.”� History. Success in picking great technologies of the future requires avoiding the research
and development “square wheels” of the past. Ignorance of the past invites repeating the same
mistakes over and over. Awareness of past innovations and lessons learned therefrom can be
very productive. Reflection on much of the work from those decades can provide considerable
insight as to pervasive obstacles experienced today and howthey might be avoided.

Hence, we conclude that awareness of much of the work done in the 1960s to 1980s related to
trustworthiness is potentially useful today.

Voltaire ’s famous quotation (seeDictionaire Philosophique: Art Dramatique), “Le mieux est
l’ennemi du bien.” is customarily translated as “The best isthe enemy of the good.” (However, the
French language usesmieuxfor both of the corresponding English words,bestandbetter; thus,

7.11. A FORWARD-LOOKING RETROSPECTIVE 135

in a choice between just two alternatives, a correct Englishtranslation might be “The better is
the enemy of the good.”) This quotation is often popularly cited as a justification for avoiding
attempts to create trustworthy systems. However, that reasoning seems to represent another nasty
slippery slope. Whenever what is accepted asmerely goodis in reality not good enough,the
situation may be untenable. Realistically speaking, the best we can do is seldom ever close to
the theoretical best. Perfect security and perfect reliability are inherently unattainable in the real
world, although they can occasionally be postulated in the abstract under very tightly constrained
environments in which all possible threats can be completely enumerated and prevented (which
is almost always unrealistic), or else simply assumed out ofexistence (as in supposedly perfect
cryptographic solutions that are implemented on top of an unsecure operating system, through
which the integrity of those solutions can be completely compromised from below). Thus, we
come full circle back to the definition of trustworthiness inthe abstract at the beginning of this
report. In critical applications, the generally accepted “good” may well be nowhere good enough,
and “better” is certainly not the enemy. In this case of short-sighted thinking, we quote Walt
Kelley’s Pogo: “We have met the enemy, and he is us.”

The need for Information Assurance in the Global Information Grid (GIG) (noted at the end
of Section 7.1) — for example, see [52] — provides a fascinating example of an environment
with a very large collection of critical needs, and extremely difficult challenges for the long-term
development of an enormous extensively interoperable trustworthy network environment that far
transcends today’s Internet. Considerable effort remainsto flesh out the GIG requirements and
architectural concepts. The principled and disciplined approach of this report would seem to be
highly relevant to the GIG effort.

Chapter 8

Recommendations for the Future

The future isn’t what it used to be.Arthur Clarke

8.1 Introduction

In this chapter, we consider some potentially important areas for future research, development, and
system operation, with direct relevance to CHATS-like efforts, to DoD more broadly, and to various
information-system communities at large. The recommendations concern the critical needs for
high-assurance trustworthy systems, networks, and distributed application environments that can
be substantially more secure, more reliable, and more survivable than those that are commercially
available today or that are likely to become available in theforeseeable future (given the present
trajectories).

One of the biggest challenges results from the reality that the best R&D efforts have been
very slow to find their way into commercial practice and into production systems. Unfortunately,
corporate demands for short-term profits seem to have stifledprogress in trustworthiness, in favor
of rush-to-market featuritis. Furthermore, government incentives for commercial development
have been of limited help, although research funding has been a very important contributor to the
potential state of the art. We need to find ways to improve thatunfortunate history.

8.2 General R&D Recommendations

The whole of science is nothing more than the refinement of everyday thinking.Albert
Einstein,Ideas and Opinions,page 290

This section provides a collection of broad recommendations for future R&D applicable to the
development, operation, maintenance, and evolution of trustworthy systems and networks, relating
to composability, assurance, system architectures, software engineering practice, and metrics. It
also addresses the use of formal methods applicable to system and network architectures intended
to satisfy critical security requirements. These recommendations take an overall system approach,
and typically have both short-term and long-term manifestations. Each recommendation would
benefit considerably from observance of the previous chapters.

136

8.2. GENERAL R&D RECOMMENDATIONS 137� Principle-based system development and assurance.Many of the principles outlined in
Chapter 2 can contribute significantly to better systems andnetworks, with greatly enhanced
assurance. Although the Saltzer–Schroeder and related principles (including GASSP, Sec-
tion 2.3.4) are not primarily oriented toward assurance, their judicious use can contribute sig-
nificantly to fewer flaws and more trustworthy systems. With respect to future government-
funded R&D efforts and to commercial developments, it is vital that those efforts reflect a
more conscientious and pervasive awareness of these principles. Principled software engi-
neering needs to become more pervasively a part of research and development. (This also
suggests an urgent need for incorporating principled system development into mainstream
educational curricula, as discussed in the last bulleted item of Section 8.5.)� Pervasively Integrated Assurance (PIA).As noted in Section 6.2, it is clearly desirable in
the pursuit of trustworthy systems and networks that a wide range of formal and informal
assurance-related techniques become an integral part of the development cycle, and also are
persistently invoked during operation, maintenance, administration, and long-term evolution
— wherever beneficially applicable.� Requirements. Serious effort is needed to establish canonical sets of composable require-
ments for useful attributes. Requirement composability should be nonconflicting wherevever
possible, and explicitly identified where conflicting — for example, mutually exclusive or
otherwise interfering requirements. The requirements forsystems, subsystems, and networks
should be subsettable and parameterizable, allowing them to be used for different types of
applications, encompassing what is essential for security, reliability, survivability, real-time
performance, static and dynamic configuration control, andso on.� Properties, interrelationships, composability, and deleterious effects thereof.More em-
phasis should be devoted rather pervasively to carefully defining and assuring important prop-
erties (including, but by no means overly focused on, MLS where relevant) of subsystems,
systems, and networks (including distributed and networked systems, systems of systems, and
so on). Interrelations between security and other types of properties (such as fault tolerance,
real-time performance, and emergency overrides) are generally more difficult to handle, but
should also be represented. A system cannot be adequately trustworthy if its reliability is
in doubt; it also cannot be adequately trustworthy if its security properties can be compro-
mised by malfunctions or misuse by insiders and outsiders, or indeedmustbe operationally
compromisible under certain real-time emergencies such aslost passwords or crypto keys, or
emergency recovery without any assurance. Furthermore, where formal methods are used,
they should be composable and interoperable — for example, in the sense that techniques
for module specification, network protocols, and crypto should be able to be mixed together
compatibly. Greatly improved formal understanding of composition of subsystems is re-
quired, including compositions of horizontal abstractions as well as vertical abstractions —
and especially the vertical abstractions provided by the trustworthiness enhancement mecha-
nisms of Section 3.5. Increased understanding is also necessary with respect to the ways in
which subsystem properties can be preserved or transformedunder composition, involving
both horizontal abstraction and vertical abstraction.� Assumptions. More emphasis should be placed on making explicit all of the otherwise un-

138 CHAPTER 8. RECOMMENDATIONS FOR THE FUTURE

stated assumptions, functional dependencies, and property dependencies underlying any sys-
tem — and especially any of those to be formally specified and analyzed. Assumptions of
proper human behavior are typically much more important than is usually recognized, and
should be factored into the analysis of any critical system so that the dependencies on that
assumed behavior can show up as part of the reasoning process. Similarly, environmental as-
sumptions should be made explicit, and factored into certain analytic approaches so that the
external risks can also become explicitly manifest. Furthermore, just as Byzantine techniques
can be used to withstand the misbehavior of arbitrarily faulty components, so is it desirable
to use such techniques advantageously to overcome undesired human and system behaviors.
For example, multikey crypto [102, 236] and error-correcting coding capable of detecting and
perhaps correcting human errors could be useful in this regard, as noted in Section 3.5.� Criteria. The TCSEC/ITSEC/CTCPEC/Common Criteria efforts represent useful iterations
in what is still going to be a long process of attempting to create, apply, and enforce realistic
and more easily applied trustworthiness criteria. Any set of criteria is likely to be incomplete.
It is also likely to be difficult to interpret, and possibly overly explicit and restrictive. Nev-
ertheless, detailed parameterizable Common Criteria protection profiles, evaluation criteria,
and representative carefully documented successful evaluations are urgently needed that more
thoroughly address distributed systems and networks.� System architectural concepts.More emphasis should be placed on system architectural
concepts such those included in the Enlightened Architecture Concept of Section 4.3, such as
the minimization of the need for trustworthiness and the theTrusted Servers and Controlled
Interface (TS&CI) systems noted there for both multilevel and single-level security appli-
cations. Attempts to get developers of secure computer systems to produce commercially
viable TCSEC Orange-Book B2, B3, and A1 equivalent systems have almost always been
rather dismal. Adoption of the TS&CI approach could have several effects: it could permit
the rapid development of multilevel-secure system complexes using off-the-shelf single-level
end-user systems; it could greatly increase the ability to configure systems to suit particular
application needs; it could provide some real incentives for the development of minimal (for
example, starkly subsetted) special-purpose servers thatare highly trustworthy, particularly
for multilevel security, survivability, and other critical requirements; it could simplify system
evaluations; and it could simplify system and network evolution over time. This approach
could also be very useful in developing conventional single-level systems with dependence
on demonstrably trustworthy network servers, file servers,and authentication servers, some-
what independent of the specifics of the particular end-usersystems, vendors, operating sys-
tems, and application software. Overall, the TS&CI approach would increase the ease with
which heterogeneous system complexes can be produced. We believe that such an approach
can simplify demonstrations of assurance, including formal analyses. We also believe that,
by removing some of the most stringent trustworthiness requirements from end-user systems,
the analysis will indeed be less intricate when all security-relevant factors are considered —
for single-level security as well as multilevel security. However, perhaps the biggest benefits
would be the ability to obtain heterogeneous distributed systems with much greater overall
trustworthiness, including multilevel-secure operatingenvironments that could be assembled
as configurations of off-the-shelf commercially availablesingle-level end-user systems and a

8.2. GENERAL R&D RECOMMENDATIONS 139

few extremely trustworthy servers, some of which could be multilevel secure as needed.

Hardware architectural issues are also relevant. Althoughexisting processor architectures
do include some mechanisms for increased system security (e.g., more than two processor
states, and coprocessors), those facilities are seldom used in mass-market operating systems.
It seems obvious that those operating systems are not demanding increasing hardware mech-
anisms for security. However, that does not mean that research in hardware should not be
pursued. Indeed, there are many hardware directions that could be useful, such as domain sup-
port, type-based addressing, certain aspects of capability-based addressing, dynamic check-
ing, greater error detection and correction, parallelism and pipelining that do not add new
security vulnerabilities, and special-purpose coprocessors (e.g., for cryptography, multilevel
security, type-based addressing as in the Secure ComputingCorporation LOCK architecture,
and highly trustworthy servers).� Trustworthy networking. The networking area desperately needs coherent efforts related
to trustworthy networking, including (for example) improved network protocols, trustworthy
embeddings of cryptography into systems or special-purpose hardware, trustworthy router
survivability in the face of attacks and accidental outages, and network management that
integrates security management, network misuse detection, operational controllability, and
automated or semiautomated responses to detected network irregularities.� Programming languages and compiler technology.Most existing programming languages
and compilers in widespread common use are typically dangerous because of the ease with
which security flaws can arise, or because they are inherently difficult to use wisely, or both.
Although we certainly do not recommend the creation of yet another committee-generated
language (as was the case for Ada, although under unusual high-tech constraints), or contin-
ued extensions on languages that were not explicitly created for the writing of trustworthy
software (e.g., C and its offspring), much has been learned about how to define relatively
sound languages (e.g., Euclid, Modula 3, ML, and to some extent Java — especially in the
context of the Java Virtual Machine environment). Perhaps adetailed assessment would be
worth pursuing of what kind of a programming language might really enhance trustworthiness
while simultaneously permitting relative ease of programming.� Automated and semiautomated recovery in systems and networks. Clearly, it is desir-
able to design systems whose architecture is inherently resistant to crashes and other events
that require manual intervention for recovery. However, such resistance is not always achiev-
able. In the most difficult cases, huge operational benefits would result from autonomous
systems and networks with capabilities for self-diagnosing, self-healing, self-reprotecting,
self-reconfiguring, and self-optimizing — without the intensive hands-on intervention that is
required today. However, this should require much greater attention to anticipating all possi-
ble emergency situations and their responses.� Operations, system administration, and maintenance. An enormous burden is placed
today on system administrators, critical-system operators, development managers, and other
information technology professionals. Some of that burdencan be reduced by better system
trustworthiness, by sensible human interfaces that are easier to use, robust, and user-tolerant,

140 CHAPTER 8. RECOMMENDATIONS FOR THE FUTURE

and by the ability to handle automated self-recovery (as in the previous bullet). On the other
hand, if systems become largely autonomous, and if significantly fewer administrators are
required, then there will be risks that most of the remainingsystem administrators will be less
prepared to deal with the most unusual events — because they will not have had experience in
coping with such emergencies. Thus, a desire for systems that require less skilled administra-
tion under routine adverse circumstances may lead to systems that are less easy to administer
when something does go wrong. Overall, the human interface issues deserve much greater
emphasis in research and development than hitherto, including well-designed command-line
interfaces that avoid many of the pitfalls of GUIs.� Tools. More emphasis is needed on the realistic usability of ad hoc as well as formally based
methods, together with their supporting tools. There are many potentially useful require-
ments languages and specification languages, and supporting tools. However, further effort
is needed to incorporate them into better human-engineereddevelopment environments into
which the mechanizations of formal methods have been carefully integrated, and in which
the human interfaces to the tools have been driven by sensible and realistic ease-of-use re-
quirements. Different formalisms must interrelate, so that it is possible to reason in the large
about system and network properties such as operating system security, crypto encapsulation,
crypto strength, and network reliability. For developers of real-time systems, incorporation of
temporal logics or other approaches to representing real-time issues would also be desirable
(although less accessible to conventional programmers).� Well-documented worked examples.Readable and easily understood tutorial documents
such as [62, 330] are essential for those who are able to use formal-methods environments.
Carefully worked and well-documented examples of principled real system developments
with high assurance would be extremely helpful, including those developments with serious
use of formal methods. Benefits would accrue not only to the developers of those systems, but
also to other people who could subsequently emulate successful developments and analyses.� Testbeds.Architectural frameworks need to be developed that can support the establishment
of networked system testbeds for exploring new system concepts, demonstrate the effective-
ness of various approaches for developing highly evolvableheterogeneous systems, enable
experimentation, and provide detailed studies of the relative merits of alternative architec-
tures — including examining many of the recommendations enumerated in this report. For
example, it could be very illuminating to have such a testbedto probe the strengths and limita-
tions of IPSEC and IP Version 6. Such testbeds could also be useful for experiments regarding
the effectiveness of various strategies for establishing and enforcing various privacy policies,
including those related to database management and other security-related applications. Of
course, there is a caveat that must be kept in mind: testbeds and testbed demos generally do
not fully flex the things that can go wrong. Consequently, there is a real risk of attributing to
them more than should reasonably be implied.

8.3. SOME SPECIFIC RECOMMENDATIONS 141

8.3 Some Specific Recommendations

The issues discussed in Section 6.2 and the general recommendations of Section 8.2 suggest var-
ious opportunities for the future. Each typically has both short-term and long-term implications,
although some require greater vision and farsight than others. The typical myopia of short-term
efforts almost always seems to hinder long-term evolvability, as discussed in Section 7.1. Incre-
mental attempts to make relatively small changes to systemsthat are already poorly designed are
less likely to converge acceptably in the long term.

We suggest in this report that considerable gains can be achieved by taking a fresh view of
secure-system architectures, while also applying formal methods selectively — particularly up
front, where the potential payoffs are thought to be greatest. We also suggest that the choices
of methodologies, formal methods, and languages are important, but somewhat less so than the
architectures and the emphasis on up-front uses of common sense, knowledge, experience, and
even formal methods, if appropriate. However, there is still much worthwhile long-term research
to be done, particularly where it can reduce the risks of system developments (which include
cost overruns, schedule slippages, and in some cases total project failure) and increase the overall
chances of success.� Principled prototypes and illustrative worked examples.There is a great need for exam-

ples of real systems for which there are explicit critical requirements, sound architectures,
well-developed software, and sensible metrics for assurance and determination of the success
of the effort, all of which need to be carefully documented. This need is particularly impor-
tant for systems in which high assurance has been sought through the use of formal methods
as an integral part of system development (rather than through post-hocanalyses). These
examples should be realistic, carefully elaborated, and thoroughly documented. Where for-
mal methods are used, they should observe the concept of Pervasively Integrated Assurance
(PIA) noted in Section 8.2, applied up front as well as throughout the development process,
although incrementally it is of course wise to begin with analyses of requirements and spec-
ifications. Some of the more far-reaching examples should naturally extend to hierarchical
mappings among different layers and explicit representations of properties at different layers
and explicit representations of the dependencies on lower layers.

An ambitious system might involve a stem-to-stern specification and analysis of a distributed
system, encompassing all of the necessary assumptions on the infrastructure and end-user
systems, including all relevant properties of the operating systems, servers, crypto encapsula-
tions, and people involved in operations (including peoplein the key-management loop and
key-escrow retrievals). However, such an effort should notbe attempted all at once; rather,
it should use an incremental approach whereby the pieces canemerge separately and then be
combined. (Some readers may be annoyed at our frequent mention of formal methods and
their potential benefits. Formal methods are clearly not foreveryone. However, for certain
highly critical system developments, they can be extremelyeffective when used wisely.)

Here are examples of a few potential problem areas and would-be approaches for which
specific R&D efforts might be particularly valuable.

– A very complicated environment.Apply some of this report to the Global Information

142 CHAPTER 8. RECOMMENDATIONS FOR THE FUTURE

Grid. The vision of DoD’s GIG (noted at the end of Section 7.1)represents an enormous
challenge that would lend itself to the overall recommendations of this report. That vision
cries out for a detailed and comprehensive set of short-termand long-term requirements
(with appropriate transition strategy), the establishment of a viable evolvable heteroge-
neous enlightened architecture that can accommodate all ofthose requirements including
a mix of MLS, MILS, and MSL subnetworks (with a detailed strategy for the refinement
of the architectural concept), a highly principled development strategy, and a completely
integrated approach to the assurance that is required for a pervasively multilevel-secure
highly trustworthy survivable networked system of systems. (For background, see [261].)

– A much more controlled distributed environment. Develop a trustworthy networked
distributed operating system environment that provides some well-defined but nontrivial
aspects of security, reliability, survivability, ease of operation, and autonomous recovery,
taking advantage of but transcending past research such as the Digital Distributed System
Security Architecture [128], SDSI/SPKI [112, 315], survivability [133, 259, 261], and
many other stepping stones.

– A separation kernel. Develop a reusable interoperable Rushby-style separationkernel
with an appropriate interface, together with some applications that depend on it, complete
with all privileged exceptions, demonstrating clearly howthe technology can be applied,
how the higher-layer properties depend on the kernel properties, and how formal analysis
can be effectively carried out for more than just the kernel.

– Enlightened MLS/MSL/MILS architectures. Elaborate on one or more of the architec-
ture families defined in [259], including the Proctor–Neumann trusted-server/controlled-
interface (TS&CI) approach noted in Section 4.3, and develop prototypes for those that
appear to have the greatest potential — for single-level environments as well as multilevel-
secure applications. Despite all the shortcomings of the MLS efforts in the previous
decades, the existence of some practical distributed and networked multilevel-secure en-
vironments would be extraordinarily useful.

– A sound cryptographic embedding. Perform a thorough modeling and analysis of a
cryptographic encapsulation (in hardware and/or in software) — including making ex-
plicit all assumptions on which the confidentiality and integrity of the crypto-based se-
curity depend, and all reasoning based on those assumptions.

– A robust messaging system.Extend the effort begun in [181], in several possible di-
rections: (1) refining the existing representation of the MISSI security policy or one of
its successors in the Defense Messaging System area; (2) examining the consistency of
the detailed design with those requirements; and (3) possibly attempting some reasoning
about the implementation, but not necessarily code-consistency proofs. Specification of
the security requirements is clearly a valuable activity. However, there appears to be
good potential for getting further mileage out of the effortalready begun. An effort to
track ongoing changes in the requirements, design, and implementation could also be
valuable.

– Common Criteria elaborations. Establish some meaningful Common Criteria profiles
encompassing security, reliability, survivability, and other critical requirements in a pa-
rameterizable way that would be applicable to many system developments.

8.3. SOME SPECIFIC RECOMMENDATIONS 143� Model checking. Model checking has considerable potential. Efforts specifically oriented
to applying model checking to security are desirable. Careful examination of the relative
benefits and areas of applicability is needed, as well as better understanding of the limitations.� Integration of model checking. A somewhat longer-term but still near-term goal involves
incorporating model-checking tools compatibly into existing analysis tools, as was done in
the Berkeley subcontract summarized in Appendix A.� Integration of various approaches. The integration of methodologies, specification lan-
guages, formal methods, and their corresponding toolsets within a common framework would
be of considerable value to system developers desiring to use formal methods pervasively.� Modularization and interoperability of different tools. At present, various tools for formal
methods operate in their own environments, but do not interoperate with others. It would be
very useful to have modularized components of these toolsets that could interoperate across
institutional boundaries.� Reasoning about requirements.However, it is clearly desirable to have well-defined re-
quirements that can be precisely stated and whose consistency can be analyzed. Some formal
reasoning would be particularly desirable where critical requirements are involved, especially
if the requirements are modular and can be reused in other contexts. (For development efforts
that begin with ill-defined and poorly stated requirements,there is relatively little hope for
applying analytic techniques.)� Reasoning about designs, specifications, and interfaces.When nontrivial specifications
are part of the development process prior to implementation, those specifications should ad-
vantageously be such that they are amenable to analysis — forexample, for being syntac-
tically well formed, locally consistent with requirements, having consistent interfaces and
being interoperable across multiple specifications, and ultimately consistent with overall sys-
tem requirements. Formal or semiformal specifications can aid significantly toward this end.
Properties of interfaces (Chapter 5) and the functionalitythat they represent (Chapter 4) are
both accessible to such analysis.� Reasoning about compositions.Significant effort should be devoted to a generalized theory
of compositions and the property transformations they induce. This work should encom-
pass system and network configurations generally, the interconnections involved in TS&CI
architectures, the interposition of trusted gateways, networking, and the necessary criteria to
facilitate evaluation of modular systems, and reasoning about emergent properties. For ex-
ample, it is highly desirable that analytic tools be developed that can determine the extent to
which a set of modules can be composed without deleterious effects, as noted in Sections 6.2
and 7.7.2.� Reasoning about implementations.We are by no means opposed to proofs that an imple-
mentation is consistent with its specifications, despite earlier comments about the relatively
bigger apparent payoffs resulting from up-front uses of formal methods. Some emphasis
should be placed on carrying out a formal-methods approach that extends into the code or
microcode, especially if those code proofs can be formally related to the specifications and

144 CHAPTER 8. RECOMMENDATIONS FOR THE FUTURE

shown to cover the critical requirements under carefully specified assumptions. However,
research should also be carried out to explore other approaches to reasoning about imple-
mentations that fall short of full code proofs. For example,it should be possible to reason
about program changes and configuration control over implementations without having to
reason about the programs themselves. (A precedent for thatexists with respect to reasoning
about designs in work begun by Moriconi [246], to provide a framework for reasoning about
design changes, although that effort has spawned many more recent advances.) As in the cor-
responding near-term efforts, we recommend that research people with intimate knowledge
of the formal methods and the tools be heavily involved together with systems experts and
programmers.� Reasoning about evaluations.Based on reasoning about requirements, specifications, com-
positions, and implementations noted above, it is also desirable to reason about the evalua-
tions of subsystems and systems, and how the evaluations might compose. Also of enormous
potential value would be reasoning about the effects of changes that might occur throughout
the development cycle. Past efforts to attack this problem have fallen far short of what is
needed to avoid the pitfalls of upgrades and evolutionary changes.

In those efforts, an appropriate mix of experienced is recommended — such as systems, devel-
opment, formal methods, and analysis tools.

8.4 Architectures with Perspicuous Interfaces

Section 5.4.5 lists several gaps in existing analysis techniques and tools. Each of those gaps sug-
gests various research and development areas in which new techniques and significant enhance-
ments of existing techniques could advantageously be pursued, developed, and explored experi-
mentally, with the goal of achieving analysis aids that can significantly improve the understand-
ability of interfaces and system behavior.

Fundamentally, a combination of techniques is essential, encompassing better system architec-
tures, better use of good software engineering practice, better choices of programming languages,
better analysis techniques for identifying deficient perspicuity, a willingness to iterate through the
development cycle to improve perspicuity, and greater discipline throughout development and op-
eration. Here are a few specific suggestions.� Integral interface design. Provide a wider perspective of understanding that encompasses

and interrelates system and network architecture, software design and implementation, and
operational characteristics.� Flaw avoidance.Avoid characteristic design flaws and software bugs, through a combination
of architecture, software engineering, programming language choice, enforceable constraints
on programming style, design for interface perspicuity, static analysis, and dynamic interpre-
tation of anomalies.� Dependency analysis.Provide detailed analyses of the dependencies among different design
entities, different source-code modules, and different object-code components, as well as the
potential impact of those dependencies on perspicuity, security, reliability, and so on.

8.5. OTHER RECOMMENDATIONS 145� Concurrency analysis.Provide detailed analyses of concurrency-related flaws andfailures
and how to cope with them. (Consider the Edinburgh Concurrency Workbench.)� Pervasive analysis.Integrate various approaches throughout the development cycle and oper-
ation, including analysis approaches that integrate system architecture, system development
methodologies, requirements, specifications, programming language syntax and semantics,
object code characteristics, and operational considerations. This is a far-sighted and difficult
item.� Privacy policies. Provide detailed privacy policy specifications relating tohow interface in-
formation should be made available. Ideally, what is neededis a framework within which
specific policies can easily be specified, understood, and implemented — through a combina-
tion of dynamic analysis and constructive enforcement.

8.5 Other Recommendations

The recommendations of the previous sections focus primarily on research and development with
potential impact on the development, operation, and maintenance of trustworthy systems and net-
works. Some other issues with less R&D content could also be extremely effective.� Comparative studies. Comparative studies are needed to explore the explicit benefits that

can result from the serious application of this report to system and network development. In
particular, substantive evidence regarding the efficacy ofconsistent use of principles, Perva-
sively Integrated Assurance, and formal methods throughout system developments would be
very valuable. Similar studies are also desirable to determine whetherpost-hocuses of formal
methods have any real value — that is, where modeling and analysis are carried out after a
system development is well under way or even completed. These studies probably cannot be
statistically meaningful, because of the many variables involved and the continual production
pressures during development, but nevertheless some experiential learning is needed relating
to the efficacy of using formal methods in large and realisticsystems. The relative merits and
disadvantages of open-box software (under varying licensing arrangements) also need to be
objectively documented [122]. (Protests by certain closed-source developers that open-source
paradigms will destroy the world as we know it seem somewhat overinflated.)� Operations, system administration, and maintenance. As noted above, the burden on
operational staff and management is becoming overwhelming. In addition to architectural
approaches such as autonomous component systems that mightreduce these problems, much
greater awareness of the vulnerabilities, threats, and risks is also necessary on the part of the
involved personnel. For example, as a consequence of the serious burden on an inadequate
number of system administrators, there is a widespread movement to outsource operational
support. This represents a significant potential threat to system trustworthiness in critical
systems, and its would-be cost-effectiveness needs to be balanced by the security risks. (See
Section 7.10.2.)� General awareness.The educational issues relating to university students whoare would-be
system developers are noted above. But there is a much broader need for increased awareness

146 CHAPTER 8. RECOMMENDATIONS FOR THE FUTURE

outside of the information technology profession — for example, on the part of legislators
and their staffers, law enforcement and judicial officers, Pentagon brass and other military
personnel, government officials across the board, and indeed computer user communities
overall.� Education, academic research, experience, and training.Although education is not an
R&D goal on its own, it has far-reaching implications for trustworthy systems development.
In particular, R&D results need to play an important place inteaching and training. More
emphasis should be placed on the education of students and industry employees to help them
appreciate the potential practical utility of principled development (including formal meth-
ods) applied to real systems, as well as their theoretical beauty (for example, see [121]). For
this to be successful, teachers must have a better understanding of the fundamental issues
of software engineering concepts and of discrete mathematics and logic, and those topics
must permeate the instruction and training. Much greater emphasis is also needed in training
system administrators, irrespective of the extent to whichautonomous systems and networks
might become a reality. Also needed is a much better understanding of some of the research
directions noted here, in motivating graduate students toward pursuing more relevant PhD
thesis topics.

The unfortunate lack of a more ubiquitous systems perspective in educational curricula rep-
resents a fundamental problem in education and training at many universities. Undergraduate
and graduate computer science and computer engineering programs desperately need to have
requirements engineering, system and network architecture, good software engineering prac-
tices, security, reliability, survivability, and other related concepts pervasively integrated into
course curricula.

Computer-science curricula are for the most part sorely outof touch with the needs of de-
velopers of critical systems and complex applications. Programming and formal methods are
generally taught in the small, which implies that students tend to develop very little system
sense. Good software engineering (as opposed to overly simplistic panaceas) is rarely em-
phasized — especially from any rigorous basis — and seems to be considered more or less
irrelevant in favor of a predilection toward programming inthe small. (There are of course
some exceptions.) Security, reliability, survivability,human safety, and other critical-system
issues seem to be widely underrepresented. Unfortunately,the practical needs of system
developers seem to be the tail trying to wag the dog. Our universities must embody more
diversities (or even multiversities), teaching much more than just C, Unix, Windows, HTML,
and XML. The situation in industry is generally not much better than in universities, the result
being that complex systems and networks are often poorly conceived and poorly developed
by people with steadily narrowing rather than broadening experiences. A greater appreciation
of the need for system perspectives should permeate education at all levels.

All in all, the existence of systems and networks that are inherently more trustworthy — through
sound architectures, better development practice, and other approaches discussed in this report —
would greatly simplify the vicissitudes of system operation and administration. By reducing the
labor-intensive efforts required today, we could thereby greatly improve the overall trustworthiness
of our operational systems and networks.

8.5. OTHER RECOMMENDATIONS 147

A very useful recent assessment of future research directions [339] has been compiled for
DARPA by Fred Schneider on behalf of Jay Lala, as a set of nicely annotated slides. It provides
a complementary view to that presented here, although thereare (not surprisingly) many areas of
overlap. In particular, it outlines several approaches to robustness: runtime diversity (as opposed
to computational monocultures), scalable redundancy (especially asynchronous), self-stabilization,
and natural inherent robustness (as is found in various biological metaphors).

Chapter 9

Conclusions

The merit of virtue is consolidated in action.Cicero

9.1 Summary of This Report

This report addresses the main elements of the DARPA CHATS program — composable high-
assurance trustworthy systems — with emphasis on providinga fundamental basis for new and
ongoing developments having stringent requirements for trustworthiness. We believe that signif-
icant benefits can result by emphasizing the importance of the judicious use of principles, the
fundamental need for inherently composable architecturesas the basis for development, and the
underlying need for a highly principled development process. We believe that principled develop-
ment can also contribute to improved operation, maintenance, and long-term evolution. However,
these benefits depend largely on the education, training, and experience of its practitioners, and on
a continuing flow of relevant research and development that is suitably motivated by well-defined
and realistic requirements.

9.2 Summary of R&D Recommendations

If the road to hell is paved with good intentions, then by duality, the road to heaven must
be paved with bad intentions. However, the road to good systems development and good
management practice is evidently infinitely precarious, nomatter which route is taken.
PGN

Chapter 8 summarizes some of the potentially far-reaching areas for future R&D, at a relatively
high layer of abstraction. Of these recommendations, the most important are perhaps the following.� Principled research and development. Research and development efforts should be en-

couraged if not required to declare the principles to which they aspire to adhere, should honor
those principles where practicable, and provide metrics todetermine the degree of success.
This recommendation should be reflected in future procurements.

148

9.3. RISKS 149� Parameterizable reusable requirements.We need to develop parameterizable sets of com-
posable requirements for systems with critical trustworthiness, whereby specific sets of re-
quirements can be explicitly tailored for any particular system within a wide range of realistic
system and network developments.� Parameterizable reusable composable components.Based on the worthiest of research
concepts and architectures, we must establish a collectionof principled composable inter-
operable distributed subsystems out of which trustworthy systems and networks can be pre-
dictably and readily developed, and we must carefully document any potential adverse inter-
actions that may result from less-than-seamless compositions. These components should also
include well-designed, easy-to-use, efficient applications and user-interface subsystems, so
that entire systems can be readily established.� Parameterizable reusable distributed and networked architectures.We need to establish
families of composable architectures that can provide frameworks for a wide range of sys-
tems, and that can be effectively adapted to specific sets of requirements — including not just
aspects of trustworthiness, but also maintainability, evolvability, and heterogeneous interop-
erability among systems, networks, and applications (to name just a few). Several potential
architectural approaches are noted in the first major bulletin Section 8.3.� Perspicuous interfaces.Further work is needed to enhance the design and implementation
of system and network architectures that pervasively integrate perspicuous interfaces into
system architectures, as discussed in Chapter 5.� Automated and formally based analytic tools.Tools for static and dynamic analysis need
to be integrated systemically into development and operational practices, not just to identify
security flaws but also to identify potential limitations orbreakdowns in intended composi-
tions.� Pervasively Integrated Assurance (PIA).As noted in Sections 6.1 and 8.2, ideally, a com-
prehensively wide range of formal and informal assurance techniques must be an integral part
of the development cycle and persistently invoked during operation, maintenance, adminis-
tration, and long-term evolution. The results of assuranceanalyses should be used to leverage
the entire development process and subsequent system evolution.� Existence proofs of the efficacy of principled approaches.As noted in Section 8.2, well-
documented highly principled development successes wouldbe extremely valuable — along
with detailed analysis of some major failures (for example,elaborating on some of the cases
considered in [260] and [267]).

9.3 Risks

“The essence of risk management lies in maximizing the areaswhere we have some
control over the outcome while minimizing the areas in whichwe have absolutely no
control over the outcome and the linkage between effect and cause is hidden from us.”
Peter L. Bernstein [38], p. 197

150 CHAPTER 9. CONCLUSIONS

There are many risks that need to be considered. Some risks are intrinsic in the develop-
ment process, while others arise during operation and administration. Some relate to technology,
whereas many others arise as a result of human action or inaction, and even environmental causes
in some cases. Some involve risks of systems that fail to do what they are expected to do, whereas
others involve risks that arise because an entirely unexpected behavior has occurred that transcends
the normal expectations.

The Bernstein book quoted above is slanted largely toward a perspective of financial risk man-
agement, but an understanding of the nearly millennium-long historical evolution that it presents
is also quite appropriate in the context of trustworthy systems and networks. Indeed, that quote
echoes our view of the importance of carefully stated comprehensive requirements, sound architec-
tures, principled developments, and disciplined operations as strong approaches to avoiding risks
that can be avoided, and to better managing those that cannot.

Neumann’s book,Computer-Related Risks[260], provides a complementary view of the origins
of those risks and some constructive ways on how to combat them. Various articles in the ACM
Risks Forum, theIEEE Spectrum,and theCommunications of the ACMmonthly Inside Risks
columns have documented selected failures and a few successes. However, Henry Petroski has
often remarked that we seldom learn much from what appear to be successes, and that we have a
better opportunity to learn from our mistakes — if we are willing to do so. This report attempts to
do exactly that — learn from past mistakes and dig more deeplyinto approaches that can reduce
the risks related to trustworthiness in critical systems and networks.

9.4 Concluding Remarks

Hindsight is useful only when it improves our foresight.William Safire (The New York
Times,6 June 2002)

There are many lessons to be learned from our past attempts toconfront the obstacles to de-
veloping and consistently operating systems with stringent requirements for trustworthiness. This
report is yet another step in that direction, in the hopes that it is time for constructive action.

We began Chapter 1 of this report quoting Ovid:

We essay a difficult task; but there is no merit save in difficult tasks.

We began Chapter 4 on principled architectures quoting Juvenal:

Virtue is praised, but is left to starve.

We began Chapter 9 quoting Cicero:

The merit of virtue is consolidated in action.

Each of these three two-millennium-old quotes is still extremely apt today.
With regard to Ovid, the design, development, operation, and maintenance of trustworthy sys-

tems and networks represent some incredibly difficult tasks; however, we really must more assid-
uously confront those tasks, rather urgently. Today’s commercially available systems, subsystems,
and applications fall significantly short — for example, with respect to trustworthiness, predictable

9.4. CONCLUDING REMARKS 151

composability and facile interoperability, assurance, ease of maintenance and operation, and long-
term evolvability.

With regard to Juvenal, it is easy to pay lip service to virtuous principles and good development
methodologies, but those principles are seldom observed seriously in today’s system and network
developments.

With regard to Cicero, we recognize that it is extremely challenging to practice what we preach
here. For example, incompatibility problems with legacy systems tend to make exceedingly diffi-
cult the kind of cultural revolution that is likely to be necessary to achieve trustworthy systems in
the future. However, it is our sincere hope that this report will help consolidate some of its readers
into action toward much more disciplined and principled design and development of composable
trustworthy systems and networks, with nontrivial measures of assurance. The alternatives of not
doing so are likely to resemble something conceptually approaching the decline and fall of the
Roman Empire.

The U.S. DoDGlobal Information Grid (GIG), (discussed briefly at the end of Section 7.1)
is a work in progress that illustrates the importance of far-sighted thinking, principles, predictable
composability, and a viable system-network architecture concept. As noted earlier, the planning
and development necessary to attain the desired requirements also strongly suggest the need for
long-term vision, nonlocal optimization, and whole-system perspectives (see Sections 7.1, 7.2,
and 7.3, respectively). Considering the very considerabledifficulties in achieving high-assurance
trustworthiness over the past four decades, and the dismal record noted in this report, the challenges
of finally overcoming the lurking hurdles in the next 16 yearsare indeed daunting. As noted at the
end of Section 7.1, the content of this report is fundamentalto such efforts as the GIG.

Once again, we reiterate a mantra that implicitly and explicitly runs through this report: In at-
tempting to deal with complex requirements and complex operational environments,there are no
easy answers.Those who put their faith in supposedly simple solutions to complex problems are
doomed to be disappointed, and — worse yet — are likely to seriously disrupt the lives of others
as well. If the principles discussed here are judiciously applied with a pervasive sense of disci-
pline, systems and networks can be developed, administered, and operated that are significantly
more robust and secure than today’s commercial proprietarymass-market software and large-scale
custom applications. Perhaps most important, complexity must be addressed through architectures
that are composed of well-understood components whose interactions are well understood, and
also through compositions that demonstrably do not compromise trustworthiness in the presence
of certain untrustworthy components. The approaches offered herein are particularly relevant to
developers of open-source software, although they are equally important to mass-market develop-
ments. Those approaches may seem to be difficult to follow, but selective application of whatever
may be appropriate for given developments should be considered.

In concluding this report on how we might develop systems andnetworks that are practical and
realistically more trustworthy, the author recognizes that he has given his readers a considerable
amount of seemingly repetitive evangelizing. Although such arguments by many authors seem to
have fallen on deaf ears in the past, hope springs eternal. Besides, the risks of not taking this report
to heart are greater now than they ever have been.

Acknowledgments

I am especially grateful to Doug Maughan, who sponsored the CHATS program and was its Pro-
gram Manager for the first two years of our project (when he wasat DARPA). His vision and
determination made the CHATS program possible, and his inspiration and encouragement have
been instrumental in this project. In addition, Lee Badger (also at DARPA) provided the impetus
for the work on perspicuous interfaces on which Chapter 5 is based.

I enormously appreciate various suggestions from members of our project advisory group
(Blaine Burnham, Fernando Corbató (Corby), Drew Dean, George Dinolt, Virgil Gligor, Jim Horn-
ing, Cliff Jones, Brian Randell, John Rushby, Jerry Saltzer, Sami Saydjari, Olin Sibert, David Wag-
ner) and other individuals whose comments have been very helpful directly or indirectly in guiding
the progress of this report.

In particular, Drew Dean suggested several examples of conflicts within and among the prin-
ciples, and exposed me to Extreme Programming; we had many ongoing discussions on compos-
ability, architecture, and other subjects. He was instrumental in our joint work on perspicuous
interfaces (Chapter 5). Virgil Gligor early on reminded me of several important papers of his on
composability; his contributions to the seedling effort onvisible interfaces for Lee Badger strongly
resonated with that of Drew Dean and me. Virgil also generously contributed the material on which
Appendix B is based.

Sami Saydjari offered numerous valuable comments during the first year of the project. Blaine
Burnham drew my attention to the documents on composabilityfrom the 1992 time frame noted
in the bulleted item on other past research on composition inSection 3.4. Jim Horning offered
wonderful suggestions based on his long experience — including the quote from Butler Lampson
at the beginning of Section 2.3, and profound thoughts on Chapter 7, which I gladly incorporated.
Eugene Miya offered the quote from Gordon Bell at the beginning of Section 3.7. Tom Van Vleck
expressed various doubts as to the efficacy of the object-oriented paradigm. Many years of inter-
actions with Brian Randell have resulted in our pursuing similar research directions; his insights
have influenced this report both directly and indirectly. Some detailed comments from Fred Cohen
on an early draft of the composability chapter gave me considerable food for thought.

I am delighted with the results of the subcontract to the University of California at Berkeley and
thankful to David Wagner for his excellent leadership, to Hao Chen for carrying out most of the
work, and to Drew Dean for his vital participation in that effort. The material in Appendix A sum-
marizes the results of the Berkeley subcontract, plus some further work by Hao Chen conducted
during the summer of 2003 at SRI and subsequently at Berkeley. Appropriately, Chen’s work uses
an approach to static analysis of would-be robust programs that itself contributes significantly to
the composability of the analysis tool components.

152

Appendix A

Formally Based Static Analysis (Hao Chen)

Formally Based Static Analysis for Detecting Flaws

This appendix summarizes the results of the first-year project subcontract to the University of
California at Berkeley and some subsequent related work, culminating in the thesis work of Hao
Chen.

A.1 Goals of the Berkeley Subcontract

The one-year CHATS project subcontract task involved a short-term potentially high-payoff ap-
proach, with static analysis capable of detecting fundamental characteristic common security vul-
nerabilities in source code. The approach combines models of the vulnerabilities with model
checking related to the source code. The approach is intentionally open-ended, with linearly in-
creasing complexity of composability as various new vulnerability types are accommodated. The
team for this task includes Professor David Wagner and his graduate student Hao Chen in the Com-
puter Science Department at the University of California atBerkeley, with participation of Drew
Dean at SRI and supervision of Peter Neumann.

A.2 Results of the Berkeley Subcontract

One of the things that makes computer security challenging is that there are many unwritten rules
of prudent programming: “Don’t do X when running with root privileges.” “Always call Z after
any call to Y.” And so on. These issues contribute to the prevalence of implementation errors in
security-critical systems.

In this project, our goal was to help reduce the incidence of implementation vulnerabilities in
open source software by developing an automated tool to warnwhen programmers violate these
implicit rules of thumb. We have done so. Our hypothesis was that new ideas in software model
checking could prove very helpful in this problem, and our research goal was to experimentally
assess the utility of our methods. Our studies give strong evidence in favor of the benefits of this
style of automated vulnerability detection and avoidance.This project was undeniably a high-risk,

153

154 APPENDIX A. FORMALLY BASED STATIC ANALYSIS (HAO CHEN)

high-payoff, novel combination of theory and practice, butwe feel that it has already been very
successful.

In this appendix, we give some details on our progress duringthe year. We have also written
research papers [77, 78] on our work, which provide further technical details. Here we give a
high-level overview of our results and experimental methodology.

First, we developed a general platform for automatically scanning C source code and verifying
whether it follows these rules. We developed new techniques, based on model checking of push-
down automata, for this problem, and we built a prototype implementation of our algorithms. Our
tool, called MOPS, supports compile-time checking of largeC programs against temporal safety
properties. Please note that the latter two sentences hide asignificant amount of investment and
implementation work to achieve this goal, but as we will argue next, it has paid off nicely.

Next, we selected several examples of implicit rules of defensive coding. Several of our rules
studied proper usage of the privilege management API in Unix, namely, thesetuid() -like calls,
and several rules associated with this API. The specific guidelines selected were as follows:

1. Programs that drop privilege should do so correctly: Theyshould callsetgid() before
setuid() . Moreover, they should avoid the Linux capability bug: theyshould be aware
that, on some older versions of Linux, thesetuid() -like calls may fail to drop privilege in
certain special situations.

2. Programmers should avoid situations where asetuid() -like call may fail. Such situations
are dangerous, because these failure modes are often not adequately tested.

3. Programmers should avoid so-called “tractorbeaming attacks”. In a tractorbeaming attack,
unexpected interactions between signal handlers,setjmp()/longjmp() , and Unix uid’s
can create security vulnerabilities. To avoid this, programmers should ensure that every call
to longjmp() will be done in exactly the same security context as the preceding call to
setjmp() , no matter what intervening code path may be followed between the two.

4. When writing a setuid program, one should avoid making anyassumptions about the environ-
ment inherited from the parent process. In particular, file descriptors 0, 1, and 2 are usually
bound to an input/output device (e.g., the user’s terminal)in normal operation, but for setuid
programs, there is no guarantee that the parent process willabide by this convention. If this
fact is overlooked, there is a specific class of vulnerabilities that can ensue: for instance, if
a setuid program callsopen("/etc/passwd", O_RDWR) and then callsprintf() to
display some output to the user, it may be possible for an attacker to corrupt the password
file by calling thesetuid program with file descriptor 1 closed, so that theopen() call
binds the password file tofd 1 and theprintf() unintentionally writes to the password
file rather than to the screen.

This is by no means an exhaustive list. Rather, the rules listed above were selected to be rep-
resentative, of interest to open-source practitioners, and theoretically challenging to automatically
check.

Then, we devoted effort to experimentally assessing the power of our technique. We chose
several large, security-critical programs of interest to the open source community as a target for
our analysis. In several cases, we were able to find older versions of these programs that contained

A.2. RESULTS OF THE BERKELEY SUBCONTRACT 155

security vulnerabilities arising from violations of the above rules. The selected programs include
wu-ftpd, sendmail, andOpenSSH. We set out to apply our tool to check the above rules to
these programs.

We started by codifying the above rules in a form understandable by our modelchecker, MOPS.
We described them as finite state automata on the traces of theprogram. Along the way, we dis-
covered that we needed to solve an unanticipated research challenge: What are the exact semantics
of the Unixsetuid() -like system calls? We realized that these semantics are complex, poorly
documented, and yet critical to our effort. To reason about the privileges an application might
acquire, we must be able to predict how these system calls will affect the application’s state. We
spent some time working on this problem, because it does not seem to have been addressed before.

We also developed new techniques for automatically constructing a formal model of the op-
erating system’s semantics with respect to thesetuid() -like system calls. In particular, our
algorithm extracts a finite-state automaton (FSA) model of the relevant part of the OS. This FSA
enables us to answer questions like “If a process callssetuid(100) while its effectiveuserid
is root, how will this affect its userids?” and “For a processin such-and-such a state, canse-
teuid(0) ever fail?”.

Our new techniques, and the FSA models they produce, are useful in several ways. First, they
form one of the foundations of our tool for static analysis ofapplications. Because we have an
accurate model of both the application and the operating system, we can now predict how the
application will behave when run on that operating system. Second, they enable us to document
precisely the semantics of the setuid API on various operating systems, which we expect will help
open-source programmers as they develop new applications.Third, they enable us to pinpoint
potential portability issues: we have constructed FSA models for Linux, Solaris, and FreeBSD,
and each difference in the respective FSAs indicates nonportable behavior of the setuid API that
application programmers should be aware of.

Our paper [78] on constructing formal models of the operating system also documents several
subtle pitfalls associated with privilege management. We expect that this work will help develop-
ers of open-source applications and maintainers of open-source operating systems to improve the
quality and security of their software.

With this research challenge tackled, we were now able to encode rules (1) to (4) in a form
readable by MOPS, and we used MOPS to check whether the applications we selected follow
the rules. MOPS found several (previously known) security vulnerabilities in these programs, as
follows:� MOPS found security holes in earlier versions of sendmail. In sendmail 8.10.1, MOPS found

an instance of the Linux capabilities bug. Insendmail 8.12.0, MOPS found that sendmail
can fail to drop privilege in group IDs properly, due to a violation of rule 1).� We used MOPS to verify that OpenSSH 2.5.2 properly uses thesetuid() -like system calls
in the sense that no uid-setting system call can fail.� MOPS found a tractorbeaming bug in wu-ftpd version 2.4 beta 12. This in fact was a source
of a security hole in this older version ofwu-ftpd , and was later fixed. MOPS also con-
firmed that the latest version ofwu-ftpd correctly obeys our rule regardingsetuid(),
longjmp() , and signal handlers.

156 APPENDIX A. FORMALLY BASED STATIC ANALYSIS (HAO CHEN)� Experiments are still under way with respect to rule (4), butwe found security bugs in several
programs, includinglogin andcrontab on Linux.

In each case, MOPS ran efficiently, taking at most a minute or two to scan the source code.
Since each of these application programs is of nontrivial size, this is a very positive result.

This experimental evidence indicates that MOPS is a powerful tool for finding security bugs,
for verifying their absence, and for ensuring that various principles of good coding practice are
observed. We have publicly released the MOPS tool under the GPL license at
http://www.cs.berkeley.edu/˜daw/mops/. Our current prototype includes the compiler front end,
the modelchecker, and a primitive user interface. However,we should warn that there are several
known limitations: the current release does not include an extensive database of rules to check;
also, the user interface is rather primitive, and intended primarily for the expert programmer rather
than for the novice. We hope to address these limitations in the future.

Along the way, we developed several theoretical and algorithmic techniques that may be of
general interest. First, we extended known modelchecking algorithms to allow backtracking: when
the modelchecker finds a violation of the rule, our algorithmallows finding an explicit path where
the rule is violated, to help the programmer understand where she went wrong.

Second, we developed a compaction algorithm for speeding upmodelchecking. Our observa-
tion is that, if we focus on any one rule, most of the program isusually irrelevant to the rule. Our
compaction algorithm prunes away irrelevant parts of the program — our experience is that com-
paction reduces the size of the program by a factor of 50x to 500x — and this makes modelchecking
run much more efficiently.

Our compaction algorithm gives MOPS very good scalability properties. In principle, the time
complexity of pushdown modelchecking scales as the cube of the size of the program (expressed
as a pushdown automaton) and the square of the size of the rule(expressed as a finite state automa-
ton). However, in practice, the running time is much better than this would indicate, because our
compaction eliminates all irrelevant states of the program. With compaction, the running time now
depends only on the cube of the size of the relevant parts of the program, and as argued above, this
is generally a very small figure.

As a result, MOPS is expected to scale well to very large programs. We have already shown that
it runs very fast on fairly large programs (on programs with 50,000 lines of code or so, modelcheck-
ing runs faster than parsing). Moreover, MOPS enables programmers to verify global properties on
the entire system, even though each programmer may know onlylocal information about one part
of the system. Thus, our approach is very friendly to composition of large systems from smaller
modules.

In summary, we have developed, implemented, and validated new techniques for improving the
quality of security-critical software. Our tool is freely available. This points the way to improve-
ments in security for a broad array of open-source applications.

The relevant papers are “Setuid Demystified” [78], by Hao Chen, David Wagner, and Drew
Dean:
http://www.cs.berkeley.edu/˜daw/papers/setuid-usenix02.ps. and “MOPS: An Infrastructure for
Examining Security Properties of Software” [77], by Hao Chen and David Wagner:
http://www.cs.berkeley.edu/˜daw/papers/draft-mops.ps.

A.3. RECENT RESULTS 157

A.3 Recent Results

Subsequent to the first-year subcontract, Hao Chen continued to work on MOPS and its applica-
tions for his Berkeley doctoral dissertation. MOPS acquired its first external user, the Extremely
Reliable Operating System (EROS) project at Johns Hopkins University [351]. The EROS project
has already uncovered multiple, previously unknown codingerrors by using MOPS to analyze the
EROS kernel. Based on user feedback, we are working on tuningthe performance of the tool.
Work has focused on some minor modifications to key data structures to reduce memory pressure
on the garbage collector (MOPS is implemented in Java). A small amount of work produces a very
large payback: our initial tests indicate a 300%-400% speedimprovement over the earlier ver-
sion. This improvement has recently been completed, and wasshipped to Johns Hopkins. These
results enhance MOPS’s already impressive scalability foranalyzing real-world software such as
Sendmail and OpenSSH.

Hao Chen spent the summer of 2003 at SRI, funded by SRI project11679, under Contract
N00014-02-1-0109 from the Office of Naval Research. Building on the prior work on modeling the
setuid family of system calls in Unix-like operating systems, the above-mentioned programs were
examined for security problems relating to uid handling, concentrating on global properties of the
programs. The concentration on global properties was chosen for two reasons: (1) Local properties
can easily be checked with less sophisticated tools. Why swat a fly with a sledgehammer? (2)
Global properties, being more difficult to check, for both humans and machines, have had poorer
tool support, so the probability of interesting discoveries is higher. The experience gained using
MOPS to check more properties of more software also uncovered areas in which MOPS needed
further improvement.

In addition to the above mentioned improvements in MOPS, HaoChen applied MOPS to study
selected security properties of widely used open source software. The programs studied included
BIND, Sendmail, Postfix, Apache, and OpenSSH. To demonstrate the power and utility of MOPS,
these programs were model checked for each of five properties, (a) proper dropping of privileges,
(b) secure creation ofchroot jails, (c) avoidance of file system race conditions, (d) avoiding attacks
on standard error file descriptors, and (e) secure creation of temporary files.

Hao Chen’s work at SRI during the summer 2003, under the guidance of Drew Dean, resulted
in the discovery of several hitherto undetected security problems in these programs, as well as the
identification of other flaws that had been previously discovered elsewhere. The results of this
application of MOPS to real programs are summarized in [75].

This work provides key capabilities for progress in information assurance. It provides a princi-
pled foundation for analyzing the behavior of programs based on traces of system calls, or, for that
matter, any functions of interest. This approach to programanalysis can directly take advantage of
research in both model checking and static analysis to become more precise over time, something
that is not directly true of ad-hoc approaches to analyzing programs for security vulnerabilities.
Future improvements to underlying technology, in additionto more engineering improvements to
MOPS, should allow MOPS to scale from today’s ability to handle 100KLOC comfortably (sub-
stantially more than competing tools), to 1MLOC. Such scalability will be necessary for DARPA
to provide an assured future for the network-centric warfighter.

Hao Chen’s doctoral thesis [74] is now finished and available. Also, a recent paper by Hao Chen

158 APPENDIX A. FORMALLY BASED STATIC ANALYSIS (HAO CHEN)

and Jonathan Shapiro [76] describes their experience running MOPS on EROS. In addition, a group
of students in Professor Wagner’s group ran MOPS on all 839 packages in RedHat Linux 9 and
found many security bugs and weaknesses, being described ina new paper.

A.4 Integration of Static Checking into EMERALD

It is useful to contemplate how the software developments ofthe Berkeley effort could subse-
quently be integrated into an anomaly and misuse detection system such as provided by the EMER-
ALD framework and its successor technologies. Several different approaches are potentially of
interest:� Apply the static analysis techniques and tools to the EMERALD modules to determine EMER-

ALD’s compliance with the existing and subsequently emerging Chen-Wagner formal mod-
els.� Establish new models to be specifically suitable to analysisof the EMERALD software, and
apply them to EMERALD.� Develop a means for automatically coupling the vulnerability models with EMERALD rule
bases, or otherwise incorporating the results of the analyses into EMERALD.� Develop a coherent environment that encompasses static anddynamic checking and real-time
analysis.

Appendix B

System Modularity (Virgil Gligor)

Basis for the Visibility and Control of System
Structural and Correctness Properties

This appendix is based on material written by Virgil D. Gligor under DARPA Contract number
MDA 972-03-P-0012 through VDG Inc, 6009 Brookside Drive, Chevy Chase, MD. 20815, tele-
phone 1-301-657-1959, fax 1-301-657-9021, in connection with Lee Badger’s Visibly Controllable
Computing initiative at DARPA. Gligor’s original text appeared as the appendix to an unpublished
report, “Perspicuous Interfaces”, written by Peter Neumann, Drew Dean, and Virgil Gligor, as part
of a seedling study for Lee Badger; it is adapted as an appendix to this report with the permission
of Virgil Gligor, with the explicit intent of increasing itsavailability to the R&D and academic
communities. The earlier work of David Parnas on module decomposition [281] and on module
dependence [283] (e.g., the various forms of theusesrelation) is particularly relevant here.

B.1 Introduction

The study of Visibly Controllable Computing has the goals ofreducing systems complexity and
applying automated reasoning and learning techniques to create systems that can not only explain
their current state but also adapt to new environments by

(1) Connecting their self-knowledge to knowledge of external-environment entities and con-
straints.

(2) Warning users if new mission demands cannot be satisfied.
(3) Exploring alternative configurations and reconfiguringto fit changing needs.
In general, by establishing the visibility of a system’s structural and correctness properties we

mean the identification of a system’s components and their relationships, and the reasoning about
properties like the correctness, fault tolerance, and performance. A first step toward this goal is that
of investigating system modularity. This step is necessaryif knowledge of system structure and
state need to be gained and if systems need to reconfigure on-the-fly to satisfy changing mission
requirements. Of particular interest is the investigationof properties that help (1) reconfigure sys-
tems by module replacement, and (2) establish causal correctness dependencies among modules

159

160 APPENDIX B. SYSTEM MODULARITY (VIRGIL GLIGOR)

(e.g., correctness of module interface A implies correctness of module interface B) in addition to
structural visibility and reconfigurability. Of additional interest is the investigation of the prop-
erties that help reuse extant modules for different missions. Finally, of significant interest is the
identification of a set ofsimple, practicaltools for establishing and verifying system modularity.

Software systems that employ modular design, and use data abstraction and information hiding
to achieve layering [179] offer the following advantages:

(a) Allow an incremental, divide-and-conquer approach to reasoning about correctness and
other important system properties (e.g., fault tolerance,performance).

(b) Support replacement independence of system componentsbased on well-defined interfaces
and uniform reference (i.e., references to modules need notchange when the modules change).

(c) Provide an intuitive packaging of system components with ease of navigation through the
system, layer by layer, module by module.

(d) Allow an incremental, divide-and-conquer approach to system development, with many
individuals per development team possible.

(e) Enable the reuse of software modules in different environments.
Note that Clark [81], and later Atkins [22], suggest that layering may sometimes be a potentially

undesirable form of system structuring because it can lead to poor performance. Also, Nelson
suggests the use of protocol “delayering” (i.e., combiningprotocol layers) to achieve an efficient
remote procedure call mechanism [251]. Thus, while layering is a generally useful technique for
system structuring, the extent of system layering depends on specific criteria, such as correctness,
fault tolerance, and performance. Lampson [199] argues that the reuse of software modules is and
will remain an unrealistic goal, in practice.

Early uses of layered abstraction include Multics [91, 92, 277] (with rings of protection, layer-
ing of system survivability and recovery, and directory hierarchies), Dijkstra’s THE system [106]
(with layers of object locking), and SRI’s Provably Secure Operating System [120, 268, 269]. The
PSOS hardware-software architecture provided numerous layers of abstraction for different types
of objects, and distinguished between objects and their type managers. The architecture explic-
itly contradicts the above-mentioned Clark and Atkins claim that layering inherently leads to poor
performance. For example, the PSOS layering enabled user-process operations (layer 12) to ex-
ecute as single capability hardware instructions (layer 0)whenever appropriate dynamic linkage
of symbolically named objects had been previously established. (The bottom 7 layers were con-
ceived to be implemented directly in hardware, although thehardware could also encompass all or
part of higher layers as well.) Thus, repeated layers of nested interpretation are not necessarily a
consequence of layered abstraction, given a suitable architecture. (Also, see Section 3.4 for further
background on PSOS relevant to composability.)

B.2 Modularity

In this section we define the term “module,” illustrate system decomposition into modules, and
present several correctness dependencies among modules. The following key notions are required
to define and implement modular systems:�Module and module synonyms� Interface versus implementation

B.2. MODULARITY 161� Replacement independence� Reusability� “Contains” relation�Module hierarchy� “Uses” relation� Correctness dependency among modules

B.2.1 A Definition of “Module” for a Software System

In general, a module is a system component (part, unit, building block). Synonyms for “module”
include “system,” “platform,” “layer,” “subsystem,” “submodule,” “service,” and “(abstract) type
manager.” A software module is part of a software system and has the following six properties:

P1. Role. A module has a well-defined unique purpose or role (responsibility, contract) that
describes its effect as a relation among inputs, outputs, and retained state.

P2. Set of Related Functions.A module contains all and only the functions (procedures,
subroutines) necessary to satisfy its role. Each function has well-defined inputs, outputs, and
effects.

P3. Well-Defined Interface.A module has an interface (external specification) that consists of
the public (visible) items that the module exports:� declarations of its public functions (i.e., those invocable from outside the module) and their
formal parameters;� definitions of its exported types and exported manifest constants;� declarations of global variables associated with the module;� declarations of its signaled exceptions and handled exceptions;� definition of the necessary resources and privileges;� rules (discipline, restrictions) for using the above public functions, types, constants, and global
variables.

P4. Implementation. A module has an implementation (internal design) that details how its
interface is satisfied. It should be possible to understand the interface (and role) of a module
without understanding its implementation.

P5. Replacement Independence.A module implementation can be replaced without also
replacing any other module implementation in the system.

P6. Reusability. A module implementation can be reused in different softwaresystems with
little or no added code.

The role of a module describes its effects or behavior on inputs. The effects of a module can be
reflected in the values of outputs, the state of the module, orthe state of the system. With software,
for example, the state of the module or system can be represented by a set of variables (e.g., simple
variables, structures). A well-defined role should have a short and clear description, preferably one
sentence. A module should have a simple name that reflects itsrole. Typically, module roles are
system unique; no two modules in a system have the same role (no duplication of role). However,
the system may intentionally duplicate modules to achieve other system goals (e.g., performance,
reliability).

For a module function to be well-defined, its inputs and outputs and effects should be well-
defined. The name of a function should reflect its purpose. Functions should, but need not, be

162 APPENDIX B. SYSTEM MODULARITY (VIRGIL GLIGOR)

named. In software, for example, some functions are expanded in-line for performance reasons;
also, the programming language may not have a way to express in-line expansion of named func-
tions. Continuing the software example, the inputs and outputs of a function can be formal param-
eters or informal (global, environment) parameters or (request-response) messages. It should be
simple to distinguish the public from the private functions(if any) in a module. It is desirable, but
not necessary, that the functions of a module be nonredundant; function redundancy is undesirable
but at the discretion of the designer of the system or module.Regarding the all and only nature of
a module’s functions, certain functions typically have a complementary twin: get-set, read-write,
lock-unlock, do-undo, reserve-unreserve, allocate-deallocate, and so on.

A module interface is well-defined if it contains all and onlythe module assumptions that a
module user needs to know. The discipline of an interface, ifany, may explain a legal order in
which to use the public functions. For software, a well-defined interface contains declarations of
exported (public) functions, data, types, manifest constants, exceptions raised, exceptions handled,
exception handlers, and, the associated restrictions or discipline [387]. It may be inappropriate or
impossible to capture certain programming restrictions ordiscipline within programming language
constructs, in which case they should be provided in associated specification or commentary. Note
that a module interface includes variables that are global to that module.

A module implementation contains module-construction assumptions and programming details
that a module user should not have to know; for example, orderof resource use, algorithms em-
ployed.

The typical notion of replacement independence for a moduleis that, if the module breaks or
no longer functions correctly, then if a new module with the same interface is available, we can
replace the original module with the new one without replacing any other modules. However,
in software systems, the notion of replacement independence has a somewhat different meaning.
While replacement independence is implied by “informationhiding,” [281, 59] and information
hiding disallows global variables, replacement independence does not necessarily rule out the use
of global variables in modules provided that the global variables are explicitly defined in the mod-
ule’s interface, and that the dependencies among the modules using those global variables are
known.

The typical notion of module reuse requires that a module be (1) general in its purpose or
role, so that it is useful to users other than the few people working on the same project; (2) fully
specified, so that others can use it; (3) tested, so that general expectations of quality are met; and
(4) stable, in the sense that the module’s behavior remains unchanged for the lifetime of the user
system [199]. Other related properties of module reusability include simplicity of interface (i.e.,
foreign users should understand the module’s interface with little effort), and customization (i.e.,
foreign users should be able to tailor module use by using special parameters or special-purpose
programming language [199].

B.2.2 System Decomposition into Modules

The decomposition of any system into modules relies on two intermodule relations, namely, (1)
the “contains” relation, and (2) the “uses” relation. Theserelations imply certain correctness de-
pendencies among modules that are fundamental to the defining the module structure of a system.

B.2. MODULARITY 163

B.2.3 The “Contains” Relation

Internally, a module may (but need not) contain component submodules. If it is necessary or desir-
able to identify a set of component parts of a module as submodules, then that set of submodules
partitions (i.e., is collectively exhaustive and mutuallyexclusive) the parent module. The decision
as to

when to stop partitioning a system into modules is generallybased on designer discretion and
economics — when it is no longer necessary nor desirable economically to identify and to package
and to replace that subpart. Other than this, no generally accepted criterion exists for when to stop
partitioning a software system into additional modules.

Applied system-wide, the “contains” relation yields a module hierarchy (i.e., tree). Nodes of the
tree represent modules; arc (A, B) means that module A directly contains submodule B. The root
of the tree, the whole system, is the 0-th level of the tree. The system itself should be considered
as the 0-th level module. The (n+1)-th level consists of the children (direct submodules) of the
n-th level. Modules with no submodules are called leaf modules. We can define a part hierarchy
system as modular if the system itself, and recursively eachof its subparts that we identify as
should-be-modules, satisfies the definition of module.

EXAMPLE. The UNIX kernel is a software module; the system calls compose its set of related
functions. The manual pages for the system calls describe the role, set of functions, and interface
of the kernel. Figure B.1 shows an example of the “contains” relation, the major subsystems of the
Unix kernel.

EXAMPLE. Figure B.2 shows another example of the “contains”relation, a decomposition of
the File Subsystem of the Secure XENIX kernel [115] into a module hierarchy. In Figure B.2,
ACL means Access Control List. The darkened boxes identify the files of source code in this
design. The Superblock Service manages the attributes of a file system as a whole object. In this
decomposition, the Mount Service is part of Flat File Service and not part of Directory (pathname)
Service. The Mount Service maintains a short association list for substituting one (device, i-node
number) pair, a “file handle,” for another. The mounted handle represents a file system, and the
mounted-on handle represents a directory. The Mount Service knows nothing about directories
and pathnames; it knows about pairs of file handles.

B.2.4 The “Uses” Relation

In software, if a module uses another module, then the using module imports (all or part of) the
interface of the used module to obtain needed declarations and definitions. We define the “uses”
relation between functions and modules as follows. Function A uses function B if and only if (a) A
invokes B and uses results or side effects of that invocationand (b) there must be a correct version
of B present for A to work (run, operate) correctly. A function uses a module if and only if it uses
at least one function from that module. A module uses anothermodule if and only if at least one
function uses that module. The “uses” relation is well-defined. From the “uses” relation we can
draw a directed graph for a given level, where the nodes are same-level modules, and arc (A, B)
means that module A uses module B. Also, we can draw a “uses” graph of the leaf modules.

EXAMPLE. Figures 3, 4, and 5 show an example of an intrasubsystem “uses” graph for the
File Subsystem of the Secure XENIX kernel. They shows a progression of versions of a “uses”

164 APPENDIX B. SYSTEM MODULARITY (VIRGIL GLIGOR)

graph. Version 0 (Figure B.3) shows the entire subsystem. Version 1 (Figure B.3) shows all
File Subsystem system calls in one box to simplify the picture, and shows how this layer uses
all three top level services of the File Subsystem. The linesfrom the Flat File Service to the
ACL Service (and back) show a “circular dependency” betweenthe two; each uses the other.
Version 2 (Figure B.4) replaces the Flat File Service with its three component services. Version
3 (Figure B.5) shows another level of detail of the “uses” graph. (Note the circular dependencies
in Figure B.5. For approaches that help eliminate such dependencies see the PSOS abstraction
hierarchy [120, 268, 269] and [179]. PSOS inherently removed such circular dependencies as a
fundamental part of the architectural abstraction hierarchy.)

B.2.5 Correctness Dependencies Among System Modules

Correctness dependencies between modules are basic to describing, evaluating, and simplifying
the connectivity of modules, and thus basic to system restructuring and evolution. For modules P
and Q, P depends on Q, or P has a correctness dependency on Q (or“the correctness of P depends
on the correctness of Q”), if and only if there must be a correct version of Q present for P to
work correctly. Based on earlier work by Parnas, Janson et al. [344, 179] identify several types of
correctness dependencies, which were later combined into the following three classes by Snider
and Hays [358]: service, data, and environmental dependencies.

Service Dependency:“P invokes a service in Q and uses results or side effects of that ser-
vice. The service may be invoked through a function call, message, or signal (e.g., a semaphore
operation), or through hardware, such as via a trap.” [358]

It is important to point out that not all invocations are service dependencies. “Note that if P
transfers control or sends a message to Q and neither expectsto regain control, nor counts on
observing consequences or results from its interaction with Q, then P does not depend on Q. It is
said simply to notify Q of an event (without caring about whatQ does once it is notified)” [179].
In layered systems, certain upcalls [81] that provide advice or notifications can be viewed as not
violating the downcall-only layering discipline if such upcalls do not correspond to correctness
dependencies.

Data Dependency:“P shares a data structure with Q and relies upon Q to maintainthe integrity
of that structure.” [358]

Modules that are either readers or writers of shared data depend on other modules that are
writers of the same shared data. Thus, shared data with multiple writer modules produce mutual
dependencies and increase module connectivity.

Environmental Dependency:“P does not directly invoke Q and does not share a data structure
with Q but nevertheless depends upon Q’s correct functioning.” [358]

“One example is the dependency of most of the system on the interrupt handling subsystem.
Although this is not generally called directly from the kernel, much of the kernel depends on its
correct operation (e.g., properly restoring processor state at the end of an interrupt service routine)
in order for the kernel to fulfill its specifications. ... In practice, we did not find that environmental
dependencies presented many structural problems.” [358]

Service dependencies are more desirable than data dependencies because service dependencies
are explicit; if all dependencies are service dependencies, then the system call graph (the graph of
what invokes what), which is usually explicit and easy to compute, represents all dependencies. By

B.3. MODULE PACKAGING 165

introducing information-hiding modules [281, 286, 59] throughout a system, where system data is
partitioned among modules and accessed only via function (subroutine, procedure) calls, each data
dependency can be converted into a service dependency.

B.2.6 Using Dependencies for Structural Analysis of Software Systems

For structural analysis, it is desirable to represent correctness dependencies between system mod-
ules with the “contains” and the “uses” relations (and graphs). As seen above the “contains”
relation among modules is unambiguously defined by syntactic analysis. In contrast, the “uses”
relations can be defined in three possible ways: (1) as representing all correctness dependencies;
or (2) as representing only service and data dependencies; or (3) as representing only service de-
pendencies.

Fundamentally, there is no difference between service and data dependencies since both are
correctness dependencies. Further, data dependencies can(and should) be converted to service
dependencies if we drive the structure toward desirable information hiding. To simplify system
structure, we need to minimize correctness dependencies and eliminate all circular dependencies.
To do this, we first minimize data dependencies, because theycontribute to circular dependencies,
then we remove other circular dependencies. The resulting measurable goal is that of eliminating
global variables and acyclic structure, and minimizing thecardinality of the “uses” relation. If this
“uses” relation represents all system correctness dependencies and if its graph is cycle-free, then
showing correctness of the system parts in a bottom-up order(the reverse of a topological sort of
the “uses” graph) leads to correctness of the system.

In practice, it is not necessarily possible, nor desirable [22], to eliminate all structural imperfec-
tion (i.e., all globals, some cyclic structure). Cycle-freedom of the “uses” graph is not a precondi-
tion of system correctness; we can scrutinize each cycle on acase-by-case basis to understand and
explain correctness, rather than removing cycles by rethinking system structure or by duplicating
certain code (e.g., by “sandwiching”). Also, explicit function calls may not represent all correct-
ness dependencies. Implicit correctness dependencies, which include shared memory and sharing
through globals and timing dependencies, may or may not be problematical.

B.3 Module Packaging

A module is separable from the whole and packageable. We distinguish between “module” and
“package”; a module is a logical container of a system part, whereas a package is a physical
container of a system part. If there is not a strong reason to the contrary, each module should
have a separate package. The modules of a system should be manifest (i.e., obvious) from the
packaging. For a software system, the module interface and module implementation should be in
separate packages, or there should be a well-defined reason why not.

EXAMPLE: Packaging the Secure Xenix(TM) Kernel
To make the nature of each function in the Secure XENIX kernelmore conspicuous, one can

add the following adjectives before function names:
SYSTEM CALL,
PUBLIC, and

166 APPENDIX B. SYSTEM MODULARITY (VIRGIL GLIGOR)

PRIVATE.
Also, to make more explicit the modules of the Secure Xenix(TM) kernel, one can add a

subsystem-identifying prefix to each module name, for example, fs dir.c would indicate that the
directory manager is part of the File Subsystem (“fs”). Another way to make more explicit the
modules of a kernel is to represent each major module (or subsystem) as a subdirectory. For ex-
ample, the modules of the Secure Xenix(TM) kernel can be packaged as subdirectories of the
directory kernel/, as follows:� kernel/conf Configuration Subsystem� kernel/dd Device Drivers (part of I/O Subsystem)� kernel/fp Floating Point Support� kernel/file File Subsystem� kernel/i Interfaces (.i files) to Kernel Modules� kernel/init Initialization Subsystem� kernel/io Low-Level I/O Support (part of I/O Subsystem)� kernel/ipc IPC Subsystem� kernel/memory Memory (Management) Subsystem� kernel/misc Miscellaneous Functions Subsystem� kernel/process Process Subsystem� kernel/syscall System Call (Processing) Subsystem� kernel/security Security Subsystem

Examples of Modularity and System Packaging Defects
The definition of a module of Section B.2.1 allows us to derivecertain measures of modularity,

or of modularity defects. Most modularity defects arise from unrestricted use of global variables.
This makes both the understanding of system structure difficult [383] and module replacement
dependent on other modules.

B.4 Visibility of System Structure Using Modules

System modular structure also becomes visible by examining(1) the design abstractions used
within would-be modules, (2) the hiding of information (i.e., data) within the would-be modules,
and (3) the use of the would-be modules within systems layers.

B.4.1 Design Abstractions within Modules

Data abstraction, together with the use of other design abstractions, such as functional and control
abstractions, significantly enhances the ability to identify a system’s modules and to structure a
system into sets of (ordered) layers. As a result, the visibility of system properties and their formal
analysis become possible.

For illustration, we differentiate sic forms of abstraction that are typically implemented by a
system’s modules:� functional abstraction,� data abstraction,

B.4. VISIBILITY OF SYSTEM STRUCTURE USING MODULES 167� control abstraction,� synchronization abstraction,� interface abstraction, and� implementation abstraction.
A module implements afunctional abstractionif the output of the module is a pure mapping of

the input to the module. That is, the module maintains no state. The module always produces the
same output, if given identical input. The primary secret ofa functional abstraction is the algorithm
used to compute the mapping.

A data abstractionis “a description of a set of objects that applies equally well to any one
of them. Each object is an instance of the abstraction” (cf. Britton and Parnas [59]). A module
implements a data abstraction if it hides properties of an internal data structure. The interface of a
data abstraction module can export a transparent type or an opaque type. A transparent type allows
visibility (reading) of its internal fields, whereas an opaque type does not. A transparent type is
typically represented as a dereferenceable pointer to the object, whereas an opaque type is typically
represented by a “handle” on the object, a nondereferenceable “pointer” like a row number in a
private table or a “capability.”

A module implements acontrol abstractionif it hides the order in which events occur. The
primary secret of a control abstraction is the order in whichevents occur and the algorithms used
to determine the order (e.g., scheduling algorithms).

A module implements asynchronization abstractionif it encapsulates all synchronization prim-
itives necessary for its concurrent execution [164]. The primary role of the module as a synchro-
nization abstraction is to hide the details of these primitives (e.g., mutual exclusion, conditional
wait, signals) from the module user and to restrict the scopeof correctness proofs to the module
definition (to the largest possible extent).

A module implements aninterface abstractionif, by [59], it “represents more than one inter-
face; it consists of the assumptions that are included in allof the interfaces that it represents.” An
operating system may contain an X-interface table, where each row is an interface (e.g., pointers
to public functions) to a type X interface. As examples, the operating system may have an I/O
device-interface table, a communication protocol-interface table, and a filesystem-interface table.

A module includes animplementation abstractionif it represents the implementation of more
than one module. For example, if an operating system contains a number of similarly structured
tables with similar public functions, then it may be possible to represent all such tables with one
implementation schema (or abstract program).

In [179], Janson defines the concept of “type extension” as a hierarchy of data abstractions. The
idea is to build abstract data types atop one another by defining the operations of a higher-level type
in terms of the operations of lower-level types.

B.4.2 Information Hiding as a Design Abstraction for Modules

Information hiding [59, 281] is a software decomposition criterion. Britton and Parnas in [59] give
the following description of information hiding.

“According to this principle, system details that are likely to change independently should be
the secrets of separate modules; the only assumptions that should appear in the interfaces between
modules are those that are considered unlikely to change. Every data structure is private to one

168 APPENDIX B. SYSTEM MODULARITY (VIRGIL GLIGOR)

module; it may be directly accessed by one or more programs within the module but not by pro-
grams outside the module. Any other [external] program thatrequires information stored in a
module’s data structures must obtain it by calling module programs [public functions].” ...

“Three ways to describe a module structure based on information-hiding are (1) by the roles
played by the individual modules in the overall system operation; (2) by the secrets associated
with each module; and (3) by the facilities [public functions] provided by each module. ...”

“For some modules we find it useful to distinguish between a primary secret, which is hidden
information that was specified to the software designer, anda secondary secret, which refers to
implementation decisions made by the designer when implementing the module designed to hide
the primary secret.”

In general, each module should hide an independent system-design decision. If a table (with
related data) is involved, for example, a table manager module mediates all access to that table and
it hides the representation of that table. The module secrets are the facts about the module that
are not included in its interface — that is, the assumptions that client programs are not allowed to
make about the module. The correctness of other modules mustnot depend on these facts.

Note that a system entirely based on “information hiding” isalways modular.

B.4.3 Layering as a Design Abstraction Using Modules

A layer is a module. We say that a system is layered if the “uses” graph of its leaf modules is a
linear order (a reflexive, transitive, and asymmetric relation). (If the layer is actually a collection
of modules, then the linear order is on the layer rather than on the individual modules, although a
lattice ordering could be used instead.)

Pictorially, we represent a layered system with horizontalstripes or bands, with one stripe per
layer. Also, we typically show only the transitive reduction (i.e., remove all transitively implied
arcs) of the “uses” graph. “Traditionally, a layer is thought of as providing services to the layer
above, or the user layer. The user has some mechanism for invoking the layer, such a procedure
call. The layer performs the service for its user and then returns. In other words, service invocation
occurs from the top down.” [81] We define layering as a system structuring (organizing) principle in
which system modules are partitioned into groups such that the “uses” graph of the system module
groups (the layers) is a linear order (although it could alsobe viewed as a partial order, e.g., in
the form of a lattice). Classical layering permits only downcalls, not upcalls. Some experience
suggests that upcalls can be valuable (as long as security and integrity are not violated).

“In classical layering, a lower layer performs a service without much knowledge of the way in
which that service is being used by the layers above. Excessive contamination of the lower layers
with knowledge about upper layers is considered inappropriate, because it can create the upward
dependency which layering is attempting to eliminate. ... It is our experience, both with Swift
and in other upcall experiments that we have done, that the ability to upcall in order to ask advice
permits a substantial simplification in the internal algorithms implemented by each layer.” [81]

We understand the phrase layers of abstraction as just type extension where the hierarchy is a
layering.

Two popular types of layering in an operating system are policy/mechanism layering and hardware-
independent / hardware-dependent (HI/HD) layering – also called device-independent / device-
dependent (DI/DD). This was a fundamental part of the Multics input-output system architecture.

B.5. MEASURES OF MODULARITY AND MODULE PACKAGING 169

Also, see [358]. The idea of policy/mechanism layering is that design decisions about system poli-
cies (or mechanisms) should tend to reside in higher (or lower) layers. The rationale for HI/HD
layering, with the HI layer above the HD layer, is to localizemachine dependent modules to sim-
plify porting. In practice, these two layering criteria maynot be compatible, since “some design
decisions which one would be tempted to label as policies rather than mechanisms can be machine
dependent” [358].

B.5 Measures of Modularity and Module Packaging

The goal of identifying simple and practical tools for establishing and verifying modularity prop-
erties requires that we definesimple and practicalmeasures for modularity. Below we define four
classes of such measures, namely, for (1) replacement dependence, (2) global variables, (3) mod-
ule reusability, and (4) component packaging. While we believe that these classes are important
for modularity assessments, the specific examples of measures are provided only for illustrative
purposes. Other specific measures may be equally acceptablein each class.

B.5.1 Replacement Dependence Measures

One way to define a modularity defect is by replacement dependence, a violation of our property
P5 of a module. We define two replacement dependence measuresbelow.

Measure M1. We define modularity measure M1 on an “almost-module”m (satisfying proper-
ties P1-P4 but not P5 of the module definition of Section B.21.1) as the number of files that must
be edited to replace the implementation of modulem, less one (the minimum).

Measure M2. We define modularity measure M2 on an “almost-module”m as the number of
lines of source code, not in the “primary” implementation file, that must be edited to replace the
implementation of modulem.

B.5.2 Global Variable Measures

Although global variables can be useful for system performance, they should be avoided whenever
they can produce replacement dependence and extra-module correctness dependencies not repre-
sented by explicit service dependencies. It is tempting, ifinconsequential, to argue that correctness
should be determined only from explicit service dependencies and thus from module interfaces,
and not from data dependencies, and to conclude that all globals should be eliminated.

We have defined two software modules as data dependent if theyshare a common global vari-
able. A data dependency can sometimes be harmless, or safe oreasy to understand, and sometimes
it is harmful, or unsafe or difficult to understand [383]. We can define a hierarchy of module
dependency (coupling) from very safe to very unsafe with thefollowing types of variables:

(a) local to a function,
(b) formal of a function,
(c) global (but private) to one module,
(d) global with one writer module (and many reader modules),
(e) global with a few writer modules (and many reader modules) and a well-defined use disci-

pline,

170 APPENDIX B. SYSTEM MODULARITY (VIRGIL GLIGOR)

(f) global with many writer modules (and many reader modules) and a well-defined use disci-
pline, and

(g) global with many writer modules (and many reader modules) and an ill-defined (or unde-
fined) use discipline.

Both types of global variables (a) and (b) are safe, while a global variable of type (g) is unsafe.
In general, (a) is safer than (b), which in turn is safer than (c), and so on, and (g) is the most
unsafe. In general, module independence is valuable because one can understand (thus, replace,
fix, evolve) the module by understanding only its interface and what it uses. On the other hand,
a module dependency is undesirable when one cannot understand (thus, replace, fix, evolve) a
module without understanding the implementations of othermodules. In this sense, a module
including global variables of type (d) is easier to understand than a module including a global
variable of type (e); a module including global variables oftype (e) is easier to understand than
one including a global variable of type (f); a module including global variables of type (g) is
virtually impossible to understand. By “use discipline” wemean “correctness rule.”

If a global variable can and should be converted to either a local of one module, or a formal of
one or more public functions, or a local of a public function,then this new scope is generally better
than its old scope as a global. In general, use of formals is a better programming discipline than
use of informals (globals, environment variables). As one reason, it makes the function parameters
more explicit; this makes the functions simpler to understand, and simpler to evolve (e.g., as a
remote procedure call). As another reason, for recursion, use of formals is a less error prone pro-
gramming discipline than use of informals; care must be taken to save current informal parameters
before a recursive call and to restore them after the call.

Measure M3. We define measure M3 on an “almost-module”m as the number of globals that
it writes that are also written by other modules or almost-modules.

B.5.3 Module Reusability Measures

Another way to define a modularity defect is as a reuse impediment, or a violation of our property
P6 of a module. The major technical source of module-reuse impediments is the violation of
compatibility[134] between a module’s interface and its new environment of use. Whenever this
impediment materializes, we say that the module cannot becomposedwithin its environment of
use. In particular, we are interested in the amount of extra (correct) code that has to be written and
the amount of administrative effort that has to be expanded to remove interface incompatibility. We
define four measures of reuse impediments below. These measures can also be viewed as simple
estimates of ability to compose modules.

For all the measures below we assume the module being reused satisfies properties P1-P5 but
not P6 of the module definition in Section B.2.1.1.

Measure M4. We define modularity measure M4 on an “almost-reusable” module m as the
number of exception handlers that must be written to cover all the exceptions signaled by the
reused module.

Measure M5. We define modularity measure M5 on an “almost-reusable” module m as the
number of resource allocation and deallocation instructions that must be written to enable the
execution of the reused module, less two (the minimum).

Measure M6. We define modularity measure M6 on an “almost-reusable” module m as the

B.6. COST ESTIMATES FOR MODULAR DESIGN 171

number of lines of code that must be written to satisfy the module invocation discipline (i.e., type
matching and coercion, if necessary, setting constants andglobal variables) to enable the execution
of the reused module, less than the number of formal parameters (the minimum).

Measure M7. We define modularity measure M6 on an “almost-reusable” module m as the
number of permissions/system privileges that must be granted to enable the execution of the reused
module, less one (the minimum required to invoke the module).

Clearly, zero extra code or administrative effort is best for all measures, but a small number
(e.g., one to three) of extra programs and administrative effort is acceptable, provided that this is a
one-time requirement.

B.5.4 Component-Packaging Measures

Component-packaging defects can also be evaluated using measures of how closely the module
package reflects the module definition. Since packaging is not a modularity property by our defi-
nition, packaging-defect measures are not necessarily modularity measures. However, packaging-
defect measures are useful in evaluating visibility of system structures by standard tools (e.g.,
browsers). The examples of packaging-defect measures provided below are only for illustrative
purposes. Other measures may be equally acceptable.

Measure M8: Assume that a leaf module has one implementation file and one interface file.
We define packaging measure M8 to be the number of files (e.g., .c, assuming C) over which the
implementation of a leaf module is spread, plus the number offiles over which the interface of a
leaf module is spread, then subtracting two (the minimum).

M8 is a measure of packaging defects with granularity of a per-file count. For a modulemwith
exactly one implementation file and exactly one interface file, M8(m)= 0. In general, for system
s, and measure M, M(s) is the summation of M(m) for each leaf modulem.

Measure M9: We define packaging measure M9 as similar to Measure M8 exceptthat we count
the number of lines of source code (SLOC) not in “the primary”implementation file plus not in
“the primary” interface file.

As a class of approximate measures of modularity, additional packaging defect measures can
be defined.

B.6 Cost Estimates for Modular Design

Different system designers may argue over the specific costsof different features of modular de-
sign, but few would disagree with the following “less expensive than” (<) and “included in” (<<)
orders:

“Just Code It,”<Module with Properties P1-P4<Replacement Independence (P5)<Reusabil-
ity (P6); and

“Just Code It,” << Module with Properties P1-P4<< Replacement Independence (P5)<<
Reusability (P6).

In fact, the first seven modularity measures presented aboveillustrate the different types of com-
plexity involved in modular design and provide intuition for the above cost and feature-inclusion
ordering. Specific cost figures for modularity are hard to come by, as insufficient experience is

172 APPENDIX B. SYSTEM MODULARITY (VIRGIL GLIGOR)

available with systems designs where modularity is an important requirement. However, based on
(1) experience with Secure Xenix(tm) [115] (aka Trusted Xenix(tm)), the only Unix(tm) system to
achieve a security level where modularity was required (i.e., TCSEC level B2), and (2) experience
reported by Lampson [199], we can estimate the relative costs using a “Just Code It” (JCI) unit of
modularity currency.

Lampson estimates the costs for a “good module for your system” and “reusable component.”
We approximate a “good module for your system” with modularity properties P1–P4 and “reusable
component” with property P6. Using these estimates and our approximation, we obtain the follow-
ing cost ranges:

Cost of Module with Properties P1–P4 (i.e., “good module foryour system”)= 0.5 JCI - 2 JCI,
depending on how many of the properties P1 – P4 are desired (or“how lucky you are” [199]) and

Cost of Module Reusability (P6)= 3 JCI - 5 JCI.
For the purposes of this study, it seems important to be able to estimate the cost of the module

“replacement independence” property (P5). The cost ordering presented above allows us to inter-
polate the cost estimate for this property. Since

Module with Properties P1-P4< Replacement Independence (P5)< Reusability (P6),
the above estimates suggest that

Cost of a Module’s Replacement Independence (P5)= 2 JCI - 3 JCI.
However, is our approximation of a “good module for your system” with module properties P1

– P4 valid? We attempt to validate this approximation using cost estimates of Secure Xenix(tm),
where modularity properties P1-P4 were satisfied. The Secure Xenix(tm) estimates can be split
roughly as follows:1=3 design cost (including modularity properties P1 - P4, but excluding that
of testing and documentation required for P6),1=3 assurance cost (including testing to the level
required for P6), and1=3 documentation (including everything that a user and an evaluator might
want for level B2, and hence including documentation required for P6). These estimates suggest
the following approximate relationships:

Cost of Module with Properties P1-P4= 0.33 of Cost of Module with Properties P1-P6.
Hence, using the above cost estimates, we obtain:

Cost of a Module with Properties P1 - P4= 1 JCI - 1.67 JCI,
which is consistent with Lampson’s estimate that

“good module for your system”= 0.5 JCI - 2 JCI.
We stress that the above estimates of modularity costs arevery rough. However, they appear

to be consistent with each other for modularity properties P1 - P4. Further, the requirements of
property P6 seem to be consistent with modularity requirements of TCSEC level B2-B3. Hence
these cost estimates could be further validated using examples of systems rated at those levels.

B.7 Tools for Modular Decomposition and Evaluation

A variety of tools (e.g., algorithms, methods, programs) for modular system decomposition have
been proposed during the past dozen years. The motivation for the development of these tools has
been driven primarily by the need to improve the understandability and maintainability of legacy
software, and to a lesser extent to enable module reusability. Few of these tools were motivated
directly by concerns of module replacement independence and correctness, and consequently few

B.7. TOOLS FOR MODULAR DECOMPOSITION AND EVALUATION 173

support formal dependency analyses among identified modules.
In general, most tools for modularization can be divided into two broad classes, namely those

based on (1)clusteringfunctions and data structures based on different modularity criteria, and (2)
concept analysis– an application of a lattice-theoretical notion to groups of functions and function
attributes (e.g., access to global variables, formal parameters and types returned). The primary
difference between the two classes is that approaches used by the former use metrics of function
cohesion and coupling directly whereas those used by the latter rely mostly on semantic grouping
of functions that share a set of attributes. Both approacheshave advantages and disadvantages. For
example, although clustering is based on well-defined metrics (which overlap but are not necessar-
ily identical with M1-M7 above) and always produces modularstructures, it does not necessarily
provide a semantic characterization of the modules produced and often reveals only few module-
design characteristics. In contrast, concept analysis helps characterize the modules recovered from
source code semantically, but does not always lead to easilyidentifiable modules (e.g., nonover-
lapping and groupings of program entities covering all functions of a program). Neither approach
is designed to characterize correctness dependencies among modules (e.g., systems analysis) and
neither is intended to address the properties of systems obtained by modular composition (e.g.,
systems synthesis). We note that metrics M1-M7 suggested above could be applied equally well to
the modular structures produced by either approach. In the balance of this appendix, we provide
representative examples of tools developed for modularityanalysis using each approach.

B.7.1 Modularity Analysis Tools Based on Clustering

The first class of clustering tools is that developed for the identification ofabstract types and
objectsand their modules in source code written in a non-object-oriented language, such asC.
The modular structure produced by these tools is partial as it represents only the use of data ab-
stractions in source code. Other modularity structures manifest in the use of other abstractions
(e.g., functional, control, synchronization) are not addressed. All tools of this class recognize
abstract-object instances by clustering functions that access function-global variables, formal pa-
rameters, returned [211] or received [65]. Relations amongthe identified components (e.g., call
and type relations [65], relations of procedures to internal fields of structures [384]) are used to
build dominance trees or graphs, and dominance analysis is used to hierarchically organize the
abstract type/object modules into subsystems [132]. A typical problem that appears with this class
of tools is that of “coincidental links,” which is caused by procedures that implement more than
one function, and “spurious links,” which is caused by functions that access data structures imple-
menting more than one object type. Both types of links lead tolarger-than-desirable clusterings of
functions.

A second class of clustering tools is that based on measuringhigh internal cohesion and low
external coupling (e.g., few inter-module global variables and functions). Tools of this class define
cohesion principles and derive metrics based on those principles. For example, the measure of
“similarity” among procedures defined for the ARCH tool [346] is derived from the “information
hiding” principle and used to extract modules with internalcohesion and low external coupling.
Further, genetic algorithms have been used by other tools (e.g., BUNCH [217]) to produce hier-
archical clustering of modules identified using cohesion and coupling metrics [216]. Clustering
techniques have also been used to group module interconnections into “tube edges” between mul-

174 APPENDIX B. SYSTEM MODULARITY (VIRGIL GLIGOR)

tiple modules that form subsystems [215].

B.7.2 Modularity Analysis Tools based on Concept Analysis

The notion of concept analysis is defined in lattice theory asfollows. LetX be a set of objects,
or anextent, andY a set of attributes, or anintent, andR a binary relation between objects and
attributes. Aconceptis the maximal collection of objects sharing common attributes. Formally,
a concept is the pair of sets(X; Y) such thatX = �(Y) andY = �(X), where� and � are
anti-monotoneandextensivemappings inR (i.e., they form aGalois connection). A mapping,
say,� is said to be anti-monotone ifX1 � X2) �(X2) � �(X1). Mappings�; � are said to
be extensive ifX � �(�(X)) andY � �(�(Y)). Further, a concept(X0; Y0) is asubconceptof
concept(X1; Y1), if X0 � X1 or, equivalently,Y1 � Y0. The subconcept relation forms a partial
order over the set of concepts leading to the notion ofconcept (Galois) lattice, once an appropriate
top and bottom are defined. A fundamental theorem of concept lattices relates subconcepts and
superconcepts and allows the least common superconcept of aset of concepts to be computed by
intersecting the intents and finding the common objects of the resulting intersection.

Concept lattices have been used in tools that identify conflicts in software-configuration infor-
mation (e.g., as in the RECS tool [356]). During the past halfa dozen years, they have been used
to analyze modularity structures of programs written in programming languages that do not sup-
port a syntactic notion of a module (e.g., Fortran, Cobol, C)[206, 353]. More recently, they have
also been used to identify hierarchical relationships among classes in object-oriented programming
[136, 137, 357].

The use of concept analysis in identifying modular structures of source code requires (1) the
selection of an object set (i.e., function set) and attribute set (i.e., function characteristics such
as a function’s access to global variables, formal parameters returned, types, and so on); (2) the
construction of the concept lattice, and (3) the definition of concept partitions and subpartitions
as nonoverlapping groupings of program entities (that is, functions and attributes). Note that if
concept partitions are used to represent modules, they mustbe complete; that is, they must cover
the entire object (i.e., function) set [353]. The notion of subpartitions was introduced to remove
the completeness restriction that sometimes leads to module overlaps caused by artificial module
enlargements (to cover the function set) [366].

Concept analysis applied to modularity analysis has the advantage of flexible determination of
modules. That is, if the proposed modularization is too fine-grained, moving up the (sub)partition
lattice allows a coarser granularity of modules to be found.Conversely, if the proposed modu-
larization is too coarse, additional attributes can be added to identify finer-granularity modules.
Similar flexibility in clustering can be achieved in a more complex manner, namely, by adding and
removing metrics to the set used by clustering analysis. Concept analysis also has the advantage
that the resulting modularity has a fairly precise semanticcharacterization.

B.8 Virgil Gligor’s Acknowledgments

Much of my understanding of “modularity” is based on joint work with Matthew S. Hecht on
defining practical requirements for modular structuring ofTrusted Computing Bases in the late

B.8. VIRGIL GLIGOR’S ACKNOWLEDGMENTS 175

1980s. Figures 1-5 were generated by the Secure Xenix modularity study led by Matthew. Virgil
D. Gligor

176 APPENDIX B. SYSTEM MODULARITY (VIRGIL GLIGOR)

Figure B.1: Example of theContainsRelation

B.8. VIRGIL GLIGOR’S ACKNOWLEDGMENTS 177

Figure B.2: Example of theContainsRelation and Module Hierarchy

178 APPENDIX B. SYSTEM MODULARITY (VIRGIL GLIGOR)

Figure B.3: Example of Refining theUsesRelation 1

B.8. VIRGIL GLIGOR’S ACKNOWLEDGMENTS 179

Figure B.4: Example of Refining theUsesRelation 2

180 APPENDIX B. SYSTEM MODULARITY (VIRGIL GLIGOR)

Figure B.5: Example of Refining theUsesRelation 3

Bibliography

[1] M. Abadi, A. Banerjee, N. Heintze, and J.G. Riecke. A corecalculus of dependency. In
POPL ’99, Proceedings of the 26th SIGPLAN-SIGACT Symposiumon Principles of Pro-
gramming Languages, pages 147–160, San Antonio, Texas, January 20-22 1999.

[2] M. Abadi and A.D. Gordon. A calculus for cryptographic protocols: The Spi calculus.
Technical report, Digital Equipment Corporation, SRC Research Report 149, Palo Alto,
California, January 1998.

[3] M. Abadi and L. Lamport. Composing specifications. In J.W. de Bakker, W.-P. de Roever,
and G. Rozenberg, editors,Stepwise Refinement of Distributed Systems: Models, For-
malisms, Correctness, pages 1–41, REX Workshop, Mook, The Netherlands, May-June
1989. Springer-Verlag, Berlin, Lecture Notes in Computer Science, vol. 230.

[4] M. Abadi and R. Needham. Prudent engineering practice for cryptographic protocols. Tech-
nical report, Digital Equipment Corporation, SRC ResearchReport, Palo Alto, California,
June 1994.

[5] R.P. Abbott et al. Security analysis and enhancements ofcomputer operating systems. Tech-
nical report, National Bureau of Standards, 1974. Order No.S-413558-74.

[6] H. Abelson, R. Anderson, S.M. Bellovin, J. Benaloh, M. Blaze, W. Diffie, J. Gilmore, P.G.
Neumann, R.L. Rivest, J.I. Schiller, and B. Schneier. The risks of key recovery, key escrow,
and trusted third-party encryption.(http://www.cdt.org/crypto/risks98/), June 1998. This is
a reissue of the May 27, 1997 report, with a new preface evaluating what happened in the
intervening year.

[7] M.D. Abrams and M.V. Joyce. Composition of trusted IT systems. Technical report, MITRE,
September 1992. Draft.

[8] N. Abramson and F.F. Kuo (editors.).Computer-Communication Networks. Prentice-Hall,
1971.

[9] J. Adamek. Foundations of Coding: Theory and Applications of Error-Correcting Codes
with an Introduction to Cryptography and Information Theory. Wiley-Interscience, 1991.

[10] M. Adler. Tradeoffs in probabilistic packet marking for ip traceback. InProceedings of the
Thirty-fourth Annual ACM Symposium on Theory of Computing, pages 407–418, 2002.

181

182 BIBLIOGRAPHY

[11] P.E. Agre and M. Rotenberg, editors.Technology and Privacy: The New Landscape. MIT
Press, Cambridge, Massachusetts, 1997.

[12] J.H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption. InAd-
vances in Cryptology, EUROCRYPT 2002, Amsterdam, The Netherlands, Springer-Verlag,
Berlin, Lecture Notes in Computer Science, pages 83–107, May 2002.

[13] R. Anderson and M. Kuhn. Tamper resistance — a cautionary note. InProceedings of the
Second Usenix Workshop on Electronic Commerce, pages 1–11. USENIX, November 1996.

[14] R.J. Anderson.Security Engineering: A guide to Building Dependable Distributed Systems.
John Wiley and Sons, New York, 2001.

[15] T. Anderson and J.C. Knight. A framework for software fault tolerance in real-time systems.
IEEE Transactions on Software Engineering, SE-9(3):355–364, May 1983.

[16] T. Anderson and P.A. Lee.Fault-Tolerance: Principles and Practice. Prentice-Hall Interna-
tional, Englewood Cliffs, New Jersey, 1981.

[17] A.W. Appel and D.B. MacQueen. Standard ML of New Jersey.In Programming Lan-
guage Implementation and Logic Programming, Lecture Notesin Computer Science vol.
528, pages 1–26, Berlin, 1991. Springer-Verlag.

[18] W.A. Arbaugh, D.J. Farber, and J.M. Smith. A secure and reliable bootstrap architecture.
In Proceedings of the 1997 Symposium on Security and Privacy, pages 65–71, Oakland,
California, May 1997. IEEE Computer Society.

[19] W.A. Arbaugh, A.D. Keromytis, D.J. Farber, and J.M. Smith. Automated recovery in a se-
cure bootstrap process. InProceedings of the 1998 Network and Distributed System Security
Symposium, San Diego, California, March 1998. Internet Society.

[20] K. Ashcraft and D. Engler. Detecting lots of security holes using system-specific static
analysis. InProceedings of the 2002 Symposium on Security and Privacy, pages 143–159,
Oakland, California, May 2002. IEEE Computer Society.

[21] D. Asonov and R. Agrawal. Keyboard acoustic emanations. In Proceedings of the 2004
Symposium on Security and Privacy, pages 3–11, Oakland, California, May 2003. IEEE
Computer Society.

[22] M.S. Atkins. Experiments in SR with different upcall program structures.ACM Transactions
on Computer Systems, 6(4):365–392, November 1988.

[23] Numerous authors. Automated software engineering (special section). ERCIM News,
(58):12–51, July 2004.

[24] A. Avižienis and J-C. Laprie. Dependable computing: From concepts to design diversity.
Proceedings of the IEEE, 74(5):629–638, May 1986.

[25] A. Avižienis and J. C. Laprie, editors.Dependable Computing for Critical Applications,
volume 4 ofDependable Computing and Fault-Tolerant Systems, Santa Barbara, California,
August 1989. Springer-Verlag, Vienna, Austria.

BIBLIOGRAPHY 183

[26] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxonomy of
dependable and secure computing.IEEE Transactions on Dependable and Secure Comput-
ing, 1(1):11–33, January-March 2004.

[27] M. Backes and B. Pfitzmann. A cryptographically sound security proof of the Needham-
Schroeder-Lowe public-key protocol. In23rd Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS), Mumbai, India, December 2003.

[28] M. Backes, B. Pfitzmann, and M. Waidner. A universally composable cryptographic li-
brary with nested operations. InTenth ACM Conference on Computer and Communications
Security, Washington, D.C., October 2003. ACM.

[29] P. Baran. Reliable digital communications systems using unreliable network repeater nodes.
Technical Report P-1995, The RAND Corporaton, May 27 1960.

[30] J. Barnes.High Integrity Software: The SPARK Approach to Safety and Security. Addison-
Wesley, Reading, Massachusetts, 2003. reviewed in RISKS-23.01.

[31] L. Bass, P. Clements, and R. Kazman.Software Architecture in Practice. Addison-Wesley,
Reading, Massachusetts, 1998.

[32] L. Bauer, A.W. Appel, and E.W. Felten. Mechanisms for secure modular programming in
Java.Software–Practice and Experience, 33:461–480, 2003.

[33] K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley, Reading,
Massachusetts, 1999. (http://www.extremeprogramming.org).

[34] R. Bejtlich. The Tao of Network Security Monitoring. Addison-Wesley, Reading, Mas-
sachusetts, 2004.

[35] D.E. Bell and L.J. La Padula. Secure computer system: Unified exposition and Multics
interpretation. Technical Report ESD-TR-75-306, The Mitre Corporation, Bedford, Mas-
sachusetts, March 1976.

[36] L.A. Benzinger, G.W. Dinolt, and M.G. Yatabe. Combining components and policies. In
Proceedings of the Computer Security Foundations WorkshopVII, J. Guttman, editor, June
1994.

[37] L.A. Benzinger, G.W. Dinolt, and M.G. Yatabe. Final report: A distributed system multiple
security policy model. Technical report, Loral Western Development Laboratories, report
WDL-TR00777, San Jose, California, October 1994.

[38] P.L. Bernstein.Against the Gods: The Remarkable Story of Risk. John Wiley & Sons, New
York, 1996.

[39] T.A. Berson and G.L. Barksdale Jr. KSOS: Development methodology for a secure operating
system. InNational Computer Conference, pages 365–371. AFIPS Conference Proceedings,
1979. Vol. 48.

184 BIBLIOGRAPHY

[40] T.A. Berson, R.J. Feiertag, and R.K. Bauer. Processor-per-domain guard architecture. In
Proceedings of the 1983 IEEE Symposium on Security and Privacy, page 120, Oakland,
California, April 1983. IEEE Computer Society. (Abstract only).

[41] W.R. Bevier. Kit and the short stack.Journal of Automated Reasoning, 5(4):519–30, De-
cember 1989.

[42] W.R. Bevier, W.A. Hunt, Jr., J S. Moore, and W.D. Young. An approach to systems verifi-
cation.Journal of Automated Reasoning, 5(4):411–428, December 1989.

[43] K.J. Biba. Integrity considerations for secure computer systems. Technical Report MTR
3153, The Mitre Corporation, Bedford, Massachusetts, June1975. Also available from
USAF Electronic Systems Division, Bedford, Massachusetts, as ESD-TR-76-372, April
1977.

[44] R. Bisbey II, J. Carlstedt, and D. Chase. Data dependency analysis. Technical Report
ISI/SR-76-45, USC Information Sciences Institute (ISI), Marina Del Rey, California, Febru-
ary 1976.

[45] R. Bisbey II and D. Hollingworth. Protection analysis:Project final report. Technical report,
USC Information Sciences Institute (ISI), Marina Del Rey, California, 1978.

[46] R. Bisbey II, G. Popek, and J. Carlstedt. Protection errors in operating systems: Inconsis-
tency of a single data value over time. Technical Report ISI/SR-75-4, USC Information
Sciences Institute (ISI), Marina Del Rey, California, December 1975.

[47] M. Bishop.Computer Security: Art and Science. Addison-Wesley, Reading, Massachusetts,
2002.

[48] M. Bishop. Introduction to Computer Security. Addison-Wesley, Reading, Massachusetts,
2004.

[49] B. Blanc. GATeL: Automatic test generation from Lustredescriptions. ERCIM News,
(58):29–30, July 2004.

[50] M. Blume and A.W. Appel. Hierarchical modularity.ACM Transactions on Programming
Languages and Systems, 21(4):813–847, 1999.

[51] C. Blundo, A. De Santis, G. Di Crescenzo, A.G. Gaggia, and U. Vaccaro. Multi-secret
sharing schemes. InAdvances in Cryptology: Proceedings of CRYPTO ’94 (Y.G. Desmedt,
editor), pages 150–163. Springer-Verlag, Berlin, LCNS 839, 1994.

[52] Defense Science Board. Protecting the homeland, volume ii. Technical report, Defense
Science Board Task Force on Defensive Information Operations 2000 Summer Study, March
2001.

[53] W.E. Boebert and R.Y. Kain. A practical alternative to hierarchical integrity policies. In
Proceedings of the Eighth DoD/NBS Computer Security Initiative Conference, Gaithersburg,
Maryland, 1–3 October 1985.

BIBLIOGRAPHY 185

[54] D. Boneh, R.A. DeMillo, and R.J. Lipton. On the importance of checking cryptographic
protocols for faults.Journal of Cryptology, 14(2):101–119, 1997.

[55] P. Boudra, Jr. Minutes of the meetings of the system composition working group, volume
1. Technical report, National Security Agency, Information Systems Security Organization,
Office of Infosec Systems Engineering, S9 Technical Report 6-92, Library No. S-239, 646,
October 1992. For Official Use Only.

[56] P. Boudra, Jr. Report on rules of system composition: Principles of secure system design.
Technical report, National Security Agency, Information Systems Security Organization,
Office of Infosec Systems Engineering, I9 Technical Report 1-93, Library No. S-240, 330,
March 1993. For Official Use Only.

[57] R.S. Boyer, B. Elspas, and K.N. Levitt. SELECT: A formalsystem for testing and debugging
programs by symbolic execution. InProc. Int. Conf. Reliable Software, pages 234–244.
IEEE, IEEE, April 1975.

[58] R.S. Boyer and J S. Moore.A Computational Logic. Academic Press, New York, 1979.

[59] K.H. Britton and D.L. Parnas. A-7e software module guide. Technical report, NRL Memo-
randum Report 4702, Naval Research Laboratory, Washington, D.C., December 1981.

[60] J.E. Brunelle and D.E. Eckhardt, Jr. Fault-tolerant software: An experiment with the SIFT
operating system. InProceedings of the Fifth AIAA Computers in Aerospace Conference,
pages 355–360, October 1985.

[61] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Transactions on
Computer Systems, 8(1):18–36, February 1990.

[62] R.W. Butler. An elementary tutorial on formal specification and verification using PVS.
Technical report, NASA Langley Research Center, Hampton, Virginia, June 1993.

[63] R.W. Butler, D.L. Palumbo, and S.C. Johnson. Application of a clock synchronization val-
idation methodology to the SIFT computer system. InDigest of Papers, FTCS 15, pages
194–199, Ann Arbor, Michigan, June 1985. IEEE Computer Society.

[64] Canadian Systems Security Centre, Communications Security Establishment, Government
of Canada.Canadian Trusted Computer Product Evaluation Criteria, December 1990. Final
Draft, version 2.0.

[65] G. Canfora, A. Cimitile, M. Munro, and C. Taylor. Extracting abstract data types from
C programs: A case study. InProceedings of the International Conference on Software
Maintenance, pages 200–209, September 1993.

[66] R.A. Carlson and T.F. Lunt. The trusted domain machine:A secure communication device
for security guard applications. InProceedings of the 1986 Symposium on Security and
Privacy, pages 182–186, Oakland, California, April 1986. IEEE Computer Society.

186 BIBLIOGRAPHY

[67] J. Carlstedt. Protection errors in operating systems:Validation of critical conditions. Tech-
nical Report ISI/SR-76-5, USC Information Sciences Institute (ISI), Marina Del Rey, Cali-
fornia, May 1976.

[68] J. Carlstedt, R. Bisbey II, and G. Popek. Pattern-directed protection evaluation. Technical
Report ISI/SR-75-31, USC Information Sciences Institute (ISI), Marina Del Rey, California,
June 1975.

[69] A. Chander, D. Dean, and J.C. Mitchell. A state-transition model of trust management. In
Proceedings of the 14th IEEE Computer Security FoundationsWorkshop, pages 27–43, Cape
Breton, Nova Scotia, Canada, June 2001. IEEE Computer Society Technical Committee on
Security and Privacy.

[70] A. Chander, D. Dean, and J.C. Mitchell. Deconstructingtrust management. InProceedings
of the 2002 Workshop on Issues in the Theory of Security, Portland, Oregon, January 2002.
IFIP Working Group 1.7.

[71] A. Chander, D. Dean, and J.C. Mitchell. A distributed high assurance reference monitor.
In Proceedings of the Seventh Information Security Conference Lecture Notes in Computer
Science vol. 3225, pages 231–244, Berlin, September 2004. Springer-Verlag.

[72] A. Chander, D. Dean, and J.C. Mitchell. Reconstructingtrust management.Journal of
Computer Security, 12(1):131–164, January 2004.

[73] D. Chaum. Secret-ballot receipts: True voter-verifiable elections.IEEE Security and Pri-
vacy, 2(1):38–47, January-February 2004.

[74] H. Chen. Lightweight Model Checking for Improving Software Security. PhD thesis, Uni-
versity of California, Berkeley, 2004. http://www.cs.ucdavis.edu/˜hchen/paper/phddis.ps.

[75] H. Chen, D. Dean, and D. Wagner. Model checking one million lines of code. InProceedings
of the Symposium on Network and Distributed System Security, pages 171–185, San Diego,
California, February 2004. Internet Society.

[76] H. Chen and J. Shapiro. Using build-integrated static checking to preserve correctness invari-
ants. InProceedings of the Eleventh ACM Conference on Computer and Communications
Security (CCS), Washington, D.C., November 2004.

[77] H. Chen and D. Wagner. MOPS: An infrastructure for examining security properties of soft-
ware. InNinth ACM Conference on Computer and Communications Security, Washington,
D.C., November 2002. ACM.

[78] H. Chen, D. Wagner, and D. Dean. Setuid demystified. InProceedings of the 11th USENIX
Security 2002, pages 171–190, San Francisco, California, August 2002. USENIX.

[79] B.V. Chess. Improving computer security using extended static checking. InProceedings
of the 2002 Symposium on Security and Privacy, pages 160–173, Oakland, California, May
2002. IEEE Computer Society.

BIBLIOGRAPHY 187

[80] W.R. Cheswick, S.M. Bellovin, and A.D. Rubin.Firewalls and Internet Security: Repelling
the Wily Hacker, Second Edition. Addison-Wesley, Reading, Massachusetts, 2003.

[81] D.D. Clark. The structuring of systems using upcalls.Operating Systems Review, pages
171–180, 1985.

[82] D.D. Clark and D.R. Wilson. A comparison of commercial and military computer security
policies. InProceedings of the 1987 Symposium on Security and Privacy, pages 184–194,
Oakland, California, April 1987. IEEE Computer Society.

[83] D.D. Clark et al. Computers at Risk: Safe Computing in the Information Age. National
Research Council, National Academy Press, 2101 Constitution Ave., Washington, D.C., 5
December 1990. Final report of the System Security Study Committee.

[84] F.J. Corbató. On building systems that will fail (1990Turing Award Lecture, with a fol-
lowing interview by Karen Frenkel).Communications of the ACM, 34(9):72–90, September
1991.

[85] F.J. Corbató, J. Saltzer, and C.T. Clingen. Multics: The first seven years. InProceedings
of the Spring Joint Computer Conference, volume 40, Montvale, New Jersey, 1972. AFIPS
Press.

[86] P.J. Courtois, F. Heymans, and D.L. Parnas. Concurrentcontrol with readers and writers.
Communications of the ACM, 14(10):667–668, October 1971.

[87] F. Cristian. Understanding fault-tolerant distributed systems.Communications of the ACM,
34(2):56–78, February 1991.

[88] I. Crnkovic and M. Larsson. Classification of quality attributes for predictability in
component-based systems. InWorkshop on Architecting Dependable Systems (DSN WADS
2004), Florence, Italy, June 2004. http://www.cs.kent.ac.uk/events/conf/2004/wads/DSN-
WADS2004/indexProgDSN2004.html.

[89] M. Curtin. Developing Trust: Online Security and Privacy. Apress, Berkeley, California,
and Springer-Verlag, Berlin, 2002.

[90] M. Cusumano, A. MacCormack, C.F. Kemerer, and W. Crandall. A global survey of soft-
ware development practices. Technical report, MIT Sloan School of Management, Cam-
bridge, Massachusetts, June 2003.

[91] R.C. Daley and J.B. Dennis. Virtual memory, processes,and sharing in Multics.Communi-
cations of the ACM, 11(5), May 1968.

[92] R.C. Daley and P.G. Neumann. A general-purpose file system for secondary storage. In
AFIPS Conference Proceedings, Fall Joint Computer Conference, pages 213–229. Spartan
Books, November 1965.

[93] A. Datta, R. Küsters, J.C. Mitchell, A. Ramanathan, and V. Shmatikov. Unifying
equivalence-based definitions of protocol security. InProceedings of the ACM SIGPLAN
and IFIP WG 1.7 Fourth Workshop on Issues in the Theory of Security, Oakland, California,
April 2004. IEEE Computer Society.

188 BIBLIOGRAPHY

[94] W.-P. de Roever, F. de Boer, U. Hanneman, J. Hooman, Y. Lakhnech, M. Poel, and J. Zwiers.
Concurrency Verification: Introduction to Compositional and Noncompositional Methods.
Cambridge University Press, New York, NY, 2001. Cambridge Tracts in Theoretical Com-
puter Science no. 54.

[95] D. Dean. Formal Aspects of Mobile Code Security. PhD thesis, Computer Science De-
partment, Princeton University, January 1999. (http://www.cs.princeton.edu/sip/pub/ddean-
dissertation.php3).

[96] D. Dean. The impact of programming language theory on computer security. InProceed-
ings of the Mathematical Foundations of Programming Semantics (MFPS), New Orleans,
Louisiana, March 2002. Slides at http://www.csl.sri.com/neumann/ddean-MFPS02.ppt.

[97] D. Dean, M. Franklin, and A. Stubblefield. An algebraic approach to ip traceback.ACM
Transactions on Information and System Security, 5(2):119–137, May 2002.

[98] D. Dean and D. Wagner. Intrusion detection via static analysis. In Proceedings of the
2001 Symposium on Security and Privacy, Oakland, California, May 2001. IEEE Computer
Society.

[99] G. Denker and J. Millen. CAPSL integrated protocol environment. InDARPA Information
Survivability Conference (DISCEX 2000), pages 207–221. IEEE Computer Society, 2000.

[100] D.E. Denning, S.G. Akl, M. Heckman, T.F. Lunt, M. Morgenstern, P.G. Neumann, and R.R.
Schell. Views for multilevel database security.IEEE Transactions on Software Engineering,
13(2), February 1987.

[101] D.E. Denning, P.G. Neumann, and Donn B. Parker. Socialaspects of computer security. In
Proceedings of the 10th National Computer Security Conference, September 1987.

[102] Y. Desmedt, Y. Frankel, and M. Yung. Multi-receiver/multi-sender network security: Effi-
cient authenticated multicast/feedback. InProceedings of IEEE INFOCOM. IEEE, 1992.

[103] Y. Deswarte, L. Blain, and J.-C. Fabre. Intrusion tolerance in distributed computing systems.
In Proceedings of the 1991 Symposium on Research in Security and Privacy, pages 110–121,
Oakland, California, April 1991. IEEE Computer Society.

[104] W. Diffie and S. Landau.Privacy on the Line: The Politics of Wiretapping and Encryption.
MIT Press, 1998.

[105] E.W. Dijkstra. Co-operating sequential processes. In Programming Languages, F. Genuys
(editor), pages 43–112. Academic Press, 1968.

[106] E.W. Dijkstra. The structure of the THE multiprogramming system.Communications of the
ACM, 11(5), May 1968.

[107] E.W. Dijkstra.A Discipline of Programming. Prentice-Hall, Englewood Cliffs, New Jersey,
1976.

BIBLIOGRAPHY 189

[108] G.W. Dinolt and J.C. Williams. A Graph-Theoretic Formulation of Multilevel Secure Dis-
tributed Systems: An overview. In1987 IEEE Symposium on Security and Privacy, pages
99–103, 1730 Massachusetts Avenue, N.W., Washington, D.C.20036-1903, April 1987. The
Computer Society of the IEEE, IEEE Computer Society Press.

[109] B.L. DiVito and L.W. Roberts. Using formal methods to assist in the requirements analysis
of the space shuttle GPS change request. Technical Report NASA Contractor Report 4652,
NASA Langley Research Center, Hampton, Virginia, August 1996.

[110] S. Dolev.Self-Stabilization. MIT Press, Cambridge, Massachusetts, 2000.

[111] B. Dutertre, V. Crettaz, and V. Stavridou. Intrusion-tolerant enclaves. InProceedings of the
2002 Symposium on Security and Privacy, pages 216–224, Oakland, California, May 2002.
IEEE Computer Society.

[112] C.M. Ellison et al. SPKI certificate theory. Technicalreport, Internet Engineering Task
Force, September 1999. http://www.ietf.org/rfc/rfc2693.txt).

[113] D.R. Engler. The Exokernel Operating System Architecture. Technical report, Ph.D. Thesis,
M.I.T., Cambridge, Massachusetts, October 1998.

[114] D.R. Engler, M.F. Kaashoek, and J. O’Toole Jr. Exokernel: An operating system architec-
ture for application-level resource management.Operating Systems Review, 29:251–266,
December 1995. Proceedings of the Fifteenth Symposium on Operating Systems Principles
(SOSP ’95).

[115] V.D. Gligor et al. Design and implementation of SecureXenix[TM]. In Proceedings of the
2004 Symposium on Security and Privacy, Oakland, California, April 1986. IEEE Computer
Society. also inIEEE Transactions on Software Engineering,vol. SE-13, 2, February 1987,
208–221.

[116] European Communities Commission.Information Technology Security Evaluation Criteria
(ITSEC), Provisional Harmonised Criteria (of France, Germany, the Netherlands, and the
United Kingdom), June 1991. Version 1.2. Available from the Office for Official Publica-
tions of the European Communities, L-2985 Luxembourg, itemCD-71-91-502-EN-C. Also
available from U.K. CLEF, CESG Room 2/0805, Fiddlers Green Lane, Cheltenham U.K.
GLOS GL52 5AJ, or GSA/GISA, Am Nippenkreuz 19, D 5300 Bonn 2, Germany.

[117] R.S. Fabry. Capability-based addressing.Communications of the ACM, 17(7):403–412, July
1974.

[118] A.W. Faughn. Interoperability: Is it achievable? Technical report, Harvard University PIRP
report, 2001.

[119] R.J. Feiertag, K.N. Levitt, and L. Robinson. Proving multilevel security of a system design.
In Proceedings of the Sixth ACM Symposium on Operating System Principles, pages 57–65,
November 1977.

190 BIBLIOGRAPHY

[120] R.J. Feiertag and P.G. Neumann. The foundations of a Provably Secure Operating System
(PSOS). InProceedings of the National Computer Conference, pages 329–334. AFIPS
Press, 1979. http://www.csl.sri.com/neumann/psos.pdf.

[121] W.H.J. Feijen, A.J.M. van Gasteren, D. Gries, and J. Misra, editors.Beauty is our Business,
A Birthday Salute to Edsger W. Dijkstra. Springer-Verlag, Berlin, 11 May 1990.

[122] J. Feller, B. Fitzgerald, S.A. Hissam, and K.R. Lakhani, editors. Perspectives on Free and
Open Source Software. MIT Press, Cambridge, Massachusetts, 2005.

[123] T. Fine, J.T. Haigh, R.C. O’Brien, and D.L. Toups. An overview of the LOCK FTLS.
Technical report, Honeywell, 1988.

[124] J.-M. Fray, Y. Deswarte, and D. Powell. Intrusion tolerance using fine-grain fragmentation-
scattering. InProceedings of the 1986 Symposium on Security and Privacy, pages 194–201,
Oakland, California, April 1986. IEEE Computer Society.

[125] C. Gacek and C. Jones. Dependability issues in open source software. Technical report,
Department of Computing Science, Dependable Interdisciplinary Research Collaboration,
University of Newcastle upon Tyne, Newcastle, England, 2001. Final report for PA5, part
of ongoing related work.

[126] C. Gacek, T. Lawrie, and B. Arief. The many meanings of open source. Technical re-
port, Department of Computing Science, University of Newcastle upon Tyne, Newcastle,
England, August 2001. Technical Report CS-TR-737.

[127] M. Gasser.Building a Secure Computer System. Van Nostrand Reinhold Company, New
York, 1988.

[128] M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson. The Digital distributed system
security architecture. InProceedings of the Twelfth National Computer Security Conference,
pages 305–319, Baltimore, Maryland, 10–13 October 1989. NIST/NCSC.

[129] S.L. Gerhart and L. Yelowitz. Observations of fallibility in modern programming method-
ologies.IEEE Transactions on Software Engineering, SE-2(3):195–207, September 1976.

[130] J.T. Giffin, S. Jha, and B.P. Miller. Detecting manipulated remote call streams. InProceed-
ings of the 11th USENIX Security 2002, pages 61–79, San Francisco, California, August
2002. USENIX.

[131] E. Gilbert, J. MacWilliams, and N. Sloane. Codes whichdetect deception.Bell System
Technical Journal, 53(3):405–424, 1974.

[132] J.F. Girard and R. Koschke. Finding components in a hierarchy of modules: A step towards
architectural understanding. InProceedings of the International Conference on Software
Maintenance, pages 72–81, October 1997.

[133] V.D. Gligor. A note on the denial-of-service problem.In Proceedings of the 1983 Symposium
on Security and Privacy, pages 139–149, Oakland, California, April 1983. IEEE Computer
Society.

BIBLIOGRAPHY 191

[134] V.D. Gligor and S.I. Gavrila. Application-oriented security policies and their composition.
In Proceedings of the 1998 Workshop on Security Paradigms, Cambridge, England, 1998.

[135] V.D. Gligor, S.I. Gavrila, and D. Ferraiolo. On the formal definition of separation-of-duty
policies and their composition. InProceedings of the 1998 Symposium on Security and
Privacy, Oakland, California, May 1998. IEEE Computer Society.

[136] R. Godin and H. Mili. Building and maintaining analysis-level class hierarchies using Galois
lattices. InProceedings of the 8th Annual Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA ’93), SIGPLANNotices, 28, 10, pages 394–
410, 1993.

[137] R. Godin, H. Mili, G.W. Mineau, R. Missaoui, A. Arfi, andT.-T. Chau. Design of class
hierarchies based on concept (Galois) lattices.Theory and Practice of Object Systems,
4(2):117–134, 1998.

[138] W. Goerigk. Compiler verification revisited. In M. Kaufmann, P. Maniolis, and J S. Moore,
editors,Computer Aided Reasoning: ACL2 Case Studies. Kluwer Academic Publishers,
2000. Chapter 15.

[139] J.A. Goguen and J. Meseguer. Security policies and security models. InProceedings of the
1982 Symposium on Security and Privacy, pages 11–20, Oakland, California, April 1982.
IEEE Computer Society.

[140] J.A. Goguen and J. Meseguer. Unwinding and inference control. InProceedings of the 1984
Symposium on Security and Privacy, pages 75–86, Oakland, California, April 1984. IEEE
Computer Society.

[141] B.D. Gold, R.R. Linde, and P.F. Cudney. KVM/370 in retrospect. InProceedings of the
1984 Symposium on Security and Privacy, pages 13–23, Oakland, California, April 1984.
IEEE Computer Society.

[142] A. Goldberg. A specification of Java loading and bytecode verification. InFifth ACM
Conference on Computer and Communications Security, pages 49–58, San Francisco, Cali-
fornia, November 1998. ACM SIGSAC.

[143] L. Gong. A secure identity-based capability system. In Proceedings of the 1989 Symposium
on Research in Security and Privacy, pages 56–63, Oakland, California, May 1989. IEEE
Computer Society.

[144] L. Gong. An overview of Enclaves 1.0. Technical report, SRI International, Menlo Park,
California, SRI-CSL-96-01, January 1996. (http://www.csl.sri.com/papers/346/).

[145] L. Gong.Inside Java(TM) 2 Platform Security: Architecture, API Design, and Implementa-
tion. Addison-Wesley, Reading, Massachusetts, 1999.

[146] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers. Going beyond the sandbox: An
overview of the new security architecture in the Java Development Kit 1.2. InProceedings
of the USENIX Symposium on Internet Technologies and Systems, Monterey, California,
December 1997.

192 BIBLIOGRAPHY

[147] L. Gong and X. Qian. The complexibility and composability of secure interoperation. In
Proceedings of the 1994 Symposium on Research in Security and Privacy, pages 190–200,
Oakland, California, May 1994. IEEE Computer Society.

[148] L. Gong and R. Schemers. Implementing protection domains in the Java Development Kit
1.2. InProceedings of the Internet Society Symposium on Network and Distributed System
Security, San Diego, California, March 1998.

[149] G. Goth. Richard Clarke talks cybersecurity and JELL-O. IEEE Security and Privacy,
2(3):11–15, May-June 2004.

[150] R.M. Graham. Protection in an information processingutility. Communications of the ACM,
11(5), May 1968.

[151] C. Gunter, S. Weeks, and A. Wright. Models and languages for digital rights. InProceedings
of the 2001 Hawaii Intenational Conference on Systems Science, Honolulu, Hawaii, March
2001. (http://www.star-lab.com/tr/star-tr-01-04.html).

[152] V. Guruswami and M. Sudan. List decoding algorithms for certain contatenated codes. In
Proceedings of the Thirty-second Annual ACM Symposium on Theory of Computing, pages
181–190, April 2000.

[153] J.T. Haigh. Top level security properties for the LOCKsystem. Technical report, Honeywell,
1988.

[154] J.T. Haigh et al. Assured service concepts and models,final technical report, vol. 3: Security
in distributed systems. Technical report, Secure Computing Technology Corporation, July
1991.

[155] J.T. Haigh et al. Assured service concepts and models,final technical report, vol. 4: Avail-
ability in distributed MLS systems. Technical report, Secure Computing Technology Cor-
poration, July 1991.

[156] J.T. Haigh et al. Assured service concepts and models,final technical report, volume 1:
Summary. Technical report, Secure Computing Technology Corporation, July 1991.

[157] S. Halevi and H. Krawczyk. Public-key cryptography and password protocols. InFifth ACM
Conference on Computer and Communications Security, pages 122–131, San Francisco,
California, November 1998. ACM SIGSAC.

[158] R.W. Hamming. Error detecting and error correcting codes.Bell System Technical Journal,
29:147–60, 1950.

[159] R. Harper and M. Lillibridge. A type-theoretic approach to higher-order modules with shar-
ing. In Conference Record of POPL ’94: 21st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 123–137, Portland, Oregon, January 1994.

[160] J. Hemenway and D. Gambel. Issues in the specification of composite trustworthy systems.
In Fourth Annual Canadian Computer Security Symposium, May 1992.

BIBLIOGRAPHY 193

[161] J.L. Hennessy and D.A. Patterson.Computer Architecture: A Quantitative Approach, Sec-
ond Edition. Morgan Kaufmann, 1996.

[162] H.M. Hinton. Composing partially-specified systems.In Proceedings of the 1998 Sympo-
sium on Security and Privacy, Oakland, California, May 1998. IEEE Computer Society.

[163] S. Hissam, C.B. Weinstock, D. Plakosh, and J. Asundi. Perspectives on open source soft-
ware. Technical report, Carnegie-Mellon Software Engineering Institute, Pittsburgh, Penn-
sylvania 15213-3890, November 2001. CMU/SEI-2001-TR-019
(http://www.sei.cmu.edu/publications/pubweb.html).

[164] C.A.R. Hoare. Monitors: An operating system structuring concept.Communications of the
ACM, 17(10), October 1974.

[165] D. Hollingworth and R. Bisbey II. Protection errors inoperating systems: Alloca-
tion/deallocation residuals. Technical report, USC Information Sciences Institute (ISI), Ma-
rina Del Rey, California, June 1976.

[166] J.J. Horning, H.C. Lauer, P.M. Melliar-Smith, and B. Randell. A program structure for error
detection and recovery. InOperating Systems, Proceedings of an International Symposium,
Notes in Computer Science 16, pages 171–187. Springer-Verlag, Berlin, 1974.

[167] D.A. Huffman. A method for the construction of minimumredundancy codes.Proceedings
of the IRE, 40, 1952.

[168] D.A. Huffman. Canonical forms for information-lossless finite-state machines.IRE Trans-
actions on Circuit Theory (special supplement) and IRE Transactions on Information Theory
(special supplement), CT-6 and IT-5:41–59, May 1959. A slightly revised version appeared
in E.F. Moore, Editor,Sequential Machines: Selected Papers, Addison-Wesley, Reading,
Massachusetts.

[169] C. Hunt.TCP/IP Network Administration, 3rd Edition. O’Reilly & Associates, Sebastopol,
California, 2002.

[170] W.A. Hunt Jr. Microprocessor design verification.Journal of Automated Reasoning,
5(4):429–460, December 1989.

[171] IEEE. Standard specifications for public key cryptography. Technical report, IEEE Stan-
dards Department, 445 Hoes Lane, P.O. Box 1331, Piscataway,New Jersey 08855-1331,
2000 and ongoing. (http://grouper.ieee.org/groups/1363/).

[172] International Standards Organization.The Common Criteria for Information Technol-
ogy Security Evaluation, Version 2.1, ISO 15408. ISO/NIST/CCIB, 19 September 2000.
(http://csrc.nist.gov/cc).

[173] D. Jackson. Alloy: A lightweight object modelling notation.ACM Transactions on Software
Engineering Methodology, 11(2):256–290, 20.

[174] I. Jacobson, G. Booch, and J. Rumbaugh.The Unified Software Development Process.
Addison-Wesley, Reading, Massachusetts, 1999.

194 BIBLIOGRAPHY

[175] R. Jagannathan. Transparent multiprocessing in the presence of fail-stop faults. InProceed-
ings of the 3rd Workshop on Large-Grain Parallelism, Pittsburgh, Pennsylvania, October
1989.

[176] R. Jagannathan. Coarse-grain dataflow programming ofconventional parallel computers. In
Advanced Topics in Dataflow Computing and Multithreading (edited by L. Bic, J-L. Gaudiot,
and G. Gao). IEEE Computer Society, April 1995.

[177] R. Jagannathan and C. Dodd. GLU programmer’s guide v0.9. Technical report, Computer
Science Laboratory, SRI International, Menlo Park, California, November 1994. CSL Tech-
nical Report CSL-94-06.

[178] R. Jagannathan and A.A. Faustini. The GLU programminglanguage. Technical report,
Computer Science Laboratory, SRI International, Menlo Park, California, November 1990.
CSL Technical Report CSL-90-11.

[179] P.A. Janson. Using type extension to organize virtualmemory mechanisms.ACM Operating
Systems Review, 15(4):6–38, October 1981.

[180] S. Jha, O. Sheyner, and J. Wing. Two formal analyses of attack graphs. InProceedings of
the 15th IEEE Computer Security Foundations Workshop, pages 49–64, Cape Breton, Nova
Scotia, Canada, June 2002. IEEE Computer Society TechnicalCommittee on Security and
Privacy.

[181] D.R. Johnson, F.F. Saydjari, and J.P. Van Tassel. MISSI security policy: A formal approach.
Technical report, NSA R2SPO-TR001-95, 18 August 1995.

[182] C. Jones. Providing a formal basis for dependability notions. Technical report, Department
of Computing Science, Dependable Interdisciplinary Research Collaboration, University of
Newcastle upon Tyne, Newcastle, England, 2002. UNU/IIST Anniversary Colloquium.

[183] M.F. Kaashoek and A.S. Tanenbaum. Fault tolerance using group communication.ACM
SIGOPS Operating Systems Review, 25(2):71–74, April 1991.

[184] R. Kailar, V.D. Gligor, and L. Gong. On the security effectiveness of cryptographic proto-
cols. InProceedings of the 1994 Conference on Dependable Computingfor Critical Appli-
cations, pages 90–101, San Diego, California, January 1994.

[185] R.Y. Kain. Computer Architecture: Software and Hardware. Prentice-Hall, 1988.

[186] R.Y. Kain and C.E. Landwehr. On access checking in capability-based systems. InProceed-
ings of the 1986 IEEE Symposium on Security and Privacy, April 1986.

[187] P.A. Karger and H. Kurth. Increased information flow needs for high-assurance composite
evaluations. InProceedings of the Second International Information Assurance Workshop
(IWIA 2004), pages 129–140, Charlotte, North Carolina, May 2004. IEEE Computer Soci-
ety.

BIBLIOGRAPHY 195

[188] P.A. Karger and R.R. Schell. Multics security evaluation: Vulnerability analysis. InPro-
ceedings of the 18th Annual Computer Security ApplicationsConference (ACSAC), Classic
Papers section, Las Vegas, Nevada, December 2002. Originally available asU.S. Air Force
report ESD-TR-74-193, Vol. II, Hanscomb Air Force Base, Massachusetts.

[189] P.A. Karger and R.R. Schell. Thirty years later: Lessons from the Multics security evalua-
tion. In Proceedings of the 18th Annual Computer Security Applications Conference (AC-
SAC), Classic Papers section, Las Vegas, Nevada, December 2002. http://www.acsac.org/
.

[190] M Kaufmann, J S. Moore, and P. Manolios.Computer-Aided Reasoning: An Approach.
Kluwer Academic Publishing, Norwell, Massachusetts, 2000.

[191] S. Keung and L. Gong. Enclaves in Java: APIs and Implementations. Technical Report SRI-
CSL-96-07, SRI International, Computer Science Laboratory, 333 Ravenswood Avenue,
Menlo Park, California 94025, July 1996.

[192] P. Kocher. Cryptanalysis of Diffie-Hellman, RSA, DSS,and other systems using timing
attacks (extended abstract). Technical report, Cryptography Research Inc., 607 Market St,
San Francisco, California 94105, December 7 1995.

[193] P.C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. InSpringer-Verlag, Berlin, Lecture Notes in Computer Science, Advances in Cryp-
tology, Proceedings of Crypto ’96, pages 104–113, Santa Barbara, California, August 1996.

[194] T. Kohno, A. Stubblefield, A.D. Rubin, and D.S. Wallach. Analysis of an electronic voting
system. InProceedings of the 2004 Symposium on Security and Privacy, pages 27–40,
Oakland, California, May 2004. IEEE Computer Society.

[195] H. Kopetz. Composability in the time-triggered architecture. InProceedings of the SAE
World Congress, pages 1–8, Detroit, Michigan, 2000. SAE Press.

[196] M. Kuijper and J.W. Polderman. Reed-solomon list decoding from a system-theoretic per-
spective.IEEE Transactions on Information Theory, 40(2):259–271, February 2004.

[197] L. Lamport. A simple approach to specifying concurrent program systems.Communications
of the ACM, 32(1):32–45, January 1989.

[198] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.ACM Transactions
on Programming Languages and Systems, 4(3):382–401, July 1982.

[199] B.W. Lampson. Software components: Only the giants survive. In Computer Systems:
papers for Roger Needham, K. Spark-Jones and A. Herbert (editors), pages 113–120. Mi-
crosoft Research, Cambridge, U.K., February 2003.

[200] B.W. Lampson and H. Sturgis. Reflections on an operating system design.Communications
of the ACM, 19(5):251–265, May 1976.

196 BIBLIOGRAPHY

[201] C.E. Landwehr, A.R. Bull, J.P. McDermott, and W.S. Choi. A taxonomy of computer pro-
gram security flaws, with examples. Technical report, Center for Secure Information Tech-
nology, Information Technology Division, Naval Research Laboratory, Washington, D.C.,
November 1993.

[202] J.C. Laprie, editor.Dependability: A Unifying Concept for Reliable Computing and Fault
Tolerance. Springer-Verlag, 1990.

[203] E.S. Lee, P.I.P. Boulton, B.W. Thompson, and R.E. Soper. Composable trusted systems.
Technical report, Computer Systems Research Institute, University of Toronto, Technical
Report CSRI-272, May 1992.

[204] E.S. Lee, P.I.P. Boulton, B.W. Thomson, and R.E. Soper. Composable trusted systems.
Technical report, Computer Systems Research Institute, University of Toronto, Ontario, 31
May 1992. CSRI-272.

[205] K.N. Levitt, S. Crocker, and D. Craigen, editors. VERkshop III: Verification workshop.
ACM SIGSOFT Software Engineering Notes, 10(4):1–136, August 1985.

[206] C. Lindig and G. Snelting. Assessing modular structure of legacy code based on math-
ematical concept analysis. InProceedings of the International Conference on Software
Engineering, pages 349–359, 1997.

[207] U. Lindqvist and P.A. Porras. Detecting computer and network misuse through the
Production-Based Expert System Toolset (P-BEST). InProceedings of the 1999 Sympo-
sium on Security and Privacy, Oakland, California, May 1999. IEEE Computer Society.

[208] U. Lindqvist and P.A. Porras. eXpert-BSM: A host-based intrusion-detection solution for
Sun Solaris. InProceedings of the 17th Annual Computer Security Applications Conference
(ACSAC 2001), New Orleans, Louisiana, 10–14 December 2001.

[209] S.B. Lipner. Non-discretionary controls for commercial applications. InProceedings of the
1982 Symposium on Security and Privacy, pages 2–10. IEEE, 1982. Oakland, California,
26–28 April 1982.

[210] S.B. Lipner. Security and source code access: Issues and realities. InProceedings of the
2000 Symposium on Security and Privacy, pages 124–125, Oakland, California, May 2000.
IEEE Computer Society.

[211] P.E Livadas and T. Johnson. A new approach to finding objects in programs.Software
Maintenance: Research and Practice, 6:249–260, 1994.

[212] M. Lubaszewski and B. Courtois. A reliable fail-safe system. IEEE Transactions on Com-
puters, C-47(2):236–241, February 1998.

[213] T.F. Lunt, R.R. Schell, W.R. Shockley, M. Heckman, andD. Warren. A near-term design for
the SeaView multilevel database system. InProceedings of the 1988 Symposium on Security
and Privacy, pages 234–244, Oakland, California, April 1988. IEEE Computer Society.

BIBLIOGRAPHY 197

[214] T.F. Lunt and R.A. Whitehurst. The SeaView formal top level specifications and proofs.
Final report, Computer Science Laboratory, SRI International, Menlo Park, California, Jan-
uary/February 1989. Volumes 3A and 3B of “Secure Distributed Data Views,” SRI Project
1143.

[215] S. Mancoridis and R.C. Holt. Recovering the structureof software systems using tube graph
interconnection clustering. InProceedings of the International Conference on Software
Maintenance, pages 23–32, 1996.

[216] S. Mancoridis, B.S. Mitchell, Y. Chen, and E.R. Gansner. Using automatic clustering to
produce high-level system organization of source code. InProceedings of the International
Workshop on Program Comprehension, pages 42–52, 1998.

[217] S. Mancoridis, B.S. Mitchell, Y. Chen, and E.R. Gansner. Bunch: A clustering tool for the
recovery and maintenance of software system structures. InProceedings of the International
Conference on Software Maintenance, pages 50–59, 1999.

[218] A.P. Maneki. Algebraic properties of system composition in the Loral, Ulysses and McLean
trace models. InProceedings of the 8th IEEE Computer Security Foundations Workshop,
Kenmare, County Kerry, Ireland, June 1995.

[219] H. Mantel. Preserving information flow properties under refinement. InProceedings of the
2001 Symposium on Security and Privacy, pages 78–91, Oakland, California, May 2001.
IEEE Computer Society.

[220] H. Mantel. On the composition of secure systems. InProceedings of the 2002 Symposium
on Security and Privacy, pages 88–101, Oakland, California, May 2002. IEEE Computer
Society.

[221] E.J. McCauley and P.J. Drongowski. KSOS: The design ofa secure operating system. In
National Computer Conference, pages 345–353. AFIPS Conference Proceedings, 1979. Vol.
48.

[222] D. McCullough. Specifications for multi-level security and a hook-up property. InProceed-
ings of the 1987 Symposium on Security and Privacy, pages 161–166, Oakland, California,
April 1987. IEEE Computer Society.

[223] D. McCullough. Noninterference and composability ofsecurity properties. InProceedings
of the 1988 Symposium on Security and Privacy, pages 177–186, Oakland, California, April
1988. IEEE Computer Society.

[224] D. McCullough. Ulysses security properties modelingenvironment: The theory of security.
Technical report, Odyssey Research Associates, Ithaca, New York, July 1988.

[225] D. McCullough. A hookup theorem for multilevel security. IEEE Transactions on Software
Engineering, 16(6), June 1990.

[226] P. McDaniel and A. Prakash. Methods and limitations ofsecurity policy reconciliation.
In Proceedings of the 2002 Symposium on Security and Privacy, pages 73–87, Oakland,
California, May 2002. IEEE Computer Society.

198 BIBLIOGRAPHY

[227] G. McGraw. Will openish source really improve security? In Proceedings of the 2000
Symposium on Security and Privacy, pages 128–129, Oakland, California, May 2000. IEEE
Computer Society.

[228] G. McGraw. Software security.IEEE Security and Privacy, 2(2):80–83, March-April 2004.

[229] M.K. McKusick, K. Bostic, M.J. Karels, and J.S. Quarterman. The Design and Implemen-
tation of the 4.4 BSD Operating System. Addison-Wesley, Reading, Massachusetts, 1996.

[230] J. McLean. A general theory of composition for trace sets closed under selective interleaving
functions. InProceedings of the 1994 Symposium on Research in Security and Privacy,
pages 79–93, Oakland, California, May 1994. IEEE Computer Society.

[231] P.M. Melliar-Smith and L.E. Moser. Surviving networkpartitioning. Computer, 31(3):62–
68, March 1998.

[232] P.M. Melliar-Smith and R.L. Schwartz. Formal specification and verification of SIFT: A
fault-tolerant flight control system.IEEE Transactions on Computers, C-31(7):616–630,
July 1982.

[233] R. Mercuri. Electronic Vote Tabulation Checks and Balances. PhD the-
sis, Department of Computer Science, University of Pennsylvania, 2001.
(http://www.notablesoftware.com/evote.html).

[234] R. Mercuri. A better ballot box: New electronic votingsystems pose risks as well as solu-
tions. IEEE Spectrum, pages 46–50, October 2002.

[235] R. Mercuri and P.G. Neumann. Verification for electronic balloting systems. InSecure Elec-
tronic Voting, Advances in Information Security, Volume 7. Kluwer Academic Publishers,
Boston, Massachusetts, 2002.

[236] S. Micali. Fair public-key cryptosystems. InAdvances in Cryptology: Proceedings of
CRYPTO ’92 (E.F. Brickell, editor), pages 512–517. Springer-Verlag, Berlin, LCNS 740,
1992.

[237] J. Millen and G. Denker. CAPSL and MuCAPSL.Journal of Telecommunications and
Information Technology, (4):16–27, 2002.

[238] J.K. Millen. Hookup security for synchronous machines. InProceedings of the IEEE Com-
puter Security Foundations Workshop VII, pages 2–10, Franconia, New Hampshire, June
1994. IEEE Computer Society.

[239] R. Milner, M. Tofte, R. Harper, and D. MacQueen.The Definition of Standard ML. MIT
Press, Cambridge, Massachusetts, 1997.

[240] J.C. Mitchell and G.D. Plotkin. Abstract types have existential type.ACM Transactions on
Programming Languages and Systems, 10(3):470–502, July 1988.

[241] E.F. Moore. Gedanken experiments on sequential machines. InAutomata Studies, Annals
of Mathematical Studies, 34, Princeton University Press, 1956, pages 129–153, 1956. C.E.
Shannon and J. McCarthy, editors.

BIBLIOGRAPHY 199

[242] E.F. Moore and C.E. Shannon. Reliable circuits using less reliable relays.Journal of the
Franklin Institute, 262:191–208, 281–297, September, October 1956.

[243] J S. Moore. A mechanically verified language implementation. Journal of Automated Rea-
soning, 5(4):461–492, December 1989.

[244] J S. Moore. System verification.Journal of Automated Reasoning, 5(4):409–410, December
1989.

[245] J S. Moore, editor. System verification.Journal of Automated Reasoning, 5(4):409–530,
December 1989. Includes five papers by Moore, W.R. Bevier, W.A. Hunt, Jr, and W.D.
Young.

[246] M. Moriconi. A designer/verifier’s assistant.IEEE Transactions on Software Engineering,
SE-5(4):387–401, July 1979. Reprinted inArtificial Intelligence and Software Engineering,
edited by C. Rich and R. Waters, Morgan Kaufmann Publishers,Inc., 1986. Also reprinted in
Tutorial on Software Maintenance, edited by G. Parikh and N. Zvegintzov, IEEE Computer
Society Press, 1983.

[247] L. Moser, P.M. Melliar-Smith, and R. Schwartz. Designverification of SIFT. Contractor
Report 4097, NASA Langley Research Center, Hampton, Virginia, September 1987.

[248] NASA Conference Publication 2377.Peer Review of a Formal Verification/Design Proof
Methodology, July 1983.

[249] NCSC. Department of Defense Trusted Computer System Evaluation Criteria (TCSEC).
National Computer Security Center, December 1985. DOD-5200.28-STD, Orange Book.

[250] G.C. Necula.Compiling with Proofs. PhD thesis, Computer Science Department, Carnegie-
Mellon University, 1998.

[251] B.J. Nelson. Remote procedure call. Technical report, Research Report CSL-79-9, XEROX
Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto,California, May 1981.

[252] P.G. Neumann. Efficient error-limiting variable-length codes.IRE Transactions on Infor-
mation Theory, IT-8:292–304, July 1962.

[253] P.G. Neumann. On a class of efficient error-limiting variable-length codes.IRE Transactions
on Information Theory, IT-8:S260–266, September 1962.

[254] P.G. Neumann. Error-limiting coding using information-lossless sequential machines.IEEE
Transactions on Information Theory, IT-10:108–115, April 1964.

[255] P.G. Neumann. The role of motherhood in the pop art of system programming. InPro-
ceedings of the ACM Second Symposium on Operating Systems Principles, Princeton, New
Jersey, pages 13–18. ACM, October 1969.

[256] P.G. Neumann. System design for computer networks. InComputer-Communication Net-
works (Chapter 2), pages 29–81. Prentice-Hall, 1971. N. Abramson and F.F. Kuo(editors).

200 BIBLIOGRAPHY

[257] P.G. Neumann. Rainbows and arrows: How the security criteria address computer misuse.
In Proceedings of the Thirteenth National Computer Security Conference, pages 414–422,
Washington, D.C., 1–4 October 1990. NIST/NCSC.

[258] P.G. Neumann. Can systems be trustworthy with software-implemented crypto? Technical
report, Final Report, Project 6402, SRI International, Menlo Park, California, October 1994.
For Official Use Only, NOFORN.

[259] P.G. Neumann. Architectures and formal representations for secure systems. Technical
report, Final Report, Project 6401, SRI International, Menlo Park, California, October 1995.
CSL report 96-05.

[260] P.G. Neumann.Computer-Related Risks. ACM Press, New York, and Addison-Wesley,
Reading, Massachusetts, 1995.

[261] P.G. Neumann. Practical architectures for survivable systems and networks. Technical re-
port, Final Report, Phase One, Project 1688, SRI International, Menlo Park, California, Jan-
uary 1999.http://www.csl.sri.com/neumann/arl-one.html , also available
in .ps and .pdf form.

[262] P.G. Neumann. Certitude and rectitude. InProceedings of the 2000 International Conference
on Requirements Engineering, page 153, Schaumberg, Illinois, June 2000. IEEE Computer
Society.

[263] P.G. Neumann. The potentials of open-box source code in developing robust systems. In
Proceedings of the NATO Conference on Commercial Off-The-Shelf Products in Defence
Applications: The Ruthless Pursuit of COTS, Brussels, Belgium, April 2000. NATO.

[264] P.G. Neumann. Practical architectures for survivable systems and networks. Technical
report, Final Report, Phase Two, Project 1688, SRI International, Menlo Park, California,
June 2000. (http://www.csl.sri.com/neumann/survivability.html).

[265] P.G. Neumann. Robust nonproprietary software. InProceedings of the 2000
Symposium on Security and Privacy, pages 122–123, Oakland, California, May
2000. IEEE Computer Society. (http://www.csl.sri.com/neumann/ieee00.ps and
http://www.csl.sri.com/neumann/ieee00.pdf).

[266] P.G. Neumann. Achieving principled assuredly trustworthy composable systems and net-
works. InProceedings of the DARPA Information Survivability Conference and Exhibition,
DISCEX3, volume 2, pages 182–187. DARPA and IEEE Computer Society, April 2003.

[267] P.G. Neumann. Illustrative risks to the public in the use of computer systems and related
technology, index to RISKS cases. Technical report, Computer Science Laboratory, SRI
International, Menlo Park, California, 2004. The most recent version is available online in
html form for browsing at http://www.csl.sri.com/neumann/illustrative.html, and also in .ps
and .pdf form for printing in a much denser format.

[268] P.G. Neumann, R.S. Boyer, R.J. Feiertag, K.N. Levitt,and L. Robinson. A Provably Secure
Operating System: The system, its applications, and proofs. Technical report, Computer

BIBLIOGRAPHY 201

Science Laboratory, SRI International, Menlo Park, California, May 1980. 2nd edition,
Report CSL-116.

[269] P.G. Neumann and R.J. Feiertag. PSOS revisited. InProceedings of the 19th Annual Com-
puter Security Applications Conference (ACSAC 2003), Classic Papers section, pages 208–
216, Las Vegas, Nevada, December 2003. IEEE Computer Society. http://www.acsac.org/
and http://www.csl.sri.com/neumann/psos03.pdf.

[270] P.G. Neumann, J. Goldberg, K.N. Levitt, and J.H. Wensley. A study of fault-tolerant com-
puting. Final report for ARPA, AD 766 974, Stanford ResearchInstitute, Menlo Park,
California, July 1973.

[271] P.G. Neumann and D.B. Parker. A summary of computer misuse techniques. InProceedings
of the Twelfth National Computer Security Conference, pages 396–407, Baltimore, Mary-
land, 10–13 October 1989. NIST/NCSC.

[272] P.G. Neumann and P.A. Porras. Experience with EMERALDto date. InProceedings of
the First USENIX Workshop on Intrusion Detection and Network Monitoring, pages 73–80,
Santa Clara, California, April 1999. USENIX. http://www.csl.sri.com/neumann/det99.html.

[273] P.G. Neumann, N.E. Proctor, and T.F. Lunt. Preventingsecurity misuse in distributed sys-
tems. Technical report, Computer Science Laboratory, SRI International, Menlo Park, Cal-
ifornia, June 1992. Issued as Rome Laboratory report RL-TR-92-152, Rome Laboratory
C3AB, Griffiss AFB NY 13441-5700. For Official Use Only.

[274] P.G. Neumann and T.R.N. Rao. Error correction codes for byte-organized arithmetic pro-
cessors.IEEE Transactions on Computers, C-24(3):226–232, March 1975.

[275] P.G. Neumann, editor. VERkshop I: Verification Workshop. ACM SIGSOFT Software
Engineering Notes, 5(3):4–47, July 1980.

[276] P.G. Neumann, editor. VERkshop II: Verification Workshop. ACM SIGSOFT Software
Engineering Notes, 6(3):1–63, July 1981.

[277] E.I. Organick.The Multics System: An Examination of Its Structure. MIT Press, Cambridge,
Massachusetts, 1972.

[278] S. Owre and N. Shankar. Theory interpretations in PVS.Technical Report SRI-CSL-
01-01, Computer Science Laboratory, SRI International, Menlo Park, CA, April 2001.
http://www.csl.sri.com/˜owre.

[279] W. Ozier. GASSP: Generally Accepted Systems SecurityPrinciples. Tech-
nical report, International Information Security Foundation, June 1997.
web.mit.edu/security/www/gassp1.html.

[280] J.M. Park, E.K.P. Chong, and H.J. Siegel. Efficient multicast packet authentication using
signature amortization. InProceedings of the 2002 Symposium on Security and Privacy,
pages 227–240, Oakland, California, May 2002. IEEE Computer Society.

202 BIBLIOGRAPHY

[281] D.L. Parnas. On the criteria to be used in decomposing systems into modules.Communica-
tions of the ACM, 15(12), December 1972.

[282] D.L. Parnas. A technique for software module specification with examples.Communications
of the ACM, 15(5), May 1972.

[283] D.L. Parnas. On a “buzzword”: Hierarchical structure. In Information Processing 74 (Pro-
ceedings of the IFIP Congress 1974), volume Software, pages 336–339. North-Holland,
Amsterdam, 1974.

[284] D.L. Parnas. The influence of software structure on reliability. In Proceedings of the In-
ternational Conference on Reliable Software, pages 358–362, April 1975. Reprinted with
improvements in R. Yeh,Current Trends in Programming Methodology I, Prentice-Hall,
1977, 111–119.

[285] D.L. Parnas. On the design and development of program families. IEEE Transactions on
Software Engineering, SE-2(1):1–9, March 1976.

[286] D.L. Parnas. Designing software for ease of extensionand contraction.IEEE Transactions
on Software Engineering, SE-5(2):128–138, March 1979.

[287] D.L. Parnas. Mathematical descriptions and specification of software. InProceedings of the
IFIP World Congress 1994, Volume I, pages 354–359. IFIP, August 1994.

[288] D.L. Parnas. Software engineering: An unconsummatedmarriage.Communications of the
ACM, 40(9):128, September 1997.Inside Riskscolumn.

[289] D.L. Parnas. Computer science and software engineering: Filing for divorce?Communica-
tions of the ACM, 41(8), August 1998.Inside Riskscolumn.

[290] D.L. Parnas, P.C. Clements, and D.M. Weiss. The modular structure of complex systems.
IEEE Transactions on Software Engineering, SE-11(3):259–266, March 1985.

[291] D.L. Parnas and G. Handzel. More on specification techniques for software modules. Tech-
nical report, Fachbereich Informatik, Technische Hochschule Darmstadt, Research Report
BS I 75/1, Germany, April 1975.

[292] D.L. Parnas, J. Madey, and M. Iglewski. Precise documentation of well-structured programs.
IEEE Transactions on Software Engineering, 20(12):948–976, December 1994.

[293] D.L. Parnas and W.R. Price. The design of the virtual memory aspects of a virtual machine.
In Proceedings of the ACM SIGARCH-SIGOPS Workshop on Virtual Computer Systems.
ACM, March 1973.

[294] D.L. Parnas and W.R. Price. Design of a non-random access virtual memory machine. In
Proceedings of the International Workshop On Protection inOperating Systems, pages 177–
181, August 1974.

[295] D.L. Parnas and D.L. Siewiorek. Use of the concept of transparency in the design of hierar-
chically structured systems.Communications of the ACM, 18(7):401–408, July 1975.

BIBLIOGRAPHY 203

[296] D.L. Parnas, A.J. van Schouwen, and S.P. Kwan. Evaluation of safety-critical software.
Communications of the ACM, 33(6):636–648, June 1990.

[297] D.L. Parnas and Y. Wang. Simulating the behaviour of software modules by trace rewriting
systems.IEEE Transactions of Software Engineering, 19(10):750–759, October 1994.

[298] D.A. Patterson and J.L. Hennessy.Computer Organization and Design: The Hard-
ware/Software Interface, Second Edition. Morgan Kaufmann, 1997.

[299] R. Perlman.Network Layer Protocols with Byzantine Robustness. PhD thesis, MIT, Cam-
bridge, Massachusetts, 1988.

[300] H. Petersen and M. Michels. On signature schemes with threshold verification detecting
malicious verifiers. InSpringer-Verlag, Berlin, Lecture Notes in Computer Science, Security
Protocols, Proceedings of 5th International Workshop, pages 67–77, Paris, France, April
1997.

[301] L. Peterson and D. Clark. The Internet: An experiment that escaped from the lab. In
Computer Science: Reflections on the Field, Reflections fromthe Field, pages 129–133.
National Research Council, National Academy Press, 500 Fifth Ave., Washington, D.C.
20001, 2004.

[302] W.W. Peterson and E.J. Weldon, Jr.Error-Correcting Codes, 2nd ed.MIT Press, Cambridge,
Massachusetts, 1972.

[303] C.P. Pfleeger.Security in Computing. Prentice-Hall, Englewood Cliffs, New Jersey, 1989.

[304] P.A. Porras and P.G. Neumann. EMERALD: Event Monitoring Enabling Responses to
Anomalous Live Disturbances. InProceedings of the Nineteenth National Computer Secu-
rity Conference, pages 353–365, Baltimore, Maryland, 22-25 October 1997. NIST/NCSC.

[305] P.A. Porras, K. Nitz, U. Lindqvist, M. Fong, and P.G. Neumann. Discerning attacker intent.
Technical report, Computer Science Laboratory, SRI International, Project 10779, Menlo
Park, California, April 2003.

[306] P.A. Porras and A. Valdes. Live traffic analysis of TCP/IP gateways. InProceedings of the
Symposium on Network and Distributed System Security. Internet Society, March 1998.

[307] N.E. Proctor. The restricted access processor: An example of formal verification. InPro-
ceedings of the 1985 Symposium on Security and Privacy, pages 49–55, Oakland, California,
April 1985. IEEE Computer Society.

[308] N.E. Proctor and P.G. Neumann. Architectural implications of covert channels. InPro-
ceedings of the Fifteenth National Computer Security Conference, pages 28–43, Baltimore,
Maryland, 13–16 October 1992. (http://www.csl.sri.com/neumann/ncs92.html).

[309] B. Randell, J.-C. Laprie, H. Kopetz, and B. Littlewood, editors. Predictably Dependable
Computing Systems. Basic Research Series. Springer-Verlag, Berlin, 1995.

[310] T.R.N. Rao.Error-Control Coding for Computer Systems. Prentice-Hall, Englewood Cliffs,
New Jersey, 1989.

204 BIBLIOGRAPHY

[311] V. Ratan, K. Partridge, J. Reese, and N. Leveson. Safety analysis tools for requirements
specification. InProceedings of the Eleventh Annual Conference on Computer Assurance,
COMPASS ’96, pages 149–160. IEEE Computer Society, 1996.

[312] M. Raynal. A case study of agreement problems in distributed systems: Non-blocking
atomic commitment. InProceedings of the 1997 High-Assurance Systems Engineering
Workshop, pages 209–214, Washington, D.C., August 1997. IEEE Computer Society.

[313] M. Reiter and K. Birman. How to securely replicate services. ACM Transactions on Pro-
gramming Languages and Systems, 16(3):986–1009, May 1994.

[314] J.H. Reppy. Concurrent Programming in ML. Cambridge University Press, Cambridge,
U.K., 1999.

[315] R. Rivest and B. Lampson. SDSI – a simple distributed security infrastructure. Techni-
cal report, MIT Laboratory for Computer Science, 2000. Version 2.0 is available online
(http://theory.lcs.mit.edu/˜cis/sdsi.html) along withother documentation and source code.

[316] L. Robinson and K.N. Levitt. Proof techniques for hierarchically structured programs.Com-
munications of the ACM, 20(4):271–283, April 1977.

[317] L. Robinson, K.N. Levitt, P.G. Neumann, and A.R. Saxena. A formal methodology for the
design of operating system software. InR. Yeh (editors), Current Trends in Programming
Methodology I, Prentice-Hall, 61–110, 1977.

[318] L. Robinson, K.N. Levitt, and B.A. Silverberg.The HDM Handbook. Computer Science
Laboratory, SRI International, Menlo Park, California, June 1979. Three Volumes.

[319] A.W. Roscoe and L. Wulf. Composing and decomposing systems under security proper-
ties. InProceedings of the 8th IEEE Computer Security Foundations Workshop, Kenmare,
County Kerry, Ireland, June 1995.

[320] E. Rosen. Vulnerabilities of network control protocols. ACM SIGSOFT Software Engineer-
ing Notes, 6(1):6–8, January 1981.

[321] J. Rushby. Partitioning for avionics architectures:Requirements, mechanisms, and assur-
ance. Technical report, NASA Langley Research Center, June1999. Contractor Report
CR-1999-209347; also issued as FAA DOT/FAA/AR-99/58.

[322] J. Rushby. Modular certification. Technical report, Computer Science Laboratory, SRI
International, Menlo Park, California, June 2002.

[323] J.M. Rushby. A trusted computing base for embedded systems. InProceedings of the
Seventh DoD/NBS Computer Security Initiative Conference, pages 294–311, Gaithersburg,
Maryland, September 1984.

[324] J.M. Rushby. Kernels for safety? In T. Anderson, editor, Safe and Secure Computing
Systems, chapter 13, pages 210–220. Blackwell Scientific Publications, 1989. Proceedings
of a Symposium held in Glasgow, October 1986.

BIBLIOGRAPHY 205

[325] J.M. Rushby. Composing trustworthy systems. Technical report, Computer Science Labo-
ratory, SRI International, Menlo Park, California, July 1991.

[326] J.M. Rushby. Formal methods and their role in digital systems validation for airborne sys-
tems. Technical report, SRI International, Menlo Park, California, CSL-95-01, March 1995.

[327] J.M. Rushby and B. Randell. A distributed secure system. IEEE Computer, 16(7):55–67,
July 1983.

[328] J.M. Rushby and B. Randell. A distributed secure system. Technical Report 182, Computing
Laboratory, University of Newcastle upon Tyne, May 1983.

[329] J.M. Rushby and B. Randell. A distributed secure system (extended abstract). InPro-
ceedings of the 1983 IEEE Symposium on Security and Privacy, pages 127–135, Oakland,
California, April 1983. IEEE Computer Society.

[330] J.M. Rushby and D.W.J. Stringer-Calvert. A less elementary tutorial for the PVS specifi-
cation and verification system. Technical report, SRI International, Menlo Park, California,
CSL-95-10, October 1995.

[331] J.M. Rushby and F. von Henke. Formal verification of theinteractive convergence clock
synchronization algorithm using EHDM. Technical Report SRI-CSL-89-3, Computer Sci-
ence Laboratory, SRI International, Menlo Park, California, February 1989. Also available
as NASA Contractor Report 4239.

[332] T.T. Russell and M. Schaefer. Toward a high B level security architecture for the IBM
ES/3090 processor resource/systems manager (PR/SM). InProceedings of the Twelfth Na-
tional Computer Security Conference, pages 184–196, Baltimore, Maryland, 10–13 October
1989. NIST/NCSC.

[333] J.H. Saltzer. Protection and the control of information sharing in Multics.Communications
of the ACM, 17(7):388–402, July 1974.

[334] J.H. Saltzer and M.D. Schroeder. The protection of information in computer systems.Pro-
ceedings of the IEEE, 63(9):1278–1308, September 1975. (http://www.multicians.org).

[335] O.S. Saydjari, J.M. Beckman, and J.R. Leaman. LOCKingcomputers securely. In10th Na-
tional Computer Security Conference, Baltimore, Maryland, pages 129–141, 21-24 Septem-
ber 1987. Reprinted in Rein Turn, editor,Advances in Computer System Security, Vol. 3,
Artech House, Dedham, Massachusetts, 1988.

[336] W.L. Schiller. The design and specification of a security kernel for the PDP-11/45. Technical
Report MTR-2934, Mitre Corporation, Bedford, Massachusetts, March 1975.

[337] F.B. Schneider. Understanding protocols for Byzantine clock synchronization. Technical
Report 87-859, Department of Computer Science, Cornell University, Ithaca, New York,
August 1987.

206 BIBLIOGRAPHY

[338] F.B. Schneider. Open source in security: Visiting thebizarre. InProceedings of the 2000
Symposium on Security and Privacy, pages 126–127, Oakland, California, May 2000. IEEE
Computer Society.

[339] F.B. Schneider, editor. Research to support robust cyber defense. Technical report, Study
Committee for J. Lala, DARPA, May 2000. Slides only.

[340] B. Schneier.Applied Cryptography: Protocols, Algorithms, and Source Code in C: Second
Edition. John Wiley and Sons, New York, 1996.

[341] B. Schneier.Secrets and Lies: Digital Security in a Networked World. John Wiley and Sons,
New York, 2000.

[342] B. Schneier and D. Banisar.The Electronic Privacy Papers. John Wiley and Sons, New
York, 1997.

[343] M.D. Schroeder. Cooperation of mutually suspicious subsystems in a computer utility. Tech-
nical report, Ph.D. Thesis, M.I.T., Cambridge, Massachusetts, September 1972.

[344] M.D. Schroeder, D.D. Clark, and J.H. Saltzer. The Multics kernel design project. InPro-
ceedings of the Sixth Symposium on Operating System Principles, November 1977. ACM
Operating Systems Review 11(5).

[345] M.D. Schroeder and J.H. Saltzer. A hardware architecture for implementing protection rings.
Communications of the ACM, 15(3), March 1972.

[346] R.W. Schwanke. An intelligent tool for re-engineering software modularity. InProceedings
of the International Conference On Software Engineering, pages 83–92, 1991.

[347] Secure Computing Technology Center. LOCK formal top level specification, volumes 1-6.
Technical report, SCTC, 1988.

[348] Secure Computing Technology Center. LOCK software B-specification, vol. 2. Technical
report, SCTC, 1988.

[349] A. Shamir and E. Tromer. Acoustic cryptanalysis: On nosy people and noisy machines.
preliminary proof-of-concept presentation, 2004.

[350] D. Shands, E. Wu, J. Horning, and S. Weeks. Spice: Configurationa synthesis for policies
enforcement. Technical report, MacAfee Research Technical Report 04-018, June 2004.

[351] J.S. Shapiro and N. Hardy. EROS: a principle-driven operating system from the ground up.
IEEE Software, 19(1):26–33, January/February 2002.

[352] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J.M. Wing. Automated generation and
analysis of attack graphs. InProceedings of the 2003 Symposium on Security and Privacy,
pages 273–284, Oakland, California, May 2003. IEEE Computer Society.

[353] M. Siff and T. Reps. Identifying modules via concept analysis. IEEE Transactions on
Software Engineering, SE-25(6):749–768, 1999.

BIBLIOGRAPHY 207

[354] N.J.A. Sloane and F.J. MacWilliams.The Theory of Error-Correcting Codes, 9th reprint.
North-Holland, 1998.

[355] M.A. Smith. Portals: Toward an application frameworkfor interoperability. Communica-
tions of the ACM, 47(10):93–97, October 2004.

[356] G. Snelting. Reengineering of configurations based onmathematical concept analysis.IEEE
Transactions on Software Engineering and Methodology, 5(2):146–189, 1996.

[357] G. Snelting and F. Tip. Reengineering class hierarchies using concept analysis. InProceed-
ings of the International Symposium on Foundations of Software Engineering, 1998.

[358] G. Snider and J. Hays. The modix kernel. In1989 Winter USENIX Conference Proceedings,
pages 377–392, San Diego, California, February 1989.

[359] I. Sommerville. Software Engineering. Addison-Wesley, Reading, Massachusetts, 2001.
Sixth Edition.

[360] D. Song, D. Zuckerman, and J.D. Tygar. Expander graphsfor digital stream authentica-
tion and robust overlay networks. InProceedings of the 2002 Symposium on Security and
Privacy, pages 258–270, Oakland, California, May 2002. IEEE Computer Society.

[361] SRI-CSL.HDM Verification Environment Enhancements, Interim Reporton Language Def-
inition. Computer Science Laboratory, SRI International, Menlo Park, California, 1983. SRI
Project No. 5727, Contract No. MDA904-83-C-0461.

[362] J. Staddon, S. Miner, M. Franklin, D. Balfanz, M. Malkin, and D. Dean. Self-healing key
distribution with revocation. InProceedings of the 2002 Symposium on Security and Pri-
vacy, pages 241–257, Oakland, California, May 2002. IEEE Computer Society.

[363] D.I. Sutherland. A model of information flow. InProceedings of the Ninth National Com-
puter Security Conference, pages 175–183, September 1986.

[364] K.L. Thompson. Reflections on trusting trust.Communications of the ACM, 27(8):761–763,
August 1984.

[365] M. Tinto. The design and evaluation of INFOSEC systems: The computer security contri-
bution to the composition discussion. Technical report, National Computer Security Center,
June 1992. C Technical Report 32-92.

[366] P. Tonella. Concept analysis for module restructuring. IEEE Transactions on Software
Engineering, SE-27(4):351–363, 2001.

[367] I.L. Traiger, J. Gray, C.A. Galtieri, and B.G. Lindsay. Transactions and consistency in
distributed database systems.ACM TODS, 7(3):323–342, September 1982.

[368] Unspecified. Composability constraints of multilevel systems. Technical report, Integrated
Computer Systems, Inc., 215 South Rutgers Ave., Oak Ridge, Tennessee, June 1994.

208 BIBLIOGRAPHY

[369] USGAO. Defense acquisitions: Knowledge of software suppliers needed to manage risks.
Technical report, U.S. General Accounting Office, GAO-04-078, Washington, D.C., May
2004.

[370] J. von Neumann. Probabilistic logics and the synthesis of reliable organisms from unreli-
able components. InAutomata Studies, pages 43–98, Princeton University, Princeton, New
Jersey, 1956.

[371] D. Wagner.Static Analysis and Computer Security: New Techniques for Software Assurance.
PhD thesis, Division of Computer Science, University of California, Berkeley, December
2000. (http://www.cs.berkeley.edu/˜daw).

[372] W.H. Ware. A retrospective of the criteria movement. In Proceedings of the Eighteenth
National Information Systems Security Conference, pages 582–588, Baltimore, Maryland,
10–13 October 1995. NIST/NCSC.

[373] P. Wayner.Translucent Databases. Flyzone Press, Baltimore, Maryland, 2002.

[374] S. Weeks. Understanding trust management systems. InProceedings of the 2001 Sympo-
sium on Security and Privacy, Oakland, California, May 2001. IEEE Computer Society.
(http://www.star-lab.com/tr/star-tr-01-02.html).

[375] L. Weinstein. The devil you know.Communications of the ACM, 46(12):144, December
2003.

[376] L. Weinstein. TRIPOLI: An Empowered E-Mail Environment. Technical report, People for
Internet Responsibility, January 2004.

[377] J.H. Wensley et al. SIFT design and analysis of a fault-tolerant computer for aircraft control.
Proceedings of the IEEE, 66(10):1240–1255, October 1978.

[378] J.H. Wensley et al. Design study of software-implemented fault-tolerance (SIFT) com-
puter. NASA contractor report 3011, Computer Science Laboratory, SRI International,
Menlo Park, California, June 1982.

[379] D.A. Wheeler.Secure Programming for Linux and Unix HOWTO. 2003.

[380] D.A. Wheeler. Secure programmer: Minimizing privileges; taking the fangs out of bugs.
May 2004.

[381] I. White. Wrapping the COTS dilemma. InProceedings of the NATO Conference on Com-
mercial Off-The-Shelf Products in Defence Applications: The Ruthless Pursuit of COTS,
Brussels, Belgium, April 2000. NATO.

[382] G.R. Wright and W.R. Stevens.TCP/IP Illustrated, Volume 2. Addison-Wesley, Reading,
Massachusetts, 1995.

[383] W. Wulf and M. Shaw. Global variable considered harmful. SIGPLAN Notices, 8(2):28–34,
February 1973.

BIBLIOGRAPHY 209

[384] A. Yeh, D. Harris, and H. Reubenstein. Recovering abstract data types and object instances
from a conventional procedural language. InProceedings of the Working Conference on
Reverse Engineering, pages 227–236, 1995.

[385] W.D. Young. A mechanically verified code generator.Journal of Automated Reasoning,
5(4):493–518, December 1989.

[386] W.D. Young, W.E. Boebert, and R.Y. Kain. Proving a computer system secure.Scien-
tific Honeyweller, 6(2):18–27, July 1985. Reprinted in Tutorial: Computer and Network
Security, M.D. Abrams and H.J. Podell, editors, IEEE Computer Society Press, 1987, pp.
142–157.

[387] C.-F. Yu and V.D. Gligor. A formal specification and verification method for the preven-
tion of denial of service. InProceedings of the 1988 Symposium on Security and Privacy,
pages 187–202, Oakland, California, April 1988. IEEE Computer Society. Also inIEEE
Transactions on Software Engineering,SE-16, 12, June 1990, 581–592).

[388] A. Zakinthinos and E.S. Lee. The composability of non-interference. InProceedings of the
8th IEEE Computer Security Foundations Workshop, Kenmare, County Kerry, Ireland, June
1995.

[389] A. Zakinthinos and E.S. Lee. Composing secure systemsthat have emergent properties. In
Proceedings of the 11th IEEE Computer Security FoundationsWorkshop, pages 117–122,
Rockport, Massachusetts, June 1998.

[390] P.R. Zimmermann.The Official PGP User’s Guide. MIT Press, Cambridge, Massachusetts,
1995.

[391] L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. VOC: a translation validator for optimizing
compilers. InElectronic Notes in Theoretical Computer Science, 2002. Preliminary version
at www.cs.nyu.edu/˜zuck/pubs/, final version at www.elsevier.ai/locate/entcs.

Index

Abstraction, 14, 25, 26
excessive, 28
refinement, 34
TCP/IP, 27

Accountability, 16
Administration, 139, 145

controllability, 16
operational assurance, 128
system, 106

Airgaps, 65
Anderson, Ross, 5

exploitations of vulnerabilities, 13
Arbaugh, William, 48
Architecture, 4,56–77

assurance, 57
autonomous, 142
centralized, 63
composable, 4, 56
conceptual approach, 60
decentralized, 63
enlightened, 70, 116, 138
heterogeneous, 63, 70, 138
homogeneous, 63
network-centric, 66
network-oriented, 6
openness paradigms, 73
practical considerations, 120
principled, 40, 57, 59

examples, 71
stark subsetting, 34, 60–62, 122
trustworthy, 57
TS&CI, 65, 66, 138, 142, 143

ARPANET
1980 collapse, 8, 32, 110

Ashcraft-Engler
static analysis, 108

Assurance, 2,99–113
analytic tools for, 149
code inspection, 105
composability analysis, 101
composability of, 30
correctness versus consistency, 102
debugging, 105
dependency analysis, 101
dynamic analysis, 109
enhancement, 43
in architecture, 105
in design, 106
in development, 106
in implementation, 108
in interfaces, 111
methodologies, 103
metrics for, 109
operational, 106, 128
Pervasively Integrated (PIA), 100, 101,

104, 105, 112, 137, 149
preserved by transformations, 103
principles for, 25, 104
red-teaming, 105
requirements, 104
risk mitigation, 109
role of development tools, 104
software engineering, 105
static analysis, 108, 153
testing, 105
voting systems, 111
vulnerability detection, 102
vulnerability elimination, 102

AT&T
1990 long-distance collapse, 8, 32, 110

Attacks
“man-in-the-middle”, 32, 66, 68

210

INDEX 211

denial-of-service, 68
prevention, 67
prevention of, 67
traceback, 69

spoofing, 68
Authentication

Byzantine, 46
cryptographic, 45, 68
in subnetworks, 67
inadequacy of fixed passwords, 68
message, 68
multicast, 46
need for authorization, 18
nonbypassable, 16
nonspoofable, 23
servers, 66
vulnerabilities, 23

Authorization, 16
fine-grained, 68
need for authentication, 18
vulnerabilities, 23

Autonomous operation, 58, 123, 139, 142, 145
interface design, 125
risks in administration, 140
risks of failure, 58

Availability
assurance, 110
multilevel, 64
risks, 8, 110

Badger, Lee, 79
Ballmer, Steve, 35
Baran, Paul, 44
Bell and LaPadula

multilevel security, 52
Bell, Gordon, 54, 152
Bernstein, Peter L., 149
Biba, Ken

multilevel integrity (MLI), 39, 52
Bishop, Matt, 5, 11
Blade computers, 70
Boebert, W.E., 100

on buffer overflows, 122
Boneh, Dan

fault injection, 41
Bootload

trustworthy, 48, 68
Burnham, Blaine, 152
Byzantine

agreement, 62
authentication protocols, 46
digital signature, 46
fault tolerance, 44
faults, 44
key escrow, 46
protocols, 44

Capabilities, 16, 64
and perspicuity, 93
modeling, 107
PSOS, 46

Certification, 129
composability, 38

Chaum, David, 47
Chen, Hao, 152, 153

MOPS, 24, 108
Chess, Brian

static analysis, 108
Cicero, 148, 150
Clark–Wilson integrity model, 61
Clarke, Arthur, 136
Clean-Room development, 21, 22
CLInc stack, 103
Cohen, Fred, 152
Commitment

nonblocking, 45
two-phase, 45

Common Criteria, 21
assurance, 120
composite evaluation, 104

Communications
optical, 57
wireless, 57

Compatibility, 3, 33, 36
among requirements, 32
among policies, 32
in heterogeneous systems, 32
of legacy software, 49

212 INDEX

structural, 31
Compilers

correctness of, 53
dynamic checking, 48
object-oriented, 48
research directions, 139
risks of optimization, 40
role in security, 40
static analysis, 48
static checking, 48
subversion of by Trojan horse, 53

Complexity
and simplicity, 27
Einstein quote, 6, 26
interfaces masking ..., 27
managing ..., 26
O.W. Holmes quote, 119

Composability, 3,30–55
analysis, 101
and stark subsetting, 68
approaches, 35
decomposition, 33
future challenges, 54
horizontal, 43, 103, 137
independence, 36
information hiding, 37
interoperability, viii
noncomposability, 32
obstacles to, 31–33
of assurance measures, 30
of certification, 38
of evaluations, 30
of policies, 38
of proofs, 38
of protocols, 39
predictable, viii, 41
reasoning about, 101, 127, 143, 149
seamless, 31
statelessness, 37
vertical, 43, 103, 137

Composable High-Assurance Trustworthy Sys-
tems (CHATS), vii

Compromise
accidental, 13

by adversaries, 59
Byzantine avoidance, 51
emergency, 137
from below, 13, 15, 53, 61
from outside, 13, 15, 53, 61
from within, 13, 15, 53, 61
malicious, 13
of compositions, 31
of MLS, 42
of security, 137
of trustworthiness enhancement, 50
total, 61

Concurrency Workbench, 145
Configuration control, 128

analysis of changes, 144
assurance, 111
discipline, 25
of networks, 23

Consistency
of code, 102
of hardware, 102
of interface specs, 36
of software, 102
of specifications, 102

Contains relation, 163
Control

centralized, 63
decentralized, 63

Copyleft, 74
Corbató, Fernando, 152

Turing lecture, 71
Correctness

...-preserving transformations, 40
deprecated, 102

Covert channels
avoidance, 65
storage, 10
timing, 10

Cowan, Crispin
StackGuard, 108

Crnkovic, Ivica, 41
Cross-domain mechanisms, 48
Cryptography

attacks, 118

INDEX 213

embedding, 142
fair public-key, 46
for authentication, 45
for integrity, 45
for secrecy, 45
multikey, 138
secret-sharing, 46
threshold, 46
trustworthy embeddings, 139

CTCPEC, 21

Dean, Drew, vii, 152, 153
MOPS, 24, 108

Debuggability, 13
Decomposability, 68
Decomposition

Dijkstra, 34
horizontal, 34
Parnas, 34
temporal, 34
vertical, 34

Denials of service, 70
prevention, 67

in distributed systems, 70
role of hierarchy, 71

remediation, 70
self-induced, 53, 69

Dependability, 2
Dependence

generalized, 39
guarded, 39, 42, 43
Parnas, 34

Dependencies
among principles, 18
among specifications, 36
analysis, 101
analysis of, 39, 43
causing vulnerabilities, 24
constrained, 15, 39
explicit, 43

interlayer ... in LOCK, 40
interlayer ... in PSOS, 40

on less trustworthiness, 32
order, 24

reduced ... on trustworthiness, 46
timing, 24, 33

Detection
of anomalies, 128
of misuse, 128

Development
discipline, 7, 13
of trustworthy systems, 4
principles, 7

Development methodology
Clean-Room, 22
HDM, 106
USDP, 115
XP, 21

Differential power analysis, 41, 118
Digital Distributed System Security Architec-

ture (DDSA), 142
Dijkstra, Edsger W., 34, 71, 119

Discipline of programming, 119
THE system, 39, 45, 64, 71

Dinolt, George, 152
Discipline

in development, 7, 25
in methodology, 22
in Multics, 13
in XP, 21
lack of, 28
needed for open-box software, 75
of composition, 42

Distributed systems
composable trustworthiness, 139
denials of service, 70
distributed protection, 15
distributed trustworthiness, 66
Lamport’s definition, 3, 92
MLS in, 46
network oriented, 6
networked trustworthiness, 142
parameterizable, 149
reduced need for trustworthiness, 6, 14,

46, 47
risks of weak links, 47
trustworthiness, 57, 63

Diversity

214 INDEX

in heterogeneous systems, 63
of design, 40

DMCA, 76
Domains

enforcement, 48
for constraining software, 70
Multics, 71
separation, 16, 71

Eiffel, 38
Einstein, Albert

science, 136
simplicity, 6, 26, 119

Electronic Switching Systems (ESSs), 58
EMERALD, 49, 72

integration of static checking, 158
Emergent properties, 2, 32, 38, 43, 84, 127

reasoning about, 143
Empowered E-Mail Environment (Tripoli), 118
Encapsulation, 14, 25, 26

vulnerabilities, 24
Enclaves, 52
Enlightened Architecture Concept, 70, 116,

138
needed for the GIG, 142

Error
correction, 43

for human errors, 138
Guruswami-Sudan, 44
Kuijper-Polderman, 44
Reed-Solomon, 44

detection, 44
for human errors, 138

Euclid, 139
Evaluations

composability of, 30
continuity despite changes, 30

Evolvability
of architectures, 120
of implementations, 120
of requirements, 120

Exokernel Operating System, 72
Extreme Programming, 21

Fault

forecasting, 3
injection, 41
prevention, 2
removal, 2
tolerance, 2, 43

hierarchical, 43
literature, 43

Finalization
vulnerabilities, 23

Firewalls, 48, 118
Flaws

design, 22
implementation, 22

Formal
analysis, 99

of changes, 103
basis of languages, 105
basis of static checking, 108
basis of tools, 105
development, 104
mappings, 39, 52, 106
methods, 41, 102, 103, 106

for hardware, 102
potential benefits, 112

operational practice, 128
proofs, 39, 108
real-time analysis, 109
requirements, 100
specifications, 100, 106

for JVM, 48
in HDM, 39, 52
Parnas, 34

static analysis, 153
test-case generation, 109
testing, 108

Gasser, Morrie, 5
GASSP, 20, 137
Generalized

dependence, 39
Generally Accepted Systems Security Princi-

ples (GASSP), 20
Gibson, Tim, vii
GIG

INDEX 215

see Global Information Grid, 116
Gilb, Tom

Project Management Rules, 22
Glaser, Edward L.

modularity, 31
principles, 13

Gligor, Virgil, vii, 152
composability, 38
system modularity, 79,159–175

Global Information Grid (GIG), 151
assurance, 135
development, 142
vision, 116

GLU, 25, 40
GNU system with Linux, 74
Goguen–Meseguer, 38
Gong, Li

enclaves, 52
GOVNET, 67
Guarded

dependence, 39, 43
Guards, 48, 62

trusted, 118
Guruswami-Sudan decoding, 44

Hamming, Richard, 43
Handheld devices

constrained, 66
unconstrained, 66

Hardware
research directions, 139

Hennessy, John L., 58
Hierarchical Development Methodology (HDM),

39, 40, 72, 106
hierarchical abstractions, 107

Hierarchy
for correlation in misuse detection, 72
HDM mapping functions, 39, 52
of abstractions, 27
of directories, 71
of locking protocols, 39, 45, 64, 71
of policies, 64
of PSOS layers, 27, 63, 71
of SeaView, 65

of SIFT layers, 71
of trustworthiness, 63

Holmes, Oliver Wendell, 119
Horning, Jim, 152

decomposition, 33
evolvability and requirements, 120
last gassp, 20
object orientation, 15
partial specifications, 25
patching, 125
policy composition, 38
simplicity, 22

HP
blade computers, 70

IBM
blade computers, 70
Enterprise Workload Manager, 58

ICS: Integrated Canonizer and Solver, 107
Illustrative Risks, 8
Implementation

analysis of, 143
practical considerations, 122

Initialization
vulnerabilities, 23

Integrity
checks for, 45
multilevel, 64

Biba, 52
Intel

LaGrande, 70
Interfaces

assurance, 111
constrained, 65
human, 7, 8

assurance, 109
risks, 109

incompatibility, 32
perspicuous,78–98, 125, 149
risks, 81
RISSC architectures, 66

Interoperability, viii, 3, 33, 36
cross-language, 90
impairments, 31

216 INDEX

in composability, 31
of tools, 143

IP Version 6 (IPv6), 140
IPSEC, 140
ITS4, 108
ITSEC, 21

James, William
exceptions, ix

Java, 139
... Virtual Machine (JVM), 139

Jones, Cliff, 152
Juvenal, 56, 150

Kain, R.Y., 100
on architecture, 122

Kaner, Cem, 35
Karger, Paul A.

composite evaluation intercommunication,
104

Multics security evaluation, 71
Karpinski, Richard, 22
Kernel

MLS, 46
operating system ..., 16
separation, 65, 72, 142

Kocher, Paul, 41
Kurth, Helmut

composite evaluation intercommunication,
104

LaGrande, 70
Lala, Jay, 147
Lamport, Leslie

distributed systems, 3
liveness, 36
safety, 36

Lampson, Butler
capability systems, 64
cryptography, 117
reusability of components, 86
willpower, 10, 152

Larsson, Magnus, 41
Lazarus virus, 58
Least privilege, 10

David Wheeler, 23
Legacy software

incompatibility, 35, 49, 151
Lego modularity, 35
Liveness (Lamport), 36
Locking

hierarchical, 45
LOgical Coprocessor Kernel (LOCK), 40, 70,

139
Longhorn, 70
Lynch, Nancy

protocol composability, 39

Maintainance
risks, 9

Maintenance, 139, 145
Mantel, Heiko, 38
Mapping

between layers, 39, 52, 106, 141
Maughan, Douglas, vii, 152
Medical

assurance, 109
risks, 8, 109

Mencken, H.L., 26
Mercuri, Rebecca, 47
Methodology

for development
Clean-Room, 22
HDM, 106
USDP, 115
XP, 21

Metrics, 109
Microsoft

Longhorn, 70
Mills, Harlan

Clean-Room, 21, 22
MILS

see multiple independent levels of secu-
rity, 65

MISSI
security policy, 142

Misuse
real-time detection, 49, 69

Mitchell, John, 39

INDEX 217

Miya, Eugene, 152
ML, 38, 139
MLA: see multilevel availability, 64
MLI: see multilevel integrity, 64
MLS: see multilevel security, 64
MLX: see multilevel survivability, 64
Modula 3, 139
Modularity, 13, 14, 25, 28, 34

and interoperability, 143
and stark subsetting, 62
as in Lego piecesa, 35
Cem Kaner quote, 35
compiler enforced, 40
excessive, 28
facilitates evaluation, 143
of requirements, 143
of tools, 143
programming-language driven, 40
Steve Ballmer quote, 35
system,159–175
Ted Glaser quote, 31
with abstraction and encapsulation, 14, 25,

26, 40
Monitoring

real-time, 69
Monotonicity

compositional
stronger, 42
weak, 42

cumulative-trustworthiness, 42
nondecreasing-trustworthiness, 42

Moore, Edward F., 44
MOPS,153–156

recent results, 157
MSL

see multiple single-level security, 65
Multics, 72

architecture, 71
avoiding stack buffer overflows, 122
development, 13, 117
directory hierarchy, 71
discipline, 13
domains, 71
dynamic linking, 71

interfaces, 87
multilevel security retrofit, 64, 71
principles, 10, 13
ring structure, 16, 63
security evaluation, 71
virtual input-output, 25
virtual memory, 25, 71
virtual multiprogramming, 25

Multilevel availability, 64
Multilevel integrity, 64

policy, 64
Multilevel security, 64

and perspicuity, 93
Distributed Secure System (DSS), 65
noncompromisibility from above, 64
policy, 64
Proctor–Neumann, 65
TS&CI architectures, 66, 70, 138, 142

Multilevel survivability, 64
Multiple

independent levels of security (MILS), 65
single-level security (MSL), 65

Multiprocessing
network-centric, 36, 40
virtual, 40

Mutual suspicion, 19, 48

Naming
vulnerabilities, 24

Navy Marine Corp Intranet (NMCI), 67
Needham, Roger

cryptography, 117
NetTop, 65
Network-centric

architecture, 66
Networks

alternative routing, 45
as backplanes, 66
authentication, 23
Byzantine protocols, 44
configuration management, 23
dependable, 30
firewalls, 48
guards, 48

218 INDEX

heterogeneous, 63
multilevel secure, 47
packet authentication, 68
protocols, 139
reliable despite unreliable nodes, 44
subnetworks, 69
survivable, 142
testbeds, 140
trustworthy, 67, 139
trustworthy interface units, 72
virtualized multiprocessing, 36
with traceback, 69

Next Generation Secure Computing Base (NGSCB),
70

NGSCB
see Next Generation Secure Computing

Base, 70
NMCI

see Navy Marine Corp Intranet, 67

Object-oriented paradigm, 37, 40
domain enforcement, 48
downsides, 59
in PSOS, 63, 72
Objective Caml, 38
strong typing, 37

Objective Caml, 38
Offshoring

pros and cons,131–132
Openness

and perspicuity, 94
composability in, 49
Free Software Foundation, 74
licensing agreements, 74
Open Source Movement, 74
open-box software, 73, 145

OpenSSH, 153
Operations, 139, 145

analysis of changes, 128
practical considerations, 123
privacy implications, 129

Optical communications, 57
Optimization

code translation validation, 40

deferred, in Extreme Programming, 22
nonlocal, 27, 28
risks of short-sighted ..., 13, 28, 112,114–

116
Orthogonality theorem, 36
Outsourcing

pros and cons,131–132
system administration, 67, 145

Ovid, 1, 150
Owicki–Gries, 38

Parnas, David L., 34, 71
decomposition, 34, 159
dependence, 159
motherhood, 116
specifications, 34
weak-link quote, 71

Patch management,123–125
Patterson, David A., 58
Pavlovic, Dushko, 39
Performance, 2

acceptable degradation, 45
Perspicuity,78–98, 125

risks of bad interfaces, 81
through analysis, 93
through synthesis, 87

Pervasively Integrated Assurance (PIA), 100,
101, 104, 105, 112, 137, 145, 149

Petroski, Henry, 150
Pfleeger, Charles, 5
Plan 9, 58
Polyinstantiation, 79
Portals, 36
Practical Considerations,114–135
Predictability

for certification, 130
of assurance, ix
of composition, viii, 4, 6, 29, 56, 60
of evolvability, ix
of trustworthiness, x, 75

Principles, 3
abstraction, 14
architectural, 14
constrained dependency, 15

INDEX 219

encapsulation, 14
for security, 20
for system development,6–29
for trustworthiness,6–29
layered protection, 15
modularity, 14
motherhood as of 1969, 13
object orientation, 15
of secure design (NSA), 18
reduced need for trustworthiness, 14
Saltzer–Schroeder, 10, 40
separation of domains, 16
separation of duties, 15
separation of policy/mechanism, 15
separation of roles, 15
throughout R&D, 148

Privacy
in conflict with monitoring, 18
policies, 140
risks, 8

Programming languages
and composability, 35
enhancing modularity, 40
for system development, 13
for trustworthiness, 139
object-oriented, 48
research directions, 139
static checking, 48
supporting software engineering, 40

Proof-carrying code, 47, 109
Proofs

composability, 38
Propagation of errors, 110
Protocols

ARPANET routing, 45
Byzantine, 44
trustworthy, 4

Provably Secure Operating System (PSOS),
71, 106

alternative MLS hierarchy, 64
architecture, 117
composability, 37
HDM methodology, 40
hierarchy, 27, 63, 71

interface design, 88
object-oriented, 48
reduced need for trustworthiness, 72
types, 64, 72

Provenance, 69, 74
nonspoofable, 75

Proxies, 48
PSOS (see Provably Secure Operating Sys-

tem), 40
Purify, 25
PVS, 40

theory interpretations, 107

RaceTrack, 108
Randell, Brian, 58, 152

Distributed Secure System, 65, 72
location of checking, 24

Recovery
... Blocks, 45
...-Oriented Computing (ROC), 58
automatic, 29, 58, 123, 139
semiautomatic, 139

Redundancy
cyclic ... checks, 51
for error correction, 43
for fault tolerance, 43
for integrity, 48
for reliability, 44
not needed for resynchronization, 44

Refinement, 34
Reliability, 2

and security, 51
assurance, 110
out of unreliable components, 44
risks, 8, 110

Requirements
analysis of, 127
critical, 26
engineering, 120
for autorecovery, 123
for composition, 31
for decomposition, 33, 34
for reliability, 51
for security, 51

220 INDEX

for trustworthiness, 7
formal, 100
increasing assurance, 100, 104
lack of attention to, 29
practical considerations, 120

Response
automated, 16, 53, 128, 139
real-time, 49

Reusability
of architectures, 149
of components, 149

Butler Lampson, 86
with high assurance, 3

of requirements, 149
Risk, 2
Risks, 2,7–9, 149–150

reduction via assurance,109–112, 116
Robinson–Levitt hierarchies, 39, 52, 103, 105
Routers

trustworthy, 139
Routing

alternative, 45
Runtime checks, 48
Rushby, John M., 152

Distributed Secure System, 65, 72
separation kernels, 65, 72, 142

Rushby–Randell, 65, 72
Ryan, Peter

self-healing example, 58

Safety
human, 64

assurance, 109
risks, 7, 109

Lamport-style, 36
Safire, William

hindsight and foresight, 150
SAL: Symbolic Analysis Laboratory, 107
Saltzer, Jerome H., 152

principles, 10
Saltzer–Schroeder principles, 10, 40, 58, 137
Sandcastles, 49
Saydjari, Sami, 152
Schaufler, Casey, 50

Schell, Roger R.
Multics security evaluation, 71

Schneider, Fred B., 147
Schroeder, Michael D.

mutual suspicion, 19, 48
principles, 10

SDSI/SPKI, 15, 142
SeaView, 65, 72
Security, 1

and reliability, 51
by obscurity, 73–75
in distributed systems, 57, 63, 66

MLS, 46
kernels, 46
multilevel, 64

Bell and LaPadula, 52
compartments, 64
databases, 46

principles,6–29
risks, 8, 111
Trusted Computing Bases (TCBs), 46

Self-diagnosing, 72, 139
Self-healing, 139

key distribution, 46
Self-optimizing, 139
Self-reconfiguring, 72, 139
Self-recovering, 140
Self-reprotecting, 139
Self-stabilizing, 45, 147
Self-synchronizing, 44
Separation

kernels, 65, 72, 142
of domains, 16
of duties, 15
of policy and mechanism, 15, 72
of roles, 15

setuid, 153
Shands, Deborah

SPiCE, 129
Shannon, Claude, 43, 44
Sibert, Olin, 152
SIFT (see Software-Implemented Fault-Tolerant

System), 44
Simplicity, 7, 25, 27

INDEX 221

abstractional, 83
Einstein quote, 6, 26, 29
Horning quote, 22
Mencken quote, 26
O.W. Holmes quote, 119
Saltzer–Schroeder, 26

Single sign-on
risks of, 15, 59

slint, 108
Sneaker-net, 65
Software

black-box, 73
closed-box, 73
nonproprietary, 74
open-box, 73
proprietary, 74

Software-Implemented Fault-Tolerant System
(SIFT), 44, 67, 71, 72, 106

Spam
filters, 118
Tripoli: defense against, 118

SPARK, 40
SPECIfication and Assertion Language (SPE-

CIAL), 106
SPiCE, 129
ssh, 153
StackGuard, 108
Stark subsetting, 34, 60–62, 68, 122

in real-time operating systems, 34
Strength in depth, 71
Subnetworks, 56, 69

trustworthy, 67
virtual, 67

Subsystems
composability

assurance, 57
functionality, 56

decomposability, 61
diversity among, 63
parameterizable, 149
trustworthiness

enhancement, 67
Survivability, 2

multilevel, 64

risks, 8
Synchronization

robust, 45
self-..., 44
vulnerabilities, 24

System
administration, 139, 145

assurance, 106, 128
composed of subsystems, viii, 56
distributed ... trustworthiness, 57, 63, 66
handheld, 66
heterogeneous, 138
wireless, 66

TCP/IP, 27
TCSEC, 21, 138
Testbeds, 140
THE system, 39, 64, 71
Thin-client

architectures, 69
user systems, 66, 75

Time-of-check to time-of-use flaws (TOCT-
TOU), 24

TOCTTOU flaws, 24
Traceback, 23, 68–70, 118
Transactions

fulfillment, 45
Tripoli: Empowered E-Mail Environment, 118
Trust, 3

layered, 63
maximal, 61
minimal, 62
partitioned, 65

Trusted (i.e., Trustworthy) Paths, 48, 68, 69
for upgrades, 125

Trusted Computer System Evaluation Criteria
(TCSEC), 21

Trusted Computing Group (TCG), 70
Trusted Xenix, 16, 79
Trustworthiness, viii, 1–3

enhancement
paradigms, 43
reliability, 49
sandcastles, 49

222 INDEX

security, 49
enhancement of,42–54, 67
in distributed systems, 57, 63, 66, 142

reduced dependence, 46
layered, 63
need for discipline, 75
of “trusted paths”, 69
of bootloads, 48, 68, 69
of code distribution, 68, 69, 75
of code provenance, 75
of networks, 67
of protocols, 4
of servers, 65, 66
of subnetworks, 67
of traceback, 68
partitioned, 65
principles for,6–29
system development, 4
where needed, 75

Trustworthy Servers and Controlled Interfaces
(see TS&CI), 65

TS&CI, 65, 66, 138, 142, 143
in heterogeneous architectures, 70

TS&CI: Trustworthy Servers and Controlled
Interfaces, 65

Type
enforcement, 48

PSOS, 48
SCC, 48

UCITA, 76
Unified Modeling Language (UML), 22, 115
Unified Software Development Process (USDP),

115
Uses relation, 163

Validation vulnerabilities, 24
Van Vleck, Tom, 152
Venema, Wietse, 23
VERkshops, 107
Virtual

input-output, 25
machine, 25
machine monitors, 65

memory, 25
multiprocessing, 25

in GLU, 25
Private Networks (VPNs), 67

Visibility, 78–98, 159–175
VMWare, 65
Voltaire, 134
von Neumann, John, 44
Voting

electronic systems, 9
assurance, 47, 73, 111
Chaum, 47
integrity, 111
Mercuri, 47
privacy problems, 47
security problems, 47

majority ... for enhancing reliability, 64
Vulnerabilities

security,23–25

Wagner, David, 152, 153
buffer overflow analyzer, 108
MOPS, 24, 108

Weak-link
avoidance, 13, 71
hindering trustworthiness, 14
phenomena, 47, 71
targets, 53

Weakness in depth, 71
Web portal, 36
Web services

universal, 36
Wheeler, David A.

least privilege, 23
secure programming, 23

Wireless
communications, 57
devices, 66
networks, 153

Wrappers, 48, 62

Young, W.D., 100

