CDRL A001 Final Report December 28, 2004

Principled Assuredly Trustworthy
Composable Architectures

Final Report

Contract number N66001-01-C-8040
DARPA Order No. M132

SRI Project P11459

Submitted by: Peter G. Neumann, Principal Investigator
Principal Scientist, Computer Science Laboratory

SRI International EL-243, 333 Ravenswood Ave

Menlo Park, California 94025-3493, USA
Neumann@csl.sri.com; http://www.csl.sri.com/neumann
Phone: 1-650-859-2375; Fax: 1-650-859-2844

Prepared for:

Contracting Officer, Code D4121
SPAWAR Systems Center

San Diego, California

Approved:

Patrick Lincoln, Director

Computer Science Laboratory

William Mark, Vice President

Information and Computing Sciences Division

This report is available on-line for browsing
http://www.csl.sri.com/neumann/chats4.html

and also for printing or displaying
http://www.csl.sri.com/neumann/chats4.pdf
http://www.csl.sri.com/neumann/chats4.ps

Contents

Preface Vil
Abstract viii
Executive Summary IX
1 The Foundations of This Report 1
2 Fundamental Principles of Trustworthiness 6
2.1 Introduction e e 6
2.2 Risks Resulting from Untrustworthiness 7
2.3 Trustworthiness Principles e 9
2.3.1 Saltzer-Schroeder Security Principles, 1975 10
2.3.2 Related Principles, 1969 and Later 13
2.3.3 Principles of Secure Design (NSA, 1993) . . ceeenn ... 18
2.3.4 Generally Accepted Systems Security PrlnC|p[é§(1997) 20
2.3.5 TCSEC, ITSEC, CTCPEC, and the Common Criteria (198ate) 21
2.3.6 Extreme Programming, 1999 21
2.3.7 Other Approaches to Principled Development 22
2.4 Design and Implementation Flaws, and Their Avoidance 22
2.5 Rolesof Assurance and Formalism 25
2.6 Caveatson Applyingthe Principles 26
2.7 SUMMAIY o e e e e e e
3 Realistic Composability 30
3.1 Introduction e 30
3.2 Obstacles to Seamless Composability 31
3.3 System Decomposition 33
3.4 Attaining Facile Composability o e 35
3.5 Paradigmatic Mechanisms for Enhancing Trustwortlsnes. 42
3.6 Enhancing Trustworthinessin Real Systems 50
3.7 Challenges. 54
3.8 Summary ... e e e e e

i CONTENTS
4 Principled Composable Trustworthy Architectures 56
4.1 Introduction e e e 56
4.2 Realistic Application of Principles 57
4.3 Principled Architecture 59
4.4 Examples of Principled Architectures 71
4.5 OpennessParadigms 73
4.6 SUMMANY e e e e e e e e e e 76
5 Principled Interface Design 78
5.1 Introduction e 78
52 Fundamentals e 9
5.2.1 Motivations for Focusing on Perspicuity 80
5.2.2 RisksofBadiInterfaces o a 81
5.2.3 Desirable Characteristics of Perspicuous Intesface 82
5.2.4 BasicApproaches. 84
5.2.5 Perspicuity Based on Behavioral Specifications 85
5.2.6 System Modularity, Visibility, Control, and Correess 86
5.3 Perspicuity through Synthesis.o 87
5.3.1 System Architecture e 87
5.3.2 Software Engineering. 89
5.3.3 Programming Languages and Compilers 90
5.3.4 Administration and System Operation 92
535 NoMoreandNoLess
5.3.6 Multilevel Security and Capabilities 93
5.4 Perspicuity through Analysis e 93
541 GeneralNeeds
5.4.2 FormalMethods 95
543 Ad-HocMethods 95
544 Hybrid Approaches 95
5.4.5 Inadequacies of Existing Techniques 95
55 Pragmatics. e 96
5.5.1 lllustrative Worked Examples 96
5.5.2 Contemplation of a Specific Example 97
56 Conclusions 98
6 Assurance 99
6.1 Introduction e 99
6.2 Foundationsof ASsurance e e 100
6.3 ApproachestoIncreasing ASsuranCe v v e e e .. 104
6.4 Formalizing System Design and Development106
6.5 Implementation Consistency withDesign 108
6.6 StaticCode Analysis e 108
6.7 Real-TimeCode Analysis i i 109
6.8 Metricsfor Assurance e 109

CONTENTS

6.9 Assurance-Based Risk Reduction.
6.10 Conclusionson ASSUranCe v v v i i e

Practical Considerations

7.1 Risks of Short-Sighted Optimization
7.2 The Importance of Up-Front Efforts
7.3 The Importance of Whole-System Perspectives
7.4 TheDevelopmentProcess
7.4.1 Disciplined Requirements
7.4.2 Disciplined Architectures
7.4.3 Disciplined Implementation
7.5 Disciplined Operational Practice
7.5.1 Today’s Overreliance on Patch Management.
7.5.2 Architecturally Motivated System Administration
7.6 Practical Priorities for Perspicuity
7.7 Assurance Throughout Development

7.7.1 Disciplined Analysis of Requirements

7.7.2 Disciplined Analysis of Design and Implementatlon
7.8 Assurance in Operational Practice
7.9 Certification
7.10 ManagementPracticeo
7.10.1 Leadershiplssues.
7.10.2 Pros and Cons of Qutsourcing
7.11 A Forward-Looking Retrospective

Recommendations for the Future

8.1 Introduction
8.2 General R&D Recommendations
8.3 Some Specific Recommendations.
8.4 Architectures with Perspicuous Interfaces
8.5 Other Recommendations

Conclusions

9.1 Summaryof ThisReport
9.2 Summary of R&D Recommendations

9.3 RISKS e
9.4 ConcludingRemarks

Acknowledgments

A Formally Based Static Analysis (Hao Chen)
A.1 Goals of the Berkeley Subcontract
A.2 Results of the Berkeley Subcontract

iv CONTENTS

A3 RecentResults 157
A.4 Integration of Static Checking into EMERALD 158
B System Modularity (Virgil Gligor) 159
B.1 Introduction e 159
B.2 Modularity 160
B.2.1 A Definition of “Module” for a Software System 161
B.2.2 System Decompositioninto Modules162
B.2.3 The*“Contains”Relation 163
B.2.4 The*®Uses”Relation 163
B.2.5 Correctness Dependencies Among System Modules 164
B.2.6 Using Dependencies for Structural Analysis of Soferystems 165

B.3 Module Packaging 165
B.4 Visibility of System Structure UsingModules 166
B.4.1 Design Abstractions withinModules 166
B.4.2 Information Hiding as a Design Abstraction for Modale. 167
B.4.3 Layering as a Design Abstraction Using Modules 168

B.5 Measures of Modularity and Module Packaging 169
B.5.1 Replacement Dependence Measures169
B.5.2 Global Variable Measures 169
B.5.3 Module Reusability Measures 0., 170
B.5.4 Component-PackagingMeasures. 171

B.6 Cost Estimates for ModularDesign., 171
B.7 Tools for Modular Decomposition and Evaluation172
B.7.1 Modularity Analysis Tools Based on Clustering173
B.7.2 Modularity Analysis Tools based on Concept Analysis 174

B.8 Virgil Gligor's Acknowledgments 174
Bibliography 181

Index 210

List of Tables

2.1 CHATS Relevance of Saltzer—Schroederto CHATS Goals
2.2 CHATS Relevance of Extended-Set Principles to CHATSISoa.

2.3 GASSP Cross-Impact Matrix

7.1 Prosand ConsofOQutsourcing

List of Figures

B.1
B.2
B.3
B.4
B.5

Example of th&€ontainsRelation 176
Example of th&ContainsRelation and Module Hierarchy 177
Example of Refining th&lsesRelation1 178
Example of Refining th&lsesRelation2 179
Example of Refining th&lsesRelation3, 180

Vi

Preface

This document is the final report for Task 1 of SRI Project X4Architectural Frameworks
for Composable Survivability and Security, under DARPA @acot No. N66001-01-C-8040 as
part of DARPA's Composable High-Assurance Trustworthyt&ys (CHATS) program. Douglas
Maughan was the DARPA Program Manager through the first tvawsyef the project. He has
been succeeded by Tim Gibson.

Acknowledgments are given at the end of the body of this tepptowever, the author would like
to give special mention to the significant contributions o#® Dean and Virgil Gligor.

This report contains no proprietary or sensitive informmti Its contents may be freely dissemi-

nated. All product and company names mentioned in this teertrademarks of their respective
holders.

vii

Abstract

This report presents the results of our DARPA CHATS proj&de characterize problems in and
approaches to attaining computer system and network aothies. The overall goal is to be better
able to develop and more rapidly configure highly trustwpdiistems and networks able to sat-
isfy critical requirements (including security, reliabjl survivability, performance, and other vital
characteristics). We consider ways to enable effectiveegysto be predictably composed out of
interoperable subsystems, to provide the required trusinmess — with reasonably high assur-
ance that the critical requirements will be met under theifipd operational conditions, and (we
hope) that do something sensible outside of that range aftipeal conditions. This work thus
spans the entire set of goals of the DARPA CHATS program —twaithiness, composability,
and assurance — and much more.

By trustworthinesswe mean simplyworthy of being trusted to fulfill whatever critical re-
guirements may be needéat a particular component, subsystem, system, networbdjcagtion,
mission, enterprise, or other entity. Trustworthinessum@ents might typically involve (for
example) attributes of security, reliability, performanand survivability under a wide range of
potential adversities. Measures of trustworthiness aranmgful only to the extent that (a) the
requirements are sufficiently complete and well defined,(ahdan be accurately evaluated.

This report should be particularly valuable to system dgwets who have the need and/or the
desire to build systems and networks that are significargtieb than today’s conventional mass-
market and custom software. The conclusions of the reportatso be useful to government
organizations that fund research and development efamt$fo procurers of systems that must be
trustworthy.

viii

Executive Summary

Anyone will renovate his science who will steadily look ratiite irregular phenomena.
And when the science is renewed, its new formulas often haxeafthe voice of the
exceptions in them than of what were supposed to be the Widlam James

In this report, we confront an extremely difficult problem —-amely, how to attain demonstra-
bly trustworthy systems and networks that must operatenstdagent requirements for security,
reliability, survivability, and other critical attribuse and that must be able to evolve gracefully
and predictably over time — despite changes in requireméatslware, communications tech-
nologies, and radically new applications. In particulag seek to establish a sound basis for the
creation of trustworthy systems and networks that can biéyeamsnposed out of subsystems and
components, with predictably high assurance, and alsometong sensible when forced to oper-
ate predictably outside of the expected normal range ofatioeral conditions. Toward this end, we
examine a set gbrinciplesfor achieving trustworthiness, consid=nstraintshat might enhance
composability, pursuarchitecturesandtrustworthy subsystentisat are inherently likely to result
in trustworthy systems and networks, define constraintadministrative practiceshat reduce
operational risks, and seek approaches that can signlficasteaseassurance.The approach
is intended to be theoretically sound as well as practicdlraalistic. We also outline directions
for new research and development that could significantfyrawve the future for high-assurance
trustworthy systems.

With respect to the future of trustworthy systems and netgjoperhaps the most important
recommendations involve the urgent establishment and fuseundly based, highly disciplined,
and principle-driven architecturegas well aglevelopment practices that systematically encompass
trustworthiness and assurance as integral parts of whattrhasome coherent development pro-
cesses and sound subsequent operational pract@ely.then can we have any realistic assurances
that our computer-communication infrastructures — ane@utour critical national infrastructures
— will be able to behave as needed, in times of crisis as wétl agrmal operation. The challenges
do not have easy turn-the-crank solutions. Addressing tfegmires considerable skills, under-
standing, experience, education, and enlightened mareger8uccess can be greatly increased
in many ways, including the availability atliable hardware components, robust and resilient
network architectures and systems, consistent use of giftwdase engineering practices, careful
attention to human-oriented interface design, well-cove@ and sensibly used programming lan-
guages, compilers that are capable of enhancing the trushiveess of source code, techniques
for increasing interoperability among heterogeneousribsted systems and subsystems, methods
and tools for analysis and assurance, design and developohsgstems that are inherently easier
to administer and that provide better support for operasibpersonnel, and many other factors.

X EXECUTIVE SUMMARY

The absence or relative inadequacy with respect to eacleséttactors today represents a poten-
tial weak link in a process that is currently riddled with to@any weak links. On the other hand,
much greater emphasis on these factors can result in stibfitagreater trustworthiness, with
predictable results.

The approach taken here is strongly motivated by histopeedpectives of promising research
efforts and extensive development experience (both pesnd negative) relating to the develop-
ment of trustworthy systems. It is also motivated by the ficatneeds and limitations of com-
mercial developments as well as some initial successesémting significantly greater discipline
into the open-source world. It provides useful guidelireisciplined system developments and
future research.

This report cannot be everything for everyone, althouglhausd have some appeal to a rel-
atively broad range of readers. As a consequence of theeanheomplexity associated with the
challenges of developing and operating trustworthy systand networks, we urge readers with
experience in software development to read this reporotigihly, to see what resonates nicely
with their experience. However, to the inexperienced dgel or to the experienced developer
who believes in seat-of-the-pants software creation, vier affew words of caution. Many of the
individual concepts should be well known to many of you. Heereif you are looking for easy
answers, you may be disappointed; indeed, each chapteldsinourn convince you that there
are no easy answers. On the other hand, if you are lookingofoegpractical advice on how to
develop systems that are substantially more trustwortuy tvhat is commercially available today,
you may find many encouraging directions to pursue.

Although there are some novel concepts in this report, oun riust involves various ap-
proaches that can make better use of what we have learnetheyeaist many years in the research
community and that can be used to better advantage in piodwststems. Many of the lessons
relating to serious trustworthiness can be drawn from pesgarch and prototype development.
However, those lessons have been largely ignored in conmatheigvelopment communities, and
perhaps have also been insufficiently observed by the desedoof source-available software.
There are many directions herein — both new and old — forffrluresearch and development
that can help to fill in the gaps.

We believe that observance of the approaches describewvbate greatly improve the present
situation. The opportunities for this within the open-smucommunity are considerable, although
they are also applicable to closed-source proprietaresys{despite various caveats).

Roadmap of This Report
The outline of this report is as follows.

e Chapter 1 presents some of the terminology and foundatiormghich this report is based.

e Chapter 2 considers the roles of principles in the concéipaeon, design, implementation,
operation, and use of information systems and networksgawitical requirements for se-
curity, reliability, and survivability. On one hand, somktbe principles under discussion
are well established in the literature and in certain edanat curricula, and some are even

Xi

intuitively appealing to experienced developers. On tieohand, very few of these princi-
ples are seriously observed in conventional commercignaraming practice, and therefore
are sorely missing in many system architectures, systertemgntations, programming lan-
guages, compilers, software engineering disciplinessaftdvare development tools. Indeed,
although these principles are sometimes knee-jerkingbhgmohed as being impractical,
they are also potentially very valuable.

Chapter 3 outlines some of the obstacles to achieving faoit@osability and interoperabil-
ity, and considers approaches that can contribute to thelaf@went of significantly greater
composability in systems with critical requirements. Im&ocases, compositions of seem-
ingly compliant subsystems can actually compromise thitylif the resulting system to
satisfy its requirements. Of considerable interest is thecept of combining subsystems
in ways that actually increase the resulting trustwortbéer at least do not diminish it.
Also relevant are the concepts of software engineeringplise, programming-language
constructs, execution compatibility and interoperapibind development tools.

Chapter 4 considers characteristics of architecturesatteatikely to predictably satisfy the
CHATS goals, based on the discussion of principles and tag/sis of composability. Al-
though various different architectures are needed foewdfit classes of applications, they
can share many common principles and attributes.

Chapter 5 considers further characteristics of architesttor which the interfaces at various
layers are relatively perspicuous — that is, understamdadtause of the way in which they
have been designed and implemented.

Chapter 6 examines techniques for achieving the requitestitorthiness with some signif-
icant measure of assurance. It stresses the importancearsporating the principled use of
assurance techniques throughout development and operatio

Chapter 7 reexamines the collected wisdom of the earligotehsiin the light of experience,
and seeks to provide practical guidelines for applyingWiatlom to the system development
process.

Chapter 8 considers some potentially significant areasutaré research and development.

Chapter 9 provides a summary of the report, the needs forgutsearch and prototype
development, and conclusions.

Appendix A summarizes the work on formally based static cuysis carried out by Hao
Chen and David Wagner, under a project subcontract to theesity of California at Berke-
ley. It also notes subsequent work carried out by Hao Chen.

Appendix B provides some useful background for the matemi&hapters 2, 3, and 4, and
particularly Chapter 5, relating to system structural amectness properties associated with
modularity. Appendix B is based on material written by Mir@iligor, in connection with
joint work he did with Drew Dean and Peter Neumann for Lee Badgd/isibly Controllable
Computing initiative.

Xii

Chapter 1

The Foundations of This Report

We essay a difficult task; but there is no merit save in diffiasks.
Ovid

In the context of this report, the term “trustworthy” is usadh broad sense that is meaningful
with respect to any given set of requirements, policiesperties, or other definitional entities. It
represents the extent to which those requirements arg litdde satisfied, under specified condi-
tions. That is, trustworthiness meanserthy of being trusted to satisfy the given expectatiéias.
example, typical requirements might relate to attributeseaurity, reliability, performance, and
survivability under a wide range of potential adversitiEach of these attributes has expectations
that are specific to each layer of abstraction (and diffefiagn one layer to another) — for exam-
ple, with respect to hardware, operating systems, apitatsystems, networks, and enterprise
layers.

e Security has been defined in many different ways — some of which areragneral, and
some of which are meaningful only within their own specifintaxts. In its strictest sense,
security might be thought of as the absence of some set otrabilities. In a more op-
erational sense, it might be thought of as the absence ofrayppiies for misuse, despite
certain vulnerabilities. However, in the realities of egmel use, essentially nothing is per-
fectly secure — particularly in the face of insider misuseon§equently, security is more
commonly thought of as the result of a collection of attentptsrevent bad things from hap-
pening and the integrated anticipation of being able towecsuitably when bad things do
happen. Security requirements typically specify propsrtelating to system integrity, data
integrity, data confidentiality, and the ability to withsthsystemic denial-of-service attacks,
along with other more detailed properties such as user atithéion, system authentication,
user access control, accountability, monitoring, realktimisuse detection, and appropriate
responses to detected security violations — among othérs.li3t of detailed requirements
may be very inclusive. Security is a comprehensive notiefevant throughout the pro-
cesses of system conceptualization, requirements fotionjalesign, development, use, and
operation; it applies to systems in the large as well as |i1bss applications, and entire
enterprises. Measures of security often tend to be of qurestie value — for example, prob-
abilistic measures of how secure something is, which may éanmngful in the small, but
almost useless in the large. In any event, there is a needgé&bulunetrics.

2 CHAPTER 1. THE FOUNDATIONS OF THIS REPORT

¢ Reliability requirements might include properties relating to theiigttib tolerate hardware
failures and software flaws, the characterization of aad#@ptdegradation in the face of untol-
erated faults, probabilities of success, expected meastiratween failures, and so on. Mea-
sures of reliability typically represent the extent to whftaws, failures, and errors [26, 309]
can be avoided or tolerated.

e Performancerequirements might include aggregate throughput measun@asessing speeds,
storage capacities, and guaranteed real-time responssxégmple).

e Survivability requirements typically address overall system or enteg@vailability despite
numerous adversities that could compromise the intendal$ gand thus (for example) nec-
essarily encompass relevant aspects of security, retialpérformance, and other critical re-
quirements (e.g., [264]). The range of anticipated adtiessimay be extensive in extremely
critical applications.

e Trustworthiness can then be thought of as the well-founded assessment ofxtbatdo
which a given system, network, or component will satisfysipecified requirements, and
particularly those requirements that are critical to argise, mission, system, network, or
other entity. Trustworthiness is meaningful only with respto those expectations.

e Assuranceprovides some sort of measure or indication of the likelthtioat the desired
trustworthiness isctually well founded, typically through a combination of well-sged
requirements, structured architectures, formal and rmardbevaluations, and operational
practices. A system can be said to be trustworthy only wispeet to its stated requirements,
with some level of assurance that it will behave as expeatadive to those requirements.
If the requirements are fundamentally incomplete, the ephof trustworthiness is similarly
inherently incomplete.

¢ Risk is sometimes thought of as a mathematical product of agtgregaasures of threats,
vulnerabilities, and potential quantifiable losses or agakies. However, reducing risk to
a single quantifiable number is almost always overly sintiplidbecause the space being
considered is highly multidimensional. More intuitivelysks are events that in one sense
or another are undesirable. Clearly, some risks are moreriaat than others, and efforts
should be made to ensure that the most serious risks aresavaiterever practicable.

Note that these concepts are sometimes interrelated. ogisurvivability in turn requires
security, reliability, and some measures of guaranteefbpeance (among other requirements).
Human safety typically does as well. Many of these propgdie meaningful in different ways at
various layers of abstraction. At the highest layers, tleegltto be emergent properties of systems
in the large, or indeed entire enterprises — that is, theyraaningful only in terms of the entire
system complex rather than as lower-layer properties.

The concept ofrustworthiness is essentially indistinguishable from what is terndspend-
ability [24, 25, 26, 202, 309], particularly within the IEEE and Bpean communities. In its
very early days, dependability was focused primarily ordinare faults, subsequently extended
to software faults, and then generalized to a notion of $athiat includes security threats. In that
framework, dependability’s generalized notions of fauttyention, fault tolerance, fault removal,

and fault forecasting (the last of which has some of the etesnaf assurance) seem to encompass
everything that trustworthiness does, albeit with ocazally different terminology. However, a
recent paper, Basic Concepts and Taxonomy of Dependabl8emde Computing, by Avizienis,
Laprie, Randell, Landwehr [26] (which is a gold mine for seis researchers) attempts to dis-
tinguish security as a specifically identifiable subset gfeshelability, rather than more generally
treating it as one of various sets of application-relevaquirements subsumed under trustwor-
thiness, as we do in this report. (Their new reformulatiorseturity encompasses primarily
confidentiality, integrity, and availability — which in thireport are only part of the necessary
trustworthiness aspects that are required for securitytheagh it also alludes to other attributes
of security. However, any differences between their papdrthis report are largely academic —
we are each approaching the same basic problems.)

We make a careful distinction throughout this report betwteast andtrustworthinessTrust-
worthinessimplies that something is worthy of being trustddust merely implies that you trust
something whether it is trustworthy or not, perhaps becgosehave no alternative, or because
you are n&e, or perhaps because you do not even realize that trusbtivwess is necessary, or be-
cause of some other reason. We generally eschew the tershandtrustedunless we specifically
mean trust rather than trustworthiness. (The slogan on@-shirt worn around the National
Security Agency was “In trust we trust.”)

A prophetic definition long ago due to Leslie Lamport can bephrased in the context of this
report as follows: alistributed systens a system in which you have to trust components whose
mere existence may be unknown to you. This is increasinglphlem on the World Wide Web,
which is today’s ultimate distributed system.

There are many R&D directions that we believe are importantitie short- and long-term
futures — for the computer and network communities at lafge DARPA developers, and for
system and network developers generally. (We outline sem@mmendations for future R&D in
Chapter 9.) The basis of our project is the exploration anmudogtation of a few of the potentially
most timely and significant research and development dirext

e Principles. We revisit fundamental principles of trustworthy systemealepment, cull out
those likely to be most effective, explore their practigalitations, and seek a basis for prin-
cipled architectures, principled development, and pplecl operation.

e Composability. We explore existing obstacles to achieving seamless caabyitg and tech-
niques for attaining practical composability in the futur@omposability is meaningful at
many layers of abstraction, for components, subsystentaonieed systems, and networks
of networks. Itis also applicable to policies, protocofgdfications, formal representations,
and proofs. Subsystem composability takes on a varietyraigpincluding sequential (with
or without feedback, with or without recursion, etc.) andgtial execution.

e Reusability. One of the side benefits of the effort to ensure composalslithe possibility
of easier reusability of modules, subsystems, and othempoasnts, and particular high-
assurance components — in contexts other than their igitahceived applicability.

e Compatibility and interoperability. In this report,compatibilityimplies that different enti-
ties can coexist without adverse side effects, perhapsowuiteven knowing of each other’s

4 CHAPTER 1. THE FOUNDATIONS OF THIS REPORT

existence. Interoperability further implies that different entities are actually abdework
constructively with one another.

e Architecture. By the termarchitecturewe specifically encompass ts&ructureof systems
and networks at various layers of abstraction (in terms aipmsable components, subsys-
tems, etc.), the design of tifenctional interfacegarticularly at the visible layers of abstrac-
tion, and theinterdependenciebetween, among, and within those components and layers
of abstraction. Architectures can be defined with incregigirefined degrees of specificity
— from conceptual coarse-grain representations down temely explicit schematics that
are sufficiently detailed to being transformed into precssign specifications from which
implementations may be carried out relatively unambiglyous effect, successive degrees
of architectural specificity, design specifications, anglamentations represent the iterative
development process of refinement, instantiation, andssecsg revision.

e Trustworthy principled composable architectures. We seek to establish principle-based
composable distributed-system network-oriented opdrnitatures inherently capable of ful-
filling critical security, reliability, survivability, ad performance requirements, while being
readily evolvable over time to accommodate widely diffgrapplications, different hardware
and software providers, and changing technologies.

e Trustworthy system development and its foundations. In addition to principled archi-
tectures, we seek to provide a sound basis for system regeirs, specifications, system
development, implementation, trustworthiness, and asserof that trustworthiness for com-
posable interoperable components, with predictable behaten composed.

e Trustworthy protocols. We need to develop new protocols and/or extend existingppots
that effectively mask the peculiarities of various netwogktechnologies wherever possible,
but are able to accommodate a wide range of technologies (@rgless and wired, opti-
cal, and electronic), and capable of addressing all retematical requirements. EXxisting
protocols (e.qg., IPv4, IPSEC, IPv6, secure routing, senarge service) are not adequate for
critical-system and network trustworthiness. This is g \dfficult challenge, and necessarily
needs the involvement of the IETF, NIST standards effortd,development communities.

e Principled operational practice. We need to bring the above concepts into the realm of
operational practice, which is seriously in need of grettestworthiness and controllability.
Many of the concepts considered here have considerablat@tmward that end, particu-
larly for system and network management.

Throughout the history of efforts to develop trustworthysteyms and networks, there is an
unfortunate shortage of observable long-term progressimgl specifically to the multitude of re-
quirements for security. (See, for example, an intervieth\Wichard Clarke [149] in théEEE
Security and Privacy. Blame can be widely distributed among governments, indisstand
users — both personal and corporate. Significant reseatid@relopment results are typically
soon forgotten or else deprecated in practice. Systemsdwmvwe and gone, programming lan-
guages have come and (sometimes) gone, and certain spgsitBosc vulnerabilities have come
and gone. However, many generic classes of vulnerabibgesn to persist forever — such as

buffer overflows, race conditions, off-by-one errors, magéohed types, divide-by-zero crashes,
and unchecked procedure-call arguments, to name just &fesvall, it is primarily only the prin-
ciples that have remained inviolable — at least in principtedespite their having been widely
ignored in practice. It is time to change that unfortunatigagion, and honor the principles.

There is an unfortunate shortage of fundamental books tieatde useful background for the
material discussed in this report. Two recent books by Mah®&o, Computer Security: Art and
Sciencel47] and Introduction to Computer Securif@8], are worthy of particular note — the
former for its rather comprehensive and somewhat rigoronsptiter-science-based treatment of
security, and the latter for its less formal approach thatighbe more accessible to others who are
not computer scientists. Chuck Pfleeg&&curity in Computin§303], Ross Anderson’Security
Engineering14], and Morrie GasserBuilding a Secure Computer Systgt7] are also worthy
sources. A recent book by lan Sommerville [359] providemsive background on software
engineering.

A paper [266] summarizing our conclusions as of early 20Q&ais of the DISCEX3 proceed-
ings, from the April 2003 DARPA Information Survivabilitydbference and Exposition.

Chapter 2

Fundamental Principles of Trustworthiness

Synopsis

Enormous benefits can result from basing requirementsitactiires, implementations, and oper-
ational practices on well-defined and well-understood galyeaccepted principles.

In this chapter, we itemize, review, and interpret varioesign and development principles that
if properly observed can advance composability, trustwoess, assurance, and other attributes of
systems and networks, within the context of the CHATS efféve consider the relative applica-
bility of those principles, as well as some of the probleneytimay introduce.

2.1 Introduction

Everything should be made as simple as possible — but noesimpl
Albert Einstein

A fundamental hypothesis motivating this report is thatiaahg assurable trustworthiness
requires much greater observance of certain underlyingiplies. We assert that careful attention
to such principles can greatly facilitate the followingaets.

e Principled architectures. Establishment of composable open distributed-systemarktw
oriented architectures capable of fulfilling critical setyy reliability, survivability, and per-
formance requirements, while being readily adaptable ttelyidiffering applications, dif-
ferent hardware, heterogeneous software providers, aaugahg technologies. As noted in
Chapter 1architecturehere specifically implies both the structure of systems atd/orks
and the design of their functional interfaces and intereations, at various layers of abstrac-
tion.

¢ Principled system developmentDevelopment of specifications, implementation, trustwor-
thiness, and assurance of that trustworthiness for corbposderoperable components, with
predictable behavior when those components are composed.

e Principled assurance. Attainment of assuredly trustworthy systems and netwar&pable
of addressing all relevant critical requirements, with reevextended protocols that mask the
peculiarities of various networking technologies whereadvantageous.

2.2. RISKS RESULTING FROM UNTRUSTWORTHINESS 7

The benefits of disciplined and principled system develagmannot be overestimated, espe-
cially in the early stages of the development cycle. Prileciplesign and software development can
stave off many problems later on in implementation, maiatee, and operation. Huge potential
cost savings can result from diligently observing releyaniciples throughout the development
cycle and maintaining discipline. But the primary concepbived is that of disciplined develop-
ment; there are many methodologies that provide some kinlisoipline, and all of those can be
useful in some cases.

In concept, most of the principles discussed here are fadif known and understood by
system cognoscenti. However, their relevance is often anemlly appreciated by people with
little development or operational experience. Not wishtimgreach to the choir, we do not dwell
on elaborating the principles themselves, which have be&msively covered elsewhere (see
Section 2.3). Instead, we concentrate on the importancegpiicability of these principles in the
development of systems with critical requirements — aneeigly secure systems and networks.
The clear implication is that disciplined understanding avservance of the most effective of
these principles can have enormous benefits to developasyatem administrators, and also can
aid user communities. However, we also explore variousntiadeconflicts within and among
these principles, and emphasize that those conflicts mulbbeughly understood and respected.
System development is intrinsically complicated in thesfatcritical requirements. For example,
it is important to find ways to manage that complexity, rattitemn to mistakenly believe that
intrinsic complexity is avoidable by pretending to praetisimplicity”.

2.2 Risks Resulting from Untrustworthiness

As noted above, trustworthiness is a concept that encompassng worthy of trust with respect
to whatever critical requirements are in effect, oftentietato security, reliability, guarantees of
real-time performance and resource availability, suhvilty in spite of a wide range of adversi-
ties, and so on. Trustworthiness depends on hardware, aeftwommunications media, power
supplies, physical environments, and ultimately peopleany capacities — requirements spec-
ifiers, designers, implementers, users, operators, nmante personnel, administrators, and so
on.

There are numerous examples of untrustworthy systems ponletywcomputer-related applica-
tions, and people. We indicate the extensive diversity eésaeported in the past with just a few
tidbits relevant to each of various categories. See ComyRgtated Risks [260] and the lllus-
trative Risks index [267] for numerous further examples gfdrences involving many different
types of system applications. (In the lllustrative Risksewwnent, descriptors indicate relevance
to loss of life, system survivability, various aspects oflgdy, privacy, development problems,
human interface confusions, and so on.) Some of these egarap? revisited in Section 6.9, in
considering how principled architectures and assuraaserisk reduction might have avoided
the particular problems.

e Safety

— Aviation disasters, attributable to problems with airfesnavionics computer hardware
and software, badly designed human interfaces, pilotdyadiic control systems, air-

CHAPTER 2. FUNDAMENTAL PRINCIPLES OF TRUSTWORTHINESS

traffic controllers, maintenance crews, airport secuafyses, and so on: KAL 007 (fly-
ing on erroneous autopilot course), Air New Zealand craghMount Erebus (erroneous
course data), Lauda Air (thrust reverser accidentallyaeg in flight), Iranian Airbus
shootdown (bad operational interfaces); Black Hawk helieoproblems, to name just a
few.

— Medical disasters, attributable to hardware flaws, malions, software bugs, and con-
fusing human interfaces: Therac 25 (honatomic transittomfhigh-intensity to low-
intensity mode); database errors resulting in operatiurés; electromagnetic interfer-
ence (pacemakers, defibrillators).

¢ Reliability and availability

— Failures in defense systems, control systems, teleconuations systems, space, fi-
nancial systems, etc.: Patriot missiles missing Scudseéstee clock drift); Yorktown
Aegis missile cruiser disabled (Windows NT crashed by @iy zero in an applica-
tion); ARPANET collapse (1980); AT&T long-distance colk (1990); first Shuttle
launch (Columbia backup computer synchronization prolplemassive electrical power
outages, with large-scale propagation (e.g., 13-houheasdt power outage of 9 Novem-
ber 1965; lower New York state outage on 13 July 1977; blackdéd0 western U.S.
states on 2 October 1984; western U.S. power blackouts oty2986; North Ameri-
can west-coast power outages on 10 Aug 1996, including stgtds, Canada and Baja;
massive northeast U.S. power-grid overload and blackod#éofugust 2003.

e Security

— Unintentional security flaws in delivered software, inchglmany whose origins have
been well understood for many years but that keep recurring

— Intentionally installed trapdoors, Trojan horses, othafware

— Insider and outsider exploitations involving loss of coafitality, loss of integrity, de-
nials of service, viruses, worms, spam, malware introdigeeb browsing, financial
frauds and misuse

— Operational problems, such as configuration errors, adtnator oversights

— Many other problems. Overall, the situation here is trulpldeable and the risks very
diverse. The lllustrative Risks index [267] includes mamges of reported security
problems.

e Survivability

— Survivability despite diverse adversities ultimately degs on system and network reli-
ability, security, computational adequacy and bandwid#tabase availability, and vari-
ous other attributes. (For example, see [264].) Some ofribiggms noted above involve
failures of system and network survivability, as a resulbafdware and software mal-
functions, exploitations of security vulnerabilities,catents, malice, electromagnetic
interference and other environmental events, etc.

e Privacy

2.3. TRUSTWORTHINESS PRINCIPLES 9

— Privacy is often relegated to a second-order consideratityivacy can in some cases
be aided by appropriate technology, but many of the misuesha result of misuse
by trusted insiders or are extrinsic — involving indirectsose external to computer
systems. ldentity theft is an increasingly pervasive eXan(or example, see [11, 104,
342].)

e Maintainability

— Design flaws and software bugs are ubiquitous, either lingear emerging in upgrades.
Overrreliance on patch management is just one consequémagequate architectural
approaches to managing complexity exacerbate the prolfemst as bloatware with
inordinate interdependence on untrustworthy compongagsjoes inattention to human
interfaces — particularly system and network administisato

Many systems actually have critical requirements that spaltiple areas such as security, re-
liability, safety, and survivability. Although the caseéstéd above generally result from a problem
in primarily one of these areas, there are many cases in waietaliciously induced security
problem could alternatively have resulted from an acciagntriggered reliability problem, or
— similarly — where a reliability/availability failure cdd also have been triggered intentionally.
(For example, see Chapter 4 of [260].)

One such application area with critical multidisciplinaeguirements has become of particular
interest since the 2000 November election, resulting filoereimerging desire for completely elec-
tronic voting systems that ideally should have stringequmements for system integrity, voter
privacy, and accountability, and — perhaps most importanthe-impossibility of uncontrolled
human intervention during elections. Some of today’s mejasting all-electronic systems per-
mit unmonitored human intervention (to recover from elaetday glitches and to “fix” problems
— including during the voting and vote-counting procedyrasith no meaningful accountability.
Some systems even routinely undergo code chaaigesthe software has been certified! Thus, we
are confronted with all-electronic paperless voting syst¢hat have no independent audit record
of what has happened in the system internals, with no reatasse that your vote was correctly
recorded and counted, with no alternative recount, no systeay of determining the presence
of internal errors and fraud, and no evidence in case of gimterhe design specs and code are
almost always proprietary, and the system has typically loeetified against very weak voluntary
standards that do not adequately detect fraud and inteco@ents, with evaluations that are com-
missioned and paid for by the vendors. In contrast, gamipiaghines are regulated with extreme
care (for example, by the Nevada Gaming Commission), arditbedxtremely high standards.

For a partial enumeration of recorded cases of voting-systeegularities over the past more
than twenty years, see the online html version of [267] katig on Election Problemsor see the
corresponding section in the .pdf and .ps versions.

Section 5.2.2 reconsiders some of the above cases as welers m which problems arose
specifically because of problems involving the human iamss§.

2.3 Trustworthiness Principles

Willpower is always more efficient than mechanical enfoeetnwhen it works. But

10 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF TRUSTWORTHINESS

there is always a size of system beyond which willpower wilhbdequate.
Butler Lampson

Developing and operating complex systems and networks aitical requirements demands
a different kind of thinking from that used in routine prognaing. We begin here by considering
various sets of principles, their applicability, and tHemnitations.

We first consider the historically significant Saltzer—®&tter principles, followed by several
other approaches.

2.3.1 Saltzer—-Schroeder Security Principles, 1975

The ten basic security principles formulated by Saltzer Soldroeder [334] in 1975 are all still
relevant today, in a wide range of circumstances. In essémese principles are summarized with
a CHATS-relevant paraphrased explanation, as follows:

e Economy of mechanism:Seek design simplicity (wherever and to whatever extent it
is effective).

e Fail-safe defaults: Deny accesses unless explicitly authorized (rather thamifieng
accesses unless explicitly denied).

e Complete mediation: Check every access, without exception.

e Open design:Do not assume that design secrecy will enhance security.

e Separation of privileges: Use separate privileges or even multiparty authorization
(e.g., two keys) to reduce misplaced trust.

e Least privilege: Allocate minimal (separate) privileges according to nez#now,
need-to-modify, need-to-delete, need-to-use, and so dre €kistence of overly
powerful mechanisms such agperuseis inherently dangerous.

e Least common mechanism:Minimize the amount of mechanism common to more
than one user and depended on by all users. Avoid sharingustiett multipur-
pose mechanisms, including executables and data — in plartieninimizing the
need for and use of overly powerful mechanisms sucugeruseand FORTRAN
common As one example of the flaunting of this principle, exhausté shared
resources provides a huge source of covert storage chanvieseas the natural
sharing of real calendar-clock time provides a source oéddiming channels.

e Psychological acceptability: Strive for ease of use and operation — for example,
with easily understandable and forgiving interfaces.

e Work factor: Make cost-to-protect commensurate with threats and eggeigks.

e Recording of compromises:Provide nonbypassable tamperproof trails of evidence.

Remember that these are principles, not hard-and-fast.rBeno means should they be inter-
preted as ironclad, especially in light of some of their ptitd mutual contradictions that require
development tradeoffs. (See Section 2.6.)

The Saltzer—Schroeder principles grew directly out of thdthds experience (e.g., [277]), dis-
cussed further at the end of this section. Each of theseiplkaschas taken on almost mythic
proportions among the security elite, and to some extersviol cult status among many fringe
parties. Therefore, perhaps it is not necessary to expéaih principle in detail — although there

2.3. TRUSTWORTHINESS PRINCIPLES 11

is considerable depth of discussion underlying each poieci Careful reading of the Saltzer—
Schroeder paper [334] is recommended if it is not alreadyragdayour library. Matt Bishop’s
security books [47, 48] are also useful in this regard, plgthe principles in a more general con-
text. In addition, Chapter 6 of Matt Curtin’s book [89] on tadoping trust” — by which he might
really hope to be “developing trustworthiness” — providemse useful further discussion of these
principles.

There are two fundamental caveats regarding these prascigtirst, each principle by itself
may be useful in some cases and not in others. The second iwtika taken in combinations,
groups of principles are not necessarily all reinforcingleed, they may seem to be mutually in
conflict. Consequently, any sensible development mustidenappropriate use of each principle
in the context of the overall effort. Examples of a principking both good and bad — as well as
examples of interprinciple interference — are scatterealuth the following discussion. Various
caveats are considered in the penultimate section.

Table 2.1 examines the applicability of each of the Salt@ehroeder principles to the CHATS
goals of composability, trustworthiness, and assuranasi¢plarly with respect to security, relia-
bility, and other survivability-relevant requirements).

12 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF TRUSTWORTHINESS

Table 2.1: CHATS Relevance of Saltzer—Schroeder to CHATSI$S0
Principle | Composability | Trustworthiness | Assurance |
Economy of Beneficial within a sound Vital aid to sound Can simplify
mechanism architecture; requires design; exceptions mustanalysis
proactive design effort | be completely handled

Fail-safe Some help, but not Simplifies design, Can simplify
defaults fundamental use, operation analysis
Complete Very beneficial with Vital, but hard Can simplify
mediation disjoint object types to achieve with no analysis

compromisibility
Open design || Design documentation ig Secrecy of design is, | Assurance is mostly
very beneficial among | a bad assumption; irrelevant in badly

multiple developers open design requires | designed systems;
strong system security| open design enablgs
open analysis (+/-)

Separation of || Very beneficial if Avoids many Focuses analysis
privileges preserved by compositioncommon flaws more precisely
Least Very beneficial if Limits flaw effects; Focuses analysis
privilege preserved by compositionsimplifies operation more precisely
Least common| Beneficial unless there is Finesses some Modularizes
mechanism natural polymorphism common flaws analysis
Psychological | Could help a little — Affects mostly usability| Ease of use
acceptability || if not subvertible and operations can contribute

Work factor Relevant especially for | Misguided if system Gives false sense
crypto algorithms, but not easily compromised | of security under
their implementations; | from below, spoofed, | nonalgorithmic

may not be composable | bypassed, etc. compromises
Compromise | Not an impediment After-the-fact, Not primary
recording if distributed; real-time | but useful contributor

detection/response needs
must be anticipated

In particular, complete mediation, separation of privélegand allocation of least privilege are
enormously helpful to composability and trustworthing3pen design can contribute significantly
to composability, when subjected to internal review anceml criticism. However, there is
considerable debate about the importance of open desidgnrespect to trustworthiness, with
some people still clinging tenaciously to the notion thausity by obscurity is sensible — despite
risks of many flaws being so obvious as to be easily detecteztreally, even without reverse
engineering. Indeed, the recent emergence of very goodwzts for C and Java, along with
the likelihood of similar reverse engineering tools for exthanguages, both suggest that such
attacks are becoming steadily more practical. Overallaggimption of design secrecy and the
supposed unavailability of source code is often not a daterespecially with ever-increasing

2.3. TRUSTWORTHINESS PRINCIPLES 13

skills among black-box system analysts. However, ther@hoeurse cases in which security by
obscurity is unavoidable — as in the hiding of private andeecryptographic keys, even where
the cryptographic algorithms and implementations areipubl

Fundamental to trustworthiness is the extent to which systand networks can avoid being
compromised by malicious or accidental human behavior grayénts such as hardware malfunc-
tions and so-called acts of God. In [264], we consicempromise from outside, compromise
from within, andcompromise from below, with fairly intuitive meanings. These notions appear
throughout this report.

There are other cases in theory where weak links can be al/¢edg., zero-knowledge proto-
cols that can establish a shared key without any part of tbepol requiring secrecy), although
in practice they may be undermined by compromises from bébogy, involving trusted and sup-
posedly trustworthy insiders subverting the underlyingrafing systems) or from outside (e.qg.,
involving penetrations of the operating systems and masgirgg as legitimate users). For a fasci-
nating collection of papers on vulnerabilities and ways4pl@it weak links, see Ross Anderson’s
website:
http://www.cl.cam.ac.uk/users/rjal4/

From its beginning, the Multics development was strongltivaded by a set of principles —
some of which were originally stated by Ted Glaser and Pegemiann in the first section of the
very first edition of the Multics Programmers’ Manual in 19¢See http://multicians.org.) It was
also driven by extremely disciplined development. For ex@nwith almost no exceptions, no
coding effort was begun until a written specification hadrbapproved by the Multics advisory
board; also with almost no exceptions, all of the code wagewrin a subset of PL/I just sufficient
for the initial needs of Multics, for which the first compil@garly PL, or EPL) had been developed
by Doug Mcllroy and Bob Morris.

In addition to the Saltzer—Schroeder principles, furtmsights on principles and discipline
relating to Multics can be found in a paper by Fernando Cértigdltzer, and Charlie Clingen [85]
and in Corbaté’s Turing lecture [84].

2.3.2 Related Principles, 1969 and Later

Another view of principled system development was given uiann in 1969 [255], relating
to what is often dismissed as merely “motherhood” — but whircheality is both very profound
and difficult to observe in practice. The motherhood prifespunder consideration in that paper
(alternatively, you might consider them just as desiralgltesn attributes) included automated-
ness, availability, convenience, debuggability, docutaeness, efficiency, evolvability, flexibility,
forgivingness, generality, maintainability, modulayitgonitorability, portability, reliability, sim-
plicity, and uniformity. Some of those attributes indilgcaffect security and trustworthiness,
whereas others affect the acceptability, utility, and fatiife of the systems in question. Consid-
erable discussion in [255] was also devoted to (1) the risksoal optimization and the need for a
more global awareness of less obvious downstream costseliogenent (e.g., writing code for bad
— or nonexistent — specifications, and having to debug ré=dly code), operation, and mainte-
nance (see Section 7.1 of this report); and (2) the benefitgbér-level implementation languages
(which prior to Multics were rarely used for the developmeinbperating systems [84, 85]).

In later work and more recently in [264], Neumann conside@te extensions of the Saltzer—

14 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF TRUSTWORTHINESS

Schroeder principles. Although most of those principleghhseem more or less obvious, they
are of course full of interpretations and hidden issues. W@sarize an extended set of principles
here, particularly as they might be interpreted in the CHADStext.

e Sound architecture. Recognizing that it is much better to avoid design errorlye¢han to at-
tempt to fix them later, the importance of architecturesiehtty capable of evolvable, main-
tainable, robust implementations is enormous — even in @&m-gource environment. The
value of a well-thought-out architecture is considerablepen-source systems. The value in
closed-source proprietary systems could also be signifidahwere thought through early
on, although architectural foresight is often impeded lgaty compatibility requirements
that tend to lock system evolution into inflexible architeets. Good interface design is as
fundamental to good architectures as is their structuregh Bee architectural structure and
the architectural interfaces (particularly the visibléenfaces, but also some of the internal
interfaces that must be interoperable) benefit from caesdly specification.

e Minimization of what must be trustworthy. Appropriate trustworthiness should be sit-
uated where it is most needed, suitable to overall systemirezgents, rather than required
uniformly across widely distributed components (with pdi@ily many weak links) or totally
centralized (with creation of a single weak link and forggttother vulnerabilities). Trust-
worthiness is expensive to implement and to ensure, and@ssaguence significant benefits
can result from minimizing what has to be trustworthy. Thisigiple can contribute notably
to sound architectures. In combination with economy of rae@m, this suggests avoidance
of bloatware and unfortunate dependence on less trustyvootnponents.

e Abstraction. The primitives at any given logical or physical layer shobkl relevant to
the functions and properties of the objects at that layed,slould mask lower-layer detail
where possible. Ideally, the specification of a given abtitya should be in terms of ob-
jects meaningful at that layer, rather than requiring lelager (e.g., machine dependent)
concepts. Abstractions at one layer can be related to theaabens at other layers in a
variety of ways, thus simplifying the abstractions at eaglet rather than collapsing differ-
ent abstractions into a more complex single layer. Horialoanhd vertical abstractions are
considered in Section 3.3. Six types of abstraction areudssd in Section B.4.1.

e Encapsulation. Details that are relevant to a particular abstraction ghbellocal to that
abstraction and subsequently isolated within the implaatgm of that abstraction and the
lower layers on which the implementation depends. One elaofgencapsulation involves
information hiding — for example, keeping internal stat®rmation hidden from the visible
interfaces. Another example involves masking the idiosgsies of physical devices from
higher-layer system interfaces. and of course from theingenfaces as well.

e Modularity. Modularity relates to the characteristic of system strregun which different
entities (modules) can be relatively loosely coupled andlmioed to satisfy overall system
requirements, whereby a module could be modified or replasddng as the new version
satisfies the given interface specification. In general, utardy is most effective when the
modules reflect specific abstractions and provide encapsulaithin each module. See
Section B.2 for an extensive discussion of modularity.

2.3. TRUSTWORTHINESS PRINCIPLES 15

e Layered and distributed protection. Protection (and generally defensive design for secu-
rity, reliability, and so on) should be distributed to whéns most needed, and should reflect
the semantics of the objects being protected. With respetiet reality of implementations
that transit entities of different trustworthiness, la/ef protection are vastly preferable to
flat concepts such as single signon (that is, where only desmghentication is required).
With respect to psychological acceptability, single sigihas enormous appeal; however, it
can leave enormous security vulnerabilities as a resulbafpromise from outside, from
within, or from below, in both distributed and layered eoviments. Thus, with respect to
the apparent user simplicity provided by single signonchsyogical acceptability conflicts
with other principles, such as complete mediation, sefmaraf privileges, and least common
privilege. (Of particular interest here are work in distitiéd system protection and digital cer-
tificates such as begun by SDSI/SPKI, and continuing thraagant work on digital rights
management — e.g., [70, 71, 72, 151, 374] — all which are agiein Chapter 4.)

e Constrained dependency. Improperly guarded dependencies (see Section 3.4) orriests t
worthy entities should be avoided. However, it is possiblsome cases to surmount the
relative untrustworthiness of mechanisms on which cerfianctionality depends — as in
the types of trustworthiness-enhancing mechanisms eratetein Section 3.5. In essence,
do not trust anything on which you must depend — unless yowsarieusly satisfied with
demonstrations of its trustworthiness.

e Object orientation. The OO paradigm bundles together abstraction, encapsujatiodular-
ity of state information, inheritance (subclasses inimgithe attributes of their parent classes
— e.g., for functionality and for protection), and subtyp®ymorphism (subtype safety de-
spite the possibility of application to objects of diffetdypes). This paradigm facilitates
programming generality and software reusability, and a@parly used can enhance software
development. This is a contentious topic, in that most of@t@ methodologies and lan-
guages are somewhat sloppy with respect to inheritancen Hdirning notes that the only
OO language he knows that takes inheritance of specifieteriously was the DEC/ESL
OWL/Trellis, which was a descendant of CLU.)

e Separation of policy and mechanism. Statements of policy should avoid inclusion of
implementation-specific details. Furthermore, mechasishould be policy-neutral where
that is advantageous in achieving functional generalitgweler, this principle must never
be used in the absence of understanding about the rangeicikepdhat might be usefully
implemented. There is a temptation to avoid defining medninmmplicies, deferring them
until later in the development — and then discovering that dlesired policies cannot be
realized with the given mechanisms. This is a characteristicken-and-egg problem with
abstraction.

e Separation of duties. In relation to separation of privileges, separate clas$elities of
users and computational entities should be identified, abdstinct system roles can be
assigned accordingly. Distinct duties should be treatstirditly, as in system administrators,
system programmers, and unprivileged users.

e Separation of roles. Concerning separation of privileges, the roles recognigegrotection
mechanisms should correspond in some readily understbngalp to the various duties. For

16

CHAPTER 2. FUNDAMENTAL PRINCIPLES OF TRUSTWORTHINESS

example, a single all-powerful superuser role is intriaklycin violation of separation of du-
ties, separation of roles, separation of privilege, andsmn of domains. The separation
of would-be superuser functions into separate roles asustéd Xenix is a good example of
desirable separation. Once again (as with single signdedrabove), there is a conflict be-
tween principles: the monolithic superuser mechanismigesveconomy of mechanism, but
violates other principles. In practice, all-powerful manflsms are sometimes unavoidable,
and sometimes even desirable despite the negative comsesgug@articularly if confined to
a secure subenvironment). However, they should be avoitiedewer possible.

Separation of domains. Concerning separation of privileges, domains should be &bl
enforce separate roles. For example, a single all-powsufpgruser mechanism is inherently
unwise, and is in conflict with the notion of separation of/peges. However, separation of
privileges is difficult to implement if there is inadequagparation of domains. Separation of
domains can help enforce separation of privilege, but cemovide functional separation as
in the Multics ring structure, a kernelized operating systeith a carefully designed kernel,
or a capability-based architecture.

Sound authentication. Authentication is a pervasive problem. Nonbypassableestita-
tion should be applicable to users, processes, procedamdsn general to any active entity
or object. Authentication relates to evidence that the tiienf an entity is genuine, that
procedure arguments are legitimate, that types are psopeiched when strong typing is to
be invoked, and other similar aspects.

Sound authorization and access control. Authorizations must be correctly and appropri-
ately allocated, and nonsubvertible (although they amrdyliko assume that the identities of
all entities and objects involved have been properly autbated — see sound authentica-
tion, above). Crude all-or-nothing authorizations arewfiskful (particularly with respect to
insider misuse and programming flaws). In applications fhictv user-group-world autho-
rizations are inadequate, access-control lists and radedbauthorizations may be preferable.
Finer-grained access controls may be desirable in soms,caiseh as capability-based ad-
dressing and field-based database protection. Howevenikgavho has access to what at
any given time should be relatively easy to determine.

Administrative controllability. The facilities by which systems and networks are adminis-
tered must be well designed, understandable, well docledeand sufficiently easy to use
without inordinate risks.

Comprehensive accountability. Well-designed and carefully implemented facilities are es
sential for comprehensive monitoring, auditing, intetatien, and automated response (as
appropriate). Serious security and privacy issues mustidesased relating to the overall
accountability processes and audit data.

Table 2.2 summarizes the utility of the extended-set ppiesiwith respect to the three goals of

the CHATS program acronym, as in Table 2.1.

2.3. TRUSTWORTHINESS PRINCIPLES

17

Table 2.2: CHATS Relevance of Extended-Set Principles t&THGoals

Principle

| Composability

\ Trustworthiness

\ Assurance

Sound
architecture

Can considerably
facilitate composition

Can greatly increase
trustworthiness

Can increase assuranc
of design and simplify
implementation analysi

[72)

Minimization of
trustworthiness

Beneficial, but not
fundamental

Very beneficial with
sound architecture

Simplifies design and
implementation analysi

Y

Abstraction

Very beneficial with
suitable independena

Very beneficial
eif composable

Simplifies analysis
by decoupling it

Encapsulation

Very beneficial
if properly done,
enhances integration

Very beneficial if
composable, avoids
certain types of bugs

Localizes analysis to
abstractions and
their interactions

Modularity

Very beneficial
if interfaces and

Very beneficial
if well specified,;

Simplifies analysis
by decoupling it

specifications overmodularization and if modules are
well defined impairs performance | well specified
Layered protection|| Very beneficial, but | Very beneficial if Structures analysis
may impair noncompromisible from according to layers
performance above/within/below and their interactions
Robust dependency Beneficial: can Beneficial: can obviate| Robust architectural

avoid compositional
conflicts

design flaws based on
misplaced trust

structure simplifies
analysis

Object orientation

Beneficial, but
labor-intensive;
can be inefficient

Can be beneficial, but
complicates coding
and debugging

Can simplify analysis
of design, possibly
implementation also

Separation of
policy/mechanism

Beneficial, but
both must compose

Increases flexibility
and evolution

Simplifies analysis

Separation of Helpful indirectly Beneficial if Can simplify analysis
duties as a precursor well defined if well defined
Separation of Beneficial if roles Beneficial if Partitions analysis
roles nonoverlapping properly enforced of design and operation
Separation of Can simplify Allows finer-grain Partitions analysis
domains composition and enforcement and of implementation
reduce side effects | self-protection and operation
Sound Helps if uniformly Huge security benefits,| Can simplify analysis,
authentication invoked aids accountability improve assurance
Sound Helps if uniformly Controls use, Can simplify analysis,

authorization

invoked

aids accountability

im prove assurance

Administrative
controllability

Composability helps
controllability

Good architecture
helps controllability

Control enhances
operational assurance

Comprehensive
accountability

Composability helps
accountability

Beneficial for
post-hoc analysis

Can provide feedback
for improved assurance

18 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF TRUSTWORTHINESS

At this point in our analysis, it should be no surprise thabathese principles can contribute
in varying ways to security, reliability, survivability,nd other -ilities. Furthermore, many of
the principles and -ilities are linked. We cite just a few bé tinterdependencies that must be
considered.

For example, authorization is of limited use without autieation,whenever identity is impor-
tant. Similarly, authentication may be of questionable use witreuthorization. In some cases,
authorization requires fine-grained access controls.tipgadlege requires some sort of separation
of roles, duties, and domains. Separation of duties is dlffto achieve if there is no separation of
roles. Separation of roles, duties, and domains each nlysimea supporting architecture.

The comprehensive accountability principle is partidylartricate, as it depends critically on
many other principles being invoked. For example, accdilittais inherently incomplete with-
out authentication and authorization. In many cases, rmong may be in conflict with privacy
requirements and other social considerations [101], sregemely stringent controls are enforce-
able. Separation of duties and least privilege are paaityulmportant here. All accountability
procedures are subject to security attacks, and are tjpjmane to covert channels as well. Fur-
thermore, the procedures themselves must be carefullytoredi Who monitors the monitors?
(Quis auditiet ipsos audites?)

2.3.3 Principles of Secure Design (NSA, 1993)

Also of interest here is the 1993 set of principles (or pesiraptaprinciples?) of secure design [56],
which emerged from an NSA ISSO INFOSEC Systems Engineetutty ®n rules of system com-
position. The study was presented not as a finished effartatiner as something that needed to
stand the test of practice. Although there is some overléptive previously noted principles, the
NSA principles are enumerated here as they were originaltychented. Some of these principles
are equivalent to “the system should satisfy certain sgcuegquirements” — but they are nev-
ertheless relevant. Others might sound like motherhoocer&ly they represent some collective
wisdom — even if they are fairly abstract and incompletelfjroba.

e The security engineering of a system must not be done indiepelly from the total engineer-
ing of the system.

e A system without requirements cannot fail; it merely preseirprises [386].
e The system is for the users and not the system designers.
e A systems seldom fully satisfies all of its requirements.

e Many failures of a system to meet its overall requiremergsoftien obvious. However, fail-
ures to meet security requirements are often not obvious.

e In an operational system, it is the users’ mission and in&tiom that are at risk, not the
developers’ or evaluators’ information. The accreditaregats those risks when deciding to
use a system operationally.

e Itis only in the context of a system and a security policy that“security characteristics” of
a component can be defined and evaluated.

2.3. TRUSTWORTHINESS PRINCIPLES 19

Every component in a system must operate in an environmahistia subset of its specified
environment; [in particular,] every component in a systemstroperate in a security envi-
ronment that is a subset of its specified security environm@ncomponent should not be
asked to respond to events for which it was not designed — ealdaged.) [This is a gross
oversimplification, particularly for systems relying ornet components on the Internet.]

Security is a system problem.
Keep it simple to make it secure.

There is no security in uncertainty. [This needs to be reidened. Random keys — or at least
keys that have the appearance of randomness — are fundaneectgptographic security.
Furthermore, random sampling — testing, inspections,-etcan be effective.]

A system should be evaluatable and evaluated.
Architectural analysis should not be treated lightly.

A system is only as strong as its weakest link; the fortredswésecurity should all be high
enough. (Note that weak links are often not obvious.) [Aaysiay be even weaker than its
weakest link!]

A component should protect itself from other components dilyeaing to the principle of
mutual suspicion.

A system should be manageable and managed.

A system should be able to come up in a recognizably secuee sta
A system should recognize error conditions.

Pay special attention to information flow.

Secure systems should protect the confidentiality of user. da
Secure systems should protect the integrity of user data.

Secure systems should protect the reliability of user Eees

Considerable discussion of these metaprinciples is weadaf-or example, “Every component
in a system must operate in a security environment that idbae$wof its specified environment”
implies iteratively that maximum trust is required throoghdesign and implementation of the
other components, which is a gross violation of our notiomafimization of what must be trust-
worthy. It would be preferable to require that each compbokeck that the environment in which
it executes is a subset of its specified environment — whiclosely related to Schroeder’s notion
of mutual suspicion [343], noted further down the list.

“A system is only as strong as its weakest link” is generallgeaningful statement. However,
some weak links may be more devastating than others, sot#tentent is overly simplistic. In
combination with least privilege, separation of domaimgj aome of the other principles noted
previously, the effects of a particular weak link might bentzoned or controlled. But then, you

20 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF TRUSTWORTHINESS

might say, the weak link was not really a weak link. Howeveratfirst approximation, as we
noted above, weak links should be avoided where possildagatricted in their effects otherwise,
through sound architecture and sound implementationipeact

2.3.4 Generally Accepted Systems Security Principleg{F, 1997)

The 1990 report of the National Research Council study gtioafproducedomputers at Ris}83]
included a recommendation that a serious effort be madevielaieand promulgate a set of Gen-
erally Accepted Systems Security Principles (GASSP). Tdthto the creation of the International
Information Security Foundation®F). A draft of its GASSP document [279] is available online.
A successor effort is under way, after a long pause.

The proposed GASSP consists of three layers of abstraciiioa Pervasive Principles (relating
to confidentiality, integrity, and availability), a set of Broad Functional Principles, and a set of
Detailed Principles (yet to be developed, because thellavgiinteer project ran out of steam, in
what Jim Horning refers to as a last gassp!). The GASSP dffad far actually represents a very
worthy beginning, and one more approach for those intettestiiture efforts. The top two layers
of the GASSP principle hierarchy are summarized here asvisll

Pervasive Principles

e PP-1.Accountability

e PP-2.Awareness

e PP-3.Ethics

e PP-4 Multidisciplinary

e PP-5.Proportionality

e PP-6.Integration

e PP-7.Timeliness

e PP-8.Assessment

e PP-9.Equity

Broad Functional Principles

e BFP-1.Information Security

e BFP-2.Education and Awareness

e BFP-3.Accountability

e BFP-4.Information Management

e BFP-5.Environmental Management

e BFP-6.Personnel Qualifications

e BFP-7.System Integrity

e BFP-8.Information Systems Life Cycle

e BFP-9.Access Control

e BFP-10.0Operational Continuity and Contingency Planning
e BFP-11.Information Risk Management

e BFP-12.Network and Infrastructure Security
e BFP-13.Legal, Regulatory, and Contractual Requirements of Info Seurity
e BFP-14.Ethical Practices

The GASSP document gives a table showing the relationskeipeden the 14 Broad Functional

2.3. TRUSTWORTHINESS PRINCIPLES 21

Principles and the 9 Pervasive Principles. That table isotepced here as Table 2.3.

Table 2.3: GASSP Cross-Impact Matrix

[PP: [PP-1] PP-2] PP-3] PP-4] PP-5] PP-6] PP-7] PP-8] PP-9]
BFP-1 | X | X | X | X | X | X | X | X | X
BFP2 | X | X | X | X X
BFP3 | X | X | X | X X
BFP-4 | X | X X X
BFP5 | X | X | X | X | X X
BFP6 | X | X X X
BFP-7 | X X | X | X | X [X
BFP-8 | X X | X | X | X [X
BFP-9 | X X | X | X | X [X
BFP-10| X X | X | X X
BFP-11| X | X X | X | X | X [X
BFP-12| X X | X X | X
BFP-13| X | X | X | X X
BFP-14 X | X | X X

2.3.5 TCSEC, ITSEC, CTCPEC, and the Common Criteria (1985 talate)

Any enumeration of relevant principles must note the histbevolution of evaluation criteria over
the past decades — from the 1985 DoD Trusted Computer Systaindtion Criteria (TCSEC,
a.k.a. The Orange Book [249]) and the ensuing Rainbow Baokg)e 1990 Canadian Trusted
Computer Product Evaluation Criteria (CTCPEC, [64]), ahd 1991 Information Technology
Security Evaluation Criteria (ITSEC, [116]). These efédnaive resulted in an international effort to
produce the Common Criteria framework (ISO 15408 [172])iclviiepresents the current state of
the artin that particular evolutionary process. (Applitigbto multilevel security is also addressed
within the Common Criteria framework, although it is muchmadeeply embedded in the higher-
assurance levels of the TCSEC.)

2.3.6 Extreme Programming, 1999

A seemingly radical approach to software development isdan the Extreme Programming (XP)
movement [33]. (Its use of “XP” considerably predates Msoft's.) Although XP appears to
run counter to most conventional programming practices,jitdeed highly disciplined. XP might
be thought of as very small chief programmer teams somewhtitel spirit of a Harlan Mills’
Clean-Room approach, although it has no traces of formadistis termed &ghtweight method-
ology. It involves considerable emphasis on disciplined planiimgughout (documented user
stories, scheduling of relatively frequent small releas@&tensive iteration planning, and quickly
fixing XP whenever necessary), designing and redesignnogitfinout (with simplicity as a driving
force, the selection of a system metaphor, and continualtite), coding and recoding as needed

22 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF TRUSTWORTHINESS

(paired programmers working closely together, continlgde coordination with the customer, ad-
herence to agreed-upon standards, only one programmanpgimtegrate at one time, frequent
integration, deferred optimization, and no overtime payy testing repeatedly throughout (code
must pass unit tests before release, tests must be createaicto bug found, acceptance tests are
run often, and the results are published).

In essence, Extreme Programming seeks to have somethinopguat the end of each period
(e.g., each week) by deferring less important concepts lagir. There is a stated desire to let
business folks decide which features to implement, baseth@rexperience with the ongoing
development.

Questions of how to address architecture in the large sednonoe adequately addressed
within Extreme Programming (although these questions bselately fundamental to the ap-
proach that we are taking in this report, but perhaps areideresi extraneous to XP). The con-
cept of deferring architectural design until later in thegqass may work well in small systems
(where dynamic changes tend to be relatively local), butseiously complicate development of
highly complex systems. Perhaps if coupled with princi@echitectures recommended here, Ex-
treme Programming could be effective for larger developnediorts. See the Web site noted
in [33] for considerable background on the XP movement,udiclg a remarkably lucid Fre-
guently Asked Questions document contrasting XP with sgw@her approaches (UML, RUP,
CMM, Scrum, and FDD — although this is a little like comparimgples and oranges). Wikipedia
also has a useful analysis of socalbglle or lightweightmethodologies, with relevant references
(http://en.wikipedia.org/wiki/Agilesoftwaredevelopment).

2.3.7 Other Approaches to Principled Development

There are too many other design and development methodsltgenumerate here, ranging from
very simple to quite elaborate. In some sense, it does naemahich methodology is adopted,
as long as it provides some structure and discipline, anglasively compatible with the abilities
of the particular design and development team. For exarDypd&, Karpinski hands out a business
card containing his favorite, Tom Gilb’s Project Manageim@nles: (1) Manage critical goals
by defining direct measures and specific targets; (2) Asstmeracy and quality with systematic
project document inspections; (3) Control major risks Inyiting the size of each testable deliv-
ery. These are nice goals, but depend on the skills and experiof the developers — with only
subjective evaluation criteria. Harlan Mills’ “Clean-Robtechnology has some elements of for-
malism that are of interest with respect to increasing asg4, although not specifically oriented
toward security. In generajjood development practice is a necessary prerequisitedistworthy
systems, as are means for evaluating that practice.

2.4 Design and Implementation Flaws, and Their Avoidance
Nothing is as simple as we hope it will kBm Horning

Some characteristic sources of security flaws in systengdesid implementation are noted
in [260], elaborating on earlier formulations and refinetsgie.g., [5, 271]). There are various

2.4. DESIGN AND IMPLEMENTATION FLAWS, AND THEIR AVOIDANCE 23

techniques for avoiding those flaws, including sound aechitres, defensively oriented program-
ming languages, defensively oriented compilers, bettetime environments, and generally better
software engineering practice.

¢ Identification and authentication. The lack of nonspoofable identities and inter-subsystem
authentication within user systems and network infrastmes presents some major obstacles
to the robust networking of systems. In addition to permgttdenial-of-service attacks and
penetrations, it also makes it very difficult if not impodsilior traceback abilities to iden-
tify the source of misuse — assuming that the misuse can leeteéet The pervasive use of
fixed/reusable passwords (especially those that travertseorks unencrypted or are other-
wise exposed) is also a high-risk problem. Elaborate schdarenanaging these passwords
(such as avoiding dictionary words) ignore many of the risk® enormous improvement
can be achieved by using one-time authenticators such asographic tokens, and — in
certain constrained user environments — biometrics, st \éhin supposedly trustworthy
subsystems and subnetworks. The pervasive use of unagttedtlP addresses that are eas-
ily spoofed is another area of risk. Remote sites and rens®eslare frequently not properly
identified and authenticated. Meaningful authenticat®®a iprecursor to the avoidance or
restriction of many kinds of misuse.

e Authorization. Our systems and networks suffer from a serious lack of corsensitive
authorization. Monolithic access controls tend to grakhbahothing or extremely coarse
permissions. The development and consistent use of fimémeg authorization techniques
would be very helpful in enforcing separation of privilegeddeast privilege. In the classi-
fied world, gross levels (e.g., Top Secret, Secret, Configlersind Unclassified) are clearly
too inclusive, which is why finer-grained compartments aneked. An excellent article
on the principle of least privilege is written by David A. W&ier [380], with specific appli-
cation to the FreeBSIail() , Linux Security Modules (LSM), Security-Enhanced Linux
(SELinux), and Wietse Venema’s Postfix mail transfer agé&hts article is mandatory read-
ing. (See also Wheeler’s free online book on secure progiamfor Linux and Unix [379].)

e Initialization and allocation. Failures in the initialization of procedures, processes, ia-
deed stable system and network configuration managemeaesesy a large class of system
flaws. Consistency checking on entry, determination ofaslét availability of appropriate
resources, and deletion of possible residues are examipleshmiques that can provide im-
proved initialization and allocation.

e Finalization. In many programming languages, the lack of graceful tertronaand com-
plete deallocation is inadequately recognized as a sourflaves. For example, deletion
of leftover residues from previous executions is often rgdoor relegated to an initializa-
tion problem, rather than treated systematically on teatndm (perhaps on the grounds that
it might be avoided altogether in some circumstances). hegs, finalization should be
symmetrically matched with initialization. Whatever isr@oin initialization may need to
be explicitly undone or at least checked for consistenustat finalization. Programming
languages that incorporate garbage collection (GC) attemgo this implicitly, although not
always perfectly. For example, note that Java’s finalizaseld on pointer unreachability are
inherently imprecise. Various other GC-based languages $izbtle finalization problems, as

24

CHAPTER 2. FUNDAMENTAL PRINCIPLES OF TRUSTWORTHINESS

do non-GC-based programming languages. Also, note thaX®aeroizes free pages in an
idle loop, instead of waiting until reuse. Overall, the néaxdsecure and robust finalization
remains a research topic.

Runtime validation. A large class of flaws results from inadequate runtime véibda Care-
ful attention to techniques such as argument validationbemehds checks (especially to pre-
vent insertion of Trojan horses such as executables addaguonents, causing buffer over-
flows), divide-by-zero checks, and strong typing of argute@an have enormous benefits.
Brian Randell long ago suggested the benefits of moving ¢chgakoser to the operations
being performed (whether in space, in time, or in layer ofrauation), to reduce the interven-
ing infrastructure that must be trustworthy. This is alsplejable to end-to-end checks and
end-to-end security.

Consistent naming.Aliases, pointers, links, caches, and dynamic changesuitielinking,
and various redundant representations all represent consmarces of security vulnerabil-
ities. Symmetric treatment of aliases, symbolic naming dywalamic linking, strong type
checking, use of globally unique names, and recognitiontadé £aches and cache invalida-
tion are examples of beneficial techniques.

Encapsulation. Exposure of procedure and process internals may allow ¢ga&asuppos-
edly protected information or externally induced integfeze. Proper encapsulation requires
a combination of system architecture, programming langusgign, software engineering,
static checking, and dynamic checking.

Synchronization consistencyMany vulnerabilities arise as a result of timing and sequenc
ing, such as dependence on relative ordering, race consljtsynchronization, and deadlocks
— in both synchronous and asynchronous contexts. Note thay of these problems arise
because of sharing of state information (particularly ial teme or in sequential ordering)
across abstractions that otherwise seem disjoint. Atoraitsactions, multiphase commits,
and hierarchical locking strategies noted in Section 3edexamples of constructive design
techniques. A classical kind of vulnerability is time-dfeck to time-of-use (TOCTTOU)
flaws, which result from a lack of atomicity, to which inadatgiencapsulation can also be a
contributing factor.

Adverse dependenciesDependence on untrustworthy programs or subsystems isemot
considerable source of vulnerabilities. It can emerge assaltr of flawed compilers and
flawed runtime library programs, as well as program bugs —tuding those resulting from
improper program changes and upgrades, but also from Thojeses.

Other logic errors. There are also many common logic errors (such as off-by-onating
and omitted negations) that need to be avoided. Many of trése in the design process, but
some involve bad implementation.

Useful techniques for detecting some of these vulneraslinclude defensive programming

language design, compiler checks, and formal methods zinglgonsistency of programs with
specifications. Of particular interest is the use of statiecking. Such an approach may be for-
mally based, as in the use of model checking by Hao Chen, Dagn&/, and Drew Dean (in

2.5. ROLES OF ASSURANCE AND FORMALISM 25

the MOPS system, developed in part under our CHATS projed@ge Appendix A.) Alterna-
tively, there are numerous approaches that do not use formatilods, ranging in sophistication
fromlint toLCLint (Evans)to Extended Static Checking (Nelson, Reino, eD&lC/Compaq
SRC). Note that ESC is completely formally based, includisg of a theorem prover; indeed, it
is a formal method that has some utility even in the absenterofal software specifications.

Jim Horning notes that even partial specifications incréas@ower of the latter two, and pro-
vide a relatively gentle way to incorporate additional fafiem into development. Strong type
checking and model checking tend to expose various flawse sdwhich are likely to be conse-
guential to security and reliability. For examppyrify and similar tools are useful in catching
memory leaks, array-bound violations, and related memaoblpms. These and other analytic
techniques can be very helpful in improving design sounsiaes code quality — as long as they
are not relied on by themselves as silver bullets.

All of the principles have some bearing on avoiding thesesda of vulnerabilities. Several
of these concepts in combination — notably modularity, r@es$ion, encapsulation, device inde-
pendence where advantageous, information hiding, comptetiation, separation of policy and
mechanism, separation of privilege, least privilege, &adi common mechanism — are relevant
to the notion of virtual interfaces and virtual machines.eTasic notion of virtualization is that
it can mask many of the underlying details, and makes it ptes$o change the implementation
without changing the interface. In this respect, severahes$e attributes are found in the object-
oriented paradigm.

Several examples of virtual mechanisms and virtualizeeriates are worth noting. Virtual
memory masks physical memory locations and paging. A Jirechine masks the represen-
tation of process state information and processor mukipte Virtualized input-output masks
device multiplexing, device dependence, formatting, amihg. Virtual multiprocessing masks
the scheduling of tasks within a collection of seemingly Wieneous processes. The Multics
operating system [277] provides early illustrations ofwa memory and virtual secondary stor-
age management (with demand paging hidden from the prograirtsalized input-output (with
symbolic stream names and device independence where caalitiesnexist), and virtual mul-
tiprogramming (with scheduling typically hidden from theogramming interfaces). The GLU
environment [177] is an elegant illustration of virtual mpifocessing. GLU allows programs to
be distributed dynamically among different processingueses without explicitly programmed
processor allocation, based on precompiling of embeddethgoe in the programs.

2.5 Roles of Assurance and Formalism

In principle, everything should be simple.

In reality, things are typically not so simple.

(Note: The SRI CSL Principal Scientist is evidently both aE&iple Scientist and a
Principled Scientist, as well as Principal Scientist. PGN)

In general, the task of providing some meaningful assusaticd a system is likely to do what
is expected of it can be enhanced by any techniques thatigmapharrow the analysis — for ex-
ample, by increasing the discipline applied to system &chire, software design, specifications,
code style, and configuration management. Most of the ciiediples tend to do exactly that —

26 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF TRUSTWORTHINESS

if they are applied wisely. Techniques for increasing amsce are considered in greater detail in
Chapter 6, including the potential roles of formal methods.

2.6 Caveats on Applying the Principles

For every complex problem, there is a simple solution. Asdiltvays wrong.
H.L. Mencken

As we noted above, the principles referred to here may benflicowith one another if each
is applied independently; in certain cases, the principlesnot composable. In general, each
principle must be applied in the context of the overall depetent. Ideally, greater effort might
be useful to reformulate the principles to make them mordigaomposable, or at least to make
their potential tradeoffs or incompatibilities more exgli

There are also various potentially harmful considerattbas must be considered — for exam-
ple, overuse, underuse, or misapplication of these piiesiand certain limitations inherent in the
principles themselves. Merely paying lipservice to a gpleis clearly a bad idea; principles must
be sensibly applied to the extent that they are appropiatestgiven purpose. Similarly, all of the
criteria-based methodologies have many systemic limoitatie.g., [257, 372]); for example, for-
mulaic application of evaluation criteria is always subjeancompleteness and misinterpretation
of requirements, oversimplification in analysis, and sioppaluations. However, when carefully
applied, such methodologies can be useful and add diseipithe development process. Thus,
we stress here the importance of fully understanding thengrequirements and of creating an
overall architecture that is appropriate for realizingshoequirements, before trying to conduct
any assessments of compliance with principles or critéiml then, the assessments must be taken
for what they are worth — just one piece of the puzzle — rathantoverendowed as definitive
results out of context. Overall, there is absolutely no stuie for human intelligence, experience,
and foresight.

The Saltzer—Schroeder principle of keeping things simgpteie of the most popular and com-
monly cited. However, it can be extremely misleading whepoesed (as it commonly is) in
reference to systems with critical requirements for ségueliability, survivability, real-time per-
formance, and high assurance — especially when all of thexpgirements are necessary within
the same system environment. Simplicity is a very importamicept in principle (in the small),
but complexity is often unavoidable in practice (in the 8rtgFor example, serious attempts to
achieve fault-tolerant behavior often result in roughlybliing the size of the overall subsystem
or even the entire system. As a result, the principle of siitplshould really be one of managing
complexity rather than trying to eliminate it, particulaihere complexity is in fact inherent in
the combination of requirements. Keeping things simpladeed a conceptually wonderful prin-
ciple, but often not achievable in reality. Neverthelesmecessargomplexity should of course
be avoided. The back-side of the Einstein quote at the begjrof Section 2.1 is indeed both
profound and relevant, yet often overlooked in the ovemesafuest for perceived simplicity.

An extremely effective approach to dealing with intrinsaygplexity is through a combination
of the principles discussed here, particularly abstractinodularity, encapsulation, and careful
hierarchical separation that architecturally does natltes serious performance penalties, well
conceived virtualized interfaces that greatly facilitaglementation evolution without requiring

2.6. CAVEATS ON APPLYING THE PRINCIPLES 27

changes to the interfaces or that enable design evolutitmminimal disruption, and far-sighted
optimization. In particular, hierarchical abstractiomaasult in relative simplicity at the inter-
faces of each abstraction and each layer, in relative stitybf the interconnections, and perhaps
even relative simplicity in the implementation of each mieduBy keeping the components and
their interconnections conceptually simple, it is possitdl achieve conceptual simplicity of the
overall system or networks of systems despite inherent ity Furthermore, simplicity can
sometimes be achieved through design generality, recognthat several seemingly different
problems can be solved symmetrically at the same time,rtftha creating different (and perhaps
incompatible) solutions. Such approaches are considardtef in Chapter 4.

Note that such solutions might appear to be a violation optieciple of least common mech-
anism, but not when the common mechanism is fundamental -/ the iuse of a single uniform
naming convention or the use of a uniform addressing moderdnascends different subtypes of
typed objects. In general, itis riskful to have multiple gedures managing the same data structure
for the same purposes. However, it can be very beneficiajparage reading from writing — as in
the case of one process that updates and another procegsdakahe data. It can also be beneficial
to reuse the same code on different data structures, althgitugng typing is then important.

Of considerable interest here is David Musser’s notioGeheric Programminggr program-
ming with concepts. His Web site defines@nceptas “a family of abstractions that are all related
by a common set of requirements. A large part of the activiiyemeric programming, particularly
in the design of generic software components, consistsrafeqat development — identifying sets
of requirements that are general enough to be met by a lanyé/faf abstractions but still restric-
tive enough that programs can be written that work efficyewith all members of the family. The
importance of the C++ Standard Template Library, STL, li@serin its concepts than in the actual
code or the details of its interfaces.” (http://www.cs.epiu/ musser/gp/)

One of our primary goals in this project is to make systenriates conceptually simple while
masking complexity so that the complexities of the desigtess and the implementation itself
can be hidden by the interfaces. This may in fact increasedh®plexity of the design process,
the architecture, and the implementation. However, theltiag system complexity need be no
greater than that required to satisfy the critical requeeta such as those for security, reliability,
and survivability. It is essential that tendencies towdaatware be strongly resisted. (They seem
to arise largely from the desire for bells and whistles —a&f#atures — and fancy graphics, but
also from a lack of enlightened management of program dpvednt.)

A networking example of the constructive use of highly piited hierarchical abstraction is
given by the protocol layers of TCP/IP (e.g., [169]). An aerg system example is given by the
capability-based Provably Secure Operating System (P$I28) 268, 269]) in which the func-
tionality at each of more than a dozen layers was specifieddtby in only a few pages each, with
at least the bottom seven layers intended to be implementeardware. The underlying address-
ing is based on a capability mechanism (layer 0) that unifpencompasses and protects objects
of arbitrary types — including files, directories, processand other system- and user-defined
types. The PSOS design is particularly noteworthy becausaghe capability-based operation
at layer 12 (user processes) could be executed as a singlenmaastruction at layer 6 (system
processes), with no iterative interpretation requirecessithere were missing pages or unlinked
files that require operating system intervention (e.g.dfgramic linking of symbolic names, a la
Multics). To many people, hierarchical layering instartings to mind inefficiency. However, the

28 CHAPTER 2. FUNDAMENTAL PRINCIPLES OF TRUSTWORTHINESS

PSOS architecture is an example in which the hierarchicagdeould be implemented extremely
efficiently — because of the power of the capability mechanistrong typing, and abstraction,
and its intended hardware implementation.

We note that formalism for its own sake is generally countettpctive. Formal methods are not
likely to reduce the overall cost of software developmeut,dan be helpful in decreasing the cost
of software quality and assurance. They can be very efiestigarefully chosen applications, such
as evaluation of requirements, specifications, criticgbathms, and particularly critical code.
Once again, we should be optimizing not just the cost of mgitatnd debugging code, but rather
optimizing more broadly over the life cycle.

There are many other common pitfalls that can result fromuti@incipled use of principles.
Blind acceptance of a set of principles without understagtheir implications is clearly inappro-
priate. (Blind rejection of principles is also observedasionally, particularly among people who
establish firm requirements with no understanding of whetth@ese requirements are realistically
implementable — and among strong-willed developers witbreosas lack of foresight.)

Lack of discipline is clearly inappropriate in design ande@epment. For example, we have
noted elsewhere [264, 265] that the open-source paradigtaddf/is not likely to produce secure,
reliable, survivable systems in the absence of considerdiscipline throughout development,
operation, and maintenance. However, with such disciplinere can be many benefits. (See
also [126] on the many meanings @ben sourceas well as a Newcastle Dependable Interdisci-
plinary Research Collaboration (DIRC) final report [125]dependability issues in open source,
part of ongoing work.)

Any principle can typically be carried too far. For exammgcessive abstraction can result in
overmodularization, with enormous overhead resultingifrstermodule communication and non-
local control flow. On the other hand, conceptual abstradtiocough modularization that provides
appropriate isolation and separation can sometimes begpsaltl (e.g., for efficiency reasons) in the
implementation — as long as the essential isolation aneptioih boundaries are not undermined.
Thus, modularity should be considered where it is advaaageout not merely for its own sake.

Application of each principle is typically somewhat coriteblependent, and in particular de-
pendent on specific architectures. In general, principghesilsl always be applied relative to the
integrity of the architecture.

One of the severest risks in system development involves lgatimization with respect to
components or individual functions, rather than globalraation over the entire architecture, its
implementation, and its operational characteristics.i€dlg different conclusions can be reached
depending on whether or not you consider the long-term cexits and costs introduced by
bad design, sloppy implementation, increased maintena@cessitated by hundreds of patches,
incompatibilities between upgrades, noninteroperatalihong different components with or with-
out upgrades, and general lack of foresight. Furthermarejse optimization (whether local or
global) must not collapse abstraction boundaries thatssergial for security or reliability — per-
haps in the name of improved performance. As one exampletimg&a checks (such as bounds
checks, type checking, and argument validation genershiguld be kept close to the operations
involved, for obvious reasons. This topic is pursued furth&ections 7.1, 7.2, and 7.3. As another
example, the Risks Forum archives include several caseiichwnultiple alternative communi-
cation paths were specified, but were implemented in the sauparallel conduits — which were
then all wiped out by a single backhoe!

2.7. SUMMARY 29

Perhaps most insidious is thegriori lack of attention to critical requirements, such as any that
might involve the motherhood attributes noted in [255] aistetl above. Particularly in dealing
with security, reliability, and survivability in the facd arbitrary adversities, there are few if any
easy answers. But if those requirements are not dealt with the beginning of a development,
they can be extremely difficult to retrofit later. One par@ely appealing survivability require-
ment would be that systems and networks should be able t@telmronfigure, and revalidate
their soundness following arbitrary outages, without harimdervention. That requirement has
numerous architectural implications that are considemechapter 4.

Once again, everything should be made as simple as podusibley simpler. Careful adherence
to principles that are deemed effective is likely to helpiaeh that goal.

2.7 Summary

In theory, there is no difference between theory and practio practice, there is an
enormous difference(Many variants of this concept are attributed to variouspbeo
This is a personal adaptation.)

What would be extremely desirable in our quest for trustiwpslystems and networks is theory
that is practical and practice that is sufficiently theaadti Thoughtful and judiciously applied ad-
herence to sensible principles appropriate for a particidaelopment can greatly enhance the se-
curity, reliability, and overall survivability of the reking systems and networks. These principles
can also contribute greatly to operational interopergbithaintainability, operational flexibility,
long-term evolvability, higher assurance, and many otlesirdble characteristics.

To illustrate some of these concepts, we have given a few phesnof systems and system
components whose design and implementation are strongigipled. The omission of other
examples does not in any way imply that they are less releV#mhave also given some examples
of just a few of the potential difficulties in trying to appliyese principles.

What are generally called “best practices” are often raliwveest-common-denominator tech-
niques that have found their way into practice, rather thhatwnight otherwise be theest prac-
ticesthat would be useful. Furthermore, the supposedly bestipesacan be manhandled or wom-
anhandled by very good programmers, and bad programmiggidges can still be used wisely.
Unfortunately, spaghetti code is seemingly always on theunand bloatware tends to win out
over elegance. Overall, there are no easy answers. Howexeng sensible system and network
architectures is generally a good starting point, as dsaulisn Chapter 4, where we specifically
consider classes of system and network architectures thabasistent with the principles noted
here, and that are highly likely to be effective in fulfillitige CHATS goals. In particular, we seek
to approach inherently complex problems architecturaliycturing the solutions to those prob-
lems as conceptually simple compositions of relativelygeomponents, with emphasis on the
predictable behavior of the resulting systems and netwerkghich is the essence of Chapter 3.

Chapter 3

Realistic Composability

Synopsis

One of the biggest obstacles to software development — ariatydarly system integration —
is the difficulty of predictably composing subsystems outnaidules, systems out of subsystems,
and networks of systems out of systems and networking técgyo

In this chapter, we outline some of the obstacles to achiefanile composability as well as
some of the approaches that can contribute to the develdmhsgignificantly greater composabil-
ity in systems with critical requirements.

3.1 Introduction

The basic challenge confronting us is to be able to developfigure, and operate systems and
networks of systems with high levels of trustworthinesshwéspect to critical requirements for
security, reliability, fault tolerance, survivabilityepformance, and other behavioral criteria, with-
out too seriously sacrificing the desired functionality. mated in Chapter 1, both compatibility
and interoperability are important. Inherently high aasge that those systems will perform de-
pendably as expected is also extremely desirable. Thegausdts can be greatly aided by taking
pains to constrain architectures and the software devedapprocess.

To these ends, one of the most fundamental problems invab&sing the ability to compose
subsystems to form dependable systems and to compose cent@ystems to form dependable
networks — without violating the desired requirements, anthout diminishing the resulting
trustworthiness. Composability problems are very olditred to the youth of the computer field.
They exist throughout the life cycle, involving composdbi{and noncomposability) of require-
ments, policies, specifications, protocols, hardware y@ibms, and software components (with
respect to their source code, compilers, object code, artthra libraries), as well as arising in sys-
tem and network reconfiguration, upgrades, and mainten@&orcexample). Analogous problems
also arise with respect to the compositionality of asswaneasures (including formal methods
and component testing) and their evaluations, and even swte the evolution of evaluations
over time as systems change. Ultimately, the degree to wduinfposability is attainable depends
strongly on the system and network architectures, but ialfuenced by many other factors.

30

3.2. OBSTACLES TO SEAMLESS COMPOSABILITY 31

Unfortunately, many seemingly sound compositions canadlgtaompromise the desired overall
requirements, as noted in Section 3.2.

Various approaches to decomposing systems into compoaestexamined in Section 3.3,
whereas how to enhance composability is considered ind@e8t4. Of additional interest is the
concept of combining subsystems in ways that can actuadieasethe resulting trustworthi-
ness. This is explored in Sections 3.5 and 3.6, along withidleance of concepts of software
engineering discipline, programming-language consstustructural compatibility, execution in-
teroperability, and development tools — all of which cansiderably improve the likelihood of
achieving seamless composability.

We include many references here and intentionally try tafee important early efforts that
deserve not to be forgotten with more recent efforts thaticoa toward the ultimately desired
research and development results.

3.2 Obstacles to Seamless Composability

A modular system is one that falls apart eastyL. (Ted) Glaser, 1965

Seamless composabilityplies that a composition will have the desired beneficiapgrties,
with no uncontrollable or unpredictable side effects. Tirathe composed system will do exactly
what it is expected to do -0 more and no lesgMore andlesscan both create potentially serious
problems.) In practice, many pitfalls are relevant to theyposition of subsystems into systems
— often involving unanticipated effects (colloquiallyjde effects”) that impede the ideal goal of
unencumbered composition and interoperability amongubsystems:

e Inadequate requirements.If stated requirements do not explicitly demand that sutesys
and other components must be developed in ways that woulsuesge compatibility and
interoperability, composability is likely to be much mor#fidult to achieve. Furthermore,
poorly defined requirements are likely to hinder compo#gbil

e Nonexistent or inappropriate specifications.If system and subsystem specifications do not
adequately define the relationships among interfacestsnmternal state information and
state transitions, outputs, and exception conditions,ifatise specifications are oblivious
to critical relationships with related functionality, éetnining to what extent composability
is possible becomes much more difficult. Composition of woalestrained specifications
is an inherent problem, because the extent to which the coems compose is ill-defined;
supposed demonstrations of composability may actually é&ningless. Overly constrained
specifications (for example, including unnecessarily lewel and possibly incompatible de-
tails) are also often an impediment to composability. Sthatate information across compo-
nents is also a particular source of potential problems.

e Properties that exist beyond what is defined by stated indiual subsystem interface
specifications. Assuming the presence of meaningful specifications, inaa@gs of the
specifications and inconsistencies between specificaiodsimplementations are charac-
teristic problems. In general, specifications are alwayeiiantly incomplete with respect
to defining what shouldot happen, even when they are fairly good at defining what should

32

CHAPTER 3. REALISTIC COMPOSABILITY

happen. (Abstraction is a very important technique for $ifiying specifications, but it sup-
presses detail that may include undesirable aspects ofioelaad may therefore negatively
affect compositional properties.) In addition, programgiianguages and compilers them-
selves provide very few if any guarantees that somethingiyhat is expected cannot
occur. Examples include shared-buffer interactions arahticipated information residues
from one invocation of a subsystem to a subsequent or carduimvocation of the same
subsystem; buffer overflows and other cases of inadequatedsochecks and inadequate
runtime validation; inadequate authentication; improipéralization and finalization; im-
proper encapsulation, which can result in interferencecdiner unexpected interactions; race
conditions; covert channels; and intentionally planteojdm horses. This list represents just
the tip of a huge iceberg. All these problems can impair caapiity. As one example,
various Windows operating systems are actually relativebdular (which is essential for
orderly development), but the modules are not sufficientiyagpsulated to prevent adverse
effects resulting from composition. Drew Dean suggestsTd over 802.11 and TCP over
TCP are also interesting examples of compaosition problems.

Properties that manifest themselves only as a result of conmmtions of subsystemsEx-
amples include adversamergenproperties (i.e., disruptive or even constructive effeélott
are not evident in any of the individual subsystems but thaeanly when the subsystems
are combined); adverse feedback interactions betweelysteinss, such as infinite loops or
dependence on functionality that is less trustworthy; g@atrcovert channels that do not ex-
ist in any of the subsystems in isolation; mutual incomphtiis in the interfaces — perhaps
resulting from internal state interference; global faélunodes resulting from local faults,
as in the 1980 ARPANET collapse [320] and the 1990 AT&T longtahce collapse (e.g.,
see [260]); socalled “man-in-the-middle” attacks (whicight alternatively be called un-
trustworthy interpositions), in which an interposer camuliate the actions of each compo-
nent; and other failure modes that arise only in the ovesatesn context. A fascinating
noncomposability situation is noted in attempts to coml&neryption with digital signa-
tures [12]: signatures are composable with public-key wym@mphy, bunot with symmetric
cryptography, in which case security may break down. Thegediments to composabil-
ity can arise essentially everywhere throughout the devetnt life cycle — for example,
incompatibilities among different requirements and pe¢cundesirable interactions in spec-
ifications and implementations, and difficulties in reconfagion and maintenance. Compos-
ability of cryptographic libraries useful for automatewepfs have been considered by IBM
Ruschlikon [27, 28].

Multivendor and multiteam incompatibilities. In the interests of having heterogeneous
that can mix and match alternative components, it would Isralele to use multiple sys-
tem developers. However, incompatibilities among intefassumptions, the existence of
proprietary internal and external interfaces, and extrparéormance degradations resulting
from the inability to optimize across components can reisulhe inability to compose the
components.

e Scalability issues. Composability typically creates many issues of scalabilfor exam-

ple, performance may degrade badly or nonpredictably agpteisubsystems are conjoined.

3.3. SYSTEM DECOMPOSITION 33

Ideally, composability can result in a wide range of expegierformance implications —
for example, linear, multiplicative, or exponential in thember of composed subsystems.
In practice, even further degradations can result — for ganfrom design or implemen-
tation flaws or indirect effects of the composition, such aseaognized dependence on sub-
stantively slow interactions. Obviously, infinite loopsdastandstill deadlocks (“deadly em-
braces”) are limiting cases of degradation, and often gmiseisely as a result of composing
subsystems.

e Human issues.The supposed “good guys” can accidentally have profouneijative effects
on composability, through poor system conception, inadexjtequirements, lack of speci-
fications that are comprehensive and accurate, bad sofevgfieeering practice, misuse or
bad choices of programming languages, badly managed geweltt, and sloppy operational
practice (for example). Insider “bad guys” can have varinegative effects on the desired
composability, such as installing Trojan horses duringettgyment, operation, and reconfig-
uration that impair interoperability and compromise sagguHuman activities can also di-
rectly impair enterprise interoperability [118]. Outsidiead guys” are generally less likely to
negatively affect composability externally, except assaleof penetrations (through which
they become bad insiders), subversion of the developmeneps, tampering, and denials of
service.

In common usage, there is considerable confusion surragritie relative roles of compos-
ability, intercompatibility, and interoperability (sedn@pter 1). In that it is easy to conceive of ex-
amples in which composability implies neither interconifpiéity nor interoperability, or in which
neither intercompatibility nor interoperability impliesmposability, we avoid any attempts to tax-
onomize these three concepts. By avoiding the semantiactisins, we focus primarily on seek-
ing a strong sense of composability, recognizing that agterability and intercompatibility may
impose further constraints. From a practical point of vielwat matters most is that the resulting
composed systems and networks must satisfy their desiceireenents. If that is the case, then
we can simply say that the compositions satisfy whateveuirements exist for composability,
interoperability, and intercompatibility.

3.3 System Decomposition

Decomposition into smaller pieces is a fundamental apgrdaanastering complexity.
The trick is to decompose a system in such a way that the dyoiloaportant deci-
sions can be made at the abstract level, and the pieces camflemented separately
with confidence that they will collectively achieve the moted result. (Much of the art
of system design is captured by the bumper sticker “Thinkallg, act locally.”) Jim
Horning [259]

Given a conceptual understanding of a set of system reqaimtanor even a detailed set of
requirements, one of the most important architecturallprab is to establish a workable structure
of the system that can evolve into a successful implememtafihe architectural decomposition
of a network into subnetworks, a system into subsystems,soibaystem into components, can
benefit greatly from the principles enumerated in Chaptén particular, modularity together with

34 CHAPTER 3. REALISTIC COMPOSABILITY

encapsulation, hierarchical layering, constructive uwdasedundancy, and separation of concerns
are examples of design principles that can pervasivelycatfee decomposability of a system
design — and thereby the modular composability.

The work of Edsger Dijkstra (for example, [105, 107]) and Davarnas (for example, [281,
283, 284, 290, 295] has contributed significantly to the toeive structural decomposition of
system architectures and system designs. In additionaB48&6, 282, 285, 287, 291, 292, 293,
294, 296, 297] provided definitive advances toward the fbspacifications and analysis of real
and complex systems, beginning in the early 1970s. Of pdatiémportance is Parnas’s enumer-
ation of various notions of usesh, and especially the concept of dependence [283] embodied in
the relationz depends om for its correctnessAppendix B elaborates on thesesrelations.

Decomposition can take on several forrilarizontal decomposition(modularization) is often
useful at each design layer, identifying functionally olist components at that layer. Horizontal
decomposition can be achieved in various ways — for exantipieyugh coordination from higher
layers, local message passing, or networked intercormmectin addition, the development process
entails various temporal decompositions, such as absmafinement, in which the representa-
tion of a particular function, module, layer, or system ifdee undergoes successively increased
specificity — for example, evolving from a requirements sfieation to a functional specification
to an implementation. If any, additional functionality iddeed along the way, vulnerabilities may
arise whenever development discipline is not maintained.

Vertical decompositionrecognizes different layers of hierarchical abstractimh@istinguishes
them from one another. A very simple layering of abstraci@rom the bottom up) might be hard-
ware, operating system, middleware, application softwanel users. Each of these conceptual
layers can in turn be split into multiple layers, accordiaghte needs of an architectural design, its
implementation, and its assurance considerations.

Several important examples of vertical and horizontalaypsiecomposition are found in Mul-
tics, the THE system, the Software Implemented Fault-aole¢SIFT) system, the Provably Se-
cure Operating System (PSOS), the type-oriented protecfithe Honeywell and Secure Com-
puting Corporation lineage, multilevel secure (MLS) ké+based architectures with trusted com-
puting bases (TCBs), and the MLS database management s@&t@view. These systems and
others are considered in Chapter 4.

Ideally, it should be relatively easy to remove all unneesigftivare from a broadly supported
general-purpose system, to achieve a minimal system caoafign that is free of bloatware and its
accompanying risks. (In some of the server-oriented achites considered in Chapter 4, there
is a fundamental need for highly trustworthy servers thatarmitted to perform only a stark
subset of the functionality of a general-purpose system &ierything else stripped out.) In prac-
tice, monolithic mass-market workstation software and/eational mainframe operating systems
tend to defy, or at least greatly hinder, the subsetting otfionality. There are typically many
unrecognized interdependencies — especially in the aredsvice drivers and GUIs. (Some-
what intriguingly, real-time operating system develop¥em to have done a much better job in
realizing the benefits that can be obtained from stark stibgepartly for reasons of optimizing
performance, partly because of historical memory limitagi, but perhaps mostly because of the
importance of reducing per-unit hardware costs. Howeteir systems do not yet have adequate
security for many critical applications.)

If a system has been designed to be readily composable otst @dmponents, then it is also

3.4. ATTAINING FACILE COMPOSABILITY 35

likely to be readilydecomposable— either by removal of the unnecessary subsystems, or by
the generation of the minimal system directly from its cdoent parts. Thus, if composability
is dealt with appropriately (e.g., in system design, prograng language design, and compiler
design), the decomposition problem can be solved as a lupt@f composition. On the other
hand, the decomposition problem is potentially very diffiéor complex conceptual systems that
are just being designed and for legacy software that wasesiggded to be either composable or
decomposable.

And then we have a wonderful quote from Microsoft's Stevelal, who said — in his 8
February 2002 deposition relating to the nine recalcittAft states — that it would be impossible
to get the operating system to run properly and still meestages’ demands.

“That’s the way good software gets designed. So if you pullegpiece, it won't run’”
Steve Ballmer, Reuters, 4 March 2002.

(Modular, schmodular. That might be why many people comsisieftware engineering” to be
an oxymoron. But what is missing from much mass-market softvis not modularity, but rather
clean abstraction and encapsulation.)

This is in contrast to a poignant e-mail quote from Cem Karfgoyil 4, 2002: “The problem
with installing these [...] patches is that, as lightly ésspatches will, they can break one thing
while fixing another. Last week | installed yet another Mewli security patch for Win 2000,
along with driver patches they recommended. As a result, imgam no longer works, my screen
was screwed up until | reloaded the Dell driver, and my soumd works differently (and less
well). | accepted patches for MS Office and Acrobat and nowt hgessages asking me to enable
Word macros when | exit Word, not just when | open a documésiizgn the widespread nature of
Word macro viruses, | disable the feature.) It wasn't so lagg that it was common knowledge
that patching systems reflects poor engineering and is rmkep We should not be advocating a
structure like this or making a standard of it.”

3.4 Attaining Facile Composability

Ideally, we would like the development of complex hardwsafédare systems to be like
snapping Lego pieces together! Instead, we have a situatiarhich each component
piece can transmogrify its modular interface and its phgkseppearance — thereby
continually disrupting the existing structure and hinawifuture composability. An
appropriate analog would be if civil engineering were as iselined as software en-
gineering.PGN

Ideally, it should be possible to constrain hardware anthes€ subsystems — and their com-
positions — so that the subsystems can be readily integtatgether with predictable conse-
guences. This goal is surprisingly difficult. However, sal@pproaches can help improve the
likelihood that composition will not create negative efec(Note that Brad Cox achieved some-
thing like this in the mid-1980s with what he called softwartegrated circuits; see
http://en.wikipedia.org/wiki/Softwareomponent.)

36 CHAPTER 3. REALISTIC COMPOSABILITY

In hardware, address relocation, segmentation, paginigipracessing, and coprocessors have
helped. In software, virtual memory, virtual machinestriisited operating systems, modern soft-
ware engineering and programming languages better enéptbhe principles of good software-
engineering practice, sound distributed programmingyoed-centered virtualized multiprocess-
ing, and advancing compiler technology can contribute toeased composability — if they are
properly used. In particular, virtual memory techniquegeheonsiderably increased the compos-
ability of both hardware and software. (It is lamentable g@tware engineering practice is so
seldom good!)

e Compatibility and interoperability. As noted in Chapter 1, compatibility implies merely
the ability to coexist within a common framework, wheredsiiaperability additionally im-
plies the ability to work together without adverse side effe Both are generally essential
prerequisites for composability.

e Web interoperability. In recent years, considerable effort has been devoted toastab-
lishing a common definition of 8/eb portalconcept that would facilitate universal interop-
erability providing access to Web services. A recent atlyy Michael Alan Smith [355]
proposes a hierarchical General Portal Model that attetopimify 17 somewhat differing
definitions from the literature. From the top, the layersradd process interfaces (process
identification, transformation), resource discoverydrgse identification, resource location,
resource binding), and network interfaces (security, netvaccess). In this context, a portal
implies an “infrastructure providing secure, customieglpersonalizable, integrated access
to dynamic content from a variety of sources, in a varietyoofifats wherever it is needed.

e Consistency and completeness of the interface specificatm It is desirable that there be
no externally discernible functional behavior other thagcsely what is specified, implying
bilateral consistency of behavior with respect to the fiomzl specifications. That is, the
subsystem must do what it is supposed to aag nothing else beyond what is specified.
However, it is important to note that specifications are ieh#y incomplete, and that many
system failures (in security, reliability, performancadaso on) result from events that occur
outside of the scope of the specifications and thus are wtdbte by any analyses based on
those specifications.

¢ Independence of specification abstractionsAs noted above, abstraction can be an enor-

mous aid to composability of specifications, as well as ta@sge proofs. However, it is
essential that the details not explicitly represented loyh edostraction be independent of the
details of other abstractions. Otherwise, composability most likely be impaired. One
elegant example of provable composability is seen in thieogadnality theorem of Chan-
der, Dean, and Mitchell [72], which provides soundness amdpteteness proofs for a trust
management kernel with a clean separation between audtionzand structured distributed
naming.

e Timing and synchronization issues.In general, Lamport-style safety properties (i.e., noth-
ing bad happens) compose better than liveness propert@aetsing good eventually hap-
pens with certainty) [197], but this boundary is blurred bg inclusion of timing constraints,
which are technically safety properties, but generallycawhposable. It is also blurred by

3.4. ATTAINING FACILE COMPOSABILITY 37

the existence of properties that are neither safety nondise — such as information flow.
Furthermore, time (whether real time or relative time) igitplly common to different ab-
stractions, which is a reason that synchronization anchjnabnstraints can present serious
impediments to facile composition. For example, see Ko#5] on composability in the
Time-Triggered Architecture.

e Statelessness, total state visibility, object-orientedgradigms, and information hiding.
If a subsystem is stateless (that is, it does not remembesfatsyown state information from
one incarnation to the next), then it may be less likely toehadverse interactions when that
subsystem is composed with other subsystems — althougé #neralways issues such as
noncommutativity of operations and interference duringatorent execution. In addition,
nontrivial recovery, as in selective rollback, may be urassary. However, statelessness is
often not a desirable goal — although stack disciplines ¢&tt/ely separate the state in-
formation from the subsystem itself. Assuming that a sulesyss stateful (that is, it retains
at least some of its own state information from one incaamettd the next), there is a choice
between the classical notion of information hiding and exdévisibility of state information.
External state visibility of each subsystem at least matas snformation explicit, and also
tends to make explicit any residues that might impair contpposlity. On the other hand,
because information hiding typically masks internal statermation, it can hinder facile
composability. For example, internal state information ba in conflict across the imple-
mentation of different subsystems even if invisible in thedfications — and particularly so
if the subsystems share any concrete state attributesrthabaseparately specified and as-
sured (as in the case of virtual machines and virtual mem¢@fgr example, pointers, loosely
bound aliases, and other indirect references tend to goealbdems.) Thus, the separation of
common stateful entities can greatly facilitate compositi Nevertheless, information hid-
ing is very desirable for other reasons, including isolatisecurity, system integrity, and
tamperproofing. One interesting historical approach isifbun the formal specifications of
PSOS, in which certain state information is hidden but frohncl the state information that
is explicitly visible at the module interface is derived.dadese the hidden state information
cannot be accessed outside of the module (informationdiidiicannot be referenced in any
other module specification. As a result, there can be no necstate residues or other state
information that can be accessible to other modules or suigse invocations of the same
module beyond what is explicitly declared as visible. Thisagly increases the composabil-
ity of modules and the analysis of potential interactiohaldo rules out certain characteristic
flaws simply because it is impossible to include them in trecgations! This approach is
discussed further in Section 6.4.

The object-oriented paradigm (especially with meticulpsong typing) can also contribute
significantly to composability, based on abstraction, pea&tion, subtype inheritance with
respect to specifications, and polymorphism. Note thateeening inheritance of implemen-
tations without strict inheritance of specification sulsskes runs counter to composability.
Every subclass instance must meet the specifications dsalperclasses, or else all veri-
fications of uses of the superclasses are unsupported. Inasey any internal state (resid-
ual or otherwise) of a subsystem should be demonstrablypermtent of the internal states
of other subsystems with which it is to be composed. In egsethe required analysis is

38

CHAPTER 3. REALISTIC COMPOSABILITY

somewhat similar to that used in multilevel-security flovalysis and noninterference, as in
the work of Owicki—Gries and Goguen—Meseguer [139, 140]. afiant of ML, Objective
Caml is an outstanding example of a programming languagectivdributes very substan-
tially to increasing composability; this results from Qtfjge Caml’s module system and
approach to object orientation, in addition to the type eystexception handling, and au-
tomatic memory management provided by ML. (See http://dand.fr and its associated
FAQ pages http://caml.inria.fr/FAQ/general-eng.htriee also Bertrand Meyer's Eiffel pro-
gramming by contract (http://www.inf.ethz.ch/ meyer/hefe are also some similarities with
programming-language analyses done by compilers and detgugpols. However, although
such an independence condition would be theoreticallyralglg, it is also not sufficient in
practice — because of the inherent incompleteness of thafigadions and the presence of
emergent properties. Modula 3 also has a modular systermucivedo composability.

Policy composition. Serious problems can result when different policies do wobmose
properly — especially if that lack of composability is nosdovered until much later in
development. Furthermore, attempting to compose poliites results in emergent prop-
erties that are not evident from the constituent policiesr éxample, see recent work by
Virgil Gligor et al. with respect to the composability of seption-of-duty policies [135]
and application-specific security policies [134]. Gligates (among other things) that pol-
icy composability does not necessarily imply the usefudnefsthe resulting policies, and
that existing compositionality criteria are not alwayslistec. Denial of service is a partic-
ularly thorny policy; besides, policies that do not addréssials of service are inherently
incomplete. Of considerable interest is recent work by Bé#antel relating to the general
composability of secure systems [220] and on flow propetiiasare preserved under refine-
ment [219]. Also relevant here are earlier papers on thecdiffes of composing policies for
multilevel security [368] and restrictiveness [222, 2235P(the nondeterministic generaliza-
tion of noninterference), as is other work on policy composi(e.g., [3, 36, 37, 147, 162,
218, 224, 226, 230, 238, 319, 325, 363, 388, 389)).

Jim Horning notes that policy composition is an instancenefgeneral problem of building
axiomatic systems. Consistency is difficult to demonstnatpractice (and impossible to
demonstrate in general), and surprises emerge even froothposition of a few simple
axioms. For example, the axiomatization of rational nurelderterms of 0, 1, +, —, *, and /
was incorrect in the published versions of the Larch Shaatguage Handbook, despite its
scrutiny by numerous colleagues, and despite the facthigistan extensively studied and
axiomatized domain. Every axiom seems to make sense irticoldut their combination
leads to a contradiction or otherwise unacceptable colcius

Proof composition. An extraordinary book on compositionality of proofs [94]vu®rth
careful reading for anyone interested in formal verificatemd high assurance of systems.
Composability of proofs is also an attribute of the Berkedegtic analysis discussed in Ap-
pendix A.

Certification composition. Rushby [322] has characterized some of the main issuegglat
to the modular certification of aircraft derived from separeertification of its components,
based on an extension of a formal verification approach. Tingal elements involve sepa-

3.4. ATTAINING FACILE COMPOSABILITY 39

ration of assumptions and guarantees (based on “assumaatemreasoning”) into normal
and abnormal cases.

e Protocol composition. There is also ongoing work on protocol composability by Nanc
Lynch at MIT, Dushko Pavlovic at Kestrel, John Mitchell aafford, and others — for ex-
ample, see [93]. Several of the cited works include furtieéenences for anyone aspiring to
be the Compleat Composability Maven. An interesting reseahallenge might be to con-
sider a particular collection of protocols (e.g., for auttigation, encryption, and integrity
preservation) and prove that they are mutually composablgect to certain constraints; the
proofs could also be extended to demonstrating that theilutao implementations would be
composable.

e Other past research on composition.There was a significant flurry of activity on system
composition in the early 1990s [7, 55, 203, 204], includioghe works specifically address-
ing principles of secure design [56], specification [160@J @esign and evaluation [365].

e Dependency analysisIn many systems, there are unrecognized interdependestiesg
different components that hinder composability. Similamenents are relevant to contradic-
tory or otherwise incompatible interdependencies amonigips, models, separately com-
piled software, and even proofs. Identifying such depeai@srand removing them or other-
wise neutralizing them would be a considerable aid to comipitis/, The role of dependency
analysis as an assurance technique is considered in S6cion

e Constrained and guarded dependency strategief®eterministic linearization or other suit-
able prioritization of intersubsystem dependencies caidanany adverse dependency prob-
lems, such as often result from misguided locking strategia search strategies, upgrade
compatibility mismatches, and unanticipated distributedractions. For example, in Dijk-
stra’s THE system paper [106], the use of a linearly ordeiiedalchical locking structure
guaranteed that no deadly embraces could obetweerntwo different layers of abstraction
(although in subsequent years a deadly embrace was ocatigidiscoveredvithin a particu-
lar layer). As another example, Ken Biba’s multilevel imigg[43] (MLI) requires in essence
that no computational entity (e.g., user, program, prqa@sdata) may depend on any other
entities that are deemed less trustworthy (i.e., that atenpially less highly trusted) with
respect to integrity. (MLI is considered further in Sect#8.) In the broadened sense of de-
pendence considered here, the strict lattice ordering dtileuel integrity attributes implied
by Biba may be relaxed if any relative untrustworthiness lsamasked by creative system
architecture or otherwise transcended. This notion ofdgthacceptability of dependence on
less trustworthy components is systematized in [264] (ehieis referred to ageneralized
dependende Here referred to aguarded dependencethis concept is explored further in
the next two sections. See Abadi et al. [1] for a recent folzatibn of dependency.

e Functional consistency among layers of abstractioriThe 1977 Robinson—Levitt paper [316]
on hierarchical formal specifications introduced the cphoéformal mappings between dif-
ferent layers of functional specifications that represestract implementations of each layer
as a function of the lower layers. Formal proofs at one lagerlie derived by using the map-
ping functions together with the formal specifications gbrapriate layers. The relatively

40

CHAPTER 3. REALISTIC COMPOSABILITY

unsung Robinson-Levitt mapping analysis is actually dfaiteeaching, and can be used di-
rectly to relate properties of a composed system to indaligioperties of its subsystems.
As noted above with respect to correctness and completeheggrface specifications, this
approach is of course limited by any incompleteness in thetfonal specifications and map-
ping functions. The Robinson—Levitt approach was part®S8RI Hierarchical Development
Methodology (HDM) [318] used in the Provably Secure Opagabystem [120, 268, 269]
project in the 1970s. A comparable facility exists in themptetation mechanism of PVS, the
current ongoing SRI formal verification environment, aseddiurther in Section 6.4. An in-
formal application of explicit interlayer relationshigsfound in the analysis of the interlayer
dependencies in the Honeywell/Secure Computing Cormrd8CC) LOgical Coprocessor
Kernel (LOCK) [335].

Operating system and programming language approaches?rogram modularity, recur-
sive and nested procedure-call protocols, clean stackptiiees, and the absence of unin-
tended residues can all greatly enhance composabilitjudlized multiprocessing (e.qg., [175,
176,177,178]) has considerable possibilities in enal#xtgemely efficient distributed pro-
cessing by abstracting out many of the usual pitfalls, eéafigavhen distributed across net-
worked systems. There is an important role for sound progriag languages that naturally
enforce modular separation with abstraction and encatsoija compilers that efficiently
enforce the programming-language modularity and stropmty systems that provide ef-
ficient interprocedure and interprocess control flow, antindping compilers that do not
throw out the baby with the bathwater (e.g., by prematuréhging entities that need to
remain separated until later, creating less easily andlgbgect code, seriously impeding de-
bugging, or compromising security separations providedrohitectural encapsulations and
programming languages). (However, well-implemented esgjve optimizers are less likely
to violate security than programmers are.) As one examp&RK [30] (the SPADE Ada
Kernel, based on the Southampton Program Analysis DevedopBEnvironment) provides a
language-based approach to improving security and sgi&tseview of [30] is included in
the Risks Digest 23(01): http://catless.ncl.ac.uk/RBBD1.html.) Correctness-preserving
transformations that survive compilation and optimizatoe another approach with signifi-
cant promise. In particular, optimizing compilers mustaiey farsighted not to compromise
the integrity of source code in the context of its system e#en, although careful mod-
ularity with abstraction and encapsulation can diminismemf those possible effects. An
alternative approach to assuring the soundness of theiaption is the translation validation
approach considered at NYU [391], in which a validation tomhfirms that the object code
produced by the optimizer is a correct translation of thes®uaode.

Principled designs, implementations, and uselhe Saltzer-Schroeder principles [345] and
the subsequent extensions enumerated in Section 2.3 areaiféd as extremely beneficial

to the attainment of security. Techniques particularlgvaht to composability include ab-

straction, hierarchical layering, encapsulation, theobpriented paradigm, design diversity,
composability, pervasive authentication and accessaladwell as administrative and oper-
ational controllability, pervasive accountability andogery, separation of policy and mech-
anism, assignment of least privilege, separation of cars;eseparation of roles, separation
of duties, and separation of domains.

3.4. ATTAINING FACILE COMPOSABILITY 41

e Holistic architectures. Historically, certain institutions — for example, SRI's @puter
Science Laboratory and the University of Newcastle uponeT have long stressed the
importance of system architectures thgpriori address the notion of dependability, which
encompasses high-assurance approaches to securityilitgliavailability, survivability, hu-
man safety, interoperability, maintainability, compatih and so on. See Chapter 4.

e Research in predictable composition. Sascha Romanovsky at Newcastle noted the rele-
vance of ongoing work by Ivica Crnkovic (http://www.idt.inge/ icc/) and Magnus Larsson
in Sweden [88]. This work is extremely interesting and betrse watching.

The above approaches are in a sense all part of what shouldrbmanly known as good
software-engineering practice. Unfortunately, systechigecture and programming development
seldom observe good software-engineering practice. Hexythe constructive aspects of software
engineering — including establishment of requirementefaaspecifications, modularity and en-
capsulation, clean hierarchical and vertical abstracieparation of policy and mechanism, object
orientation, strong typing, adherence to the basic sgcpribciples (e.g.,separation of privileges,
allocation of least privilege, least common mechanismymggions of open source rather than re-
liance on security by obscurity), suitable choice of progmaing language and development tools,
and (above all) sensible programming practice — can all npalsitive contributions to compos-
ability.

The potential importance of formal methods is largely uagereciated, including formal state-
ments of requirements and specifications, and formal detratizss (e.g., rigorous proofs and
model checking) of consistency of specifications with reguients, consistency of source code
with specifications, correctness of a compiler, and so one fohmal methods community has
for many years dealt with consistency between specificatioml requirements, and with consis-
tency between code and specifications, although that war&ldom applied to real systems. The
specifications tend to idealize behavior by concentratingwoly the obviously relevant behav-
ioral properties. Formal approaches can provide enornaasfy functions on composability and
system correctness, even if applied only in limited ways -ehsas model checking for certain
properties relating to composability or security. They a&so be extremely valuable in efforts to
attain high assurance. However, because of their labensnte nature, they should generally be
applied particularly where they can be most effective. (Skapter 6.) Once again, architectures
that minimize the extent of necessary trustworthinessmapsitant.

The set of assumptions as to what threats must be defendetstagdtself almost always in-
herently incomplete, with respect to what might actuallpfen. Nominal security requirements
often ignore reliability and survivability issues (for exple, see [264], which seeks to address
relevant requirements within a common and more comprebenaschitectural framework). Even
detailed security requirements often tend to ignore thecedfof buffer overflows, residues, and —
even more obscurely — emanations such as those exploitglstaud Kocher’s differential power
analysis [192, 193] (whereby cryptographic keys can bevddrfrom the behavior of hardware
devices such as smart cards) and external interferenceahaesult in internal state changes (or
even the ability to derive cryptographic keys, as in Dan B &SA fault injection attack [54]
— which resulted in a faulted version that when subtractedhfthe correct version allowed a
linear search instead of an exponential search for thetprkey!). Attempting to enumerate ev-
erything that ismot supposed to happen is almost always futile, although velgtcomprehensive

42 CHAPTER 3. REALISTIC COMPOSABILITY

canonical checklists of potential threats and chara¢iefiaws to be avoided can be very useful
to system architects and software developers. Variousapadinerability and threat taxonomies
exist (e.g., [201, 260, 271]), although a major effort wobkdworthwhile to define broad equiva-
lence classes that at least give extensive coverage, amdhioh effective countermeasures would
be available or incorporated into new system and networkit@atures. It is important in con-
sidering composability that all meaningful requirememsd &unctional behaviors be adequately
specified and assured.

3.5 Paradigmatic Mechanisms for Enhancing Trustworthines

You can’'t make a silk purse out of a sow’s ear.
But in a sense, maybe we can — in certain cases!

It is clear that the ideal goals of unencumbered composgalaihd easy interoperability are
rather abstract and potentially unrealistic in many pcattapplications. Indeed, much of the re-
search on properties that compose in some sense (e.¢t |atice-based multilevel security) is
extremely narrow and not generally applicable to commohweald situations. Consequently, we
seek a more realistic notion that enables us to charactigzeonsequences of compositions, es-
sentially seeking to anticipate what would otherwise bentiogpated. That is, we seek a discipline
of composition.

On one hand, we would like to be able to compose subsystemgmaway that the result-
ing system does not lose any of the positive properties alibsystems — in some sense, a weak
compositional monotonicity property in which trustwortess cannot decrease with respect to cer-
tain attributes. (We refer to this asndecreasing-trustworthiness monotonicity) This is indeed
theoretically possible if there is suitable independencsalation among the subsystems. In the
literature of multilevel security, we are familiar with architectural abstraction hierarchy begin-
ning with a security kernel that enforces a basic multilesegaration property, then trustworthy
extensions that are privileged in certain respects, thphcgpion software that need not be trusted
with respect to multilevel security, and finally user codattbannot compromise the multilevel
security that is enforced by the underlying mechanisms. éd@w this hierarchy assumes that the
kernel is absolutely nonsubvertible and nonbypassablelneal world of conventional operating
systems, such an assumption is totally unrealistic — becthesunderlying operating system is
typically easily subverted.

On the other hand, a fundamental hope in designing and ingigng systems is that it should
be possible to build systems with greater trustworthinesstless trustworthy concepts — that is,
making the proverbial silk purse out of the sow’s ear, aschat®ove in the discussion on guarded
dependence in Section 3.4. This also suggests a strongeokimonotonicity property in which
trustworthiness can actually increase with respect t@uoedttributes under composition and lay-
ered abstraction. (We refer to this asmulative-trustworthiness monotonicity.) To this end,
it is in some cases possible to relax certain assumptionsmméampromisibility of the underly-
ing mechanisms — assumptions that are absolutely esstmtied nondecreasing-trustworthiness
monotonicity typified by multilevel security noted in theepeding paragraph. On tla¢herother
hand, desire for some sort of compaositional monotonicitystine tempered by the existence of

3.5. PARADIGMATIC MECHANISMS FOR ENHANCING TRUSTWORTHINES 43

emergent properties that cannot be fully characterizedrimg of lower-layer properties. That is,
the properties at one layer must be superseded by relatetiffemént properties at higher layers.

What is perhaps most important in this context is the abiititynake the dependencies explicit
rather than allowing them to be unidentified and latent.

Fundamentally, trustworthiness is multidimensionalréasing trustworthiness with respect to
one set of attributes does not necessarily imply increasusgworthiness with respect to other at-
tributes. For example, increasing fault tolerance mayeabesa security and performance; increas-
ing security may decrease reliability, interoperabiland performance. Furthermore, emergent
properties must also be considered — particularly thoseeaelto trustworthiness. Once again,
we must be very explicit as to the properties under consideraand cognizant of how those
properties relate to other system properties.

Approaches to increasing trustworthiness are exploret fiéve following list is the outgrowth
of earlier work by Neumann iRractical Architectures for Survivable Systems and Neka{@64],
which enumerates paradigmatic mechanisms by which trutimess and the ensuing assurance
can be enhanced by horizontal compositions at the samedagbstraction and by vertical compo-
sitions from one layer of abstraction to the next. Each ad¢hgaradigms for guarded dependence
demonstrates techniques whereby trustworthiness canameed above what can be expected of
the constituent subsystems or transmission media. (Refesegiven in the following enumeration
are suggestive, and by no means exhaustive.)

1. Error-correcting codes. Hamming’s early paper on single-error-correcting codé&s8]in-
spired a large body of work on error-correcting codes, wabesal books providing useful
overviews (for example, [9, 302, 354]) of an extensive &tare. Most of the advances are
based on solid mathematics (abstract algebra) — as is adscade with public-key cryp-
tographic algorithms (e.g., abstract algebra and numteoryf). The constructive use of
redundancy can enable correct erroneous communicatiemitel€ertain tolerable patterns
of errors (e.g., not only single errors, but also random iplglterrors, bursts of errors, or
otherwise correlated patterns, as well as codes that airaiapt for asymmetric errors such
as 1-to-0 bit-dropping errors only or erasure errors), imckhlcommunications or even in
variable-length or sequential encoding schemes, as loranysequired redundancy does
not cause the available channel capacity to be exceedddwing the guidance of Shan-
non’s information theory). In addition, error-correctiogding can also be used in arithmetic
operations (e.qg., [274, 310]). Gilbert et al. [131] also sidered the problem of detecting
intentional deception. With suitable choices of redungiaaned mathematically based code
construction, error-detecting and error-correcting sockn permit arbitrarily reliable com-
munications over unreliable communication media.

2. Fault-tolerance mechanisms. Traditional fault-tolerance algorithms and system cotgep
can tolerate certain specific types of hardware and softfaédtges as a result of constructive
use of redundancy [16, 87, 183, 212, 232, 247, 270, 378]. €ltsean extensive literature
on fault-tolerance algorithms that permit systems to withd arbitrary failures up to the
maximum intended fault-tolerance design coverage, witioua modes of operation such
as fail-safe, fail-soft, fail-fast, and fail-secure. lede many of the fault-tolerance concepts
have been around for many years, as for example the 1973 [2@6f that discusses the ad-
vantages of distributing appropriate techniques accgrttimierarchical layers of abstraction

44

CHAPTER 3. REALISTIC COMPOSABILITY

and different functionality. However, failures beyondtticaverage may result in unspeci-
fied failure modes. This in turn can be addressed by progedgsnvoking different fault
tolerance techniques, for diagnosis, rollback, forwabvery, repair, reconfiguration, and
so on. In terms of communications and processing, erraetiag codes and other forms of
error detection combined with possible retransmittaltringion retry in hardware, or other
remediation, can be effective whenever it is not alreadylad®. The early work of John
von Neumann [370] and of Ed Moore and Claude Shannon [242}ystidnow reliable sub-
systems in general (von Neumann) and reliable relay cgeaiparticular (Moore—Shannon)
can be built out of unreliable components — as long as thegtitity of failure of each
component is not precisely one-half and as long as thosepiidies are independent from
one another. With suitable configurations of components,(&crummy relays” in the case
of the Moore—Shannon paper), high reliability can be addesut of low-reliability compo-
nents. Also relevant is the 1960 paper of Paul Baran [29] dkdmgaeliable communications
despite unreliable network nodes, which was influentiahimearly days of the ARPANET.
For a recent highly relevant work, see the Guruswami-Sugarnoach to achieving a signif-
icant improvement in decoding techniques for Reed-Soloomates [152] and a subsequent
system-theoretic formulation by Kuijper and Poldermarg|19

. Byzantine fault tolerance. Byzantine faults are those in which no assumptions or caimssr

are placed on the nature of the faults locally. In contrastdoventional fault tolerance,
Byzantine fault tolerance architecturally enables a sysi® be able to withstand Byzan-
tine fault modes [198, 331, 337], providing successful apen despite the arbitrary and
completely unpredictable behavior (maliciously or acoid#ly) of up to some ratio of its
component subsystems (for examptegut of 3k + 1 in various cases). Thus, with no lim-
itations on the failure modes of individual component s@isys, Byzantine systems can
perform correctly even if the up tb bad subsystems fail in optimally contrived and mali-
cious ways. Examples in the literature include Byzantineks$ and Byzantine network-layer
protocols [299].

. Redundancy-based total-system reliability. SRI's Software-Implemented Fault Tolerance

(SIFT) fly-by-wire avionics system from the 1970s is an eastpmple of achieving a total-
system (including application software) probability oildiae of 10~° per hour out of seven
off-the-shelf avionics processors with probability oflf@é of 10-° per hour [60, 63, 232,
247, 248, 377, 378]. SIFT is discussed further in Section 4.3

. Self-synchronization. Self-synchronizing techniques can result in rapid resyoization

following nontolerated errors that cause loss of synclmation, including intrinsic resyn-
chronizability of sequentially streamed codes. Common@gughes involve adding explicit
framing bits. Also found in the early literature are redumidserial codes with implicit syn-
chronization properties that are decodable only if in theemd block synchronization — as
in the case of comma-free codes (block codes that can hayepnalcorrect framing bound-
ary when strung together), and even error-correcting cotfnegacodes. A rather different
approach uses inherent self-synchronizing propertiesngéfstate machines that are used
to generate variable-length and sequential codes [252, 258, enabling eventual resyn-
chronization without having to add any redundancy to theesodrhis approach applies to

3.5.

10.

11.

PARADIGMATIC MECHANISMS FOR ENHANCING TRUSTWORTHINES 45

variable-length Huffman codes [167] (as in [252, 253]) al aeHuffman-style information-
lossless sequential machines [168] (as in [254]). In bottheSe schemes, it is typically
possible to recover from arbitrarily horrible errors, afeeperiod of time that depends on
the resynchronizing properties of the generating seqgalentichine. Yet another example of
self-stabilization is given by Dolev [110]. Cipher-blodkaining (CBC) cryptographic modes
are another example in which synchronization can be a sepmblem.

. Robust synchronization algorithms and atomic transactiols. Various approaches exist

for robust synchronization, including hierarchically guitized locking strategies as in the
T.H. Eindhoven THE system [106], two-phase commitment§[36table storage abstrac-
tions [200], nonblocking atomic commitments [312], andifimhent transactions [231] such
as fair-exchange protocols guaranteeing that paymentde mhand only if goods have been
delivered.

. Alternative-computation architectural structures. When failure in a computation can be

detected, satisfactory but nonequivalent results can hiexsd (with possibly degraded per-
formance), despite failures of hardware and software corapis and failure modes that ex-
ceed planned fault coverage. For example, the Newcastie®scBlocks approach [15, 16,
166] provided recursively for explicit alternative procees in case the primary procedures
failed their acceptance tests.

. Alternative-routing schemes. The early ARPANET routing protocols (e.g., [8]) introduced

the notion of dynamic reconfiguration in packet-switchetiwoeks, with good performance
and eventual successful communications despite majogesitamong intermediate nodes
and disturbances in the communications media. Much eaviiek at Bell Laboratories on
nonblocking telephone switching networks was an intellacprecursor of this concept (al-
though dynamic routing did not appear in telephone netwarks the 1980s), and also led
to the 1960s work at SRI on the butterfly design for fast Fourensforms and other appli-
cations.

. Cryptographic secrecy. Encryption can be applied in many ways — for example, to an

open transmission medium [340] or to specific applicatiarthsas e-mail [390], or to a stor-
age medium [373]. It can result in content that is arbityadiifficult to interpret, even if the
communications are intercepted or the stored data acquhiete that cryptography and cryp-
tographic protocols by themselves do not provide completigtions, and are indeed subject
to numerous attacks [13, 184, 192, 193, 258, 341] includirgyersions of the underlying
operating systems.

Cryptographic integrity checks. Secret- and public-key encryption can both be used for
cryptographic checksums that have a very high probabilitgetecting alterations to soft-
ware, data, messages, and other content [171, 340], asgumsubversions of the underly-
ing mechanisms (e.g., operating systems).

Cryptographic authentication. Public-key and secret-key encryption can both be used to
verify the authenticity of the alleged identity of a usehsystem, system, or other entity, and
can greatly enhance overall security and integrity [157,, BAQ], once again assuming no
subversions of the underlying mechanisms (e.g., operatistgms).

46

12.

13.

14.

15.

CHAPTER 3. REALISTIC COMPOSABILITY

Fair public-key and secret-sharing cryptographic schemesand robust crypto. Examples
include [51, 236]. Various multi-key crypto schemes regudifferent parties to cooperate
via the simultaneous presentation of multiple keys — altayeryptographically based op-
erations to require the presence of multiple authoritiegfwryption, sealing, verification of
authenticity, access controls, and so on. These might bedeabut-of-» schemes, where all
of then entities must participate. Closely related are multipestcess-control schemes that
do not require cryptography, and two-person business guyes. Multi-agent schemes are
intended to increase the trustworthiness and integrithefresulting action, although there
can be additional risks involved as in the case of potentialises of key escrow [6]. See
also recent work on self-healing key distribution with reabon [362] and multicast packet
authentication [280].

Threshold multi-key-cryptography schemes. A generalization of the:-out-of-n multi-
agent schemes requires the presence of a sufficient proparti trustworthy entities —
perhaps in which at leagt out of n keys are required. This is applicable to conventional
symmetric-key cryptography, public-key cryptographytheumtication, and escrowed retrieval
(sometimes euphemistically called “key recovery”). Ex&spnclude a Byzantine digital-
signature system [102]; a Byzantine key-escrow system|[BE2 can function successfully
despite the presence of some parties that may be untrubgnartunavailable; a signature
scheme that can function correctly despite the presenceatitious verifiers [300]; and
Byzantine-style authentication protocols that can wodperly despite the presence of some
untrustworthy user workstations, compromised authetiticgervers, and other questionable
components (see Chapter 7 of [264]).

Security kernels and Trusted Computing BasesThe so-called “trusted” computing bases
(TCBSs) should ideally baustworthycomputing bases. Constructive use of kernels and TCBs
in multilevel-secure (MLS) systems can lead to nonsubbierfVILS application properties,
such as the MLS database security in SeaView [100, 213, 284¢h demonstrated how a
multilevel-secure database management system can benm@pled on top of a multilevel-
secure kernel — with absolutely no requirement for mulelesecurity trustworthiness in
the Oracle database management system. (This is the ndtlmalamced assurance, which
requires composability of policies and of components.) theo approach was the tagged
capabilities of PSOS [120, 268, 269] (see Section 4.3), irthvthe hardware has only two
instructions creating capabilities — creating a new cdpglior a new object of a particular
type, and creating a restricted copy with access privilégaswould be at most as power-
ful, but never more powerful. This design rather simply deal the ability to manipulate
capabilities in hardware and software. Distributed systaped special care, especially MLS
systems (e.g., [108]).

Architecturally reduced dependence on trustworthiness. Closely related to kernelized
systems in principle, but radically different in their ptiaal implications, are architectural
approaches that starkly reduce the extent to which submgsteust be trusted, or the extent to
which all phases of the development process must be trusteigiad, the focus is on certain
critical properties of selected subsystems or criticajjessaof the development process. In
many cases, trustworthiness can be judiciously isolatéuimientralized systems or among

3.5. PARADIGMATIC MECHANISMS FOR ENHANCING TRUSTWORTHINES 47

distributed subsystems. In this way, the perimeters aroumat must be trustworthy can be
reduced, which in turn reduces what is sometimes referred the attack surface.

Several quite different examples are worth mentioningltsitate this concept:

e Layered protection. Kernels (noted above), rings of protection, and properlplen
mented capability-based addressing can protect thenssalygnst compromise from
above, as in the Multics operating system [91, 150, 277, 388] and various capability-
based architectures [117, 143, 186, 120, 268, 269].

e MLS enforcement. Multilevel-secure systems and networks can be designeahgrid-
mented in which critical security properties such as MLSamferced in selected servers,
but in which there is no MLS dependence in the end-user sysj2é4, 308].

e PCC. Proof-carrying code [250] can enable the detection of ueetqul alterations to
systems or data and thus hinder the tampering of data andgpnggand resulting con-
tamination — irrespective of where in the development psscralicious code is intro-
duced prior to the establishment of the proof obligations.

e Proof checking. Proof-checkers can provide assurance that theorem prioaeesarrived
at correct proofs, without having to trust the provers. Rweckers tend to be orders of
magnitude simpler to develop, to assure, and to use thanetmegarovers.

¢ Independent accountability. There is enormous contention regarding the integrity of
closed-source proprietary electronic systems for castatigts, recording votes, and de-
termining the results of elections, particularly thoseteyss that are self-auditing with
no external assurance. These systems reflect the need fdieetioa of critical re-
quirements for security (e.g., system integrity, votegnity, vote confidentiality, voter
privacy, anonymity, accountability, nondenial of seryiaed overall system verifiability)
as well as reliability and and other -ilities. Unfortungtedxisting touch-screen direct-
recording self-auditing electronic voting systems preumb assurances whatsoever that
the vote that is cast is identical to the vote that is subsatjueecorded and counted,
and no meaningful recount is possible because there is lyoitkependent audit trail.
Rebecca Mercuri's PhD thesis [233, 234] suggests the incatipn of a voter-verified
electronically readable independent hard-copy imageeb#ilot as cast. This relatively
simple mechanism almost by itself can surmount numerousngiat weak links in the
electronic stages of the election process, and could tiiezehble detection and pre-
vention of many kinds of internal fraud. This is a seeminglserexample of where the
highly distributed weak-link nature of security and rellap can be overcome by a rel-
atively simple conceptual mechanism. An entirely différ@pproach has been proposed
by David Chaum [73] that has a similar result — providing a km&chanism relative
to the overall voting process that provides for each votiity to verify that a private
ballot was correctly recorded, despite the potential whivarthiness of any front-end
system for vote casting. (Chaum’s approach is applicabdéevariety of voting-machine
types.) Mercuri’'s and Chaum’s methods both allow far greatestworthiness of the
overall voting systems despite potential untrustwortbsnef the voting machines them-
selves.

48

16.

17.

18.

19.

20.

CHAPTER 3. REALISTIC COMPOSABILITY

Mutual suspicion. The ability to operate properly despite a mutual lack ofttamsong var-
ious entities was explored in 1972 in Mike Schroeder’s daitthesis [343]. There seems
to have been relatively little work along those lines sindefortunately, in practice, imple-
mentations typically tend to implicitly assume that somalbof the participating entities are
trusted, irrespective of whether they are actually trustimo

Interposition of trustworthy intermediation. In principle, interposing cross-domain pro-
tection mechanisms such as firewalls (e.g., [80]), guardiscfware generally much simpler
than firewalls — perhaps only preventing content with urrddse keywords from being dis-
seminated; for example, see [40, 66, 307]) and proxies (whiso act as trusted interme-
diaries) can supposedly mediate between regions of patigntinequal trustworthiness —
for example, ensuring that sensitive information does @ak lout and that Trojan horses and
other harmful effects do not sneak in, despite the presehaataustworthy subsystems or
mutually suspicious adversaries. For example, interniediaf network connectivity can
increase the trustworthiness of internal secrecy (cdirigpthe outbound direction) and in-
ternal integrity (controlling the inbound direction). Hewer, care must be taken not to allow
unrestricted riskful traffic, such as Java- and JavaSemaibled Web content, PostScript, Ac-
tiveX, and other executable content that might executedfehare flaws in the underlying
systems or in the virtual-machine environments.

Type enforcement, object-oriented domain enforcement, athadvanced access-control
techniques. Architecturally integrated access controls can effetfiveediate or otherwise
modify the intent of certain attempted operations, depsnodhn the execution context [120,
268, 269, 343] — for example, the confined environment of thaa Virtual Machine [146,
148] and related work on formal specification [95, 142] foe #mnalysis of the security of
such environments. Such enforcement can be implementecaméination of hardware
and system software (as in the strong type enforcement o8R810 Secure Computing Cor-
poration systems), programming languages, and compileteer forms of static analysis
are of course also relevant, particularly when embeddelddrcompilation process (includ-
ing language pre- and post-processors) and are valuabléhameing the trustworthiness of
architectures, implementations, and system operation.

Integrated internal checks. A combination of static (e.g., design-time and compileg)m
and dynamic (runtime) analysis can prevent or mediate éxgrin questionable circum-
stances — for example, embedded in programming languagesampilers within the de-
velopment process, and in resulting operating-systemvaodt and application programs, as
in the cases of argument validation, bounds checks, stygigg and rigorous type checking,
consistency checks, redundancy checks, and indepenamstcinecks. Static and dynamic
checks can be used to significantly increase the trustwa$i of a subsystem or system,
with respect to security, reliability, and performance.ll Brbaugh'’s trustworthy bootload
protection [18, 19] is an example of a bootload-time check.

External runtime checks. Addition of wrappers (e.qg., [381]) (without modifying thewgce
or object code of the wrapped module) can in principle enbauevivability, security, and
reliability, and otherwise compensate for deficient congmis — such as adding a “trusted
path” to an inherently untrustworthy system, enabling rtaimg of otherwise unmonitorable

3.5. PARADIGMATIC MECHANISMS FOR ENHANCING TRUSTWORTHINES 49

functionality, or providing compatibility that was not ofrapped legacy programs with other
programs. However, the utility of the wrapper approach magubverted if the wrapper does
not completely encapsulate the underlying mechanisms @ggrating systems).

21. Real-time analysis.Anomaly and misuse detection to diagnose real-time th{eags, from
insiders, outsiders, internal malfunctions, and exteemaironmental failures) can provide
rapid analyses of actual failures and potential misusesagrpss. As one example of such
a system for anomaly and misuse detection, the EMERALD By$898, 207, 272, 304,
306] represents the most recent results of more than twoddeaaf research at SRI. (See
http://www.csl.sri.com/intrusion for extensive backgnal.)

22. Real-time response.Given the results of real-time analysis as noted above, pbssible
to trigger automated or semiautomated rapid responses Hding dynamic alterations of
system and network configurations, carefully controlletbmated software upgrades in re-
sponse to detected flaws, and enforced alterations in carsar processes, based on evalu-
ations of the perceived real-time events. (Note that thexradtive-computation architectures
of technique 7 and the alternative-routing schemes of igoler8 have a similar flavor, ex-
cept that the alternatives tend to be more closely intedriate the architecture, rather than
dynamically variable.)

This enumeration is undoubtedly not exhaustive, and is\dgd to be representative of a wide
variety of trustworthiness-enhancing types of mechanidrusthermore, these techniques do not
necessarily compose with one another, and may in fact areesiith one another — especially
if used unwisely. On the other hand, many efforts to attaistworthy system for security and
reliability need to rely on a combination of the above tegleis — as is the case with IBM’s
concept of autonomic systems that can continue to operagelyawithout system administra-
tion. (For example, see IBM’'s Architectural Blueprint foutenomic Computing, http://www-
3.ibm.com/autonomic/index.shtml.)

It is clear that reliability enhancement is often based didgbeoretical bases; furthermore,
that enhancement is quite tangible, but only if we assumithigaunderlying infrastructures are
themselves not compromisible — for example, as a result ofirég violations or uncovered
hardware malfunctions. However, in cases of mechanismsdatd-be security enhancement, the
dependence on the assumption of noncompromisibility ottinderlying infrastructures is much
more obviously evident; if we are trying to create somettmrgge secure on top of something that
might be totally compromisible, we are indeed trying to dghndcastles in the wet sand below
the high-water mark. Thus, security enhancement may alificlepend on certain measures of
noncompromisibility in the underlying hardware and softsvan which the implementation of the
enhancement mechanisms depend.

So far, little has been said here about the relevance of teebraiques to open-source software.
In principle, all these techniques could be applied to deseurce proprietary software as well
as open-source software. However, in practice, relatif@ly of these techniques have found
their ways into commercial products — error-correcting emndatomic transactions, some fault
tolerance, alternative routing, cryptography, and someadyic checking are obvious examples.
The opportunities are perhaps greater for appropriatentgabs to be incorporated into open-
source systems, although the incentives may be lackingfémugThe relevance of open-source

50 CHAPTER 3. REALISTIC COMPOSABILITY

paradigms is considered in Section 4.5.)

Although we suggest that the above techniques can actudatignee trustworthiness through
composition, there are still issues to be resolved as to higedding of these techniques into
systems in the large — for example, whether one of thesentantiness-enhancing mechanisms
might actually compose with another such mechanism. Evere imgportant is the question of
whether the underlying infrastructures can be compromised above, within, or below — in
which we have just another example of building sandcasti¢ke wet sand below the high-tide
level.

3.6 Enhancing Trustworthiness in Real Systems

Bad software lives forever. Good software gets updated iigbes bad, in which form
it lives forever.Casey Schaufler

Several conclusions can be drawn from consideration of #énadigmatic approaches for en-
hancing trustworthiness enumerated in Section 3.5.

e Security versus reliability. Enhancing reliability is in many ways quite different from-e
hancing security, although there are also commonalitiesanfitative probabilistic assess-
ments are straightforward and meaningful with respect liabiity in the small, although
somewhat less definitive in the large — that is, when appliedntire systems. Reliability
enhancements can typically make reasonably realistiorgssons about the stability of the
underlying infrastructures, and derive reasonably atceurgeasures of the resulting reliabil-
ity — as well as satisfying real-time checks that the assionptremain valid. However, in
many cases, the assumptions are inaccurate.

On the other hand, quantitative assessments of securitysaialy highly suspect. The as-
sumptions on which they are based are generally not prostdiin nature; each of those
assumptions can be vitiated by a wide variety of circumstanre- including insider misuse,
penetrations that exploit design flaws and code bugs, ard futims of subversion, as well as
nontolerated failures in hardware and software, poweutfad, interference, acts of God, and
squirrelcides. As a result, measures of security deriveoh fquestionable assumptions are
extremely questionable. Worse yet, measures derived fpparantly sensible assumptions
are still questionable if any of those assumptions is vealaind the assumption that real-time
checks could ensure the continued validity of those assomgis itself questionable.

Thus, in our efforts to enhance trustworthiness, there ameesconsequential differences be-
tween reliability and security that must be taken into actoWWe believe that some of the
approaches outlined in Section 3.5 can be extremely effegthen used together. In par-
ticular, a combination of architectural techniques (1 t &&d real-time measures to ensure
continued validity of reliability and security assumptsofas in techniques 18 through 22)
can be most effective. Above all, security and reliabilityshboth be considered together
architecturally. Even if composability arguments mighowal them to be implemented with
some separability, there are tradeoffs that must be adzltessarchitecture and system de-
velopment.

3.6. ENHANCING TRUSTWORTHINESS IN REAL SYSTEMS 51

e Achieving both security and reliability. With respect to attaining both security and reliabil-
ity at the same time, very few of the paradigmatic techniqurescapable of addressing both
classes of requirements at the same time. However, achieaith security and reliability is
a nontrivial exercise in composition.

Techniques 1 through 8 are aimed primarily at hardware aftd/aie reliability, although
these techniques do provide some resistance to activaghfiegchnique 3 (Byzantine agree-
ment) is applicable to certain modes of unreliability andionaus attacks, typically if not
more tharnk out of 3k 4+ 1 subsystems are compromised. (However, note paradoxiteity
if we could somehow verify dynamically that at mdssubsystems had been compromised,
the Byzantine protocol itself would be gratuitous! But pasely, if £ of the subsystems
can be compromised — from below or from within, or even frontsale — then it seems
highly likely that more thark subsystems — or indeed all— could be compromised, thus
completely undermining the effectiveness of the Byzangiretocol.) Techniques 9 through
18 are aimed primarily at security. Technique 10 is oveikillsed merely for reliability,
for which hashing or cyclic redundancy checks may be adequattheir stated forms, only
techniques 18 through 22 have any significant potentialddressing both classes of require-
ments simultaneously.

It is possible to develop hybrid techniques that combinessd\wf these paradigmatic tech-
niques in combination, such as the integrated use of enoryphd error correction. In such
cases, composability is once again a critical issue. Fampig although cryptography and
error-correcting coding might seem to be commutative inrfepemathematical world, they
are not commutative in the real world. If a message were esttémt error correctiomefore
being encrypted, then decryption would have to precede eoroection, and any errors in the
transmission could then result in errors in decrypted texttwould produce totally erroneous
error correction. Even more important is the reality thabecorrection before encryption
adds redundancy, and thereby increases the opporturatiesyfptographic attacks. On the
other hand, if a message were encoded for error correaftenbeing encrypted, then de-
cryption would follow error correction, and the decrypteéssage would be correct if the
transmission errors did not exceed the coverage of the eproection; however, if the errors
exceeded the coverage, the error-corrected encryptedvtadt be in error, and would re-
sult in disruptions to the decryption — potentially longtiag in the case of certain cipher
block chaining. Unfortunately, the use of sequential ne¢tironization techniques (as in
techniques 5 and 6 above) could further muddy the waterstactipe, it seems advisable to
compress first (to reduce the redundancy), then encryptheemdprovide error correction!

In fact, the general situation with compositions involviagyptography is quite complex.

For example, the composition of two sound cryptographibnegues can make the resulting
system susceptible to cracking. Similarly, the compositiba cryptographic algorithm with

a random-number generation scheme seems to be a fertilaarbad implementations.

Furthermore, embedding good cryptographic implementatioto weak systems is clearly
riskful.

e Survivability. With respect to attaining high availability and survivélyiin the face of re-
alistic adversities, security and reliability are both e&sary requirements. Neumann’s ARL
report [264] on architectures for survivability is extrdgneslevant to the development and

52

CHAPTER 3. REALISTIC COMPOSABILITY

operation of systems and networks that must be highly évailand dependably survivable.
The reader interested in attaining survivable systems atwianks is encouraged to study that
work, rather than our having to repeat much of it here.

Multilevel security and multilevel integrity. With respect just to the various aspects of
security, confidentiality is quite different from systemegrity and data integrity. This is
illustrated nicely by the concepts of mandatory security srtegrity, considered in greater
detail in Chapter 4. Bell & LaPadula’s multilevel security5] (basically a set of confi-
dentiality properties) and Biba’s multilevel integrityjare formal duals (e.g., see [264]).
Simply stated, the former demands that there be no advei@eniation flow for confiden-
tiality, whereas the latter demands that there be no adwensiol flow for integrity. The
former implies that information never leaks to anythingttisdess trusted for confidential-
ity (to a lower secrecy level), whereas the latter impliest tho computational entity ever
depends on anything that is less trusted for integrity (aiveelt integrity level). There are
various ways of viewing the formal dual. Intuitively, a slaridual exists between conven-
tional (discretionary) confidentiality and conventionairhs of integrity. For example, the
spread of integrity-defeating e-mail viruses is similartite potential for unrestricted dis-
semination of sensitive information. In the case of confiddity, once the cat is out of the
bag, the information may have already escaped in unknowss wagnd once it is outside of
the local system purview, all bets may be off. It may be pdedibidentify suspicious user
authentication and suspicious augmentation of privilegasit may be too late to stop the
undesired loss of confidentiality. In the case of integthig, failure of a given integrity check
(e.g., a cryptographic checksum on software or on data) fisddiate grounds for suspicion
of tampering, accidental corruption, or other contamorati By incorporating and enforc-
ing integrity checks on subsystems, systems, data, andiafpepplications, damage can
potentially be prevented, blocked, or otherwise confinddredt can occur — once again as-
suming that those mechanisms are not compromised. An erashph end-to-end approach
to security and integrity among collaborating entitiesasrfd in the SRI Enclaves work of
Li Gong [144], subsequently reimplemented in Java [191¢| #ren extended to provide a
Byzantine form of intrusion-tolerant robustness [111].

Layered applicability. Each of the above approaches is potentially applicable mbua
different layers of abstraction, upward from hardware tarotode to kernels to operating
systems to middleware to application packages to user atwEach concept may have
different interpretations at each hierarchical layerhwdifferent types of objects, different
access control rules and different notions of type enfoesgndifferent protective measures
for reliability, confidentiality, data integrity, systemtegrity, availability, ultimately culmi-
nating in properties such as survivability and human safgty respect to the overall systems
and networks. However, each approach will have its own &ssatcosts at each layer of ap-
plication, and undisciplined use is likely to result in niplicative escalation of overhead.
Where security and reliability are critical, it may be wotkie effort. Incidentally, although
much effort is typically devoted to operating systems, #mation and evaluation of prop-
erties of application software gets short shrift. The Rebm-Levitt type of analysis noted
above is applicable to characterizing the specificatiors @operties of each hierarchical
layer, and relating them one to another.

3.6. ENHANCING TRUSTWORTHINESS IN REAL SYSTEMS 53

e Importance of architectural approaches. Approaches that appear to have great promise
must be considered within the framework of the overall spgtetwork architecture. Efforts
to concentrate security and reliability in applicationta@re can often be undermined by
operating-system compromises from below. Efforts to usgatphg-system enforcement may
be compromised from outside and from within — or even fronobein the hardware. The
sense of integrity derived from proofs of source-code Batig requirements and proofs of
compiler correctness can be circumvented by Trojan honsested into the object code of the
compiler, as so elegantly demonstrated by Ken Thompsorj,[864 revisited more formally
by Wolfgang Goerigk [138]. Proof-carrying code can be sutageby compromising the
proof-checker (for example). In turn, each of the abovengpkes for potentially increasing
trustworthiness must be looked on as a potential increasenmplexity, and therefore as
an opportunity for new design flaws, new implementation bungsv operational hazards,
and new modes of failure. Indeed, some of the techniquessibless can potentially create
platforms that act as high-value weak-link targets for asiaees, or platforms from which
new types of attacks can be launched. Thus, poorly desigefedsive measures can actually
result in increasing the relative vulnerability of the gyt

¢ Risks of automated responsedOne of the potentially most riskful techniques in Sectidn 3.
is the final technique (22), particularly as it relates tmawdted responses that involve recon-
figurations or remotely inserted upgrades. Ideally, autecheesponses to perceived security
and reliability threats could provide the adaptive abildysurmount, or at least recover from,
arbitrarily bad events. However, slightly misconceivesp@nses are very likely to result in
increased rather than decreased chaos. Furthermoreigualicinduced automated upgrades
provide a fertile opportunity for destructive denials ofdee. Because trying to control the
actions of possible responses itself entails high risks,approach might best be used with
human intervention in all but the most clear-cut cases. Hewen that people are demon-
strably a major contributor — if not the most prevalent caus@f security violations and
unreliability, human intervention should always be grasifat suspicion.

Overall, it seems likely that generic approaches for autethaesponse may not compose
easily with other techniques; they run the risk of overwgtcritical data or interfering with
critical software, failing to interoperate because of i@ g problems, or overreacting when
only a simple remediation is required. For example, shgttiown the ARPANET to MIL-
NET connection in an attempt to block the 1988 Internet Wogsulted in the MILNET not
receiving the information provided by the Worm’s creatorhmw to defuse it. Similar self-
inflicted denials of service have also occurred on varioesisions since then. Furthermore,
platform-dependent effects must be considered, such astgkto reboot in a Microsoft en-
vironment because of the interactions with DLLs — as oppdsdtie greater flexibility of
shared libraries and resourcing in Unix/Linux systems. seguiently, efforts to incorporate
such approaches are likely to need special care.

e Humility. Above all, considerable humility is required in any effaitsdesign, implement,
and operate systems and networks with stringent requireniensecurity, reliability, and
guaranteed performance levels. Anyone who believes thatfagt or even completely suf-
ficient solution has been achieved is suspect. Indeed, itbeadvisable to include in any

54 CHAPTER 3. REALISTIC COMPOSABILITY

effort a few resident skeptics and borderline paranoidh wiisessions regarding the possi-
bilities of errors and user malice. Above all, great disolis needed throughout design,
development, operation, maintenance, and management.

In general, the above discussion illustrates that comiposit of different specifications, poli-
cies, subsystems, techniques, and so on — must be done wahaare. We have begun to char-
acterize some of the pitfalls and some of the approachestigéit result in greater compositional
predictability. However, the problem is deceptively opeded.

3.7 Challenges

The components that are cheapest, lightest, and most lelab the ones that are not
there.Gordon Bell

Efforts to achieve much greater composability present nogportunities for future work.

e Exploring the theoretical limits and practical implicatgof policy composition.

e Establishing realistic policy composability criteriagdiormalizing them to make them amenable
to formal analysis.

e Enhancing programming languages, and constraining progveting and compiler usage
with effective preprocessors and analyzers.

e Developing a suite of software engineering tools that waukshtly increase composability.

e Establishing some illustrative applications demongtgpgéiffective system compositions, such
as an implementation of the Enclaves Java code that woulgasemicely with a wide range
of cryptography and networking protocols.

e Developing easily subsettable secure operating systesmsdhild be tailored effectively to
special-purpose applications such as critical serverg@aletime control. Better yet would
be the ability to develop minimal systems that could be caméid by composing just the
needed components. (See Chapter 4 for an elaboration opipabach. As observed in
Section 3.3, real-time system developers have increashlegn working toward this goal,
although the resulting systems are still lacking with respe security.)

3.8 Summary

This chapter outlines various techniques for enhancingpasitionality, and for enhancing the

resulting trustworthiness that can be achieved by varioun$ of compositions. Interoperable

composability is a pervasive problem whose successfuleaement depends on many factors
throughout the entire life cycle. It clearly requires mucbreconsistent future efforts in system
design, language design, system development, system gaatf@n, and system administration. It
requires a highly disciplined development process thatligently uses sound principles, and it
cries out for the use of good software engineering pract®aund system architecture can also

3.8. SUMMARY 55

play a huge role. Designing for composability throughout egso have significant payoffs in
simplifying system integration, maintenance, and operagti However, seamless composability
may be too much to expect in the short term. In the absence ddjarmultural revolution in
the software development communities, perhaps we mushlmBgestablishing techniques and
processes that can provide composability sufficient to rieeinost fundamental trustworthiness
requirements.

Overall, we believe that the approaches outlined here cam $ignificant potential benefits, in
commercial software developments as well as in open-s@aafterare — in which the specifica-
tions and code are available for scrutiny and evolution arvdhich collaborations among different
developers can benefit directly from the resulting compitisalJltimately, however, there is no
substitute for intelligent, experienced, farsighted digwers who anticipate the pitfalls and are able
to surmount them.

Chapter 4

Principled Composable Trustworthy
Architectures

Synopsis

Virtue is praised, but is left to starvduvenal Satires,.74. (Note: The original Latin is
Probitas laudatur et alget;probitas” (probity) is literally rendered as “adherenocdlte
highest principles and ideals”.)

Many system developments have stumbled from the outsetibecd the lack of a well-defined
set of requirements, the lack of a well-conceived and welireed flexible composable architecture
that is well suited to satisfy the hoped-for requiremeitis lack of adherence to principles, and the
lack of a development approach that could evolve along wittnging technologies and increased
understanding of the intended system uses.

In this chapter, we draw on the principles of Chapter 2 anditsre for predictable compos-
ability discussed in Chapter 3. we consider attributesgifilyiprincipled composable architectures
suitable for system and network developments, appropyiatilressing composability, trustwor-
thiness, and assurance within the context of the CHATS progyoals.

4.1 Introduction

It ain’t gonna be trustworthy if it don’t have a sensible aiteltture.
(With kudos to Yogi Berra’s good sense of large systems)

The following goals are appropriate for truswtworthy atebiures.

e Predictable composability.lt is highly desirable that systems and networks be conwgiyie
developed out of subsystems and subnetworks that by theesd®ve certain desirable prop-
erties and that when combined can contribute construgtevedl predictably to the satisfac-
tion of the overall requirements. As noted in Section 3.2nposability is a concept that is
meaningful with respect to requirements, policies, spaatitbns, designs, protocols, and im-
plementations, among others. Seamless composabilityamitiat a composition will have

56

4.2. REALISTIC APPLICATION OF PRINCIPLES 57

the desired beneficial properties, with no uncontrollablgnpredictable side effects. That s,
the composed system should do exactly what it is expected tmm-more, and no less. (An
early software-engineered system approach to networkst@reg is found in [256], which

may be of some historical relevance to this report, but gobbiéttle practical value today.)

e Trustworthiness. In the present context, the concept of trustworthiness iammgful only
with respect to a set of critical requirements whose coetilsatisfaction is necessary for suc-
cess, under anticipated operating conditions. Trustwoeds might typically encompass at-
tributes of security, reliability, survivability, reaiste performance, and other vital attributes.
In critical systems, failure to meet the trustworthinegsgireements can result in serious con-
sequences. Linguistically, trustworthiness means woathlgeing trusted to do what it is
supposed to do (and nothing else), with some level of assaran

e Assurance. In the present context, assurance provides some measucesifadence that
the requirements (and in particular, the trustworthinesggiirements) will be satisfied by an
architecture and its implementation. The properties of erall system should ideally be
largely derivable from the properties of the subsystemspmespondence with the nature of
the compositions. Measures of assurance may range (forgepfrom hand-waving (proof
by emphatic assertion), through testing and pervasivdaaahting, to the extensive use of
formal methods for verification or model checking of propetof requirements, policies,
architectural structures, module and system specificgitiprotocols, implementation, and
real-time configuration management. Reasoning aboutrayspgrades and code patches is
also relevant. (See an earlier report [259] on what formahos can do for secure system
architecture, some conclusions from which are repriseé.her

Thus, we seek principled composable architectures thasaasfy the trustworthiness goals,
with some meaningful assurance that the resulting systédlhiselave as expected.

4.2 Realistic Application of Principles

A system is not likely to be trustworthy if its developmert aperation are not based
on well-defined expectations and sound principles.

We next examine combinations of the principles discussedhapter 2 that can be most ef-
fective in establishing robust architectures and trusttwormplementations, and consider some
priorities among the different principles.

From the perspective of achieving a sound overall systeimtacture, the principle of mini-
mizing what must be trustworthy (Section 2.3) should calyade considered as a potential driving
force. Security issues are inherently widespread, edpeaiadistributed systems. We are con-
fronted with potential questions of trustworthiness iialgto processing, multiple processors, pri-
mary memory and secondary storage, backup and recoveryamisains, communications within
and across different systems, power supplies, local apgrahvironments, and network commu-
nication facilities — including the public carriers, prieanetworks, wireless, optical, and so on.
Whereas different media have differing vulnerabilitied éimreats, a trustworthy architecture must
recognize those differences and accommodate them.

58 CHAPTER 4. PRINCIPLED COMPOSABLE TRUSTWORTHY ARCHITECT&#HS

As noted in Section 2.6, systems and networks should be ahlebbot or reconstruct, re-
configure, and revalidate their soundness following aabyjtoutages without violating the trust-
worthiness requirements — and, insofar as possible, withaman intervention. For example,
automated and semiautomated recovery have long been afge@mhone network switches. In
the early Electronic Switching Systems, an elaborate distimdictionary enabled rapid human-
aided recovery; the goal of automated recovery has beeistreally approached primarily only
in the previous two decades. The Plan 9 directory structuoeigies an interesting example of
the ability to restore a local file system to its exact stat@faany particular specified time —
essentially a virtualized rollback to any desired file-eyststate. In addition, two recent efforts
are particularly noteworthy: the IBM Enterprise Workloacgivager, and the Recovery-Oriented
Computing (ROC) project of David Patterson and John Henn@ssan outgrowth of their earlier
work on computer architectures — e.g., [161, 298]).

There are of course serious risks that the desired autor®moeration may fail to restore
a sound local system, distributed system, or network statperhaps because the design had
not anticipated the particular failure mode that had resuih a configuration that was beyond
repair. Developing systems for autonomous operation tarsussly raises the ante on the critical
importance of system architecture, development methggopénd operational practice.

This if course works for malware as well! For example, BriaanRell forwarded an observation
from Peter Ryan, who noted that the Lazarus virus places mall diles into the memory of any
machine that it infects. If either one of these files is malyudéleted, its partner will resurrect
the missing file (ergo, the symbolism of rising from the dea®yan added, “Now there’s fault-
tolerance and resilience through redundancy and selfrge@nd autonomic design!?)!”

A system in which essentially everything needs to be trugtdbther it is trustworthy or not)
is inherently less likely to satisfy stringent requirengent is also more difficult to analyze, and
less likely to have any significant assurance. With respeceturity requirements, we see in
Section 4.3 that trustworthiness concerns for integriapficlentiality, guaranteed availability, and
so on, may differ from one subsystem to another, and evenndifferent functions in the same
subsystem. Similarly, with respect to reliability and suability requirements, the trustworthiness
concerns may vary. Furthermore, the trustworthiness remgnts typically will differ from one
layer of abstraction to another (e.g., [270]), dependinghenobjects of interest. Trustworthiness
is therefore not a monolithic concept, and is generally extrdependent in its details — although
there are many common principles and techniques.

Many of the principles enumerated in Chapter 2 fit togethiglyfaicely with the principle of
minimizing the need for trustworthiness. For example, éytlare sensibly invoked, abstraction,
encapsulation, layered protection, robust dependersegsyration of policy and mechanism, sep-
aration of privileges, allocation of least privilege, leeasmmon mechanism, sound authentication,
and sound authorization all can contribute to reducing wnagt be trusted and to increasing the
trustworthiness of the overall system or network. Howeasmoted in Section 2.6, we must be-
ware of mutually contradictory applications of those piphes, or limitations in their applicability.
For example, the Saltzer—Schroeder principle of least commechanism is a valuable guiding
concept; however, when combined with strong typing and rpolyphism that are properly con-
ceived and properly implemented, this principle may be iwddwnplaying in the case of provably
trustworthy shared mechanisms — except for the creationvedak link with respect to untrust-
worthy insiders. For example, sharing of authenticatidarimation and use of single signon both

4.3. PRINCIPLED ARCHITECTURE 59

create new risks. Thus, this Saltzer-Schroeder principiddcbe reworded to imply avoidance
of untrustworthy or speculative common mechanisms. Sihgjlase of an object-oriented pro-
gramming language may backfire if programmers are not edisecompetent; it may also slow
down development and debugging, and complicate mainten#sca further example, separation
of privilege may lead to a more trustworthy design and img@station, but may add operational
complexity — and indeed often leads to the uniform operati@atiocation of maximum privilege
just to overcome that complexity. As noted in Section 2.8,dbncept of a single sign-on certainly
can contribute to ease of use, but can actually be a colossatity disaster waiting to happen,
as a serious violation of the principles of separation ofif@ge and least common mechanism
(because it makes everything accessible essentially @quivto a single mechanism!). In gen-
eral, poorly invoked security design principles may sesipimpede the user-critical principle of
psychological acceptability (e.g., ease of use). (See teh&dor discussion of further pitfalls.)

From an assurance perspective, many of the argumentsigetatirustworthiness are based on
models in which inductive proofs are applicable. One imgiricase is that of finite-state ma-
chines in which the initial state is assumed to be securenforge precisely, consistent with the
specifications) and in which all subsequent transitionssarairity preserving. This is very nice
theoretically. However, there are several practical emgjés. First of all, determining the sound-
ness of an arbitrary initial state is not easy, and some o&asisemptions may not be explicit or
even verifiable. Second, it may be difficult to force the pnegeof an known secure state, es-
pecially after a malfunction or attack that has not previpleen analyzed — and even more
difficult in highly distributed environments. Third, theatrsitions may not be executed correctly,
particularly in the presence of hardware faults, softwaedl and environmental hazards. Fourth,
system reboots, software upgrades, maintenance, ingtallaf new system versions, incompati-
ble retrievals from backup, and surreptitious insertiofr@jan horses are examples of events that
can invalidate the integrity of the finite-state model asstioms. Indeed, software upgrades —
and, in particular, automated remote upgrades — must betbok as serious threats. Under mal-
functions, attacks, and environmental threats, the disissurance is always likely to be limited
by realistic considerations. In particular, adversari@geha significant advantage in being able to
identify just those assumptions that can be maliciouslym@mised — from above, from within,
and from below. Above all, many failures to comply with the@sptions of the finite-state model
result from a failure to adequately comprehend the assomptnd limitations of the would-be
assurance measures. Therefore, it is important that tlessderations be addressed within the
architecture as well as throughout the development cyaleo@eration, both in anticipating the
pitfalls and in detecting limitations of the inherently omaplete assurance processes.

4.3 Principled Architecture

There are two ways of constructing a software design: oneig/&ty make it so simple
that there are obviously no deficiencies, and the other way make it so complicated
that there are no obvious deficiencies.

Sir Charles Anthony Robert Hoare

Tony Hoare’s comment is obviously somewhat facetious,&@afhgwhen confronted with com-
plex requirements; he has chosen two extremes, whereasthefkrealistic system designs for

60 CHAPTER 4. PRINCIPLED COMPOSABLE TRUSTWORTHY ARCHITECT&#HS

inherently complex system requirements that we consid#rigreport obviously must lie some-
where in between. Nevertheless, Hoare’s two extremes dhepbevalent — the former in theory
and the latter in practice.

We next seek to wisely apply the principles to the estableshirof robust architectures capable
of satisfying such complex requirements. Our conceptuataaxh is outlined roughly as follows,
in a rather idealized form.

1. For each representatively comprehensive and realastiger of related system requirements,
and with some working understanding of the relative impuaréeof the desired principles rel-
evant to those requirements, establish a spanning set dicfably composable trustworthy
components from which systems of varying complexity, viagytrustworthiness, and varying
assurance can be developed, configured, administered, @antined. Where generality is
not naturally achievable — for example, within a particlylararrow range of requirements
and applicable principles — separate architectural fasishould be considered instead of
trying to lump everything into a common family. That is, weekdo establish some main-
line families of architectures capable of attaining higbwsdy, reliability, survivability, and
other critical attributes, as desired, but also to allowgbeeral architectural framework to be
adapted to special-purpose dedicated uses.

2. For a particular set of requirements within any particalzhitecture or family of architec-
tures, seek to minimize what functionality must be trustiwpmwith respect to each of vari-
ous criticalities (reliability, integrity, nondenial oésvice, guaranteed real-time performance,
etc.).

3. Determine a minimal subset of components necessary ébr gzecific set of requirements,
and analyze it for consistency with the given requiremerft4e use “minimal” to imply
“minimum-like” but not necessarily the absolute minimuribis is the notion oktark sub-
settingintroduced in Section 3.3 — that is, avoiding or eliminatungneeded functionality
and (hopefully) unneeded complexity and bloatware.

4. Examine the extent to which the chosen principles aresfgati and consider the conse-
guences. As appropriate, recycle through the previous $tapvarious families of archi-
tectures, further splitting families as suggested in the 8tep, reexamining the attainable
trustworthiness as in the second step, and refining the ralrsobset as in the third step,
with corresponding refinements of the priorities for theapiples and the architectures them-
selves.

5. In parallel, evaluate the extent to which the desiredworhiness might be achieved. If high
assurance is required, the requisite approaches and ggakiahould be applied throughout
each iteration through the development stages, and atusdagers of abstraction, as appro-
priate. However, whereas formal analysis can be espeaiallyable in the development of
high-assurance critical systems (and then particularthénearly development stages), it is
not likely to be fruitful in the absence of a principled dey@inent. Thus, it is often unwise
to attempt to apply formalisms to badly conceived desigmsdavelopments. That would be
throwing good money after bad, unless it adds significantiyhe awareness of how bad the
architecture might be — which can usually be realized muchenegonomically. (Formal

4.3. PRINCIPLED ARCHITECTURE 61

analysis of the software implementation in such cases isrgéiy much less rewarding than
analyses of requirements and architectures, especiatlis fthe design that is flawed.)

The notion of stark subsetting relates to the paired notdeemposability and decomposabil-
ity discussed in Section 3.3. The primary motivation forlstubsetting is to achieve minimization
of the need for trustworthiness — and, perhaps more imppmainimization of the need for un-
justifiable (unassured) trust. Stark subsetting can alamdtically simplify the effort involved in
development, analysis, evaluation, maintenance, ancbper

For a meaningfully complete stark subset to exist for a paldr set of requirements, it is
desirable that the stark subset originate from a set of ceaigjle components. As we note in
Section 3.3, “If a system has been designed to be readily osaiye out of its components, then
it is also likely to be readilylecomposable- either by removal of the unnecessary subsystems, or
by the generation of the minimal system directly from itssttnent parts. Thus, if composability
is attainable, the decomposition problem can be consides@dby-product of composition ...

One of the architectural challenges is to attempt to captueefundamental property of the
multilevel-integrity concept, namely, that an applicatimust not be able to compromise the in-
tegrity of the underlying mechanisms. However, there issaeiient difficulty in the above five-step
formulation, namely, that satisfaction of overall systemmgerties such as survivability and human
safety depends on application software and users, notfusiantegrity of the operating systems.
Therefore, it is not enough to be concerned only with theitgcture of the underlying infrastruc-
ture; it is also necessary to consider the entire systeme (dlark—Wilson application integrity
model [82] is an example that requires such an analysis.)

Primarily for discussion purposes, we next consider twoegwe subspaces in a highly multi-
dimensional space of architectures, each with its own mog&ustworthiness and corresponding
ranges of trustedness, and with associated ranges of assuycamposability, evolvability, princi-
ple adherence, and so on. (Note that these dimensions anegedsarily orthogonal, although that
is unimportant here.) Of course, there are many interestibgpaces somewhere in between these
two extremes, although it is not useful to attempt to itentimsm here. Within each subspace in
the overall multidimensional space, there are wide vanntin what properties are relevant within
the concept of trustworthiness, whether the implied triisary) is explicit or implicit, in what
kinds of assurance might be provided, and so on.

The two illustrative extremes are as follows:

e Maximal trust: More or less uniform trust, irrespective of a ctual trustworthiness. In
conventional systems in which security and reliability ac¢ deemed fundamental or are
only casually addressed by the architecture, potentiallyyecomponent can depend on ev-
ery other component (including all application code, usegmms, compilers, libraries, and
system test code), and therefore must be trusted whetteetritstworthy or not, even if its
failure or subversion can result in total compromise of Yy&tem, its applications, and other
networked systems. (The notionsafmpromise from outside, compromise from witlaimgl
compromise from belowm Section 2.3 encompass systemic as well as human causear} A
chitecture of this kind is likely to be relatively unstruotd and unprincipled. Maximal trust
typically implies few if any explicit assumptions in the hitecture about possibly untrust-
worthy components, and the entire system is implicitly assdi to behave as expected. (In

62 CHAPTER 4. PRINCIPLED COMPOSABLE TRUSTWORTHY ARCHITECT&#HS

many cases, trust is blind, or even worse, uniformly blidthough this extreme maximal-
trust subspace might seem somewhat artificial, it is in tyeadipresentative of surprisingly
many software products. However, it exhibits a relativédac-cut contrast with the principle-
inspired notion of minimal trust, considered next.

e Minimal trust: Selectively wisely placed trust, based on réative trustworthiness where
needed.In an architecture that is motivated by the principle of miraation of what must be
trustworthy, the architecture can ensure that greater meed be placed primarily in certain
trustworthy components, with respect to whichever reguéets must be trustworthy. An
overly simple example is given by a trustworthy guard thist Isetween two (or among more
than two) systems with potentially unequal trust or with nalisuspicion (that is, bilaterally
guestionable trustworthiness); the guard mediates atsgstem traffic — for example, at-
tempting to ensure no outbound leakage of sensitive infdaomand no inbound insertion of
Trojan horses; however, the trustworthy guard may typyadksume little or nothing about the
trustworthiness of any of the systems that it is guardingn{& of the early guards were based
rather simply on keyword scanning.) A firewall provides d@otinstance of minimal trust,
where the assumption is made that the systems on the ingidetdae compromised by the
systems on the outside, even if the interior systems areumiitorthy; the firewall is trusted
to satisfy only certain requirements. Wrappers provideayetther example. (Suitable use of
real-time monitoring and anomaly/misuse detection maydsérdble, although some of that
functionality itself needs to be trustworthy with respecsystem integrity, data confidential-
ity, and nondenials of service.) More generally, overadteyn architectures considered below
involve reliance on certain trustworthy servers, with leastworthiness required elsewhere.

Minimal trust is generally compatible with the notions oéljcious modularity and stark sub-
setting. On the other hand, maximal trust is usually a camsece of badly designed systems —
in which it is very difficult to achieve trustworthy subselst alone to remove large amounts of
bloatware that in a well-designed system would conceptuait have to be trustworthy. (Compare
this with the quote from Steve Ballmer given in Section 3.3.)

What might at first seem to be a hybrid minimax approach td &ind trustworthiness is given
by Byzantine agreement, discussed in this context in Se8tf: even if at most out of n subsys-
tems may misbehave arbitrarily badly, the overall systeirbsthaves correctly (for suitableand
n). Byzantine agreement makes a negative assumption tha gortion of the components may
be completely untrustworthy— that is, arbitrarily bad, maliciously or otherwise — andasiive
assumption that the remaining components mustdmepletely trustworthyHowever, Byzantine
agreement is in a strict mathematical sense an exampienafnum(rather tharminimal) trust: in
the case of Byzantine clocks, the basic algorithm [198, 33] provably minimizes the number
2k + 1 of trustworthy clock subsystems for any given numberf arbitrarily untrustworthy clock
subsystems, with the resultisg + 1 subsystems forming a trustworthy clock system. (Note that
the assumption that at mostof the clocks may be arbitrarily untrustworthy is expli@tthough
the nature of the untrustworthiness can be completely wifspe)

Purely for purposes of discussion, we next consider twoeexdr alternatives with respect to
homogeneity versus heterogeneity of architecture, cézdtin and decentralization of physical
configurations, logical control, trust, and trustwortlise There are many combinations of these
aspects of centralization versus decentralization, butéscriptive simplicity we highlight only

4.3. PRINCIPLED ARCHITECTURE 63

two extreme cases. For example, we temporarily ignore tttethiat centralized control could be
exerted over highly distributed systems — primarily beeatlt is generally very unrealistic in
the face of events such as unexpected outages and dersiaivide attacks. Similarly, centralized
systems could have distributed control.

e Centralized homogeneous systems, centralized control, rdealized trust, and central-
ized trustworthiness. Centralized trustworthiness is largely a relic of the statahe batch-
processing mainframe systems of the past and the centtilime-sharing systems that began
emerging in the 1960s. It can be very effective in nonnetedikystems, but is impractical in
any highly distributed processing environment. Howeues, iised effectively in stand-alone
classified systems and others that must be highly secursjgalily isolated from other sys-
tems and networks, and physically protectable; in suchrenments, administrative control
is generally centralized.

e Decentralized heterogeneous systems, distributed controdistributed trust, and dis-
tributed trustworthiness. In general, today’s systems and networks tend to be inecrglgsi
heterogeneous in the diversity of their constituent suiesys and networked components,
increasingly distributed in the dispersion of their phgsiocations, of their users, and their
maintainers, and thus necessarily distributed in theiickdgcontrol. Architectures that de-
pendably structure the relative trustworthiness of thesgsiems are therefore of considerable
interest.

Note that a collection of centralized subsystems may beduoated into a decentralized sys-
tem, so the boundaries of our simplified descriptive dichptare not always sharp. However, the
trustworthiness issues in heterogeneous systems andrkst(particularly with respect to secu-
rity, reliability, and survivability) are significantly nme critical than in homogeneous systems and
networks, even though the generic problems seem to be vmilasi In fact, the vulnerabilities,
threats, and risks are greatly intensified in the presenbegbfy diverse heterogeneity.

With respect to the principled approach of minimizing whatstbe trustworthy, the next set of
bulleted items provides some motivating concepts for stinirey robust systems with noncentral-
ized trustworthiness, irrespective of whether the actysidesns have centralized or decentralized
control. (For example, fault tolerance and multilevel sggare meaningful in centralized as well
as distributed systems.)

e Layered trust, with layered trustworthiness. Trustworthiness can be layered in system
architectures in a variety of ways, and has been in sevestbrigally important systems.
This approach was used for both security and reliabilithii 1960s in théultics domain-
based ring structure [91, 150, 277, 333], in which faultspm; or failures of Ring 1 would
not affect the operation of Ring 0, and thus would not crashstystem although they could
crash the executing process; similarly, problems in RingoRla/ not affect the operation of
Ring 1, and thus would not crash the executing process,aitihthey could abort the execut-
ing command. A similar approach was used in the 1970s in tegd®f the hierarchically
structured capability-based strongly typed object-dddiProvably Secure Operating System
(PSO9 [120, 268, 269], in which the lowest layers (to be impleneeinin hardware) could
be executed directly from higher layers without compronoisihe access control and strong

64

CHAPTER 4. PRINCIPLED COMPOSABLE TRUSTWORTHY ARCHITECT&#HS

typing of the capability mechanisms. @apability is in essence a potentially portable and
nonforgeable token whose possession permits some soreoffisgd access to a particular
object or class of objects. Capability-based systems héwegahistory, and provide consid-
erable potential as an alternative architecture. Howevpithy quote by Butler Lampson is
perhaps telling: “Capability systems are the way of thereitand always will be.”)

Layered trustworthiness was also found in THeE operating system (see Dijkstra’s 1968
paper [106]), with respect to hierarchical locking strégegas noted in Section 3.5. It was
also used to ensure human safety of real-time flight-comriie 1970s in SRI’s fly-by-wire
Software Implemented Fault Tolerar8IFT) [232, 247, 378]) system, with a hierarchy in-
cluding real-time scheduling, a broadcast protocol, angritgvoting. Furthermore, layered
trustworthiness is a fundamental basis of implementatdmsultilevel security MLS) in a
typical system with an MLS kernel, an MLS-trusted computiage, and MLS-untrusted ap-
plications, including the Multics kernel retrofit [344] aadhigher-layer abstract type manager
approach suggested as an alternative to the basic PSO&atute. Ideally, no application
software should be able to compromise the enforcement dfittfe information flow con-
straints — from above or from outside. In each of these calsestust that is either explicitly
or implicitly associated with each layer can also be layetadgsystems based on protection
rings or MLS kernels, relatively greater trust is given twéw layers — which, because of
the constructive nature of the architecture, must be welgtimore trustworthy than higher
layers.

In a different sense of hierarchy, trust can also be layeriéu ie@spect to policies. For ex-
ample, the basic multilevel security policy [35] provides fattice-ordered levels of trust for
confidentiality (e.g., a linear ordering of Top-Secret, i@gcConfidential, and Unclassified,
with associated nonlinear compartments), whereas a barultilevel integrity MLI) pol-
icy [43] provides a similar partial ordering for integritgriefly, under an MLS policy, infor-
mation may not flow from one entity to another entity that hksger (or lattice-sense incom-
parable) security level; in MLI, no entity may depend on &eotentity that has a lower (or
lattice-sense incomparable) integrity level (that is,aesidered less trustworthy). Of course,
when we attempt to compose policies such as MLS and MLI WittA (multilevel avail-
ability) andMLX (multilevel survivability), composability problems andmgeral operational
confusion may arise. (MLA and MLX are suggested in [264].)

MLS is of course a fundamental approach to avoiding adverfsemation flows, irrespective
of the complexities of its implementation and operation.t@mother hand, MLI, MLA, and
MLX appear to be of limited usefulness in the real world — aitgh they are of consider-
able interest as examples of the principled notion of trymgvoid dependence on anything
less trustworthy (with respect to integrity, availabilignd survivability, respectively), and
enabling explicit analyses of soundness wherever sucmdepee cannot be avoided. A pos-
sibly more useful alternative approach is the notion ofgofactoring that arises in Secure
Computing Corporation’s notion of type enforcement, inethseparate type-related policies
are designed to be seamlessly composable because of théastisjointness of the types.
(This is actually a logical outgrowth of the pervasive usstabngly typed objects throughout
the hierarchical layers of PSOS [120, 268, 269].) Incidéntanother alternative use of com-
partmented MLS would be a single-level system with compantis. (In 1982, Lipner [209]

4.3. PRINCIPLED ARCHITECTURE 65

provided a discussion of how MLS and MLI concepts might beduse&eommercial practice,
even in compartmented single-level environments.)

The SeaView database system [100, 213, 214] discussed1ini$8d is another example of
architectural layering in which the entire database mamage system is effectively multi-
level secure without the off-the-shelf DBMS itself haviogate trusted for multilevel security.

e Partitioned trust, with partitioned trustworthiness. Closely associated with the concept of
layered trustworthiness is the notion of partitioned tnesthiness — on which layered trust-
worthiness can be built, or with which higher-layer funotdity can be isolated from other
functionality at the same layer. Multilevel-security kelsiprovide such a basic partitioning.
Even more fundamental is Rushby’s separation kernel [328], 3vhich provides a basis for
nonsubvertible isolation that can be perpetuated throuighigher layers. (See also [321], in
which Rushby applies the partitioning concept to avionichisectures.) This is in essence
the basis for virtual machine monitors. For example, NSAsTép combines SCC’s SELin-
uxindexSELinux (multilevel security combined with stratyging) and VMWare (which pro-
vides virtual machine monitors).

Two other forms of logical and physical separation are aledhvnoting — Multiple Inde-
pendent Levels of SecurityILS) and Multiple Single-Level{ISL) systems, whose inter-
communications are carefully controlled (discussed inftflewing bullet). MILS systems
are expected to provide truly independent partitions tbatctfunction at different security
levels, with no information flow across multilevel securtigundaries except for perhaps
some exceptions that are carefully controlled by the updeglvirtual machine monitors.
MSL systems are expected to function with each partitiorrafpey strictly within a single
level, with no exceptions. These constrained modes praeskeicted alternatives to a strict
multilevel-security architecture, although they may taiy be significantly less flexible and
much less useful in general applications.

An even stronger isolation is provided by the physical girgpaproach (also referred to as
sneaker-net), where there is absolutely no direct electrconnection between hardware
components (ignoring electromagnetic interference anahations). However, that approach
seriously impedes interoperability; although physicaasation may be exactly what is de-
sired for extremely sensitive multilevel security compaents, it is antithetical to widespread
information sharing and increasingly impractical excepextremely critical embedded sys-
tem applications. Besides, sneaker-nets notoriously sedr subverted by people carrying
electronic media from one partition to another (includirgrges bearing malicious code!).

e Emphasis on trustworthy servers and constrained interface (TS&CI). The general archi-
tecture family begun by John Rushby and Brian Randell [38@The Newcastle multilevel-
secure Distributed Secure System (see also [329] for a suyramd [328] for the Newcastle
report) relies heavily on trustworthy servers. This typecoiitrolled access in a multiple-
single-level (MSL) architecture was extended by Proctat Beumann [273, 308], permit-
ting user-covert-channel-free multilevel-secure actessformation with no MLS trustwor-
thiness required for end-user systems, and allowing singge single-level end-user systems
that need not be trusted for MLS separation or for multiuseltipiexing. Instead, architec-
tures of this family rely heavily on sharable trustworthyvees (e.g., file servers, network

66

CHAPTER 4. PRINCIPLED COMPOSABLE TRUSTWORTHY ARCHITECT&#HS

servers, crypto servers, and authentication serversgémabperate as multilevel secure sub-
systems and enforce multilevel security; they also havelhigonstrained interfaces to those
servers that are controlled subject to the constraints segdy the architecture. (In [259],
that architecture type is characterized by the acronym R]$& Reduced Interfaces for Se-
cure System Components; however, in this report, we avadiie of the RISSC acronym
because of its pronounced confusions viRil$ Candrisk, and instead useS&CI , represent-
ing Trustworthy Servers and Controlled Interfaces))

The same concept of placing relatively less trust on endsystems and much greater trust-
worthiness on servers is of course also applicable to systiesih do not require any multilevel
security, although this architectural concept appearge toibch less widely appreciated in the
conventional single-level case. Placing strong emphasisistworthy servers is a fundamen-
tal approach to minimizing the need for trustworthinessyisteams and networks. Note that
the trustworthiness requirements may differ consider&iolyn one server to another, partic-
ularly among the various requirements for security (ergegdrity, confidentiality, reliability,
survivability, and prevention of denial-of-service aka@nd so-called “man-in-the-middle
attacks”). Furthermore, some of the nonserver componeaystrave very specific but less
stringent requirements for trustworthiness. For examalaser platform might have only
a thin-client operating system that is auto-rebooted iruativorthy manner from an unal-
terable read-only memory, but otherwise with no long-tetoragyje and some integrity in
its networking software. However, the essential charatterof such architectures is that
trustworthiness with respect to certain attributes neadealispersed uniformly everywhere
throughout a distributed system or network of systems. @ppmoach can be particularly ef-
fective because in a relatively clean way it decouples theaorking abstraction (strong and
supposedly robust but presumably not necessarily seqom)the computer systems (which
are separated physically rather than virtually, excepttferserver software).

Emphasis on certain trustworthy clients. In some cases (such as control-system environ-
ments or intrinsically multilevel applications), it may desirable to have completely self-
contained or almost completely self-contained end-usafqgrims, in which case relatively
less trustworthiness may be needed elsewhere. For exarhpléhin-client system never
needs to download software from elsewhere (except for ulegravhich might be handled
off-line or otherwise constrained), and can be assured wémexecuting potentially exe-
cutable content (such as active e-mail attachments), tadraps it can satisfy stringent re-
guirements for trustworthiness within its tightly congtied perimeters. This may be particu-
larly desirable in architectures for certain handheld l@ss devices with highly constrained
and controllable communications, but also with inherengiy functionality such as being
able to send and receive e-mail with executable attachnemdgo browse the Internet. Also,
significant simplifications can result whenever the locatesns can be stateless, or else nec-
essary state information can be quickly retrieved in arcird@monstrably sound state from
a remote server. On the other hand, with the advent of inestpeisupercomputing power,
we can expect handheld wireless devices with enormous tipgsystems that are not ade-
guately trustworthy, in which case other architecturalrapphes must be considered.

Network-centric architectures. The need to trust various network media can be greatly (but
not entirely) reduced if a network-centric architectur@egiders networks as virtual entities

4.3. PRINCIPLED ARCHITECTURE 67

(for example, multi-system backplanes), with appropriatstworthiness among the attached
systems as needed (e.g., for reliability, integrity, caariitihlity, and nondenials of service
of the critical system functionality, and especially whatenetworking software must be
trustworthy). Typically, the network media themselves barmgenerally untrusted; the con-
tent can be protected cryptographically (for integrity amafidentiality); reliable delivery
and defenses against denials of service can be enhancedgthatiernative routing, error-
correcting codes, synchronization, monitoring, dynaneiconfiguration, and so on, all of
which would be suitably trustworthy according to the spedifiequirements. Preventing or
hindering denial-of-service attacks is a particularlytp@soblem, which suggests that design
of the networking should not put much trust on the depentglaif the network media —
other than in the Byzantine sense above (namely, that sonierpof the communications
functionality work according to its specifications) or vidéeanative routing. However, even
when the networking has been established as an end-to-ey$t@m-to-system encrypted
virtualized backplane, there are still serious security particularly integrity risks that re-
late to both the network media and the networking softwardéhohigh it is an example of a
simplistic and popular approach with real applicabilibe hetwork-centric view is still only
a partial solution.

e Emphasis on trustworthy networking. Several alternatives exist relating to trustworthy
networking, including physically isolated dedicated natke and trustworthy subnetworks
of perhaps less trustworthy networks. In concept, the ideaatated trustworthy subnet-
works with stringent user authentication is very appealsugh as the Navy Marine Corp
Intranet NMCI) or GOVNET. The goal is to have connectivity in and out of thérset-
work that is either extremely tightly constrained (e.g.,thystworthy firewalls with rigidly
enforced security and integrity policies) or else compyet®nexistent. In reality, the trust-
worthiness of the security and integrity of such subnetwaskextremely difficult to assure,
especially in the presence of trusted insiders and the rm@edrmote maintenance paths such
as the outsourcing of system administrators that seemsss@ble from the perspectives of
reducing costs and manpower requirements. Alternativieéy/creation of virtual trustwor-
thy subnets (e.g., virtual private networks) implementadess trustworthy networks can
be pursued, using appropriate cryptography and some tustyvservers, with other tech-
niques such as assured alternative routing, and anti-jagamd increased prevention against
denial-of-service attacks.

e Trustworthiness enhancement. the techniques enumerated in Section 3.5 for increasing
system trustworthiness despite less trustworthinesseotdnstituent subsystems are all po-
tentially relevant within trustworthy architectures. gsence, each of those techniques allows
for the reduction in the need for trust that can reasonablyldeed on the subsystems, while
at the same time potentially increasing the trustworthdrteat can be achieved in the sys-
tem as a whole. Indeed, by using some of these trustwortiaeisancing mechanisms, the
trustworthiness of the system as a whole can be significgnélgter than that of the subsys-
tems individually. As a rather dramatic example, the Saféalanplemented Fault-Tolerant
(SIFT) system [232, 247, 378] involved the highly redundaoposition of seven off-the-
shelf avionics processors, and resulted in a probably hiréafive orders of magnitude less
than that of a single processor for the entire fly-by-wireoaids system, as noted in Sec-

68 CHAPTER 4. PRINCIPLED COMPOSABLE TRUSTWORTHY ARCHITECT&#HS

tion 3.5. So-called trusted paths and trustworthy booso@dg., [18, 19]) are both very
important potential techniques for enhancing securitg {(sdow). Trusted paths are essential
in a variety of contexts (e.g., user-to-system, systemstr; system-to-system), particularly
to prevent “man-in-the-middle”, and other spoofing attacsswell as denial-of-service at-
tacks. Cryptographic authentication can significantlyéase trustworthiness. Finer-grained
authorization can be very helpful, particularly relatimgsieparation of privileges and least
privilege, as well as in reducing opportunities for insidasuse. Anything that enhances the
ability to perform tracebacks can be helpful to misuse diete@nd response. The ability to
have trustworthy paths for code distribution and dynamidates will also be helpful.

Each of these concepts can potentially be useful by itselh @ombination with other ap-
proaches. However, it is important to realize that one agghidoy itself may be compromisible
in the absence of other approaches, and that multiple agipegsanay not compose properly and
instead interfere with one another. Thus, an architectrra family of architectures) must have
considerable effort devoted to combining elements of mpldtconcepts into the effective devel-
opment of trustworthy systems, with sufficiently trustvinyrtnetworking as needed. However,
although these concepts are not necessarily disjoint aggotantially interfere with one another,
each of these concepts is generally compatible with theonaif stark subsetting — which of
course itself benefits greatly from extensive composal{éind its consequence, facile decompos-
ability).

Many other system properties of course can also contrilouéelhieving our desired goals. A
few of these are discussed next. These items are somewloaidserer in nature, because they
rely on the trustworthiness of the design and implemematicthe architectural concepts in the
above list — although they also can each contribute to ise@#rustworthiness.

e Dramatically improved user authentication is needed to overcome many of the common
risks of reusable fixed passwords. Nonreusable and diffiotfibrge cryptographic tokens,
nonreusable one-time pass phrases (as in the primitiversrttale transitionally useful S-
key system), and biometrics are all potentially useful icréasing authentication trustwor-
thiness, but are nevertheless vulnerable if embedded ip dpkrating systems or insecure
applications. Clearly, a multipronged approach is needster than just relying on a single
factor. Furthermore, user authentication needs to beg/faohintrusive from the perspective
of the user; otherwise, it tends to be avoided, bypassedy@lized.

e Dramatically improved message authenticationis also important. A recent paper [360]
(one in a chain of research efforts) is aimed at defining amdiyamg effective mechanisms
for authenticating each network packet against malicioglsssironeous disruptions; the paper
includes numerous references to previous efforts in thratton.

e Fine-grained authorization (e.g., differential or context-dependent access corjtcals nar-
row down the extent of misuse, and can bring actual systemM@more closely in line with
policies of intended behavior. It is particularly relevamenabling access controls to more
closely implement security policies — which may be pargelyl important whenever insider
misuse is a serious concern. It is also helpful in constngiutsiders who have effectively
become insiders as a result of system penetrations. Howeigerendered rather limited in
effectiveness if the authentication is not trustworthy.

4.3. PRINCIPLED ARCHITECTURE 69

e Trustworthy bootloads can provide assurance of the genuineness and integrity afrtier-
lying operating systems (e.g., Arbaugh [18, 19]). Autheatipon, authorization, monitoring,
and accountability will always be suspect if the underlyapgrating systems are not trust-
worthy, but especially if tampering has resulted in the gneg of trapdoors or Trojan horses.

e “Trusted paths” (or, more appropriatelyrustworthy pathscan provide protected commu-
nication links in which there is at least a unilateral direetof dynamic confidence, namely
that a user is truly in contact with the intended system @athan a spoofed version of that
system); in some cases, a trustworthy path may need to heraila— that is, also providing
dynamic confidence that a given system is truly in contadh wstintended user (rather than
an interloper or imposter). In each of these directionsien@usermay apply to systems or
subsystems as well as people. Trustworthy paths themselgase considerably improved
authentication of computational entities (e.g., systesubsystems, processes, network com-
ponents), trustworthy bootloads, and in some cases evecated physical resources.

e Systemic support for traceback (especially in packet-based networked systems) requires
some ability to determine the origins of an attack and itausess. Traceback in turn depends
on meaningful authentication of users, routers, operaygjems applications, some trust-
worthy bootloads, some trustworthy paths, and so on. Indhesgeable future, trustworthy
traceback seems feasible at best only within relativelfrc@itained subnetworks. Dean et
al. [97] provide an algebraic formulation of a practical eggrh to IP traceback during a
denial-of-service attack; this paper should be very usasud basis for future research on
traceback. See also a subsequent optimization by Micalr D¢ that reduces the required
overhead to an extra bit per packet!

e Trustworthy code distribution is essential to provide assurance that downloaded software
as delivered is in fact genuine and untampered, and has gestex provenance (pedigree).
This is of particular importance in networked and Web-basadronments and in thin-client
system architectures in which software is normally dowdézhdynamically.

¢ Real-time monitoring and misuse detectiorare fundamental to sound operation of systems

and networks. Ideally, system monitoring might seem urargsgall the above mechanisms
were perfectly designed and properly working, but that afrse is unrealistic. Actually,
even if everything else in the above list worked perfectlhigh, as we know, is an extremely
unwise expectation), detecting, identifying, and respogdo insider misuse would still be
desirable. Furthermore, network monitoring is always ingrat from the perspectives of
reliability and availability as well as security (for exalapsee [34]). Partially automated
responses to emergencies could also be useful, althouglshioalld be used with great care
— especially if they can be used to induce denial-of-seraitacks! (Drew Dean notes a
similarity with game theory, in attempting to prevent thiaeker from having the last move in
an arms race.) See also work on intrusion tolerance (e @83, f124]) as opposed to intrusion
detection.

e Alternative hardware might be desirable in certain circumstances — for examplecifit-
ical servers in systems that require very high trustwogtbsnand very high assurance. Sig-
nificant benefits can be derived from building critical saftes systems on high-assurance,

70 CHAPTER 4. PRINCIPLED COMPOSABLE TRUSTWORTHY ARCHITECT&#HS

robust, and more easily secured hardware platforms. Afthapecial-purpose hardware
in recent years seems to have been going the way of the dodlothare are applications
in which customized hardware could be very useful — for examim constraining what
the software can do. Special-purpose co-processors arexameple, as for example in the
LOgical Coprocessor KerneLQCK), or more recently the Trusted Computing Platform
Alliance (TCPA)/Trusted Computing GrouplCG), Intel’s LaGrande technology, and Mi-
crosoft’s Palladium/Next Generation Secure ComputingeBB&5SCB), presumably to be
used in Microsoft's next-generation operating system,dlamn. (For some provocative
background, particularly on potential limitations, seesR@&nderson’s Trusted Computing
FAQ, http://lwww.cl.cam.ac.uk/"rjal4/tcpa-faq.htmlhd “No Execute” (NX) facility also
has some merit, although it can in principle better be a@uevith sensible domain architec-
tures. In addition, there is some hope that newer hardwalgtectures, such as the IBM/HP
efforts in blade computers (which can combine multiple @mional processors into a sin-
gle circuit board) might actually lead to some efficient leae isolation kernels and in the
long run to the possibility of high-assurance multilevedig® systems. This remains a very
interesting possibility for the future.

e Preventing or at least hindering denial-of-service attack presents some enormous chal-
lenges for system and network architectures, particularlyighly distributed systems and
networks in which communications are already vulnerablathA&ntication and access con-
trol become extremely important in preventing unwanteceasand facilitating traceback
within perimeters of trustworthiness. However, attemptahieve end-to-end security across
untrustworthy networks are always vulnerable to denisde¥ice attacks. Furthermore, net-
working protocols must provide some means of limiting adedraffic in situations in which
authentication and access control cannot. Monitoring aatitrme analysis become increas-
ingly important, particularly in providing early deteati@nd rapid remediation in the pres-
ence of suspected denial-of-service attacks.

Appropriate architectures are then likely to be some sortarhbination of the above ap-
proaches, encompassing (for example) heterogeneoussseilmsyand subnetworks, trustworthy
servers and controlled interfaces (TS&CI) that that ensatesfaction of cross-domain security
and integrity, dramatic improvements in system and netwadde authentication, trustworthy
bootloads, trusted paths, traceback, trustworthy codeilaliton, and other concepts included
in the above enumeration, particularly in observance ofitieciples of Chapters 2 and 3. Such
architectures (referred to herein as Eightened Architecture Conceptwould provide a basis
for a wide class of systems, networks, and applicationsdaatheterogeneously accommodate
high-assurance security. This is particularly relevantceoning desires for multilevel security,
which realistically are likely to involve collections of Ma_clients, MSL clients, and MILS clients,
all controllably networked together with a combination efhgers, subject to the multilevel con-
straints, and with a similar assortment of assurance tgaesifor both conventional security and
multilevel security. In that true multilevel security isa@ill for many applications, this vision
would provide that functionality only where essential.

4.4. EXAMPLES OF PRINCIPLED ARCHITECTURES 71

4.4 Examples of Principled Architectures

In our experience, software exhibits weak-link behaviaitufes in even the unimportant
parts of the code can have unexpected repercussions else\llaeid Parnas et al. [292]

The pervasive nature of weak links is considered in SectiBri2n connection with principles
for avoiding them, and again in Section 3.5 in connectiomhe desire for reduced dependence
on trustworthiness. In concept, we like to espossength in depth; however, in practice, we
find weakness in depthin many poorly architected systems — where essentiallyyss@mnponent
may be a weak link. Even well-designed systems are likehat@multiple weak links, especially
in the context of insider misuse. As a result, there is a fomelgtal asymmetry between defenders
and attackers. The defenders need to avoid or protect dikofital weak links; on the other hand,
the attackers need to find only one or just a few of the wealslink

Several historically relevant systems are particulatlysirative of the concept of principled
architectures that have sought to avoid weak links in oneavayother. These are discussed next.

e Multics. Multics [277] (noted above in Section 4.3) was perhaps tlsédiperating system to
make extensive use of structure within the operating sy#sati. The eight concentric rings
and protection domains permitted process protection witie operating system and allowed
multiple application layers to be separated from the opagetystem layers, and also allowed
iterative implementation of policy-mechanism separafid®0, 334, 345]. It also facilitated
the subsequent retrofit of multilevel security [344], withlyrelatively minor repartitioning
of Ring 0 and Ring 1. The multilayered directory hierarchg][Permitted sensible directory
structuring, symbolic file names, directory search stiategnd dynamic linking, along with
access-control lists to permit finer-grained access ctmtithe virtual memory implemen-
tation [91] demanded separation of symbolic and physicdiessing, where all real objects
in memory are accessed by means of symbolically named Viohjacts and dynamically
linked on demand. Multics is considered in further detaithis context in [259]. An im-
portant contribution to the evaluation of Multics secuigygiven by Paul Karger and Roger
Schell in two papers [188, 189], the first from 1974 and th@sdgaevisiting that early paper
in 2002. Among other things, the later paper notes the ralmvaf the choice of PL/I as the
programming language for implementation and the relevahttee underlying hardware seg-
mentation, paging, and protection, specifically in avaydiuffer overflows, data interpreted
as executables, Trojan horses, and other characteristicitseproblems — and generally
greatly enhancing security. See also Fernando Corbatoiad lecture [84] for a survey of
some of the lessons learned from the Multics development.

e THE. The hierarchically layered Eindhoven operating system THE5] (noted in Sec-
tions 3.5 and 4.3) demonstrated that a strict hierarchocdihg strategy could avoid deadly
embraces between layers. This concept is important in ptengdenials of service as well
as ensuring high system availability.

e PSOS and SIFT.The concepts of abstraction and hierarchical layeringygieith the work
of Dijkstra and Parnas, were very influential in two SRI sgstdforts from the 1970s. These
two efforts were the so-called Provably Secure Operatirgie®y (PSOS) [120, 268, 269]
(noted in Section 4.3) and the Software-Implemented Fealk#rant System (SIFT) [232,

72

CHAPTER 4. PRINCIPLED COMPOSABLE TRUSTWORTHY ARCHITECT&#HS

247, 378] (also noted in Section 4.3), both of which were faliynspecified according to
the SRI Hierarchical Development Methodology (HDM). Thgealb-oriented strongly typed
hierarchically layered PSOS design is considered in Seeti8. The SIFT design and pro-
totype implementation represented a seven-processoy{lyHie avionics system that was
resistant to hardware faults or even complete outages Michudhl processors and memories;
in the presence of extensive faults, it was self-diagnoaimyself-reconfiguring.

SAT/LOCK/Sidewinder type-based protection. The strongly typed PSOS design (which
in several senses an early system adhering to the prindipteromization of the need for
trustworthiness) was the immediate ancestor of the segudrdevelopments beginning with
the Honeywell Secure Ada Target (SAT), which then led to tbeéywell/Secure Computing
Technology Corporation (SCTC)/Secure Computing CorpamgiSCC) LOgical Coproces-
sor Kernel (LOCK) [123, 153, 154, 155, 156, 335, 347, 348] #manotion of trustworthy
pipelines [53] — in which each stage in a pipeline can havevits security policy. The SCC
Sidewinder firewall is another example using type-baseteption.

Trustworthy servers. A rather different lineage that adheres to the principle ofimal need
for trustworthiness begins with the Rushby—Randell Newed3istributed Secure System
DSS [327], which involved a collection of single-level Ursystems linked via trustworthy
network interface units (TNIUs). A descendent of DSS is nés® @ommercially available
(DRA) in the United Kingdom. See also the TS&CI concept cdased earlier in this section,
which is a further refinement of DSS. The Gemini GEMSOS andtBa Network Proces-
sor (GTNP) multilevel-security gateway efforts also beansiderable kinship with Multics
and PSOS, and with the principle of minimizing the need fastivorthiness. Both LOCK
and GTNP are operational systems with potential usefulimedse DoD Trusted Computer
System Evaluation Criteria B3/Al-rated applications.

Kernel-based systemsA TCSEC-orthodox system lineage [249] includes end-us&tiesys

with multilevel-secure kernels and associated trustedpedimg bases (TCBs) (a misnomer
for trustworthy computing basgssuch as the Ford Aerospace Kernelized Secure Operating
System (Unix-based) KSOS [39, 221], the MITRE [336] and UCk&cure Unix kernels, and
the kernelized virtual-machine system KVM for IBM’s VM [14332]. Rushby’s separation
kernel [323, 324] concept represents a minimalized lowaged version of that approach, in
which certain isolation properties are enforced, and orclwvbither properties such as mul-
tilevel security or system safety can be implemented. Tps@ach represents an important
realization of the principle of separation of policy and im&agism, as does MIT’s Exokernel
operating system architecture [113, 114].

SeaView. The SeaView DBMS noted in Section 4.3 provides a further g@tanespecially
in its ability to avoid having to trust the DBMS and user apation software to enforce
multilevel security — because of the constraints imposethbyMLS kernel.

EMERALD. The architecture of SRI's EMERALD system [272, 304] for aradyrand mis-
use detection (also noted in Section 3.5) makes considetael of hierarchical structure in
providing the ability to correlate over multiple entitiesvarious layers of abstraction.

4.5. OPENNESS PARADIGMS 73

4.5 Openness Paradigms

Closed-source paradigms often result in accideofan-sesames.
Canopen kimonasinspire better software?

[This section is adapted from Neumann’s paper for the 20EEIEymposium on Security and
Privacy, entitled “Robust Nonproprietary Software” [2§5]

Various alternatives in a spectrum between “open” and &idsarise with respect to many
aspects of the system development process, including tiknity of documentation, design,
architecture, algorithms, protocols, and source code. primeary differences arise among many
different licensing agreements. The relative merits ofowes paradigms of open documentation,
open design, open architecture, open software developrardtavailable source code are the
source of frequent debate, and would benefit greatly fromesmwontrovertible and well docu-
mented analyses. (For example, see [210, 227, 263, 265@&3&8]debate on open source-code
availability. See also [126] on the many meaning®pén-sourc§ The projects in the DARPA
CHATS program
(http://www.darpa.mil/ipto/research/chats/index.htprovided some strong justifications for not
only the possibilities of openness paradigms, but also sealestic successes.

As noted throughout this report, our ultimate goal is to bke &b develop robust systems and
applications that are capable of satisfying critical reguients, not merely for security but also for
reliability, fault tolerance, human safety, survivalyilitnteroperability, and other vital attributes
in the face of a wide range of realistic adversities — inahgdhardware malfunctions, software
glitches, inadvertent human actions, massive coordiratedks, and acts of God. Also relevant
are additional operational requirements such as inteatyldy, evolvability and maintainability, as
well as discipline in the software development process asdrance associated with the resulting
systems.

Despite extensive past research and many years of systemeange, commercial development
of computer-communication systems is decidedly suboptwith respect to its ability to meet
stringent requirements. This section examines the afplitaof some alternative paradigms to
conventional system development.

To be precise about our terminology, we distinguish hergvéenblack-box(that is, closed-
box) systems in which source code is not available, @peh-boxsystems in which source code
is available (although possibly only under certain spetifienditions). Black-box software is
often considered as advantageous by vendors and believeecirity by obscurity. However,
black-box software makes it much more difficult for anyonieeotthan the original developers to
discover vulnerabilities and provide fixes therefor. Ibaténders open analysis of the development
process itself (which, because of extremely bad attentigmihcipled development in many cases,
is something developers are often happy to hide). Overltkbbox software can be a serious
obstacle to having any objective confidence in the abilitya&ystem to fulfill its requirements
(security, reliability, safety, interoperability, and en, as applicable). In contrast, our use of the
termopen-box softwarsuggests not only that the source code is visible (gtass-box softwale
but also that it is possible to reach inside the box and makeiffoations to the software. In
some cases, such as today’s all-electronic (e.g., papeNeting systems, in which there is no
meaningful assurance that votes are correctly recorded@ntted, and no useful audit trails that

74 CHAPTER 4. PRINCIPLED COMPOSABLE TRUSTWORTHY ARCHITECT&#HS

can be used for a recount in the case of errors or systemdailfior example, see [194, 233,

235]), black-box software presents a significant obstact®nhfidence in the integrity of the entire

application. On the other hand, completely open-box saftweould also provide opportunities

for arbitrary software changes — and, in the case of eleitraiing systems, that enable elections
to be rigged by malicious manipulators (primarily insigerBhus, there is a need for controls on
the provenance of the software in both open-box and closedzases — tracking the history of

changes and providing evidence as to where the code acbaatig from.

We also distinguish here betweproprietaryandnonproprietarysoftware. Note that open-box
software can come in various proprietary and nonpropgétavors, with widely varying licensing
agreements regarding copyright, its supplemental conmlepopyleft,reuse with or without the
ability to remain within the original open-source condits and so on.

Examples of nonproprietary open-box software are incngdgifound in the Free Software
Movement (such as the Free Software Foundation’s GNU sysigniinux) and the Open Source
Movement, although discussions of the distinctions betwteese two movements and their re-
spective nonrestrictive licensing policies are beyonddieent scope. In essence, both move-
ments believe in and actively promote unconstrained rightaodification and redistribution of
open-box software. (The Free Software Foundation Website i
http://www.gnu.org , and contains software, projects, licensing proceduraspackground
information. The Open Source Movement Web siténtigp://www.opensource.org/
which includes Eric Raymond’s “The Cathedral and the Bdzaaal the Open Source Deflnltlon)

The potential benefits of nonproprietary open-box softwactude the ability of good-guy
outsiders to carry out peer reviews, add new functionatigntify flaws, and fix them rapidly —
for example, through collaborative efforts involving geapghically dispersed people. Of course,
the risks include increased opportunities for evil-doerdiscover flaws that can be exploited, or
to insert Trojan horses and trap doors into the code.

Open-box software becomes particularly interesting indbwetext of developing robust sys-
tems, in light of the general flakiness of our informationteys infrastructures: for example, the
Internet, typically flawed operating systems, vulneralglgesm embeddings of strong cryptogra-
phy, and the presence of mobile code. Our underlying quesfiavhere to place trustworthiness
in order to minimize the amount of critical code and to achiesbustness in the presence of the
specified adversities becomes particularly relevant.

Can open-box software really improve system trustworsfeT he answer might seem some-
what evasive, but is nevertheless realistNot by itself, although the potential is considerable.
Many factors must be considerebhdeed, many of the problems of black-box software can also
be present in open-box software, ande versa For example, flawed designs, the risks of mobile
code, a shortage of gifted system developers and intetligéministrators, and so on, all apply
in both cases. In the absence of significant discipline ahdramtly better system architectures,
opportunities may be even more widespread in open-box addtfor insertion of malicious code
in the development process, and for uncontrolled subvesibthe operational process. However,
in essence, many of the underlying developmental problentgsto be very similar in both cases.

Ultimately, we face a basic conflict between (1) security bgaurity to slow down the ad-
versaries, and (2) openness to allow for more thorough aisand collaborative improvement
of critical systems — as well as providing a forcing functiorinspire improvements in the face
of discovered attack scenarios. Ideally, if a system is nmgdully secure, open specifications

4.5. OPENNESS PARADIGMS 75

and open-box source should not be a significant benefit tokatts, and the defenders might be
able to maintain a competitive advantage! For example,ishilse principle behind using strong
openly published cryptographic algorithms, protocols enplementations — whose open analy-
sis is very constructive, and where only the private and#oret keys need to be protected. Other
examples of obscurity include tamperproofing and obfusnatboth of which have very serious
realistic limitations. Unfortunately, many existing systs tend to be poorly designed and poorly
implemented, and often inherently limited by incompletd aradequately specified requirements.
Developers are then at a decided disadvantage, even witk-btax systems. Besides, research ini-
tiated in a 1956 paper by Ed Moore [241] reminds us that pueetgrnalGedankerexperiments
on black-box systems can often determine internal statglsieEurthermore, reverse engineering
is becoming quite feasible, and if done intelligently casutein the adversaries having a much
better understanding of the software than the original id@ess.

Static analysis is a vital contributor to increasing assceaand is considered in Section 6.6.

Behavioral application requirements such as safety, gaipility, and real-time control can-
not be realistically achieved unless the underlying systame adequately trustworthy. It is very
difficult to build robust applications on either proprigtalosed-box software or nonproprietary
open-box software that is not sufficiently trustworthy — eragain this is like building castles in
the sand. However, it may be even more difficult for closed{mmprietary systems.

Unless the fantasy of achieving security by obscurity islpreinant, there seem to be some
compelling arguments for open-box software that encowagen review of requirements, de-
signs, specifications, and code. Even when obscurity magé&edd necessary in certain respects,
some wider-community open-box approach may be desiralie system software and applica-
tions in which security can be assured by other means and songpromisible within the appli-
cation itself, the open-box approach has particularlytgeppeal. In any event, it is always unwise
to rely primarily on security by obscurity.

So, what else is needed to achieve trustworthy robust sgdfegmhare predictably dependable?
The first-level answer is the same for open-box systems dsawedlosed-box systems: serious
discipline throughout the development cycle and operatipractice, use of good software engi-
neering, rigorous repeated evaluations of systems in émgirety, and enlightened management,
for starters.

A second-level answer involves inherently robust and seeuolvable composable interopera-
ble architectures that avoid excessive dependence onstwttihy components. One such archi-
tecture is noted in Section 4.3, namely, thin-client usatfptms with minimal operating systems,
where trustworthiness is bestowed where it is essentialpiedjly, in starkly subsetted servers and
firewalls, code distribution paths, nonspoofable proveedar critical software, cryptographic co-
processors, tamperproof embeddings, preventing defiedwice attacks, runtime detection of
malicious code and deviant misuse, and so on.

A third-level answer is that there is still much researchtgdbe done (such as on techniques
and development practice that enables realistic predectaimpositionality, inherently robust ar-
chitectures, and sound open-box business models), as svelbee efforts to bring that research
into practice. Effective technology transfer seems muchentikely to happen in open-box sys-
tems.

Above all, nonproprietary open-box systems are not in tledves a panacea. However, they
have potential benefits throughout the process of devedapid operating critical systems. Never-

76 CHAPTER 4. PRINCIPLED COMPOSABLE TRUSTWORTHY ARCHITECT&#HS

theless, much effort remains in providing the necessargldpment discipline, adequate controls
over the integrity of the emerging software, system architees that can satisfy critical require-

ments, and well-documented demonstrations of the benébisem-box systems in the real world.

If nothing else, open-box successes may have an inspighteffect on commercial developers,

who can rapidly adopt the best of the results. We are alrebsgreing some of the major commer-
cial system developers exploring some of the alternatigespen-box source-code distribution.
The possibilities for coherent community cooperation &mgoat open-ended (although ultimately
limited in scale and controllability), and offer considel@hope for nonproprietary open-box soft-
ware — if the open-box community adopts some concepts oipled architectures such as those
discussed here.

Of course, any serious analysis of open-box versus closgdhd proprietary versus non-
proprietary must also take into account the various businesdels and legal implications. The
effects of the federal Digital Millennium Copyright Act (D&R), the state Uniform Computer
Information Transactions Act (UCITA), shrink-wrap restions, and other constraints must also
be considered. However, these considerations are beyerm¢sent scope.

A recent report [163] of the Carnegie-Mellon Software Emginng Institute provides a useful
survey of the history and motivations for open-source saféwy

4.6 Summary

If carpenters built the way programmers program, the artigathe first woodpecker
would mean the end of civilization as we knowderald Weinberg

In summarizing the conclusions of this chapter, we revisd axtend the quasi-Yogi Berra
guote at the beginning of Section 4.1. A system is unlikelpearustworthy if it does not have
a sufficient supply of good designers, good programmersg goanagers, and good system ad-
ministrators. However, it is also not likely to be securdiatde, generally trustworthy, evolvable,
interoperable, and operationally manageable if the deweémt does not begin with feasible re-
guirements that are well specified and realistically regméstive of what is actually needeahd
if it does not involve good specifications and good docuntemtaand if it does not use good
compilers, good development tools, and lots more. Noteitlaaset of requirements is trivial or
seriously incomplete, the fact that a system satisfies trezpgrements is of very little help in the
real world.

Thus, appropriately well defined and meaningful requireiéor trustworthiness are essential.
Good system and network architecture is perhaps the modafnental aspect of any efforts to
develop trustworthy systems, irrespective of the pardicakt of requirements whose satisfaction
is necessary. Wise adherence to a relevant set of prinaple®e extremely helpful. Architec-
tural composability and implementation composability af&normous importance, to facilitate
development and future evolution. Policy composabilitalso useful if multiple policies are to
be enforced. Good software engineering practice and theeprgse of suitable programming lan-
guages are also vital. The absence or inadequacies of saimesefideals can sometimes be over-
come. However, sloppy requirements and a fundamentallgidefiarchitecture represent huge
impediments, and will typically result in increased deyeti®nt costs, increased delays, increased
operational costs, and future incompatibilities.

4.6. SUMMARY 77

As we note at the end of Chapter 3, seamless composabilityolsaply too much to expect
overall, particularly in the presence of legacy softwaia thas not designed and implemented to
be composable; instead, we need to establish techniquesath@rovide composability sufficient
to meet the given requirements. If that happens to be seainléise particular case, so much the
better.

We believe that the approaches considered in this repog alavost open-ended potential for
the future of trustworthy information systems. They ardipalarly well suited to the development
of systems and networking that are not hidebound by compstiith legacy software (and, to
some extent, legacy hardware), but many of the conceptspateable even then. We hope that
these concepts will be adopted much more widely in the futyrboth open-box and closed-box
communities. In any case, much greater discipline is negdgesign, development, and operation.

Chapter 5

Principled Interface Design

Perspicuous:plain to the understanding, especially because of clanitgt precision of
presentation(Webster’s International Dictionary)

Synopsis

This chapter considers system architecture from the viewpd external and internal system
interfaces, and applies a principled approach to interfi@sggn.

5.1 Introduction

Interfaces exist at different layers of abstraction (ham®configuration, operating systems, sys-
tem configurations, networking, databases, applicatmrgyol system complexes such as SCADA
systems and air-traffic control, each with both distribudad local control) and should reflect the
abstractions of those layers and any security issues petaleach layer, suitable for the specific
types of users. In general, security considerations sHmilddden where possible, except where it
is necessary for control and understandability of the faters. In addition, some sort of automated
(or at least semiautomated) intelligent assistance iswéakeaccording to specific user needs.

Operators, administrators, and users normally have difteneeds. Those needs must be re-
flected in the various interfaces — some of which must not lmessible to unprivileged users.
In particular, operators of control systems, enterpriaes, other large-system applications need
to be able to see the big picture at an easily understood tyavstraction (e.g., dynamic status
updates, configuration management, power-system errosages), with the ability on demand
to drill down to arbitrarily fine-grained details. As a cogsence, it is generally necessary that
greater detail must be available to certain privileged si¢fer example, system and network ad-
ministrators or system operators), according to their seeckither through a separate interface or
through a refinement mechanism associated with the staindarthce.

In general, it is important that the different interfaces ddferent roles at different layers be
consistent with one another, except where that is preveategcurity concerns. (This is a some-
what subtle point: in order to minimize covert channels inltitevel secure systems, it may be
deemed advisable that different, potentially inconsistegrsions of the same information content

78

5.2. FUNDAMENTALS 79

must be accorded to users with different security levelss Wultiplicity of content for seemingly
the same information is known @®lyinstantiation.) Most important is that the interfaces truly
reflect the necessary trustworthiness issues.

Requirements must address the interface needs at each dagkarchitectures must satisfy
those requirements. This is very important, and should leoneid in the requirements and archi-
tecture statements. In general, good requirements andagobitectures can avoid many otherwise
nasty administrative and user woes — viruses, malcodeh pagmagement, overdependence and
potential misuse of superuser privileges. As an exampéeTthsted Xenix system requirements
demanded a patrtitioning of privileged administrator fumes rather than allowing a single supe-
ruser role. This illustrates the principles of separatibdudies and a corresponding separation of
roles.

In attempting to simplify the roles of adminstrators andrapa&rs, automated vendor-enforced
updates are becoming popular, but represent a huge souseewrity risks. Their use must be
considered very carefully — commensurate with the critigalf the intended applications. Re-
mote maintenance interfaces are vital, especially in ummdrenvironments, but also represent
considerable security risks that must be guarded against.

The rest of this chapter as well as Sections 7.6 and 8.4, and b Section 7.11 are adapted
from the body of a self-contained report, “Perspicuousrfates”, authored by Peter Neumann,
Drew Dean, and Virgil Gligor as part of a seedling study damelfee Badger at DARPA under
his initiative to develop a program relating to Visibly Coritable Computing. That seedling
study was funded as an option task associated with SRI's GH#®ject. Its report also included
an appendix written by Virgil Gligor, entitled “System Mdduty: Basis for the Visibility and
Control of System Structural and Correctness Propertigkich is the basis for Appendix B of
this report, courtesy of Virgil Gligor.

5.2 Fundamentals

The Internet is arguably the largest man-made informatigstean ever deployed, as
measured by the number of users and the amount of data sent,@gewell as in terms
of the heterogeneity it accommodates, the number of sttsitions that are possible,
and the number of autonomous domains it permits. What'’s,niasenly going to grow
in size and coverage as sensors, embedded devices, andreredactronics equipment
become connected. Although there have certainly beerssgam the architecture, in
every case so far the keepers of the Internet have been atilahge the implementation
while leaving the architecture and interfaces virtuallychanged. This is a testament
to the soundness of the architecture, which at its core defenéuniversal network
machine”. By locking down the right interfaces, but leavihg rest of the requirements
underspecified, the Internet has evolved in ways never imedgiLarry Peterson and
David Clark [301]

This chapter seeks to provide guidelines for endowing systéerfaces and their administrative
environments with greater perspicuity, so that desigragselopers, debuggers, administrators,
system operators, and end users can have a much clearestandiéng of system functionality and
system behavior than is typically possible today. Althotigg primary concern is for interfaces

80 CHAPTER 5. PRINCIPLED INTERFACE DESIGN

that are visible at particular layers of abstraction, therapch is immediately also applicable to
internal interfaces.

As is true with security in general, the notion of perspigist meaningful primarily only with
respect to well-defined criteria (assuming suitable dédimg). Some desirable perspicuity criteria
and characteristics are considered in Section 5.2.3.

The approach here considers the traditional problems agulgsplementation, operation, and
analysis, and suggests ways to achieve the basic goal gfipgty. It spans source-code analy-
sis, the effects of subsystem composition, debugging,adgeg and other program enhancements,
system maintenance, code generation, and new directibasldiesses the relevance of specifi-
cation languages, programming languages, software emgiigedevelopment methodologies, and
analysis tools. It is applicable to multiple layers of abstion, including hardware, operating
systems, networks, and applications. It considers fornethods, ad-hoc techniques, and combi-
nations of both. Other relevant architectural and systeilented considerations are characterized
in Chapter 4.

The main emphasis here is on the understandability of tleefades and the functionality that
they represent. Toward that end, we first seek evaluatiderierifor and constraints on relevant
interfaces (and on development processes themselveggatihdelp avoid many of the commonly
experienced problems relating to security and reliabillye then explore a range of tools that
might help detect and eliminate many of the remaining prolland that might also improve the
perspicuity of critical software. It is clear that this ptelm is ultimately undecidable in a strict
sense, but nevertheless much can be done to advance thepteeetal and operational processes.

This report is not intended as a detailed treatise on thestibf perspicuous interfaces. Instead,
it provides an enumeration of the basic issues and somedsyasion of relative importance of
possible approaches, as well as an understanding of hoMeicgéedesign fits into the overall goal
of principled assuredly trustworthy composable architess.

5.2.1 Motivations for Focusing on Perspicuity

There are several reasons for expending efforts on ent@penspicuity.

e Criticality of the roles of security administration and system administration. Surveys
from the mid-1990s suggested that security administratisthe top DoD security concern.
This appears still to be true, and perhaps even more so. DaobErsased outsourcing of
system/security administrators (attributed to the coxipéss that their job responsibilities
entail and the difficulties of paying them competitively)leets an ever-increasing risk. The
popular press suggests that buffer overflows may be our siggeurity problem, but that
supposition is clearly a gross oversimplification, and isuded by the critical dependence on
admins.

e The growing numbers of SysAdmins.In the United States, there are apparently more indi-
viduals listing their occupation as computer and netwoglstem administrators” than indi-
viduals listing their occupation as “teacher” — accordiogh association of systems admin-
istrators. Even if this is not true, it would be nice to make life of systems administrators
significantly easier, wherever possible. Perhaps thegs/should count more heavily when
it comes to picking winners and losers in security resea(éhtrapolating the present rate

5.2. FUNDAMENTALS 81

of growth, assuming that the current course does not chaiageadically, one could estimate
that by 2020 there would be more SysAdmins than people wgiikicomputer system R&D,
although they all may be outsourced by then!)

e Benefits of perspicuity. Increased interface perspicuity can contribute to eass®fscala-
bility, maintainability, system evolution, and robustaes security administration. Each of
these attributes has direct and indirect implications wegpect to security and reliability —
as well as other aspects of trustworthiness. As with maniyedd¢ aspects, interface perspicu-
ity clearly needs to be reflected in requirements and fuliggrated into system architectures.
However, some of the most significant benefits of this will aamlargely invisible until sys-
tems and networks break, or are subjected to attack, or rmustbnfigured. Overall, it seems
that enlightened self-interest dictates that we devoteldewment resources to usability and
particularly to security administration, putting emplsasi interface perspicuity.

In addition to the above reasoning on the potential reasmrfeusing on perspicuity related
to SysAdmins, numerous benefits can accrue to system praggesnapplication program-
mers, and a wide variety of users — particularly with respeticreased ease of use, program
understandability, debuggability, maintainability,erdperability, and ease of integration —
and of course the ability to explain unexpected errors afettsfof malicious misuse.

5.2.2 Risks of Bad Interfaces

The archives of the Risks Forum are replete with examplesadijtconceived and badly imple-
mented interfaces, with consequential losses of life,riegy impairment of human well being,
financial losses, lawsuits, and so on. A few examples are suipea here — for which references
and further details can be found in the RISKS archives at/hitgww.risks.org, a topical index for
which is found in the ever-growing lllustrative Risks docemh[267]:
http://www.csl.sri.com/neumann/illustrative.html. of8e of the pre-1994 incidents are also de-
scribed in [260].)

e In many aircraft accidents, airplane manufacturers havede to place blame on pilots and
air-traffic controllers, although in many of those casespih@ts and controllers have justi-
fiably blamed the human interfaces of the computer-comnatioic systems. However, as
systems become increasingly automated, aircraft creanedi on automation is considered a
major future risk.

e Deficiencies in human-computer interfaces were directiylicated in various plane crashes
and resulting deaths, including a China Air A300-600, thenieh Air Inter A320, and the
Airbus A320 at the Paris Air Show — which involved a conflictween the pilot and the
autopilot.

e Iran Air flight 655 (an Airbus) was shot down by the VincennAggis system, in part as a
result of a seriously flawed human-computer interface tleet mvissing several critical pieces
of information, and that misidentified the Airbus as a fighileme that had previously been
co-linear on the runway before takeoff.

82 CHAPTER 5. PRINCIPLED INTERFACE DESIGN

e A British Midland 737 crash was caused when the pilot shutfegfgood engine rather than
the failing one, as a result of a cross-wired display.

e The KAL 007 shootdown has been attributed to the plane haflowgn on an erroneous
autopilot course apparently missed by the pilot, who thérihe cabin.

e An F-16 landing gear was retracted while the plane was ornuinaty, as a result of a missing
interlock.

e A Special Forces GPS system accidentally targeted itstelf afbattery replacement that by
default reset the target information to its own locatioriheknownst to the operator.

e Poorly designed interfaces on heart pacemakers, heartanardefibrillators, anesthesia con-
trols, and so on, have resulted in patient deaths.

¢ In an experiment conducted from the Shuttle Discovery, aanintended to reflect a laser
beam from the top of Mauna Kea was positioned upside dowmskxt upward to 10,023
milesinstead of downward to 10,028etelevation, due to a confusion of units.

e A heart monitoring device with a standard wall-plug conneébr connecting the probes to
the monitoring device was discovered unplugged by a hdgittendant, who plugged it into
a wall socket — electrocuting the patient.

Neumann'’s Inside Risks column from the March 1¥@&dmmunications of the ACKIPutting
Your Best Interface Forward”) includes more detailed déstons of several examples, and is the
basis for [260], pp. 206—209.

There are many other emerging applications that will havimse risks associated with non-
perspicuity of their human interfaces, especially in systéntended to be largely autonomic. One
critical application involves adaptive automobile crucgmtrol that adjusts to the behavior of the
preceding car(s) (including speed and acceleration/destébn, lane changes, and so on). Some
of this functionality is beginning to emerge in certain nesvsc For example, BMW advertises
an automobile with an 802.11 access point that would enaialbading of new software (pre-
sumably by the factory or mechanic, but perhaps even whileaye driving?). The concept of a
completely automated highway in the future will create saxgaordinary dependencies on the
technology, especially if the human interfaces providedrergency overrides. Would you be
comfortable on a completely automated networked highwatesy alleged to be safe, secure, and
infallible, where your cruise-control chip is supposediynperproof, is supposed to be replaced
only by approved dealers, is remotely reprogrammable agdagieable, and can be monitored and
controlled remotely by law enforcement — which can alteoperation in a chase among many
other vehicles?

5.2.3 Desirable Characteristics of Perspicuous Interface

The major issues underlying our main goal require a chaiaaten of the requirements that must
be met by system architectures and by their visible and hidakerfaces, as well as constraints
that might be considered essential.

5.2. FUNDAMENTALS 83

A popular belief is that highly trustworthy systems with tronal requirements are inherently
complex. However, we observe in Chapter 4 that — in a wellgghesi system — complexity
can be addressed structurally, yielding apparent sintyliocally even when the overall system
is complex. To this endabstractional simplicity is highly desirable. It can be achieved as a
by-product of sound system design (e.g., abstraction witimg typing and strong encapsulation),
well conceived external and internal interfaces, proaatontrol of module interactions, and clean
overall control flow. For existing legacy systems in whiclstahctional simplicity may not be
attainable directly, it may still sometimes be attainabhl®tigh wrappers whose interfaces provide
appropriate abstraction. In any case, aids to analysis efmdignificantly. Thus, a sensible
approach to perspicuous computing needs to address tleesgiesign structure, all of the relevant
interfaces (visible or not), and the implementation. Thashniques for analyzing interfaces for
perspicuity and other characteristics would be very vdkiab

We begin with a consideration desirable interface characteristics:

¢ Interfaces should represdayered modular abstractions,with encapsulation and informa-
tion hiding. Architecturally, each interface should makk tomplexity within its imple-
mentation, hiding internal data structures and state mdébion, and completely represent-
ing all visible inputs, outputs, expected behavior, andsfiide exception conditions. The
module structure and the module interfaces should be @nstt to avoid unspecified cross-
dependencies. This can greatly simplify the apparent cexitgl of an interface, and can
mask the complexity of the underlying implementation — jgaiterrly any unavoidable inter-
actions among different modules or different instantiagiof the same module.

¢ Interfaces should beell defined, with complete, accurate and consistently maintained doc-
umentation of all inputs, outputs, expected behavior, arss$iple exception conditions.

¢ Uniform conventions should exist within each interface and among differentrfates. This
is particularly important for visible interfaces, but casabe beneficial to developers for
hidden and internal interfaces.

e The existence of supposediidden interfacesshould be truly invisible — except when they
are explicitly needed (as in the case of debugging, integraand remediation).

¢ Interface arguments (and their symbolic names or othetiftkns) should reflecstrong typ-
ing of objects to minimize errors arising from type mismatching

e Certain interfaces may benefit froself-defining arguments,either as an alternative option
or as a standard, particularly in the absence of or as a pesdibrnative to sensible typing.
Ideally, strong typing can be enforced through a combimadiogprogramming language con-
structs, programming style, precompiler and compilerigdlste, programming discipline,
and possibly hardware support.

e Some interfaces or combinations of interfaces represatdg stformation that is inherently
complex, for example a network manager dealing with trafficgity, security, reliability, and
so on. Certain graphical techniques can display in two @glkiimensions various projections
of multidimensional spaces.

84 CHAPTER 5. PRINCIPLED INTERFACE DESIGN

¢ Interface design should be amtegral part of system design. In particular, sufficient in-
formation regarding internal states should be maintaimed suitably accessible form —
to facilitate whatever analysis needs to be done externHllyis is not done properly, the
real-time analysis tasks will be extremely difficult andttgsf not impossible.

e Assuranceis desired that the implementation at any particular iamfis consistent with
the interface requirements and specifications. Ideakyirtiplementation should meet the re-
quirements, and do precisely what is specified — and no mareieMer, the concept of doing
nothing else (Section 3.2) is an extremely difficult one wuas, because of typically incom-
plete specifications and possible hidden side effects. [(fld®idge’s dissertation [159] for
a discussion of the spectrum from opaque to transparens.fype

e Composability of perspicuity is also a desirable characteristic. If two modules A and B
satisfy certain perspicuity criteria, it will not in genéfallow that the composition of A and B
will also follow those criteria — for example, because of egest properties or various types
of negative interactions. Similar lack of composabilityc@mmon with respect to security
properties.

Desired properties of specifications, architectures, amglémentations are considered in sub-
sequent sections.

5.2.4 Basic Approaches

There are several different approaches to increasing ipaigp Ideally, a combination of some of
the following might be most effective, but each by itself cmmetimes be helpful.

First, consider proactive efforts. Ideally, it would be rmappropriate to develop new systems
that satisfy all of the above desirable characteristics -&-rmanch more. However, suppose you
have an existing system that fails to satisfy these charatits, or is in some ways difficult to
understand. Let us assume that you have identified an ioéetffiat is seriously confusing.

e What can be done proactively?

— If source code is available and is modifiable, fix it.

— If source code is not available, decompile the object codeth2 decompiled source
code, and recompile.

— If decompiling and recompiling are not possible (e.g., i€a®@piling is proscribed by
licensing constraints, or if the code is so extensively sbtied to hinder conventional
reverse-engineering tools, or if no compiler is availaitie¢n patch the object code.

For the most part in this study, we assume that source codeaiklale. However, we also
include some approaches that apply to object code wheneoade may or may not be available
on the fly.

Analytic efforts at enhancing perspicuity of software nfaees can also be useful even if they do
not require modification of either the source code or thedailgiede implementing those interfaces.

e \What else can be done?

5.2. FUNDAMENTALS 85

— Create a general environment within which code executiorbeeembedded that signif-
icantly enhances understandability of control flow. Int¢ikee debuggers and Interlisp
come to mind as examples.

— Create a wrapper for a specific interface, encompassinganputputs, and all exception
information that must be visible to the interface user, lbeowise hiding anything that
does not need to be visible. If sufficient internal staterimfation can be gleaned from the
interface, the wrapper might have a chance of cognitivefjnenting understandability.
Eunice (which was essentially a Tenex/TOPS-20 commandatordbr Unix) comes to
mind.

— Assemble a collection of analysis tools that can staticatigg dynamically analyze the
behavior of programs in the specific machine code languageceiitain cases, input-
output experiments can derive sufficient information ale@internal structure to enable
an external fix to be created (for example, along the linesibéy 1956 by Ed Moore’s
Gedanken experiments [241]). On the other hand, black-stig is inherently incom-
plete in almost all systems with nontrivial state spacesisTBource-code availability is
vastly preferable.

5.2.5 Perspicuity Based on Behavioral Specifications

At the IBM Almaden Institute conference on human interfacegutonomic systems, on June 18,
2003, Daniel M. Russell stressed the importance of sharpdrence between users and system
developers. The following speaker then continued thatcbiihought:

People and systems are not separate, but are interwoveraidistributed system that
performs cognitive work in conteXbavid D. Woods

An enormous burden thus rests on the human interfaces. Ad moSection 5.2.1, perspicuous
interfaces offer their greatest advantage when sometrasggbne wrong, and the system is not
working as intended. To really gain leverage from perspisuaterfaces, we need three primary
areas of support:

e Behavioral specifications in interfaces.Most programming languages support type infor-
mation only in interfaces. Furthermore, the type systemsein popular modern languages
are insufficient to express rich behavioral properties afecdRecall that all of logic can be
cast into type theory. Such type systems are generally uhalde, and require far greater
expertise in type theory than possessed by most softwareesrg. As such, they are of
theoretical interest rather than practical importanceyodowever, further research could
be helpful.)

e Debuggers that can work with behavorial specificationge.g., dynamically verifying that
all invariants hold). Ideally, we should be able to query aloie to determine whether or not
it is internally consistent. If there are bugs inside a ngbdule, that’s valuable information
— particularly if modules have been written defensivelyjwaroper attention to information
hiding. Otherwise, we might assume that a module’s cliergtrhave behaved “improperly”
— i.e., not following specified rules for using the interfa@@odel checking could help here
as well.)

86 CHAPTER 5. PRINCIPLED INTERFACE DESIGN

e Language supportand other tools for multiple views of modules. Debuggers atir
code analysis tools often need access to the internal exgeg®on of data structures, among
other implementation artifacts that are properly hiddemfrmodule clients. For example,
Standard ML of New Jersey and its compilation manager CMyrafh implementation of the
necessary functionality [50]. As an extension of thesesdesechanisms for secure modular
programming in Java are considered in [32]. Working throalgbf the security implications
of such language constructs may not be trivial, but needs tmhsidered up front.

Together, these capabilities could revolutionize thessysdebugging experience, by combining
tool support with machine-usable documentation of whatjgssed to happen, enabling compar-
isons of theory and practice.

5.2.6 System Modularity, Visibility, Control, and Correctness

To establish a baseline for the investigation of system raoily as a basis for establishing the
visibility of a system’s structural and correctness prtipsr a brief analysis of prior art was per-
formed by Virgil Gligor, resulting in an appraisal of whichetihodologies and tools have and have
not been effective in defining and analyzing system modylarithe past and to what extent. That
analysis is the basis for Appendix B of this report.

Gligor’s analysis investigates the following topics rethto modular system structures:

1. A generally accepted definition of a module (and of modaostances such as subsystem,
submodule, service, layer, and type manager)

The separation of module interface from the module implatetion
Replacement independence property of modules

Structural relations among modules (e.g.,dbetains anduses relations)

a b~ 0D

The correctness dependencies among modules and theifiestation as causal relations
among module interfaces (e.g., “service,” “data,” and fesmwment”, along with other de-
pendencies) that could lead to some sort of calculus of dkgreries.

Gligor's analysis also presents the relationships betweedule definition and its packaging
within a programming and configuration management systathpatlines measures (i.e., metrics)
of modularity based on the extent of replacement indepeseland the extent of global variable
use, as well as measures of module packaging defects.

The intent of this analysis is to identify pragmatic toolsl@aachniques for modularity analysis
that can be used in practice. Of particular interest arestti@t can be used to produce tangible
results in the short term and that can be extended to prodeoementally more complex depen-
dency analyses in the future.

Virgil Gligor notes that Butler Lampson [199] argues thatdule reusability has failed and will
continue to fail, and that “only giant modules will survitvé.we believe Butler's arguments (and
they are usually hard to dismiss), this means that “vidipilito giants” is more important than
ever. [Thanks to Virgil Gligor for that gem.]

5.3. PERSPICUITY THROUGH SYNTHESIS 87

5.3 Perspicuity through Synthesis

We summarize here the main concepts and issues relatingtensyarchitecture, software engi-
neering, program languages, and operational concernsevywno one of those areas is sufficient
for ensuring adequate perspicuity, security, reliabibtyd so on. Indeed, all of these areas should
be important contributors to the overall approach.

From the synthesis perspective, there are two differentfiestations of perspicuity: (1) making
interfaces understandable when they are to be used undeahoperation, and (2) making the
handling of exceptional conditions understandable whemerkation is required (e.g., recovery,
reconfiguration, debugging, aggressive responses). BHothese are considered, although the
most significant payoffs may relate to the second case. NMateperspicuity can also be greatly
aided during development by the appropriate use of stasltysis tools.

5.3.1 System Architecture

Issues: Hardware protection and domain isolation, software abstm@, modularity, encapsula-
tion, objects, types, object naming and search strategiekiprogramming, processes, domains,
threads, context changes, concurrency, interprocess oamation, multiprocessing, interproces-
sor communication, networking, wrappers, and so on.

Useful historical examples:Two system architectures are noted in which great emphasgs w
devoted to interface design within a hierarchical struetur

e The Multics development emphasized novel hardware and software. Velafenent was
carefully reviewed, iterated, and approved, before ang @mdild be written — with attention
to detailed software module specifications, analysis okddpncies on other modules, and
specific interfaces. Some critical modules were rewrit@many as ten times, each version
being reviewed before coding, and again before integrat{dultics-related principles are
noted in Sections 2.3 and 2.4; its architecture is consitier&ections 4.3 and 4.4.)

Several aspects of Multics are particularly relevant tg thiscussion of perspicuous inter-
faces. The hardware-enforced hierarchical ring/domguarsgion meant that much greater
attention had to be paid to the specific interfaces. Symbalning of objects (such as virtual-
memory segments and virtualized input-output streams hle invisibility of paged mem-
ory implied that machine addresses were never visible tgraromers. Dynamic linking
of symbolic file names and dynamic paging provided an aklsbtraof virtual memory that
completely hid physical locations in memory and secondtoyage media (as well as the
associative memory). There were strict interface starsdBodarguments and formats. A
constrained subset (EPL) of the full PL/I language enabletst all programming to be
done in a higher-level language. Programming styles wejidlyi enforced, and changed
for the better as the compiler improved — enabling certaily lmpguage primitives to be
avoided entirely. The stack discipline inherently avoidéack buffer overflows by making
the out-of-frame stack elements nonexecutable, and liegetfse direction of stack growth
(e.g., see [188, 189]). Each of these concepts contribotéget abstraction, encapsulation,
and cleanliness of the interfaces.

88 CHAPTER 5. PRINCIPLED INTERFACE DESIGN

e SRI's Provably Secure Operating System(PSOS) design was based on a hierarchically
layered object-oriented architecture with special atbento unified interface design at each
layer, largely based on the pervasive use of strongly typgddd objects and formal speci-
fications for each module at each layer. The specificatiomgiged an essentially complete,
self-contained, and relatively easily understood detonf every interface, including for-
mal definitions of all arguments, inputs, outputs, and etoapconditions. The abstract
implementations relating the functions at each layer te¢hof lower layers added to the
perspicuity of each interface, providing an intuitive higlrel description of each function in
terms of lower-layer functions — despite the complexitylad bverall system. For example,
see [120, 268, 269].

Other systems also pursued various aspects that addréssaddortance of proactive inter-
face design — for example, some other capability-basedtantbres, Secure Computing Corp.’s
strongly typed systems, and to some extent others such dsn8k- Plan-9, and some of the
multilevel-secure kernels.

The following concepts are relevant to the development offpeuous interfaces.

e Architectural structure. System structure is layered, from hardware to operatinggeysto
applications to user programs, with abstraction and entafsn at each usable layer inter-
face. At different layers, usable interfaces include ngoxte, instructions, internal operating
system primitives restricted to privileged software, @pieig system commands, application
primitives, and so on. Thoughtful layering, abstractiong @&ncapsulation can greatly en-
hance perspicuity, without necessarily diminishing perfance.

e System interfaces.Each of the system layers has potentially multiple intex$adncluding
operating systems, user commands and other visible intf&ernelized architectures, do-
main isolation, process separation, authentication saocentrols (some of which are clearly
not perspicuous), accountability, administrative irdeds and other protected internal inter-
faces, concurrency management (deadlocks, race corglisgnchrony-dependent security
flaws), device drivers, stack disciplines, object namim@gred library management, and so
on.

e Application interfaces. Even if the underlying operating system interfaces are 1set-u
friendly, application interfaces can be made so — to thergxteat the appropriate application
state information is adequate to explain behavior relet@tite application interface, and to
the extent to which the operating system is hidden.

¢ Interdependencies.Dependency analysis among system specifications andetbsaidhitec-
tures in the design stage can greatly enhance the perspattiite resulting system interfaces,
allowing simplification or removal of unwanted dependesgcind enabling documentation
to accurately characterize the remaining dependencies.

e Wrappers. The introduction of a wrapper can mask the complexities créiqularly gnarly
interface. However, it can also easily provide a false sefigerspicuityand a false sense
of security. Perspicuity is reduced if (for example) vitatails are hidden that are needed to

5.3. PERSPICUITY THROUGH SYNTHESIS 89

determine the state of the implementation underlying agriate. Security is reduced (for
example) if the wrapper fails to mask security flaws, or @satew flaws, or if its supposed
mediation can be compromised from within or below.

e Multilevel security and integrity. If an environment is expected to enforce multilevel se-
curity, the architecture and all of its interfaces shouldskndne existence of all information
at higher security levels. If an environment is to enforcdtitewrel integrity (as in the Biba
model), the architecture and all of its interfaces shouklent — and thereby both mask
and prevent — dependence on all activities at lower intedewels. If designed properly
(e.g., [308], these constraints can greatly increase thepeity of the various interfaces,
although possibly complicating the real-time analysisadity designed applications. These
issues are considered further in Section 5.3.6.

e Networking issues.Perspicuity issues arise extensively with respect to alewasy aspect of
networking, including reliability, security, integritgvailability, fault tolerance, survivability,
connectivity, specific protocols, routing, stability ofaqgerating parallel executions, concur-
rency, and so on. Hiding unnecessary details is of paramoyndrtance, but not suppressing
error conditions without properly handling them is a catineed.

Relevance for perspicuity: All of these issues can senoaféct interface perspicuity.

5.3.2 Software Engineering

Unfortunately, “software engineering” is a term appliedtoart form, not to an engineering disci-
pline. Nevertheless, there are many principles (such aetimChapter 2) of sound architectures,
good software engineering, and good development pragtiteh — if they were followed wisely
— can result in systems with much greater security, relighdnd so on, much greater assurance
that those properties are indeed satisfied statically, amchrgreater perspicuity when something
goes wrong.

Issues: architecture, distributed systems, real-time systentgjirements, specification, soft-
ware development methodologies, abstract implemensgtammposability, abstraction, modular-
ity, encapsulation, information hiding, uniform handlin§objects, object-oriented approaches,
development practices, integration, debugging, testimggeling, simulation, fault injection, for-
mal methods for specification and analysis of functional@mafunctional properties, formal veri-
fication and model checking, performance analysis, toolstitic and dynamic analysis, software
process technology, Clean Rooms, Extreme Programmings@ad. Development environments,
component technologies, and related approaches such @stheon Object Request Broker Ar-
chitecture (CORBA), CORBA Component Model, the Componédnet Model (COM), DCOM,
ActiveX, Enterprise Java Beans (EJB), Java Remote Methazttion (RMI), and so on.

For example, CORBA provides some basic help in dealing vighniterface definitions of pro-
prietary closed-source components without having accetdetsource code. CORBA defined the
Interface Definition Language (IDL) as a method to providelaage-independent interface defi-
nitions. IDL types are then mapped into corresponding typesach language; there are standard

90 CHAPTER 5. PRINCIPLED INTERFACE DESIGN

mappings for some languages (C++, Java, Smalltalk). Whéatty aiding cross-language inter-
operability, to date, it has not been widely applied to COdfBrgare. (Note: Netscape based much
of its architecture in the mid-to-late 1990s on the goal ahpea “platform” on CORBA. There
are rumors that a good bit of custom, in-house software gelaorporations uses CORBA.) In the
open-source world, its greatest success has been in the G&Nfdject. Like other existing tech-
nologies, IDL does not support behavorial specification$il®the CORBA folks discuss using
IDL to structure the interfaces of a monolithic programsttibes not appear to be very popular.
CORBA's success, rather, has been in providing objechteteRPC services, where IDL is used
as the RPC specification language.

Relevance for perspicuity: All of these issues can seriously affect interface persgicun
particular, bad software engineering practice can reauystems that are extremely difficult to
understand, at all layers of abstraction (if there are ar®t) the other hand, intelligently applied
good software engineering practice can greatly enhanapigeity, particularly for software for
which human interface design is an integral part of the systechitecture. However, the best pro-
gramming analysis tools can not overcome inherently baditaxtures, bad software engineering
practice, and sloppy testing.

5.3.3 Programming Languages and Compilers

Issues.We begin with a brief enumeration of the most relevant isthsaffect interface perspicu-
ity. (Some of the items — particularly those relating to paygming languages — are merely
collections of thoughts for further discussion.)

e Language issuesnclude modularity, abstraction, encapsulation, objegtses, strong typ-
ing, dynamic linking, tasks, threads, sharing of resou(tik=s, address spaces, objects, li-
braries), intertask, interprocess and interuser comnatinit, garbage collection, stack dis-
ciplines, executable specifications, analysis of sourck aeersus analysis of object code,
comments and interpretable annotations, and so on.

e Compiler issuesinclude overzealous compiler optimization that obfuss#te analysis that
can be done from the interfaces, especially if it eliminae=urity boundaries such as protec-
tion boundaries and reliability measures such as inteati@dundancy. There is a need for
programming language features that can prevent such @leuzeoptimization. In addition,
tools for dependency analysis can also identify interfaceghich perspicuity is likely to be
poor.

e Execution issuesnclude execution environments, integrity of virtual-rhae monitors, run-
time support (libraries, search strategies), hand-tedkéxyte-code (in the case of Java), and
implications of decompilers where source code is not avbila

e Programming language characteristics Programming languages that have many bells and
whistles and attempt to be all things to all programmers (éa@es to mind) tend to have
too many opportunities for introducing program flaws. Onakiger hand, extremely simple
languages (Basic) seem to introduce too many opporturigregarning bad programming
practice. Functional, declarative, applicative, constraobject-oriented, aspect-oriented,

5.3. PERSPICUITY THROUGH SYNTHESIS 91

rewrite-logic languages, and so on all have their own benafd quirks. Is it time for a
new programming language that really makes it difficult tatevbad code — for example,
inherently avoid buffer overflows and other characterifties? Perhaps we just need better
education stressing many of the concepts in this report.

e Mostly positive examples.PL/I (tasks, stacks, explicit exceptions), Modula 3, JavdhiVM
(threads, re-entrant monitors), CCured, Occam, CSP, CmrduPascal, Standard ML [239],
Standard ML of New Jersey [17], Extended ML, Concurrent pragming in ML [314],
Eiffel, Common Lisp, typed assembly language and corredipgrassemblers.

e Mostly negative examplesUntyped languages, environments that make characteftasiis
(such as buffer overflows) too easy, lack of bounds checksaaguiment validation, wild
pointers, poor exception handling, lack of finalizationsound concurrency primitives, etc.
C, COBOL ALTER verb, GOTOs, ComeFrom(!).

e Mixed examples. C++ (use with STL helps somewhat in overcoming its compyexiC#
(C# types are similar to those in COM), Ada (rendezvous),sanan.

e Other examples.Eiffel's method of signatures including pre- and post-dtiods overriding
inherent pre- and post- (unlike Java).

e Concurrency. Primitives for atomic transactions, interprocess comration, shared-memory
locks, precedence protocols, consistent finalizatiorgraated rollback and recovery, and so
on.

Here are several guidelines for increasing perspicuitgugh good program languages and
compiler-related tools, as well as good programming peeacti

e Choice of programming language.Given any particular development effort or subsequent
redevelopment, one of the most important decisions maydetibice of suitable program-
ming languages and supporting tools.

e Modularity. As noted in Sections 5.3.1 and 5.3.2, well-chosen architathodularity (e.g.,
abstraction and minimized interdependencies, partilyuweth careful encapsulation) can be
very beneficial, as long as it is enforced by suitable prognarg languages and compiler-
related tools that can aid in not compromising the architetistructure and interdependen-
cies.

e Concurrency. Poorly implemented concurrency is particularly likely ianehish perspicuity
in multiprogramming and multiprocessing systems, tyfpychecause of badly constructed
primitives for sharing, locking, and isolating processed abjects. On the other hand, this
tendency can be greatly diminished through well-concegpredramming languages and suit-
able analysis tools (plus highly disciplined programmityges.

e Transactional programming. In multiprogramming and multiprocessing environmenems-
actionally based programming has enormous advantagesesiptect to perspicuity, as well
as robustness.

92 CHAPTER 5. PRINCIPLED INTERFACE DESIGN

e Static analysis.Compilers that are augmented with static analysis toolfiegmsignificantly
— ifthey go well beyond routine flow analyzers, dependen@harers, and debuggers. How-
ever, compiler optimization can greatly reduce perspycprticularly if it destroys or masks
the integrity of the architecture and the program structure

e Application-specific tools. Several areas are particularly well suited to applicaspaeific
tools, such as detecting flaws in bounds checks, concurrandycryptographic protocols.
For example, Static analysis tools for developing and imglieting cryptographic protocols,
such as BAN Logic [61, 4], Spi Calculus [2], and the recentkvof Jon Millen and Grit
Denker on CAPSL and MuCAPSL [99, 237] (see
http://www.csl.sri.com/ "millen/capsl for further backgind) at SRI.

Analysis tools that can aid in determining the perspicuitynterfaces are considered in Sec-
tion 5.4.

5.3.4 Administration and System Operation

Administrative-interface issuesinclude ease of maintenance, autonomic system behavior and
what happens when the autonomic mechanisms fail, selfid&igg systems, configuration con-
sistency analysis, and many other topics.

User-interface issuesnclude ease of diagnosing system failures, ease of debg@ggiplication
code, analysis tools, and so on. Of particular concern &eslers who have critical responsibil-
ities — for example, operators of SCADA systems and othéicatiinfrastructure components,
control systems, financial systems, and so on. In these,cask$ime monitoring and analysis for
anomalous system behavior become part of the interfaceqwurv

Relevance for perspicuity: Today’s system adminstrator interfaces tend to put an eogsm
burden on the administrators. Simplistic would-be sohsdithat attempt to interpret and explain
what has gone wrong are likely to be inadequate in critidalasions that go beyond the low-
hanging fruit.

5.3.5 No More and No Less

“What you see is what you get” might be considered as a basntrenaf perspicuity — especially
if it is taken seriously enough and assuredly implies thaatwlou get ismo more and no lesthan
what you see. (Recall this dictum at the beginning of Sec3i@p in the context of the effects of
composition.) The extent of typical exceptiongimmore and no less astounding.

There are many examples ofore, many of which can be very damaging: hidden side ef-
fects, Trojan horses, undocumented and unadvertised hegdwnstructions and software primi-
tives (sometimes with powerful override abilities), lurgirace conditions and deadly embraces,
blue screens of death, frozen windows, misleading URLsdkarmple, a cyrillic o instead of a
roman o, or a Zero in MICROSOFT waiting to take you somewhése)eand so on, ad infinitum.
Les Lamport’s definition of a distributed system noted in @tbal suggests that what you might
have expected to happen won't.

5.4. PERSPICUITY THROUGH ANALYSIS 93

There are also various exampledess,many of which are likely to be frustrating or debilitat-
ing: expected resources that do not exist or are temponaméyailable, such as URLs that point
nowhere, even though they worked previously.

Perhaps the most insidious cases are those in which sometitare and something less both
occur at the same time.

5.3.6 Multilevel Security and Capabilities

Several of the system architecture approaches in Chapter#lp elegant ways of achievisyhat
you see is exactly what you getultilevel-secure (MLS) systems and capability-basedesking.

In particular, if a multilevel-secure object is at a highecurity level or in an inaccessible com-
partment to the would-be user, then the user simply is ngvasgd to know of the existence of
that object; any attempt to name it or list a directory in whitcexists is greeted with a single rela-
tively neutral undifferentiated standard exception ctindisuch as “no such object” that conveys
no information. Note that any exception condition indicattat provides a variety of possible
context-dependent error messages is likely to be subjeexptoitable covert channels through
which information can be signaled.

Similarly in capability-based addressing, if a user doeshave a proper capability for an
object, that object is logically equivalent to being norsésint.

In a sense, this is a very satisfactory goal in terms of peusfyi of haming and accessing
system resources. On the other hand, if anything goes whémgan become quite complicated.
From a user’s perspective, everything that supposedlys&edbe visible is visible — except
when it isn’t. From an application developer’s perspectsienply plunking a legacy software
system into the multilevel environment may cause the agfiin to break, perhaps as a result of
short-sighted assumptions in the legacy code or a configarptoblem in the installation of that
code. From a system administrator’s perspective, accesssasecurity levels may be necessary to
determine what went wrong — unless the system is well dedigne single-level analysis tools
can suffice. Otherwise, there is a risk of violating the ML8parties. Thus, MLS and capabilities
can improve perspicuity when things go well, and can deergaghen things go wrong — unless
the architecture and implementation are well conceivedh@first place and the analysis tools
are effective. Furthermore, in the absence of some sort dflewel integrity in an MLS system,
hidden dependencies on untrustworthy components canmiethe integrity of the MLS levels.

5.4 Perspicuity through Analysis

5.4.1 General Needs

From the dynamic analysis perspective, there are again iffeyaht manifestations of perspicu-
ity: (1) using static and dynamic analysis of a given integféo provide greater understandability
as the interface is being used under normal operation, gnidtétpreting real-time exceptional
conditions and making them understandable contextuallgr—ekample, whenever remediation
is urgently required (as in the cases of recovery, recordtgam, debugging, and aggressive auto-
matic responses). Both of these cases are considered iseittion, where we seek to identify,
characterize, and exploit analysis techniques for defiamdyanalyzing system interfaces so that

94

CHAPTER 5. PRINCIPLED INTERFACE DESIGN

the behavior of the systems and the dependencies amongsygisens can be more easily under-
stood and controlled.
This is a multidimensional challenge. Some of the dimenaieoutlined as follows.

Nature of software openness:Potential differences in perspicuity arise between alibgla
source code (under any of various licensing agreements}rendeneral unavailability of
proprietary closed-source code, with respect to operatystems, libraries, applications, ex-
ecution environments, and analysis tod\though tools for reverse engineering are becom-
ing more effective, analysis of source code is generallyhmaasier than analysis of object
code.

Range of analysis methodsMany analytic techniques are relevant, from completelynalr
models to more conventional ad-hoc approaches, with amiolélenground between the two
extremes. Skills required to use the methods and tools vaglyy as do the costs and impact
on delivery schedules. Similarly, techniques vary frontista dynamic, with hybrids in be-
tween. Static analysis is useful in development and inifatihg dynamic analysis; dynamic
analysis is often essential when something goes wrong. C8epter 6.)A combination of
analysis methods is likely to be most effective.

Range of possible modalitiesFor example, static analyses can provide feedback toward im
proving perspicuity through augmentations of the intexfaand their implementation. Static
techniques can improve understandability and maintalityaliithout altering existing sys-
tem interfaces. Static analyses can contribute directipdoe effective dynamic analyses.
Dynamic analyses can facilitate rapid recovery, recondition, restoration of service, and so
on. There are many possibilities.

Possible results: There are many possible by-products of perspicuity-irgirgpanalyses.
The results may include enhanced operational securitighgity, survivability, and satisfac-
tion of real-time performance requirements, as well as&asystem adminstration.

In general, it is advantageous to address the problem ofasteperspicuity up front, and then
consistently follow through. This suggests an approachgéhaompasses the entire development
cycle and operations, which can make the analysis chalkemgieh more accessible.

e Establish clear requirementsfor what is desired, including with respect to interface-per

spicuity.

e Provide unambiguous behavioral specificationgor software components, paying partic-

ular attention to the interrelationships among componahtsach layer and the interfaces.
Develop tools for analyzing these specifications.

e Develop tools for identifying and analyzing inconsisten@s between behavioral specifi-

cations and actual behaviorfor example, resulting from failures or misuse.

e Develop analysis of implementationshat use soundly based (e.g., strongly typed and well

structured) languages that are more amenable to analysieldp tools for analyzing the
resulting software, statically and dynamically.

5.4. PERSPICUITY THROUGH ANALYSIS 95

e Develop toolsfor dynamically analyzing behavior of systems in execut@o would-be
operational responses of system administrators.

5.4.2 Formal Methods

Issues:Methods and tools for demonstrating consistency of spatidias with requirements, and
consistency of code with specifications; formal verificatemd model checking; analysis tools for
detecting characteristic security flaws, buffer overflosws] so on.

Examples: HDM hierarchical abstraction, formal specifications, staiapping functions, and
abstract implementations; PVS and PVS interpretation$§,G&alculus, and so on.

Of patrticular recent interest are Drew Dean’s PhD thesi§ [@& Wagner-Dean paper [98] on
static analysis of C source code, the work of Giffin, Jha, aiteM130] on analyzing binaries for
mobile code (extending the Wagner-Dean approach), and Haa'€effort [75, 77, 78] at formal
model checking to search for characteristic flaws. (Of aguitss much easier to do analysis on
source code, if it is available.) Also, see Mitchell and Rilo{240] for a highly readable paper
on theoretical foundations of abstract data types withterigal types; it is of particular interest to
type theorists. See Chapter 6.

5.4.3 Ad-Hoc Methods

Issues:Informal methods and tools for testing for the inconsisyerfcspecifications with require-
ments and the inconsistency of code with specificationgrdtiols.

5.4.4 Hybrid Approaches

Purely formal tools tend to be difficult to use for ordinarymads. Purely ad-hoc tools are limited
in what they can achieve. Semiformal tools may provide ageridetween these two approaches.
Examples include formally based testing (e.g., mechagidativing test conditions) and machine-
assisted code inspections.

5.4.5 Inadequacies of Existing Techniques

Some of the above existing techniques can have significkautéh the near-term future, if applied
wisely. However, in the longer-term future, those techemjare not nearly adequate. Thus, in this
section we consider several areas in which there are segapssin existing approaches.

Many problems are made worse by a lack of perspicuity:

e Flaws and bugs: Certain characteristic design flaws and software bugs, (280], Chapter
3) seem to recur pervasively, including security- and comrcy-related flaws and failures.

¢ Interdependencies: Complex interdependencies typically exist among diffedasign en-
tities, different source-code modules, and different obgwde components, especially in
poorly architected and poorly implemented systems.

96 CHAPTER 5. PRINCIPLED INTERFACE DESIGN

e System administration: Enormous complexity typically arises in system admintgirg
partly because of complex systems and partly because ohberdiaice design. This tends to
induce configuration errors, upgrade inconsistenciegabipaal oversimplifications, and so
on.

e Proprietary bloatware: Proprietary code is often an obstacle all by itself. Blogteapri-
etary code is of course generally even less perspicuougekgies of backward compatibility
with nonperspicuous legacy systems certainly do not help.

5.5 Pragmatics

5.5.1 lllustrative Worked Examples

We foresee various possibilities for something that candseigbed conceptually without having
to do much implementation, or whose implementation coulditéned and be pursued in detail.
Some of these examples can demonstrably enhance perggotiit statically and dynamically.
It might also be possible to characterize some measuresrgbipaity that could be analytically
determined, although this is deemed less likely and prodabsk realistic.

One possible overarching approach is the following. Giverombination of specifications,
source code, and perhaps some knowledge of the possiblatiogeenvironments, statically ana-
lyze them and transform them into a body of knowledge thatbeaimterrogated dynamically, for
example, when an environment is under stress. A combinafidgnamically interpreted pre- and
post-conditions could then directly produce analysisltesbat would facilitate the understanding
of attacks and malfunctions, based on which conditions &ith an approach would provide help
in recommending autonomic responses and human-aidedisspas appropriate. Note that this
is not really a new concept. For example, the ESS Number Rhelee switching systems had
a diagnostic dictionary that covered almost all possibikefa modes and suggested appropriate
remedies. However, in the context of more modern programiainguage and operating system
technologies, such an approach could now be significantlse raffiective — albeit significantly
more complicated.

Several specific examples come to mind as candidates fored@kamples.

e System administrator example. Sketch of an environment for system administrators that
could draw on the analysis results of the tools under discndeere, for example, for Linux
or a BSD system.

e TCP/IP multilayer example. At multiple layers, characterize the TCP/IP specificatiand
source code (e.g., [382]), and develop a framework withirctvleffective dynamic analysis
can be carried out largely automatically.

e MLS example. Develop a prototype multilevel secure environment (formegke, based on
the Proctor-Neumann architecture [308] and other congep@sapter 4, including possibly
with some aspects of multilevel security and multileveggrity) in which facile perspicuity
is a major design requirement. In particular, such a devety should pay careful attention
to increasing the simplicity of subsequent applicationeliggment and dynamic analysis

5.5. PRAGMATICS 97

tools that facilitate recovery from errors, without commiieing the desired MLS (and MLI)
properties.

e Transactional example. Specify and sketch the implementation of a small but realagt-
plication in a transactional system and in a nontransaatisypstem, and compare the two
under a variety of circumstances — such as aborting a processdstream, disabling an
input stream, clobbering a temporary file, or performing@usity attack.

e Model-checking example. Analysis of a system or subsystem, using available tootdu(d
ing, for example, extensions of the Chen-Wagner modelichg@pproach) and identifying
models that are missing but that could be added with relathge and effectiveness.

5.5.2 Contemplation of a Specific Example

When we went looking for examples where behavioral spetifioca would be useful, the BSD
TCP/IP stack seemed like a logical place to start: not ontlgassoftware open-source, but there is
excellent documentation as well [229, 382]. Unfortunatiis plan did not succeed as originally
hoped. Our first idea was to examine the implementation ofAtidress Resolution Protocol
(ARP). Up through 4.3BSD, the ARP implementation was a smalilule with a simple interface
to the rest of the TCP/IP stack. In 4.4BSD, a new, generafizeting table structure that integrated
ARP was introduced. The ARP implementation no longer hamalsi, clean interface to the rest
of the kernel — it is now part and parcel of the routing code,ueimlarger and more complicated
piece of the TCP/IP stack. (Of course, it is conceptuallgnadeal with ARP-resolved Ethernet
addresses in the routing framework, and eliminate the apkandling of Ethernet addresses for
machines on the local network.)

Our next target was the UDP implementation. UDP is a nice Emgtocol, and would appear
to be an ideal example. The networking code in the kernelarsedject-oriented design similar to
that of the file system code, although the actual implememtad in plain C. The implementation
combines both a message-passing style, a la naive olojeBtheme, and a record of functions
style more similar to C++. The message-passing style isasedtput, and the record of functions
style on input. With better language support, these panasligould result in an extremely clean
implementation, but with C requiring manual implementataf all the details, some generally
difficult layering issues explicitly raise their ugly heads

On output, the handoff from the socket layer occurs touithe_usrreq function, which takes
as arguments a socket, a command (i.e., message), anchthtdechains: the data to be sent,
the address to send it to, and some control information thabt used by UDP and will not be
discussed further. If the commandRRUSEND thenudp _output is called. Inudp _output
is where things start to get ugly, making a behavioral spmtibn less elegant than one would
desire: either the socket has been connected to a destirfa®s, this makes sense for UDP!),
or a destination address has been supplied — but not bothcddes most unfortunately, knows
details abougall of the data structures, and peeks around inside them tocentbis addressing
invariant. With better language support, including eittmethod overloading on argument type, as
in Java, or full multiple-dispatch, as in CLOS, this couldveey elegant: whether or not a socket
is connected to a destination, as well as whether or not andésh address is supplied, could
easily be encoded in the type system. Then, there would beseparate implementations, three

98 CHAPTER 5. PRINCIPLED INTERFACE DESIGN

of which simply signal an error, with the fourth function pending the UDP header, generating
the UDP checksum, and eventually callify _output . The main implementation would not

need explicit code to check the addressing invariant, ay#weg would be guaranteed correct by
the programming language.

On input, things are much simpler. The code checks varioligityaconditions on the input
packet, and assuming the packet is valid, then checks whisth@acket is destined for a unicast
or broad/multicast address. If the packet is destined farieast address, the code searches for a
socket to deliver the packet to. Assuming that an apprapsgatket is found, the data is appended
to its receive queue, and the process is woken up. For bredtizest packets, the data can be
delivered to more than one socket, and the appropriate gg(e® are woken up. If no socket is
found, an ICMP error packet is sent back to the source of thkgta

5.6 Conclusions

This chapter is perhaps the most speculative in the repasgdmore on hopes for the future that
are less supported by the past than was the case regardritgghiers on principles, composability,

and architectures — all of which have long histories in theesgch and development communi-
ties. Interface architectures have seemingly been neglealegated to an afterthought of system
design and implementation.

Chapter 6

Assurance

Synopsis

Even if requirements and architectures have been createpasably and with serious observance
of the most important principles, questions must be coms@tlas to the trustworthiness of the
resulting systems and their uses in applications. Howsueh analysis can be extremely difficult
unless assurance has been an integral consideration boatpe development.

Thus far, we have considered how to achieve principled caaple architectures and to infor-
mally provide integrity of an architecture and its implertaion throughout the system develop-
ment process, in attempting to develop, configure, and @aitrustworthy systems and networks.
In this chapter, we consider assurance aspects associgtatiewevelopment process and with its
artifacts and end products. We seek a collection of assatacbniques and measures of assurance
that can be associated with requirements, specificatiooBitectures, detailed software designs,
specifications, implementations, maintenance, and dparats appropriate.

6.1 Introduction

Regarding trustworthiness of critical systems, assuraada the eye of the beholder.
However, it is better to depend on systems worthy of beingigdurather than to be
beholden to seriously flawed software and unknown compsrieGiN

We seek to achieve trustworthy systems and networks, witlesdemonstrably sound mea-
sures of assurance — that is, rigorously addressing theiqnesf how worthy really is the in-
tended trustworthiness. Measures of assurance can betsowagtariety of ways, throughout the
development cycle — and thereafter as well. For example, thight involve analyses applied
to requirements, architectures and detailed system desifjoperating system and application
software, compilers, hardware, and operational practidéth respect to software developments,
thorough formal analyses throughout the development ayateprovide some significant levels
of assurance, although less formal techniques such as negdedition, testing, and red-teaming
are complementary techniques that can also be very useéuer@lly much less satisfying if not
unworthy from a serious assurance point of view are measirestitutional goodness (as in the
Capability Maturity Model) and individual programmer coetence (as in certification of software

99

100 CHAPTER 6. ASSURANCE

engineers). Overall, no one assurance technique is adeluéself; each — including those that
are formally based — has inherent limitations that must begrized and surmounted.

Perhaps the most important conclusion of this report in dforts to attain sound and robust
systems and networks is that the assurance associateduwsitivdrthiness must be a pervasive and
integral part of the development cycle and the subsequerttpnal use and long-term evolution
of the resulting systems and networks. We repeat this ceimritemphatically, referring to it as
the notion ofPervasively Integrated Assurance (PIA)

Attaining some nontrivial measures of assurance is sedyrarigbor-intensive process, but then
S0 is conventional software development — including tgstilebugging, integration, red-teaming,
maintenance, and evolution. ldeally, assurance techgigbeuld be incorporated into existing
tools for software and hardware development. Furthermuoee;, tools for enhancing assurance
should also be added to the development process. On thetlahdr there are grave dangers in
believing in the infallibility of development tools. Oncgain, we must depend on the intelligence,
training, and experience of our system architects, dessgnmplementers, application system
operators, administrators, and — in many cases — end usars#ives.

Typically, there are enormous benefits from techniquesddiabe applied upfront in the devel-
opment process, such as formal specifications for critegliirements, principled architectures,
and formal or semiformal design specifications. It is cearieferable to prevent flaws early that
would otherwise be detected only later on in the developmetawever, there are many flaws
that cannot be detected early — for example, those intratldoeng implementation, debugging,
and maintenance that can nullify earlier assurance teabsigConsequently, assurance must be
a distributed and temporal concept throughout developnmeaintenance, and operation, where
constituent assurance techniques and isolated analys&stimmselves be consistent, compos-
able, and carefully coordinated. For example, careful dwmntation, disciplined development
methodologies, coding standards, and thoughtful codestigm all have a place in helping in-
crease assurance — as well as having secondary effectsstmtiuging downstream remediation
costs, and improving interoperability, system flexibilignd maintainability. However, when it
comes to providing meaningful assurance, the usual dicpphies: There are no easy answers.

6.2 Foundations of Assurance

“If a program has not been specified, it cannot be incorrettdn only be surprising.”
W.D. Young, W.E. Boebert, and R.Y. Kain [386]

Several basic issues immediately come to mind in seekingased assurance. (See also a
report by Rushby [326] on providing assurance relatinglialvdity and safety in airborne systems,
whose conclusions are also applicable here.)

e Requirements analysis.Developing a system based on incomplete, incorrect, oagiliée
requirements is clearly wasteful. Efforts to increase asste are meaningful only when
meaningful requirements have been established. Howesemdn a well-defined relevant
and extensive set of requirements is a very important béggnio increasing the assurance
of the resulting systems. Detailed analyses of requiresn@md particularly formal analyses
where the requirements are formally defined) can be enorimbaseficial.

6.2. FOUNDATIONS OF ASSURANCE 101

e Pervasively Integrated Assurance (PIA)As noted above, techniques to provide assurance
related to all relevant aspects of trustworthiness need tmhintegral part of the development
cycle and persistently invoked during operation, maimeeaadministration, and long-term
evolution.

e Guarantees. Although we can make carefully couched conclusions basetigbtly con-
strained assumptions about paper designs and software cdue never be any absolute guar-
antees with respect to the behavior of computer-commuaitaechnology in actual use.
No matter how careful we may be, we cannot anticipate alliptessleleterious events —
including hardware malfunctions, software flaws, humantakiss, malicious actions, and
environmental disruptions. As a consequence, assuracigeitgeies should never be used to
create a sense of perfection. Instead, they should be ussalitoit the imperfections and
reason about the implications of what might go wrong.

e Analyses of composability and specific compositionsAs noted in Section 3.1, compos-
ability is meaningful with respect to many entities, indhugl requirements, specifications,
protocols, implemented components, and proofs. Analysi®mposability is important for
each of these entities. Looking to a future in which spepiabpose and general-purpose sys-
tems and applications might become routinely composaliebmore-or-less compatible
demonstrably trustworthy components, a new type of aralysl would be highly desir-
able: analytically determining the composability (amorigen properties) of (ideally, well-
designed and well-specified) software components — notfqusthe initial creation of a
composed system, but also in subsequent reconfiguratipgsades, and even dynamic in-
stallation of mobile code. This approach could (for examfake advantage of specifications
and software formally shown to be consistent with those ifipations, including descrip-
tors relating to previously evaluated characteristicshef tomponents — such as internal
locks that might cause deadly embraces in certain contagtsymptions regarding relative
dependencies, identified interface limitations, and o#ttgibutes that might affect the com-
positionality. Ideally, this approach could then be usedaiively — for example, initially
pairwise orn-wise, and then over successively wider scopes, possibbriasning obstacles
to the desired compositions, or even potential failure rsddat would suggest that a specific
composition should not be permitted in certain types of mmrents because of the identi-
fied deficiencies. Other properties could also be includech ss dynamic trustworthiness,
configuration stability, and operational factors. We rmathat there are all sorts of limitations
of such an approach, but even small steps forward could lyeusexful.

e Analysis of dependencieslin any would-be architecture, as well as in implementatigns
is desirable to be able to identify explicitly all potentd#pendencies, and, in particular, all
potentially adverse dependencies — that is, componentslisystems that rely on other
entities that are less trustworthy or of unknown trustwiots. It is also useful to identify
cyclic dependencies, especially those that can resultdafimite looping. This would be
especially useful in avoiding dependency problems in lagfevare systems. (Of course, the
use of structured architectures with modular encapsulatém also avoid such problems in
the first place, rather than having to rectify them latemhi&ir techniques apply to undesired
dependencies among policies, specifications, and proofso rlevant here is the notion

102

CHAPTER 6. ASSURANCE

of guarded dependence and its intuitive relationship withtievel integrity, considered in
Section 3.4.

Detecting and eliminating vulnerabilities. Assurance techniques in general, and formal
methods in particular, are most fruitfully applied whenyttean dramatically improve the
process of detecting and eliminating significant systemdlamd vulnerabilities, and dramat-
ically improve the quality of the resulting systems. To taigl, it is appropriate to ascer-
tain that critical requirements soundly represent thagnded purpose, and to demonstrate
by formal (or even semiformal) reasoning that critical prdj@s are satisfied by particular
components or subsystems with respect to their formal Bpattons. It is also appropriate to
examine critical aspects of the resulting system and oftipbamentation process itself, seek-
ing to derive or prove properties of the system in terms opprties of its subsystems. The
essence of this process is to provide cumulatively incngasbnfidence in the system design
and its implementation, by identifying inadequate requieats and flawed designs, and over-
coming them. Steps that do not add substantively to thisgsare generally less effective.
In particular, if the requirements are flawed and the spetitios are flawed, then attempting
to carry out code proofs that demonstrate consistency leetwede and specifications is of
very guestionable value. Once requirements are propethpkshed, formal analyses and
supporting tools can be of considerable value if they cantifiecertain types of flaws in
designs, source code, and executables, whether or notthégrenally based. In particular,
formal techniques can be very useful in identifying flawsuthentication algorithms, access
control mechanisms, network protocols, cryptographic esaings, and trustworthiness in
general.

Software and hardware consistency analysisiVe prefer here to avoid use of the term “cor-
rectness”, and instead refer to more precise statemertisasuconsistency of specifications
with respect to requirements” or “consistency of code wibpect to specifications” (assum-
ing that there are any specifications!). It is generally wenbd overemphasize the process of
trying to prove “correctness” of software and hardwaerrectnessis meaningful only with
respect to a set of presumed conditions that must be met —haise stated conditions can
themselves often be wrong or incomplete. (The quote at tganbimg of this section is par-
ticularly pithy, and also applies to requirements for wathiness as well as specifications.)
Besides, code correctness proofs are premature unlessgheements and the design are
sensible and demonstrably sound. The same is true of hagdsmahipments. Thus, efforts
to increase the assurance with which system dependalalitipe attained by the implementa-
tion should be up-front concerns but not overly stressedaatluntil the continual discovery
of new flaws in requirements and the design has dwindled deredly. However, at that
point, code proofs and other forms of analyzing the impletagon can be very valuable
— especially if they are able to show the absence of nonspddaififects such as surrepti-
tious Trojan horses or potential timing faults. In partanlthere is an enormous potential
for the use of formal methods in hardware implementationsorekample, in specifica-
tions, mask layouts, and fabrication, and especially fiticat coprocessors or chips such as
cryptographic devices.

e System-oriented analysesWhat is critically needed overall is a system-oriented vigw

6.2. FOUNDATIONS OF ASSURANCE 103

assurance that coherently encompasses temporal begitmergl life-cycle issues as well as
analyses across all layers of abstraction. Whether thgsemhbre linearly continuous (e.g.,
top to bottom, or bottom to top, or strictly beginning to emd)merely done piecewise and
then joined together as appropriate is not so important @shenthe separate analyses enable
all of the pieces to fit together.

Continuing on the subject of composition (see the fourtkipres item), horizontal (modular)
composition and vertical (hierarchical abstraction) cosifion (discussed in Section 3.3) are
both important subjects of analysis for the purpose of iaireg assurance. Various past ef-
forts are of considerable theoretical and practical irsteich as proving consistency within
a successive refinement thread throughout the developrffertt @nd proving consistency
from top-level requirements through detailed design dpations to software implemen-
tation, and perhaps even subsequent operation and evglptoticularly when applied to
large and complex systems. Similarly, when dealing withtigal and horizontal abstrac-
tions, efforts such as that of Robinson—Levitt [316] andBbger-Moore-Hunt-Young CLInc
stack [244, 245] (including five papers, [41, 42, 170, 243%]B&nable the functionality of
higher-layer abstractions to be explicitly related to thedtionality of lower-layer abstrac-
tions, iteratively across all layers as desired — for examfpbm applications to hardware —
as well as the relationships among different modules atahreedayer. However, those efforts
must be considered as overkill unless it can be demonstitzi€dll the relevant critical paths
can thus be encompassed and that no serious vulneralghinesxist in other threads. Then,
the comprehensive analysis can be very compelling, evabdrlintensive.

e Transformations. Considerable value can accrue from transformations thaodetrably
preserve desired properties, such as maintaining thestensy of specifications with re-
guirements despite changes to requirements, or mainggineconsistency of code to speci-
fications despite the machinations of optimizing compil&sing able to demonstrate that a
transformation is property preserving can significantipdify subsequent analysis. Trans-
formations that result from nontrivial compositions, laiehical layerings, and interpositions
of mediators such as firewall systems and trusted guardsfazensiderable value. The
transformational approach should also permit parametcigii@ctural representations — for
example, what simplifications or complications might résuhen a particular architecture
undergoes a particular change in design, such as makingsafier multilevel secure instead
of having multiple single-level file servers. The effectssath changes should be formally
derivable, if possible.

e Methodology. The choices of methodologies, specification languagesyagtamming lan-
guages are important to the success of a development affibtbahe effective application of
formal methods. However, those choices are generally tégsatif the architecture is poorly
chosen and if the properties to be satisfied are not apptepsafor example, seriously in-
complete, or too abstract, or badly overconstrained, orl@eslevel. Thus, considerable
effort may be worth devoting to establishing an architesthat is amenable to selective uses
of formal methods. However, there is also a danger that prama&hoices of methodol-
ogy, approach, and programming languages will lock theldpweent into a nonconstructive
path. Thus, it is essential that all these factors be coraidearly in the system devel-
opment process. (Historically important documents on &ism in software development

104 CHAPTER 6. ASSURANCE

include [58, 129, 190], and most recently [182].)

e Development tools.Various approaches to static analysis are considered tio8&c6. Also
of considerable interest here is the July 2004 special isSERCIM News [23], published by
the European Research Consortium for Informatics and Madlies. That issue is devoted
to Automated Software Engineering, and includes sectiongquirements, program under-
standing and architecture, testing, verification, aspefdinguage technology, configuration
management and deployment, and models. (That issue alsd@&sca section containing 16
contributions on R&D technology transfer.)

e Research and developmentConsistent with the ability to apply formal methods to cati
aspects of complex and critical systems, research mushoeib explore the frontiers of the
technology, and development must be carried out that emdognal methods constructively
as suggested in these conclusions. Some specific suggekiioiuture R&D are given in
Sections 8.2 and 8.3.

e Composability within the evaluation process. A remarkable paper by Paul Karger and
Helmut Kurth [187] addresses the essential needs for catiperand communication within
various components of the evaluation process, partiqudarit relates to the notion of Com-
posite Evaluation within the Common Criteria. One majomnpof the paper is that the results
of hardware evaluations must flow to the software develogedssoftware evaluators, irre-
spective of proprietary constraints. The consequencestafaing this can be quite dire. This
is a very important paper, and deserves considerableiattent

There have been many advances in assurance techniquesaréindigrly in formal methods,
over the past thirty years. However, major successes drawtited in the fruitful application
of these methods. We conclude that, whereas consideratdat@ remains untapped for for-
mal methods applied to security, we are now actually mucketlto realizing that potential than
previously. Many of the pieces of the puzzle — theory, meshh@d tools — are now in place.
It is unwise to put all your eggs in one basket (such as tesimgenetrate-and-patch efforts).
Thus, a more comprehensive combination of approachesdsmeended, especially if the desired
paradigm shifts are taken and if the considerations of theviing section are observed.

6.3 Approaches to Increasing Assurance

Providing meaningful assurance of trustworthiness idfisseery complex problem, and needs
to be spread out across the development process as wellcaspatational practice. Various
approaches can be used in combination with one another emealassurance.

e Assurance-enhancing principlesDisciplined adherence to certain useful assurance-emngnc
principles would be beneficial throughout system develagtiehe notion of Pervasively In-
tegrated Assurance is fundamental.

e Sound requirements. As we have noted already, anything that is done to increase th
soundness, completeness, and specificity of the requitsmeuld be very valuable. As-
sessments of the realistic implementability of the requaats long before any development
is undertaken can have significant payoffs later in the agraeknt.

6.3. APPROACHES TO INCREASING ASSURANCE 105

e Sound system architecturesConsiderable assurance can result directly from an inkigren
sound architecture and analytic techniques for determinihether an architecture is capa-
ble of satisfying the given requirements. Such techniqaeshave enormous payoffs — as
already noted, simplifying developments, reducing costsaverruns, and greatly increasing
the likelihood of development success.

e Sound algorithms and protocols.Analysis can determine consistency with requirements for
trustworthiness (security, reliability, and so on), widspect to both designs and implemen-
tations.

e Analysis of subsystem compositionsChapter 3 characterizes some of the difficulties that
need to be avoided in system composition (Section 3.2) ame £6 the desiderata for achiev-
ing predictable compositionality (Sections 3.3 and 3.4haktic techniques for increasing
assurance can determine the existence or absence of Urexpsiaie effects, as well as the
satisfaction of higher-layer properties resulting froompmsition, with respect to both de-
signs and implementations.

e Analysis of properties. Functional and nonfunctional properties of subsystenstesys, and
networks are subject to analysis, at different layers ofrab8on. For example, subsystems,
operating systems, application packages, and entirepgistes can all be modeled and an-
alyzed, formally and informally, with respect to designsl amplementations. Hierarchical
dependence analyses can uncover design flaws and impldgimeriiags and architectural
inconsistencies in adverse trust relationships. Highgei properties — including emergent
properties — can be analyzed hierarchically (e.g., as irRibl@inson—Levitt approach [316]
noted in Sections 3.4 and 6.2), relating lower- and highged abstraction to one another, to
permit analysis of systems in the large.

e Software engineering. Soundly based development methodologies can encompdss tec
niques and tools for whatever measures of assurance aredidsiherently sound program-
ming languages that are formally based and about which piepean be proven are also
helpful. Considerably improved assurance can result tfueme

e Code inspection, testing, and debugging. The use of formally based tools can be highly
beneficial for code inspection, testing, and debugging.v€otional uses of code inspection
and testing are labor intensive and subjective, and venjhrdependent on the intelligence,
education, training, and experience of the individualsimed; although those techniques can
be aided by automated or semiautomated tools, there is alavagk that the weaknesses of
the tools will prevail over the limitations of the peoplengithose tools.

e Red-teaming.So-calledred teamscan also be used to increase assurance, if they can provide
truly independent and objective assessments. (Bewareadgre-Enronitis.) Although red
teams have tended to be ratherhocin the past, the use of disciplined tool sets could actually
be very helpful. The PIA concept noted in Section 6.1 sugdistt the red-team concept be
substantially broadened to include pervasive interacsgessments throughout. However,
despite the desire for pervasive integration, it is impurthat the red team be independent
of the development efforts — although still capable of pngvwaluable feedback. It is also
important that the red team have direct access to projecagement, whether the concerns

106 CHAPTER 6. ASSURANCE

involve functional assurance, security assessmentsfyjaasurance, and so on, to avoid the
feedback being stonewalled.

e Operational practice. At present, system administration and operational praaie gen-
erally not thought of as amenable to high-assurance teghsiqThere are some potential
opportunities for progress in this area.

Judicious use of formalisms and formal methods can addfgigntly to development and op-
eration, but also can add complexity, delays, and cost omsiif not used wisely. Although formal
models and formal specifications may seem to complicate ¢éisggd process (with delays, in-
creased costs, and greater intellectual demands), theglsarsubstantively improve assurance,
and also lead to earlier identification of problems that rhmtherwise be uncovered only in late
stages of the development and use cycles. However, theytodedused with considerable care,
primarily where they can accomplish things that designewsi testing, and operational disci-
pline cannot. In that errors in requirements formulatiogsign, and specification are perhaps the
most difficult and costly to repair, formalisms can be paittcly valuable in the early stages of
development. Although some readers will consider asserasties to be pie in the sky and un-
realistic from the perspective of increased costs, prajelays, and increased needs for education
and training, the spectrum of assurance techniques doessbawething for everyone.

6.4 Formalizing System Design and Development

Historically, early examples of the use of formalism in gystdesign and implementation are

found in two SRI efforts during the 1970s. These rather gadtances of uses of formal methods
are reconsidered here for yet another visit because thegseqmt some significant advances in the
ability to analyze systems in the large that seem to have btemwise ignored in recent years.

(Please excuse a little duplication for contextual easeading.)

e The Provably Secure Operating System (PSOSYhe PSOS architecture [120, 268, 269]
— see Sections 2.6, 4.3, 4.4, and 5.3.1 — spanned layers thetisn of hardware and
operating system functionality that were extensively aretisely defined in a formal spec-
ification language. This approach enabled a complex hasdg@ftware system to be repre-
sented as a horizontal and vertical composition of surmylgisimple but perspicuous formal
specifications at each layer, with explicit mappings betwibe state spaces at different lay-
ers, and abstract programs that explicitly related thetfanality at each particular layer to
the functionality at lower layers. Various assurance priogeewere characterized and some
proofs were outlined. The PSOS project developed and usEslISierarchical Development
Methodology (HDM) [119, 120, 268, 269, 316, 317, 318, 36h} &s formal SPECIfication
and Assertion Language (SPECIAL), which together in a ushifiay encompassed the writ-
ing of the specifications, state mappings, and abstractg@mog it also provided the ability
to carry out formal proofs of consistency between speciticatand requirements — as well
as formal proofs of consistency between code and specifitatif desired.

e The Software-Implemented Fault-Tolerant System (SIFT)The SIFT [232, 247, 378]) de-
sign and implementation abstraction hierarchy consistednodel for hardware behavioral

6.4. FORMALIZING SYSTEM DESIGN AND DEVELOPMENT 107

properties (seven Bendix BDX-930 avionics processorgcilacode for the basic software,
formal specifications for a real-time operating system¢emgassing the scheduler, the 2-out-
of-3 voter, dispatcher, buffer manager), a task activitydeiddealing with system startup,
broadcasting of results to other processors for votingg esecution, and synchronization),
a replication model (which produced the results of the 2ajft® voting), and an I/O model
that produced an overall indication that the current systenfiguration was safe). The hier-
achical analysis concluded that given the individual pssoe probability of failure o0 —°
per hour, the resulting seven-fold redundant system hadlzapility of failure of101° per
hour.

A general argument against such efforts seems to be thabd difficult to deal with big-system
issues, and much easier to focus on components. Howeweqgfien the analysis of compositions
and system integration that in the long run can be most rigeal

Incidentally, HDM’s 1970s ability to analyze vertical coogstions of hierarchical abstractions
has been incorporated in SRI's PVS (beginning with versi@),3n the form of PVS theory in-
terpretations [278]. See http://pvs.csl.sri.com for P\éSuinentation, status, software downloads,
FAQ, etc. See also http://fm.csl.sri.com for further backod on SRI's formal methods work,
including SAL (the Symbolic Analysis Laboratory, which lndes three model checkers) and ICS
(the Integrated Canonizer and Solver, a decision procgdiBgmbolic analysis involves auto-
mated deduction on abstract models of systems couchednrafdogic, and is the basis for much
of CSL's formal methods work.

Some further early work on formal methods and verificatiopligd to security is summarized
in the proceedings of three VERkshops [275, 276, 205], fr@801 1981, and 1985, respectively.
(The titles of all of the papers in those three VERkshop pedoggs are given in the appendix
of [259].)

Considerable benefit can accrue from rigorous specificatioreven if they are not formally
checked, although clearly much better if they are. Spetidica of what is and is not needed are
generally more succinct than literal descriptions of homething should be implemented. Speci-
fications can provide an abstraction between requirements@de that enable early identification
of inconsistencies — between specifications and requirespand between code and specifica-
tions. Furthermore, specifications can be more readableiaderstandable than code, especially
if they can be shown to mirror the requirements explicitlghean the development process, before
any code is written.

The long history of fault-tolerant computing has put sigmafit effort on fault prevention (rel-
ative to whatever scope of faults was intended — from hardwausoftware faults to faults that
included security misuse). Clearly, all of those assurasiffmets relating to the avoidance of bad
designs and bad implementations are relevant here, imgutlie assurance that can result from
inherently sound system and network architectures and goitare-engineering practice.

With respect to the importance of programming languagesdurity, see Drew Dean’s paper
on The Impact of Programming Language Theory on Computanr®g¢96]. As a further useful
reference, Chander, Dean, and Mitchell [69, 70] have someedsting recent work on formalizing
the modeling and analysis of access-control lists, capiakiland trust management.

108 CHAPTER 6. ASSURANCE

6.5 Implementation Consistency with Design

The HDM approach noted in Section 6.4 is one methodology irchvformal proofs could be
carried out demonstrating the consistency of a softwarepom@nt with its formal specifications.
The intent is that such proofs would be carried out only giteofs had shown that the specifi-
cations were consistent with the stated requirements ifggssubject to certain exceptions that
would have to be tolerated or monitored, as in the case ofaidable covert channels).

6.6 Static Code Analysis

Ideally, the up-front philosophy suggests that discipbngbededded in the software development
process can have considerable payoff. For example, pragiagrianguages that inherently en-
force greater discipline would be very beneficial. Compgiland related pre- and post-processor
tools that provide rigorous checking would also be usefubwever, the integrity that can be
provided by the best methodologies, programming langyaa®s compiler tools is potentially
compromisible by people involved in design and implemeamatdebugging, integration, mainte-
nance, and evolution.

Early efforts in the 1970s by Abbott [5] and the ISI team ofliéig, Carlstedt, Hollingworth, and
Popek [44, 45, 46, 67, 68, 165] attempted to identify a fewattaristic flaws noted in Section 2.4
and to devise means of detecting their presence in souree dbe conclusions at that time were
generally rather discouraging, except in very constrateaimstances.

Contemporary analytic techniques and tools are much mamiping. They are particularly
appropriate for open-box source code, but of course alsicapfe to closed-box software — even
if only by the proprietors. Examples include (among othexsth varying degrees of effectiveness
and coverage:
e Crispin Cowan’s StackGuardhitp://immunix.org)
e David Wagner’s buffer overflow analyzdrt{p://www.cs.berkeley.edu/"daw/papers/)
e @Stake’s LOpht security review analyzer slint
e Cigital's ITS4 function-call analyzer for C and C++ code

(http://www.cigital.com/its4/)
e Ken Ashcraft and Dawson Engler’s system-specific appro2@h [
e Brian Chess’s extended static checking [79]
e Purify
¢ Yuan Yu and Tom Rodeheffer's RaceTrack, for detecting racelitions in multi-threaded code
(Microsoft Research)
e Hao Chen’s MOPS (with some assistance from Dave Wagner aawl Dean, whose earlier joint
work [98, 371] provided a starting point); MOPS takes a fdiynbased, approach to static code
analysis (see Appendix A), in which formal models of undssie vulnerability characteristics are
the basis for formal model checking of the software, thustifigng software flaws.

There has also been some effort on formally based testirngs Work is particularly interesting
when applied to hardware implementations.) However, thily easults of Boyer, Elspas, and
Levitt [57] suggest that formal testing is in some senserg&dly equivalent to theorem proving in
complexity. Nothing since that paper has fundamentallgratt their conclusion, although formal

6.7. REAL-TIME CODE ANALYSIS 109

derivation of test cases can be extremely effective in esireg the assurance that testing will cover
a realistic span of cases. In particular, formal test-casemtion has become increasingly popular
in the past few years. (As just one example, see [49].)

6.7 Real-Time Code Analysis

There has been relatively little exploitation of formalisefating to real-time analysis in the past,
but this area represents a potentially fertile ground ferfthure. One example might involve run-
time checks derived from formally based analyses of paéwtiinerabilities in source code, above
and beyond what might take place in a compiler, or in a preggsar — such as buffer-overflow
checks and Trojan-horse scans that cannot be done prioetmtsn. Proof-carrying code [250]

and checking of cryptographic integrity seals are two dmeekamples. Many other concepts
remain to be considered.

6.8 Metrics for Assurance

In order to have any concrete measures of assurance, itessey to establish well-defined met-
rics against which requirements, architectures, spetidits, software, tools, and operational prac-
tice can be measured. This is a very complicated area. Wevidlhat it is unwise to do research
on metrics for the sake of the metrics themselves, althotighmportant to establish parameteri-
zable metrics with general applicability. The various nostthen need to be tailored specifically
to the development stage in which they are invoked, and egeixplicitly to those development

efforts.

6.9 Assurance-Based Risk Reduction

The assurance techniques summarized in the previoussediithis chapter can have significant
effects in reducing risks, particularly with respect to #xtent to which critical system require-
ments are likely to be satisfied by system designs and impitatiens. These techniques may be
applicable in many different ways, all of which are potelhtieelevant here. In particular, analysis
at all development stages and all layers of abstractioninvéldevelopment can contribute. (See
Section 6.3.)

Several examples may help to illustrate how assurance ispegsmight be applied. In partic-
ular, we examine some of the cases summarized in Sectioma.Section 5.2.2, and consider
what might have been done to prevent the effects that agtxesulted. This is intended not as an
exercise irhindsight,but rather as an explicit representation of what types afrasge might be
applicable in future developments of a similar nature.

e Human safety

— Design reviews and testing could have detected the misaiegack that allowed the
Lauda Air thrust reverser to be deployed during flight, alifpo more careful require-
ments, design, and implementation might have preventeprtitdem altogether.

110

CHAPTER 6. ASSURANCE

— Analytic comparison with topographic data might have rés@ahe erroneous course

that caused the Air New Zealand crash into Mount Erebush@hdase, a data error had
been detected, but not yet fixed.)

— Testing a medical device such as the Therac 25 for a racetaam(ivhich resulted from

implementing the Therac 20 hardware interlock in softwareg heart pacemaker or de-
fibrillator for electromagnetic interference would seenb#¢ostandard practice; yet these
failure modes were not considered until a few people had digdin, better attention to
requirements, architecture, and good software enging@nactice could have avoided
the problems altogether. EMI problems clearly must be axddre through explicit re-
guirements, threat models, and testing.

¢ Reliability and availability

— The Patriot missile excessive clock drift could have beavemted through any of sev-

eral assurance measures, for example, requirements $iteththat the systems should
operate correctly if not rebooted for weeks, or alternd@fi\aperational requirements that
explicitly specified that the launch platforms had to be mbd once a day. (On the other
hand, it is surprising that a demonstrably more robust cidgkrithm was not used, ir-
respective of the requirements. Apparently the implemergeitly assumed the launch
platform would be moved frequently — at least once a day —daoce the likelihood of

it being targeted by the enemy.)

The Yorktown Aegis missile cruiser disabled for 2.75 howra gesult of a divide-by-zero
in an application could have been prevented by observinghhak-wrap disclaimers
(don't use this operating system in critical applicatioasd don’t put engine controls
inline with a system with poor survivability), or at leastderstanding their implications
during requirement specification, development, and systatification. Fundamentally,
the use of an operating system that cannot protect itseffgutpis unwise. The obvi-
ous answer is that we need better operating systems thateatthéhe principles and
structured architectures described in this report.

The backup computer synchronization problem on the vetyGintumbia Shuttle launch
was apparently known to the designers, but not to the lauappat team. The two-
day delay could have been avoided by a simple retry that woae skipped over the
one-in-64 known failure mode — if the documentation had dalés problem, or if the

launch crew and the developers had been in closer contaateVw, the synchronization
problem could also have been prevented altogether by a mbustrdesign, or explicitly
diagnosed by a variety of analysis tools.

e Avoidance of propagation effects. The 1980 ARPANET collapse, the 1990 AT&T long-
distance collapse, and numerous massive electrical poutages noted in Section 2.2 all
share a common failure pattern — the propagation of a lodaké&into a system-wide out-
age. In each case, it had been widely believed by the devsl@pel operators that single-
point failures could not bring down the entire network. Ad thast, some detailed modeling of
the interactions among components could have demonstitagabssibility of mutual con-
tamination and propagating outages, enabled further sisaly determine what conditions

6.9. ASSURANCE-BASED RISK REDUCTION 111

might trigger such effects, and inspired resulting ardhiteal changes necessary to prevent
such problems. Some combination of fault-tree analysisnaodel checking would presum-
ably have exhibited specific failure modes that could triggech outages. (In the case of
one of the extended System 7 telephone outages, detail@@taby simulation environments
were normally invoked, but because a particular changetaffieonly a few lines of code, it
was not thought to be necessary to recycle through the emtalysis process.)

e Security. The Risks archives are littered with security vulneraieiitand exploitations thereof.
Buffer overflows, erroneous or missing bounds checks, amer@nnoying types of security
flaws that seem to recur much too frequently are easily adomth sensible system archi-
tectures and a variety of static and dynamic assuranceitpe® Similarly, the insertion and
execution of malicious code such as Trojan horses, Web- andilebased executables, and
so on need to be combatted by sound architectures and aperlgpractice. Authentication
problems can be avoided by eschewing the use of fixed passwostiead using demonstra-
bly robust cryptographically based authentication andysea that demonstrate the security
of their embedding into systems. Real-time misuse deteetna response can also increase
assurance of trustworthiness, especially with respeattagrity violations, insider misuse,
denials of service, and so on.

e Integrity of electronic election systems.Election systems provide a paradigmatic example
of the need for a wide range of requirements, including endrd security, system surviv-
ability, system integrity, data integrity, and voter pgya Extensive use of formal methods,
open standards, open testing, open evaluations, and — alove the addition of cryp-
tographic checksums on data and programs, as well as naersibler voter-verified audit
trails, could greatly increase the assurance of today’'sditeble all-electronic election sys-
tems, thereby providing strong evidence that votes aregss®xl correctly throughout. (Such
assurance is almost totally absent in almost all of the atigyeised systems, and especially
in the all-electronic systems.) In addition to demonstigthe integrity of the election soft-
ware by itself, the architecture of the overall system stidngl such that formal proofs could
provide assurances that no adverse compromises of theatpmhi software and the election
data could occur as a result of manipulations of the undeglgperating system or externally
— for example, from dial-up lines, wireless communicati@mranetworked connections. Fur-
thermore, if such systems were composed out of componantsifrdependent vendors, it
might be possible to overcome the potential untrustwoetsgrof one vendor’'s components —
for example, having a separate system to provide a votéiecenonspoofable recountable
audit trail. Unfortunately, there is enormous resistamcsuch assurance from almost all of
the commercial vendors.

e Operational assurances.More careful analysis of human interfaces would be paridyl
valuable with respect to system administrators, bothcsthyi (e.g., leading to warnings be-
fore permitting certain questionable upgrades and cordtgur changes) and dynamically
(in anticipating needs for emergency response).

e Sound user interfaces As noted in Section 5.2.2, numerous serious accidents lesvdted
from poorly designed human interfaces, as well as from nidkgglinternal system interfaces.
Assurance techniques analyzing human interfaces coulthpsrhave avoided many of the

112 CHAPTER 6. ASSURANCE

cases noted there. Testing should have caught the crosgrwirmaintenance of the British
Midland 737, which caused the pilot to shut off the good eagather than the failing one.
Testing might have detected the missing interlock in theésHahding gear that allowed re-
traction on the ground. Sensible interface design mighe meactively recognized the risk
of using a GPS unit that reset the intended target after argathange, but the designers of
the weapons system might have anticipated the need for angaffhe heart-monitoring de-
vice should have had standards that prevented the devdtopeusing a standard electrical
wall-plug connector, and the certification process shoaicelprevented that device from be-
ing available to the hospital. The Discovery laser-beanearpent failure (with the elevation
of the target to be specified in feet, not miles) could easilyehbeen avoided by a human
interface that explicitly insisted on an input in feet, oatimsisted on self-defining input def-
initions. Self-defining input types may seem like a low-aasge programming technique,
but it would have avoided several past problems in the arofdle Risks Forum.

The above illustrative enumeration suggests that, amoagvttle variety of assurance tech-
niques (some almost obvious, some more subtle), each iteygtem risk can benefit from the
application of some subset of the total collection of apphes to increasing assurance. Estab-
lishment of sound requirements, sensible architecture$ gaod software development practice
would undoubtedly avoid many of the problems discusseditffrout this report, and could be sig-
nificantly aided by formal or even semiformal requirememtaslgsis, model-based design, model
checking, formal test-case generation, static analyss,sa on. Of course, there is no one size
that fits all; the particular techniques must be used in w&ricoherent combinations, according
to the circumstances, the development challenges and askishe competence of the developers
and analysts. Once again, it is clear that there is a signtfiteed for pervasively integrated as-
surance, throughout development and operation. Howéweegmount of resources and effort to
be devoted to assurance needs to be commensurate with tiadl tweg-term and nonlocal risks.
Unfortunately, most risk assessments relating to how méfoht €0 devote to assurance tend to be
short-term and local. (The risks of short-sighted optimiaaare considered further in Section 7.1,
and the importance of up-front efforts are discussed ini@eGt2.)

6.10 Conclusions on Assurance

Opportunities for seriously increasing the assurancec#ssal with software development and
system operations are abundant, but largely unfulfilled.ciMgreater commitment is needed to
providing assurance of trustworthiness. Assurance tegclesiseem to have greater use and greater
payoffs in hardware development than in software developméth heavier emphasis on the use
of formalisms. However, assurance applied to operatioragtige lags far behind either hardware
or software assurance.

The potential benefits of formal methods remain undimirdshgarticularly with respect to
hardware and software, but perhaps also integrated int@tpeal practice. The need for formal
methods in the specification and analysis of critical systand system components remains enor-
mous. In the light of past events — including rampant systemvdland detected vulnerabilities,
system failures, experienced penetrations, and flagratersymisuses — formal methods remain
a potentially important part of the system development asiince process. Their systematic

6.10. CONCLUSIONS ON ASSURANCE 113

use at appropriate places throughout the system life cyatebe extremely productive, if used
wisely.

Recommendations for future research and development grassimg increased assurance for
trustworthy systems and networks are discussed in Chapter 8

Chapter 7

Practical Considerations

Synopsis

There’s many a road 'twixt the need and the code.
(It's an especially rough road in the absence of requiremelaisign specifications, care-
ful programming, sensible use of good development toolsydm@ntation, and so on!)

The previous chapters pursue approaches that have sighiictential to enable the develop-
ment and operation of useful meaningfully trustworthy eyss — if these approaches are applied
wisely. This chapter considers various potential obstaidehe application of these approaches,
and explores how they might be overcome. Some of the appabstdcles are merely perceived
problems, and can be readily avoided. Other potential olestgoresent genuine concerns that can
be circumvented with some degree of knowledge, experighseipline, and commitment.

In this chapter, we address such topics as how an archieectur accommodate its relevant
requirements (including requirements to be able to adaghtmging requirements!); whether
inherently robust architectures are possible given tadayainstream hardware platforms and
computer-communications infrastructures; the extent lbackv discipline can be effectively and
pervasively introduced into the development process —Xan®ple, through methodologies, pro-
gramming languages, and supporting tools; the relativeceifeness of various methodologies;
problems peculiar to legacy systems; the practical agplibaof formal methods; various alter-
native paradigms; management issues; relevant pros arsdof@utsourcing and offshoring; and
So on.

7.1 Risks of Short-Sighted Optimization

Many people (for example, system procurers, developendementers, and managers) continue
to ignore the long-term implications of decisions made farsterm gains, often based on overly
optimistic or fallacious assumptions. In principle, mucbaer benefits can result from far-sighted
vision based on realistic assumptions. For example, seeouvronmental effects (including global

warming, water and air pollution, pesticide toxicity, antl/arse genetic engineering) are gener-
ally ignored in pursuit of short-term profits. However, cengation, alternative energy sources,
and environmental protection appear more relevant whesidered in the context of long-term

114

7.1. RISKS OF SHORT-SIGHTED OPTIMIZATION 115

costs and benefits. Similarly, the long-term consequerfodismbed-down education are typically
ignored — such as diminution of scientific, engineering, gaderal technical expertise, poor sys-
tem development practices, and many social consequencksasthigher crime rates, increased
reliance on incarceration, and so on. Governments tend tebieged by intense short-sighted
lobbying from special-interest groups. Insider financialhipulations have serious long-term eco-
nomic effects. Research funding has been increasinglysfoglon short-term returns, seemingly
to the detriment of the future. Overall, short-sightedngesswidespread problem.

Conventional computer system development is a partigufeuktrating example of this prob-
lem. Most system developers are unable or unwilling to amtflife-cycle issues up front and in
the large, although it should by now be obvious to experidraystem developers that up-front
investments can yield enormous benefits later in the lifédecyAs described in earlier chapters,
defining requirements carefully and wisely at the beginrohg development effort can greatly
enhance the entire subsequent life cycle and reduce its.cobts process should ideally antici-
pate all essential requirements explicitly, including xample) security, reliability, scalability,
and relevant application-specific needs such as entequises/ability, evolvability, maintainabil-
ity, usability, and interoperability. Many such requirame are typically extremely difficult to
satisfy once system development is far advanced, unlegshtnee been included in early plan-
ning. Furthermore, requirements tend to change; thusgisyatchitectures and interfaces should
be designed to be relatively flaw-free and inherently addetaithout introducing further flaws.
Insisting on principled software engineering (such as nerdabstraction, encapsulation, and type
safety), sensible use of sound programming languages s&af appropriate support tools can sig-
nificantly reduce the frequency of software bugs. All of thap-front investments can also reduce
the subsequent costs of debugging, integration, systermadration, and long-term evolution —
if sensibly invoked. (Note that a few of the current crop ditware development methodologies
do address the entire software life cycle fairly comprehahg such as the Unified Software De-
velopment Process (USDP) [174], whose three basic priegiple use-case driven, architecture
centric, and iterative and incremental; USDP is based otlthiged Modeling Language (UML).)

Although the potential fruitfulness of up-front effortsdalong-term optimization is a decades-
old concept, a fundamental question remains: Why has thessagstem development wisdom of
the past half-century not been more widely and effectiveldlin practice? Would-be answers are
very diverse, but generally unsatisfactory. These comscagtoften ignored or poorly observed, for
a variety of offered reasons — such as short-term profitgivhile ignoring the long-term; rush to
market for competitive reasons; the forcing functions ghley system compatibility; lack of com-
mitment to quality, because developers can get away witinid, because customers either don'’t
know any better or are not sufficiently organized to demaniddk of liability concerns, because
developers are not accountable (shrink-wrap license aggets typically waiver all liability, and
in some cases warn against using the product for criticdl@gimns); ability to shift late lifecycle
costs to customers; inadequate education, experiencdranihg; and unwillingness to pursue
anything other than seemingly easy answers. Other reaseadsa offered, as well.

Overly optimistic development plans that ignore thesedsgend to win out over more realis-
tic plans, but can lead to difficulties later on — for develgyeystem users, and even innocent
bystanders. The annals of the Risks Forum (http://wwwstisk); see [267]) are replete with ex-
amples of systems that did not work properly and people whdmdt perform according to the
assumptions embedded in the development and operatiéealytiles. (One illustration of this

116 CHAPTER 7. PRACTICAL CONSIDERATIONS

is seen in the mad rush to paperless electronic voting sgstéth essentially no operational ac-
countability and no real assurances of system integritye [Essons of past failures and unresolved
problems are widely ignored. Instead, we hawaaeat emptoculture, with developers and ven-
dors disclaiming all warranties and liability, and usersovarne at risk. (In the case of electronic
voting systems, the users include election officials andrgot

We need better incentives to optimize over the long term &asion 7.2) and over whole-
system contexts (see Section 7.3), with realistic assumptappropriate architectural flexibility to
adapt to changing requirements (Chapter 4), and sufficiemttaon paid to assurance (Section 6.9).
Achieving this will require some substantive changes inr@search and development agendas,
our software and system development cultures, our edunadipoograms, our laws, our economies,
our commitments, and perhaps most important — in obtainieljdocumented success stories to
show the way for others. Particularly in critical applicets, if it's not worth doing right, perhaps
it's not worth doing at all — or at least not worth doing withiaethinking whatever might be
problematic with the requirements, architecture, impletaton, and/or operational practice. As
an example, the essence of Extreme Programming (Sectid®) 862ms interesting in achieving
working partial systems throughout development, but wdnglépplicable to critical systems only
if it converges on products that truly satisfy the criticatjuirements. Once again, the emphasis
must be on having well-defined requirements.

David Parnas has said, let’s not just preach motherhood *s-tégtich people how to be good
mothers. Indeed, the report you are reading seems to behmmgaapplicable motherhood. (Al-
though the author of the report you are reading wrote in 198futathe risks of overly narrow
optimization and the importance of diligently applying geally accepted motherhood princi-
ples [255], the basic problems still remain today.)

One of the most ambitious efforts currently in progress & thS. Department of Defense
Global Information Grid GIG), which envisions a globally interconnected completetggnated
large-scale fully interoperable end-to-end multilevetisre networking of computer systems by
2020, and capable of providing certain measures of guagdrgervices despite malicious adver-
saries, unintentional human errors, and malfunctions. glaening and development necessary
to attain the desired requirements suggest the need fortéongvision, nonlocal optimization,
and whole-system perspectives (see Sections 7.1, 7.2, 3ne3pectively) — without which you
realistically cannot get there from where we are today. Tewrdbility of observing the principled
and disciplined developments described in this report inesoalmost self-evident, but still not
easy to satisfy, especially with the desire to use extersgacy software. However, the Enlight-
ened Architecture concept noted at the end of Section 4.@ndamental to the success of any
environment with the ambitious goals of the GIG.

7.2 The Importance of Up-Front Efforts

Perhaps the most important observation here is that if syst&nd applications are developed
without an up-frontommitment t@ndinvestment irthe principles discussed here, very little that
is discussed in this report is likely to be applied effediivéd he commitment and investment must
be both intellectual and tangible — in terms of people, fagdiand perseverance. Looking at
the recommended approaches as an investment is a vitahnasmpposed to merely relying on

7.3. THE IMPORTANCE OF WHOLE-SYSTEM PERSPECTIVES 117

the expenditure of money as a would-be solution. Admittetilg long-term arguments for up-
front investment are not well understood and not well docuexin successful developments —
for example, with respect to the positive return on investhod such efforts compared with the
adverse back-end costs of not doing it better in the firstepldadget overruns, schedule delays,
inadequacy of resulting system behavior, lack of interap#ity, and lack of evolvability, to cite
just a few deleterious results.

It would seem completely self-evident that the long histofpystem failures would suggest
the need for some radical changes in the development culkmeexample, this report strongly
advocates realistically taking advantages of the potelpéiaefits of up-front efforts (e.qg., careful
a priori establishment of requirements, architectures, and spa&idns). Certainly, this is not
a new message. It was a fundamental part of the Multics deredat beginning in 1965 [84,
85], and it was fundamental to the PSOS design specificafrons 1973 to 1980 [268, 269].
Nevertheless, it is a message that is still valid today, agxample in a new series of articles in
the IEEE Security & Privacy{228] on building security into the development processteeldby
Gary McGraw. Unfortunately, the fact that this is not a newssagle is in part a condemnation of
our education and development processes, and in part alsigour marketplace is not fulfilling
certain fundamental needs.

A recent global survey of software development practices({@ano et al. [90]) strongly sup-
ports the wisdom and cost benefits of up-front developmehgirTsurvey includes some rather
startling conclusions based on a sampling of software ptej&or example, detailed design spec-
ifications were reportedly used in only 32% of the U.S. prigextudied, as opposed to 100% of
the projects in India. Furthermore, 100% of the Indian ptgeeported doing design reviews,
and all but one of those projects did code reviews; this wasaiteristically untrue of the U.S.
projects studied. Although it is unwise to draw sweepingegalizations from this survey, the
issues considered and the results drawn therefrom araredlireelevant to our report. Besides,
if the effectiveness of resulting foreign software devebgmts is actually significantly better, then
the rush to outsource software development might in somesaso be motivated by quality con-
siderations, not just cost savings. This has very signifilcarg-term implications — for the U.S.
and for other nations with rapidly developing technologgdma

7.3 The Importance of Whole-System Perspectives

If you believe that cryptography is the answer to your pratdethen you don’t under-
stand cryptography and you don’t understand your problems.

Attributed by Butler Lampson to Roger Needham and by Rogesddam to Butler
Lampson

Unfortunately, up-front effort is not enough by itself. Raps equally important is a system-
oriented perspective that considers all of the pieces agidititeractions in the large, with respect
to the necessary requirements. Such a perspective shalddé(for example) the ability to have
an overall conceptual understanding of all relevant regqménts and how they relate to particular
operational needs; an overall view of the entire developgmeatess and how it demands the ability
to carry out cyclical iterations; and an overall view of argrtcular system-network architecture
as representing a single virtual system in the large as wdieang a composition of systems with

118 CHAPTER 7. PRACTICAL CONSIDERATIONS

predictable properties relating to their interconnediand interoperability. The challenge from
the perspective of composability is then to understand ip@ioture as well as to understand the
components and their interrelationships, and to be ablkeasteaon from the small to the large — and
from the large to the small. Purely top-down developmerggyrically limited by inadequate an-
ticipation of the underlying mechanisms, and purely botigmdevelopments are typically limited
by inadequate anticipation of the big picture.

There are many would-be short-term “solutions” that emergert from the lack of big-picture
understanding, but that then take on lives of their own. kan®le, trusted guards, firewalls, virus
checkers, spam filters, and cryptography all have benefitsalso have many problems (some
intrinsic, some operational).

e Trusted guards (e.g., dirty-word filters or sensitive cahtsheckers based on key words or
security labels) represent a simple strategy for contrgllindesired dissemination of docu-
ments. However, they tend to be overly simplistic, and ofambe fooled into violating their
own desired policies.

e Firewalls could be more effective if they were not configuiedass many types of executable
content, such as ActiveX and JavaScript. However, manysugant those features enabled,
thus opening up some serious security holes.

e Viruses, worms, and other active content would be much laessful in a well-architected
environment that could confine executable content to a Bedcsandbox in which it remains
harmless (as can be accomplished in a domain-based ordegeigitecture or in a restricted
virtual machine). Instead, vendors attempt to keep ruketanalware detectors up to date to
recognize continual streams of new attacks and new attgasfywhich somehow seems to
be the wrong battle to be fighting. Incidentally, to dateus@s and worms have been rather
benign, considering the full potentials of really malickazode. Much more serious malware
including insider-planted Trojan horses is lurking.

e Spam filters are also a potentially losing battle, as the spers seem very adept at adapting
to whatever defenses they encounter — new rules, Bayestantdes, even certain simple
challenge-response techniques. Legislation seems tquisiimto make real inroads against
them, and may simply drive the spammers offshore. Major geamay be required — for
example, to Internet-connected systems and to networkt@ctires and protocols, facilitat-
ing traceback and accountability, as well as possibly to wags for what services. (One
possible alternative that may be of possible interest igolir[376] — a user-Empowered E-
Mail Environment, or Triple-E — which gives end users cohtneer security, privacy, sender
authentication, and spam defenses.)

e Cryptography is absolutely fundamental to the design amdementation of trustworthy dis-
tributed systems and networks. However, its effectivemassbe compromised by being
poorly implemented or poorly embedded in a vulnerable emvirent (e.g., improperly en-
capsulated hardware or a flawed operating system), vulleetalout-of band attacks (e.g.,
electromagnetic sensors, acoustic sensors [21, 34%reliffial power analysis [192, 193],
light [13], and noise insertion [54]), or simply poorly usgd\ DES crypto product consid-
ered over a decade ago comes to mind in which a pass-phraseteraded to generate a

7.4. THE DEVELOPMENT PROCESS 119

56-bit key, but actually seemed to yield about 9 bits of kegrggth. We hope it is no longer
on the market!)

The quote at the beginning of this section is symptomatitiefdroblem that the best cryptog-
raphy in the world can still be compromised if not properlybsdded and properly used. This
entire section can be summed up by polymorphizing the quotieeabeginning of this section,
as symptomatic of the risks of overly simplistic solutiof@: many different instantiations of,

If you believe that X is the answer to your problems, then yanitdinderstand X and you don't
understand your problems.

On the other hand, total systems awareness is a very rarempiegon. It is not taught in most
universities. Perhaps systems are considered to be laickihgory, or uninteresting, or unwieldy,
or dirty, or too difficult to teach, or perhaps just frustngtj or a combination of all of these and
other excuses. As a result, system-oriented perspectigesav to find their way into practice.

As a historical note, Edsger Dijkstra provides an exampketofie pioneer who apparently lost
interest in trying to deal with the big picture. In his earljears, he was particularly concerned
with the scalability of his elegant analytic methods to é&argystems (for example, his work on
structured programming [107], CSP [105], and the THE sygf€)6] noted in previous chapters).
Perhaps out of frustration that practitioners were not imgeldis advice, he later became increas-
ingly focused only on very elegant small examples (cf. [)2frying to teach his beliefs from
those examples in the hopes that others would try to extasgtthem to systems in the large. The
essential thrust of this report is that systems in the laagebe effectively developed and analyzed
as compositions of smaller components, but only if you canesel comprehend the big picture.

One of the frequently heard arguments against spending affie up front and optimizing
over a longer term relates to situations in which there hasmgreviously been an attack of such
a magnitude that the need for extraordinary actions becataiytobvious. This is the mental-
ity that suggests that because we have not had a Pearl-HarB4t1 equivalent in cybersecurity,
there is no real urgency to take proactive action againsotmgtical possibilities. This mentality
is compounded by the use of statistical arguments that pttemdemonstrate that everything is
just fine. Unfortunately, events that seemingly might oaeith very low probabilities but with
extremely serious consequences tend to be very difficulbbopcehend. In such cases, quantita-
tive risk assessments are particularly riskful, becaug@eiincertainty of the assumptions. For
example, see Neumanr@omputer-Related Risksok [260]. The entire book suggests a much
greater need for realistic risk assessments and corresgppbactive actions. More specifically,
pages 255-257 of the book provide a discussion of the riskslo&nalysis (contributed by Robert
N. Charette), and pages 257-259 consider the importanamnefdering risks in the large.

7.4 The Development Process

| would not give a fig for the simplicity this side of complgxiiut | would give my life
for the simplicity on the other side of complexiBliver Wendell Holmes

Returning once again to the Einstein quote at the beginnirgeotion 2.1, we note that the
common tendency to oversimplify complex entities is peseeand usually counterproductive. The

120 CHAPTER 7. PRACTICAL CONSIDERATIONS

ability to clearly represent complexity in a simpler way msat form, and usually very instructive
— but difficult to achieve.

This section considers perceived and real difficulties wiying to use the concepts of the
previous chapters, relating to requirements, architestuand implementation. It suggests how
the development process can be made much more effectivéoand can give the appearance of
local simplicity while dealing with complexity more glolbal

7.4.1 Disciplined Requirements

Well-understood and well-defined requirements are absiglwvital to any system development,
and most particularly to those systems that must satistfigarrequirements such as security, reli-
ability, safety, and survivability. They are also usefukwaluating the effects of would-be subse-
guent changes. Unfortunately, such requirements arersgidecisely defined priori. Even more
difficult are somewhat more subtle requirements, such aspee ease of use, interoperability,
maintainability, and long-term evolvability — of the regeiments as well as of the architectures
and implementations. Jim Horning suggests that evolughdito requirements as specification is
to code, although at a higher level of abstraction. Thaf igyu don’t delineate the space of possi-
ble future changes to requirements, you are likely to winavitp requirements that are as difficult
to evolve as is code for which there are no specifications eciBpations that do not anticipate
change. However, well-understood and well-defined remerds are not common.

Even less common are explicit requirements for requirethewé engineering sophistication,
operational constraints, and specified assurance (subtle &AL levels of the Common Criteria).
Requirements engineering should play a more prominentimob®mputer system development,
which would necessarily entail adding discipline to boté fitocess of defining requirements and
to the statement of requirements themselves.

For example, the archives of the Risks Forum are littered gases attributable to requirements
problems that propagated throughout the development gsao& operational use. (See partic-
ularly the items denoted by the descriptom the lllustrative Risks compendium index [267].
Noteworthy examples include the Vincennes Aegis systenotgloavn of an Iranian Airbus, the
Patriot missile clock-drift problem, and even the Yorktodegis missile cruiser dead in the water.
See Section 6.9 for these and other cases.) Many lessonsoieedearned from those cases. It is
generally agreed that efforts to define and systematicaflyree meaningful requirements early in
system developments can have enormous practical payoffgver, there seems to be enormous
resistance to carrying that out in practice, because ieas®s up-front costs and requires greater
understanding (as noted in Section 7.1).

7.4.2 Disciplined Architectures

The material in the foregoing chapters is basic to souncesysirchitectures for trustworthy sys-
tems and their implementation. As a reminder of what we hlaus far, Section 2.6 summarizes
some of the primary caveats that must be observed in applgagrinciples of Chapter 2; these
principles are not absolute, and must be used intellige@tiapter 3 discusses constraints on sub-
systems and other components that can enhance compgsahilitSection 3.2 outlining obstacles
that must be avoided. Chapter 4 considers further direstioat can contribute to principled com-

7.4. THE DEVELOPMENT PROCESS 121

posable architectures. Chapter 5 stresses the importanteidace design. Chapter 6 discusses
techniques for achieving higher assurance.

In this section we consider how to apply the approaches gbtégous chapters into architec-
tures that are inherently more likely to lead to trustwoithplementations. For example, realistic
architectures should proactively avoid many problems sscine following:

e Risks of architectural oversimplification, such as syst&rmese requirements are seriously
incomplete, systems that are implemented without a senaihitecture, operating systems
that do not adequately react to hardware failure modes odthaot properly embed cryp-
tography (whether implemented in hardware or in softwaapplication software that does
not properly encapsulate the operating system, systemseanarking that ignore reliability
and denial of service attacks, and so on.

¢ Risks of architectural overcomplexification, such as theense bloatware common in vari-
ous mass-market software products, the excessive intemdepce and lack of encapsulation
among different components.

¢ Risks of commonly observed flaws (for example, affectingisécand reliability), malicious
code, and so on.

e Popular but often mistaken beliefs, such as the belief thatiples, hierarchical structures,
modularity, encapsulation, and so on, are inherently iciefit or unworkable. (Constructive
approaches are considered in Section 4.3.)

e Perceived and real problems with structural decomposamhcomposition, such as risks of
modularization, overmodularization, modularity withartcapsulation, modularity without
separation of concerns, prematurely frozen modularitgl, smon. As noted in Section 3.3,
increased trustworthiness can result from stark subgettumich can be achieved through
composition rather than through efforts to decompose patasigned systems or to use only
restricted subsets of poorly conceived system interfadédl-defined component interfaces
and clean encapsulation can contribute to increased touttiness.

Topics whose consideration might make critical system ldgveents more realistic include the
following.

e Emphasizing constructive architectures that are proalgtivesigned to be better able to sat-
isfy the given requirements, such as discussed in Chapter 4.

e Exploiting the potentials of architectural analysis toaisearly stages of development as well
as in response to subsequent design changes later in tHegleeat cycle. However, risks
of overendowing the soundness of such tools must be avoided.

e Pursuing fully worked and carefully documented successtamples of the practical effects
of proactively sound architectures.

From a practical point of view, it may seem unrealistic to extprigorous specifications —
especially formal specifications — to be used in developmémt are not considered to have
critical requirements. However, even the informal Englshguage specification documents that

122 CHAPTER 7. PRACTICAL CONSIDERATIONS

were required in the Multics development (for example) haery significant effect on the secu-
rity, reliability, modular interoperability, and maintebility of the software — and indeed on the
discipline of the implementation.

7.4.3 Disciplined Implementation

Technique is a means, not an end, but a means that is indiaplend/aurice Allard,
renowned French bassoonist in the Paris Opera from 1943-198

The best architectures and the best system designs arieofdilue if they are not properly im-
plemented. Furthermore, properly implemented systemesfdittie value if they are not properly
administered. In each case, “proper” is a term that imphes the relevant requirements are satis-
fied. Thus, risks abound throughout development and operatlowever, the notion of principled
composable architectures espoused here can contribatBcgtly to proper implementation and
administration. The notion of stark subsetting discuseqatévious chapters can aid significantly
in simplifying implementation, configuration, and admirégion.

Many security flaws that typically arise in design and/or iempentation (such as those enu-
merated in Section 2.4) lend themselves to exploitatiodedual, each of the enumerated problem
areas tends to represent opportunities for design flawsarichplementation bugs (in hardware
just as well as software). Buffer overflows represent just wary common example. For some
additional background on buffer overflows and how to prewbem, see the discussion in the
Risks Forum, volume 21, numbers 83 through 86, culminatingarl Boebert’s provocative con-
tributions in volume 21, numbers 87 and 89. Boebert refeRitbard Kain’s 1988 book on soft-
ware and hardware architecture [185], which provides atsrable discussion of unconventional
system architectures for security — including the need faramventional hardware platforms.
Furthermore, the Multics operating system architecturestractively avoided most stack buffer
overflows. The combination of hardware, the PL/l languadeset) the language runtime environ-
ment, the stack discipline (nonexecutable stack frameas, #ihe stack grew to higher addresses,
making the overflow of a buffer unlikely to clobber the ret@adress in the stack frame), and
good software engineering discipline helped prevent mogeboverflows in Multics. (See Tom
Van Vleck’'s comments in the Risks Forum, volume 23, issuesarif a follow-up in issue 22.)
For other background, see also Bass [31] for architectunergdly, Gong [145, 146] for the Java
JDK architecture intended to provide secure virtual maghimnd Neumann [264] for survivable
architectures.

Many implementation issues create serious problems. Estaty sensible policies and sound
configurations is an enormously complicated task, and timsexpences to security, reliability,
functionality, and trustworthiness generally are veryiclifit to predict. We need better abstractions
to control and monitor these policies and configurationd,tarunderstand them better.

Various popular myths need to be considered and debunkedr-exéomple, the fantasy that
a perfect programming language would be able to preventisgdugs. Another myth is that
precompile and postcompile tools can detect and remove masges of bugs. In general, for
nontrivial programming languages, both of these myths @itrde in principle only for certain
types of bugs, although even the best programmers still $ed& able to write buggy code.

7.5. DISCIPLINED OPERATIONAL PRACTICE 123

7.5 Disciplined Operational Practice

System programming is like mountain climbing: It's not agatea to react to surprises
by jumping — that might not improve the situatidim Morris

Principled composable architectures can contribute nigttortrustworthy implementation (as
noted at the beginning of Section 7.4.3), but also to souretatipnal practice — particularly
if considerable attention is paid to system interface des$igat addresses the needs of system
administrators. However, for existing (e.g., legacy) eyst that have resulted from inadequate
attention to human operational interfaces, other appematust be taken — even if only better
education and training.

Operational issues represent enormous potential problsnch as considerable operational
costs, shortages of readily available in-house staffsrigkexcessive complexity, poorly defined
human interfaces, and typically systems that require an@mesent demand for system adminis-
trators — especially in crisis situations. This last conaeay be escalated by increasing pressures
to oursource operations and administration personnel.

One concept that in principle would greatly improve openadi practice and operational assur-
ance would be the notion of automatic recovery, mentioneseiction 4.2. The ability to recover
from most deleterious state-altering events (whetheraioals or accidental) without human in-
tervention would be an enormous benefit. Autorecovery requents have serious implications
for system architectures, and would be greatly simplifiedigyprinciple of minimizing the need
for trustworthiness. Assurance associated with that mgofe.g., based on the soundness of the
architecture itself and on real-time revalidation of tharsiness of the system state) would also be
valuable. However, making autonomic systems realistitregjuire further research and extremely
disciplined development.

7.5.1 Today’s Overreliance on Patch Management

Dilbert: We still have too many software faults. We’ll miss our shifgda
Pointy-Haired Managemove the list of faults to the “future development” columrdan
ship it.

PHM, aside:90% of this job is figuring out what to call stuff.

Scott Adams, three-panel Dilbert comic strip, 4 May 2004

Mass-market software as delivered in the past and in theptésnds to have many flaws that
can compromise the trustworthiness of systems, networibsapplications. As a result, system
purveyors and system administrators are heavily depermtepatch management — that is, de-
velopers must continually identify vulnerabilities, creavould-be fixes, test them, make those
fixes available, and hope that further flaws will not be crédtereby. Operational installations
must install the patches in the correct order in a timelyitashat the risk of breaking or otherwise
affecting existing applications.

Patch management is an example of a slippery-slope ratHeystems should be designed
much more carefully and implemented with much greater cadeadétention to good software en-
gineering practice, easily usable operational and systemirastration interfaces, and composable
upgrade procedures that are integral to the architectpgications, and user software. Better

124 CHAPTER 7. PRACTICAL CONSIDERATIONS

design and implementation must also be coupled with congmste testing, evaluations, and
other analyses such as advanced tools to detect seriousrahilities; developers should do this
before release, rather than simply foisting buggy softwareunsuspecting customers who be-
come the Beta testers. However, in the commercial rush taet@ace, essentially none of this
happens. Thus, pouring palliative efforts into improvireggh management completely misses
the much more fundamental point that patches should idbaliyinimized through better design
and implementation, so that they become rare exceptionsrrtan frequent necessities. Putting
the burden on patch management is somewhat akin to beli@vibgtter management of fixed
reusable passwords — that merely increasing passwordhlemgiuding nonalphabetic charac-
ters, and changing passwords often will improve authetmicasuch simplistic approaches totally
ignore the risks of fixed passwords that transit networkshangted or are otherwise exposed
and the risks of exploitable vulnerabilities in systemd @dbow the password system to be com-
pletely bypassed. A better solution for authenticatiorfisaursenot to rely onconventional fixed
passwords as the primary means of authentication, andashstemove to trustworthy systems
and trustworthy networking, cryptographically protectellens or smartcards within the context
of trustworthy systems, combined with layered protectsaparation of privileges, and judicious
observance of the applicable principles noted in Chapt@iu a much greater commitment to
better system security and reliability throughout develept and operation.

e One problem with many patches is that they require shuttovghdsome services (or, indeed,
rebooting the entire machine) for a noticeable period oétifihis is not always acceptable,
as in a hospital’s telephone system and operational suppbgre are ways of engineering
around this problem, but they tend to require enlightenetesy architectures, and hence are
rarely developed — and even more rarely deployed.

e Patches are often faulty, and tend to break other funciiyrfal some users. Research exists
on how long you should wait before installing a patch, to émather people test it for you
before you have to, but the assumptions are often suspec¢helabsence of an imminent
threat, it may be wiser to wait — assuming that the experigntethers are available to you.

e No matter how wonderful an automated patch managementnsysight seem, 100% de-
ployment is very unlikely. Anticipating all sorts of patcihoplems rapidly leads to a com-
binatorial explosion of various multiple patches instdlie the field, and makes testing the
next patch and its interactions with previous patches paampossible. Besides, automated
remote patching is extremely riskful.

Although it may be necessary evil, dependence on patch reamag as a major component of
security defenses seems too much like micromanaging th@nggng of deckchairs on the Titanic.
The barn door is already wide open, and the barn is empty oé iusrdamental ideas. See [375]
for another view of patch management.

7.5.2 Architecturally Motivated System Administration

Clearly alternative approaches are needed that simpldiesy administration and minimize the
downsides of patch management. Perhaps we need not just beftware engineering in gen-
eral, but also a methodology that encompasses “design fohipg” when “design for avoiding

7.6. PRACTICAL PRIORITIES FOR PERSPICUITY 125

patches” fails — just as hardware vendors have moved todgdder test” and “design for verifica-
tion” methodologies. Design for patching should encompgastem architecture (e.g., modularity
and encapsulation) as well as operational character{gtigs bilateral trusted paths for upgrades).
Inherently sound architectures can minimize the need fohrag — as for example in carefully
designed autonomic systems and fault-tolerant systemsath@ipate the need for rollback, hot
standbys, or other alternative measures in response totele@t@nomalies. Greater attention to the
human interfaces (see Chapter 5 and the next section) iesdemtial.

According to some reports, patch management is on the ofde$6-billion dollar problem
per year. It is probably responsible for much more than thhitdden costs are included, such
as down-time and lost work resulting from failed patchem Biorning notes that all automobile
drivers once had to know how to patch an inner tube (or at leastto change a tire to drive
someplace and get one patched). Today inner tubes are gahe/eago years between flat tires.
That seems preferable to a highly efficient patching system.

7.6 Practical Priorities for Perspicuity

Returning to the notion of perspicuous interfaces consmlléan Chapter 5, this section considers
some of the practical issues relating to interface designerGthe range of material addressed
in this report, one important question that remains to beesdd is this: Where are the biggest
potential payoffs, and what priorities should be allocdtedossible future efforts, with respect to
dramatically increasing the understandability of systemd their interfaces — especially under
crisis conditions. The same question also applies to stdrsymterfaces that may be invisible to
end users but vital to application developers, integratord debuggers. It is important to note that
good interface design is essential not only to human usets)$o internally to systems themselves
— especially autonomic systems.

One of the most important challenges relates to the roleéstmainistrators play in configuring
and maintaining operating systems, application softwaetworks, control systems, and so on.
Even with the hoped-for advent of autonomic systems andar&sy significant burdens will rest
on admins when something fails or is under attack. Thusppzry for admins must be a high-
priority concern. This concern must be twofold: (1) Systateifaces must be better designed with
admins in mind. (2) Analysis tools must greatly facilitdte critical roles of admins. The potential
payoffs for better perspicuity for admins are enormousgeimms of reducing operational costs,
increasing speed of remediation, minimizing dependenceritinal human resources, increasing
job satisfaction, and — above all — improving system seguanitd survivability.

A second challenge has to do with dealing with legacy systbatsvere not designed with ad-
equate security, reliability, robustness, and interfarspicuity, and that therefore cannot be easily
retrofitted with such facilities. This is an unfortunate sequence of many factors, including the
inability of the marketplace to drive needed progress, galyesuboptimal software development
practices, and constraints inherent in closed-sourcerigtapy software — such as a desire on
the part of system developers to keep internal interfacgdem and making it more difficult for
competitors to build compatible applications. In this attan, much more perceptive analysis
methods and tools are needed, although those tools woulpgdieable to closed-source as well
as source-available software. To the extent that analgeis tan be applied to available source

126 CHAPTER 7. PRACTICAL CONSIDERATIONS

code (whether proprietary or not) rather than object cduemore effective they are likely to be.
A third challenge is that, whichever approaches are tak®y, inust include criteria and tech-
niques for measuring and evaluating their effectivenegss @again suggests the need for better
analysis methods, but in the long run also necessitatesmygévelopments that anticipate the
needs of improved measurability of success.
Thus, our suggestions for realistic priorities are as fedlpin several dimensions:

Prioritized Approaches for Achieving Greater Perspicuity

1. A combination of constructive interface design and asialyools for newly developed soft-
ware, recognizing a leverage advantage for available satode (the most effective alterna-
tive)

2. Analysis tools that rely on system source code to enharteegface perspicuity for legacy
systems, but not on any substantially new or modified inbedgan intermediate alternative)

3. Analysis tools that are restricted to see only object dodenhance interface perspicuity (a
less desirable and often less effective alternative, ath@ossibly useful when source code
is not available)

Prioritized Human Targets for Enhanced Perspicuity
1. System developers, debuggers, and integrators (wittebigpayoff)
2. System administrators (with very high payoff)

3. Conventional application developers (with very high gd@yand users (with considerable
payoff)

Potential System Targets for Enhancing Perspicuity
1. Linux or one of the BSD operating systems (attractive bseaf availability of source code)
2. TCP/IP related behavior (complex, but potentially vesgful)

3. Arealistic multilevel security system (less accessibig with considerable potential use)

7.7 Assurance Throughout Development

The whole is greater than the sum of its parfBhis can be true particularly in the
presence of effort devoted to sensible architecturesifate design, principled devel-
opment, pervasive attention to assurance, and generaly adherence to the contents
of this report. In this case, emergent properties tend todséipe, providing evidence
of trustworthiness.

The whole is significantly less than the sum of its partss can be true whenever there
is inadequate attention devoted to architecture, interfi@sign, principled development,
assurance, or foresight — for example, resulting in seriliegration difficulties and the

lack of interoperability, delays, cost overruns, desigw$lamplementation bugs, overly

7.7. ASSURANCE THROUGHOUT DEVELOPMENT 127

complex operations, deadly embraces, race conditionaytieznadequate security and
reliability, and so on. In this case, emergent properties te be negative, providing
evidence of untrustworthiness.

This section reassesses the approaches of Chapter 6 widttds the practical thrust of the
present chapter. In particular, Section 7.7.1 considessraace related to the establishment and
analysis of requirements. Section 7.7.2 reconsiders assemrelated to system development, for
example, potentially fruitful techniques for assuring thasistency of software and hardware with
their respective specifications (Section 6.5). Sectionh&B considers the practicality of assurance
techniques applied to operational practice.

7.7.1 Disciplined Analysis of Requirements

It is @ common misconception that establishing requiremeatefully is generally not worth the
effort. Nevertheless, further evidence would be usefulispelling that myth, especially concern-
ing formal requirements and formal analyses thereof, amticpéarly in cases of critical systems
and outsourcing/offshoring of software development (ssei@n 7.10.2).

From a practical point of view, it is immediately obvious thiae disciplined use of formal or
semiformal analysis methods and supporting tools would lmgignificant up-front effect that
would greatly reduce the subsequent costs of software oj@veint, debugging, integration, and
continual upgrades. There is a slowly growing literatureswth approaches, although there are
still relatively few demonstrated successes. One exammgeovided by the use of formal methods
for NASA Space Shuttle requirements [109] — where the mis@aritical and the implications
of failure are considerable.

7.7.2 Disciplined Analysis of Design and Implementation

Existing analysis techniques and supporting tools foresysarchitectures and for software and
hardware implementations tend to be fairly narrowly foclge specific attributes, certain types of
design flaws, and specific classes of source-code and algdetbugs (the U.C. Berkeley MOPS
analyzer,purify, trace tools, debuggers), security vulnerabilities (eatfack graph analysis
using symbolic model checking [180, 352]), and hardwareknfegout properties. Most of these
approaches are limited to static analysis — although theysometimes be helpful in understand-
ing dynamic problems.

One of the most important problems raised in this reportesathility to determine analytically
the extent to which systems, modules, and other componantb& composed — that is, identi-
fying all possible deleterious interactions. As discusseflection 6.2, providing a set of analytic
tools to support the practical analysis of the composgbilitrequirements, specifications, pro-
tocols, and subsystems would be extremely valuable. Fanpbea analysis should consider the
interference effects of improper compositions, or else aw®strate the invariance of basic proper-
ties and the appropriateness of emergent properties undeyasition.

Static checking tools along the lineslaft, splint, ESC, Aspect, Alloy [173]
(and, in general, what are referred to as “80/20 verifierg) be extremely helpful. However,
their infallibility and completeness should never be onei@ved. Although all low-hanging fruit
should certainly be harvested, what is harder to reach mag éngen more devastating effects.

128 CHAPTER 7. PRACTICAL CONSIDERATIONS

A set of tools for the analysis of safety specifications [3h&$ been sponsored by NASA
Langley, and is also worth considering — not only for safétyt for its potential application to
other elements of trustworthiness.

7.8 Assurance in Operational Practice

Operational practice — for example, system administratioatine maintenance, and long-term
system evolution — represents an area in which assuranuoeitees have not been used much in
the past. There are various approaches that might be takee, fairly ad hoc, and some formally
based.

e Configuration management and configuration analysis toolsConfiguration management
and network management could both benefit greatly by thednttion of some assurance-
enhancing methodologies and supporting tools — for exanagkessing the consistency and
the compliance with requirements for each configuratiomgkaissuing warnings for poten-
tially riskful changes, requiring confirmation for thoseadges, and tracking the historical
record of all configuration-related actions. COPS and SAB&&lexamples of existing static
analysis tools for detecting system and network configomagrors or suspicious irregulari-
ties.

e Anomaly/misuse detection and automated responseSome of the research-oriented anomaly
and misuse analysis systems are fairly effective at deiggtotential misuse, although the
false-positive and false-negative measures vary widetpraling to the desired application.
However, there has been relatively little effort on undamding the meaning of the detected
events and the actual intent of attackers. (For an examm@a@dent project on determining
attacker intent, see [305] — which provides an additionalysis capability within SRI's
EMERALD.) Furthermore, there has been relatively littleiezes work on intelligent near-
real-time responses, particularly under emergency camgditand after detected anomalies.
The risks of underreacting and overreacting are both inapoxtoncerns. Although the po-
tential benefits of intelligent response systems would besicerable, the effectiveness of
such systems will depend heavily on the range of approacisesssed here for construc-
tive system development and suitable analysis aimed gpipasus interfaces. As a caution,
iatrogenic reactions in response to would-be cures (whele remedy is worse than the
disease) are often symptomatic of such problems.

e Automated recovery from outagesWe note in Section 7.4.3 the desirability of the ability to
recover from a wide variety of deleterious state-changumnes, without human intervention
except in the most difficult cases. There are numerous oppitigs for assurance techniques
associated with revalidation of the forward- or backwaedewery state. Any such mecha-
nisms should also be coupled with the configuration manageassurance. Effective hierar-
chical recovery strategies may be particularly importastiecommended to (D)ARPA [270]
in 1973, in the context of fault-tolerant systems.

e Incremental-closure analysis of would-be actionsEvery operational change has the po-
tential to invalidate earlier analyses based on the prevéadtware and the previous system

7.9. CERTIFICATION 129

configurations; ideally each change should result in restadn of the new configurations.
Determination of the scope of what has changed and the mmiexient to which reevalu-
ation must be done would be extraordinarily helpful in natirg down the resulting analy-
sis. (This approach also can apply to all changes througheutlevelopment cycle, where
a change to requirements typically results in the invaidtadf certain specifications, and
where a change to specifications typically invalidatesatetoftware.)

e Secrecy and privacy violations. Privacy problems also need to be considered, precisely
because they are so often ignored in analysis environmenigich access to potentially
sensitive state information is required. For example, §eadic implications of who is ac-
cessing which data and which state information, and undat eitcumstances, has important
privacy implications that could benefit from carefully caniled real-time analysis. Analyses
of broken systems can often reveal sensitive information.

In addition, there are also many system architectural qusdéat can contribute to assurance
aspects of operations.

Significant effort is needed to harness existing analysitstand to pursue new analysis tech-
niques and tools, to accommodate dynamic understangatilgystems in execution. For exam-
ple, such effort would be valuable in responding to anonaleal-time system behavior and to
evaluate the would-be effects of possible system changescylarly regarding flawed systems
and complications in operation and administration.

Configuring security policies into applicable mechanisma particularly important problem.
To this end, Deborah Shands et al. are developing the SP&DEl&tion system[350] at McAfee
Research. SPICE automatically translates high-levelssggelicies to configurations of low-level
enforcers,

7.9 Certification

Cer.ti.tude: the state of being or feeling certain;
Rec.ti.tude: correctness of judgment or procedure
(Abstracted from Webster’s International Dictionary)

Certification is generally considered as the process ofyapphk kind of blessing to a system
or application, implying some kind of seal of approval. Theaming of that certification varies
wildly from one environment to another, as noted in the felltg two paragraphs (which are
adapted from [262], along with the definitions noted above).

There is a fundamental difference between certificatiorigwis intended to give you thieel-
ing that someone or something is doing the right thing) andwrorthiness (for which you would
need to have someell-founded reasons for trustingat someone or something is doing the right
thing — always interpreted with respect to appropriate d&dims of what is right). Certification
is typically nowhere near enough; an estimate of trustvioets is somewhat closer to what is
needed, although ideal trustworthiness is generally aimable in the large — that is, with respect
to the entire system in operation. Formal demonstratioaissbmething is consistent with expec-
tations are potentially much more valuable than looselgbdaertification. (Recall the discussion
of consistency versus correctness in Section 6.2.) So,leeoba confronting us here is to endow

130 CHAPTER 7. PRACTICAL CONSIDERATIONS

the process and the meaning of certification — of systems asslilply of people (see below) —
with a greater sense of rigor and credibility.

Numerous system failures (e.g., [260]) demonstrate tla mitportance of people. Many cases
are clearly attributable to human shortsightedness, ipetemce, ignorance, carelessness, or other
foibles. Ironically, accidents resulting from badly desg human interfaces are often blamed on
operators (e.g., pilots, system administrators, and usatiser than developers. Unfortunately,
software engineerings practiced in much of the world is merely a buzzword rathan tan engi-
neering profession [288, 289]. This is particularly palnfith respect to systems with life-critical,
mission-critical, or otherwise stringent requirementengequently, some of the alternatives dis-
cussed in this report deserve extensive exploration, ssithese:

¢ Principled development practice, enforceable requiresy@and sensible system architectures
are all valuable. Their principled use should earn insugatiscounts, contractual bonuses
for on-time and under-budget delivery as well as satisfgcattainment of requirements,
and perhaps even legal relief from certain aspects of itglfalthough this is not generally
recommended). Bad development practice (including lovdéig taking unwise shortcuts
and risks) must not be condoned, and should somehow be Btidisgncentivized.

e Critical systems should be developed by persons and coegparih commensurate educa-
tion, training, and experience.

Software certification is a slippery slope that can raissefdlopes. However, its usefulness
can be greatly enhanced somewhat if all of the following aesent: (a) well-defined detailed re-
quirements; (b) architectures that anticipate the fulb$e¢quirements and that can be predictably
composed out of well-conceived subsystems; (c) highlygipied development techniques, in-
cluding good software engineering disciplines, seriouseokance of important principles such
as layered abstraction with encapsulation, least prigilegfensive analytic tools, and so on; (d)
judiciously applied assurance measures, pervasiveljketehroughout development and evolu-
tion, including formal methods where applicable and effect(e) meaningful evaluations such as
consistency between specifications and requirementsistensy between software and specifica-
tions, and dynamic operational sanity checks. In this wastjfccation might have some real value.
However, in practice, certification is far short of implyitrgstworthiness.

One horrible example of the inadequacy of certification excgice is provided by the currently
marketed fully electronic voting machines without a voterified audit trail (for example, a pa-
per record of the ballot choices, which remains within thstesn and is not kept by the voter);
all of today’s all-electronic paperless voting machinesklany meaningful trustworthiness with
respect to system integrity, accountability, auditayildr assurance that your vote goes in cor-
rectly. These proprietary closed-source systems ardiedréigainst very weak voluntary criteria
by a closed process that is funded by the developers. Iniaddiecent disclosures demonstrate
that software used in the 2002 and 2003 elections was nobftwesse that was certified; in many
cases, potentially significant changes were introdscdxsequent to certification.

However, simplistic strategies for institutional cerifion (such as the Capability Maturity
Model) and personnel certification (such as the Certifiedrimation Systems Security Profes-
sional — CISSP — examination and personal designation)lacestippery slopes. Reviews by
Rob Slade of numerous books on the limitations of the CISSithecan be found in the Risks Fo-
rum athttp://www.risks.org; for example, see volume 2&uées 79 and 90, and volume 22, issues

7.10. MANAGEMENT PRACTICE 131

08, 10, 36, 49, and 57 (the last of these covering four diffeb@oks!). (Note: The Risks Forum

moderator stopped running Slade’s reviews on this subjest al of the above-mentioned books
seemed to have similar flaws reflecting difficulties inheiarthe CISSP process itself; there are
many other books on CISSP than these.)

Although there is some merit in raising the bar, unmitigdtelief in these simplistic approaches
is likely to induce a false sense of security — particulanlytie absence of principled development
and operation. In the case of the CMM, the highest-ratedtinisins can still develop very bad
systems. In the case of the CISSP, the most experiencedapnaggrs can write bad code, and
sometimes the least experienced programmers can writeqymied

7.10 Management Practice

7.10.1 Leadership Issues

Some of the biggest practical problems relate to the rolecop@rate Information Officers (CIOs)
in corporate institutions, and their equivalents in gowneent institutions. (Note: There is still no
Federal CIO for the U.S. Government, which is increasinglysing certain problems.)

ClIOs are generally business driven, wherein cost is ofteisidered to represent the primary,
secondary, and tertiary motivating forces. The advice ap@rate Technical Officers (CTOSs) is
often considered as close to irrelevant. The businesssgmreerally motivate everything, and may
override sound technological arguments. This has sometuntate effects on the development and
procurement of trustworthy systems and networks, whickl terbe reinforced by short-sighted
optimation and bottom-up implementations.

7.10.2 Pros and Cons of Outsourcing

Outsourcing is a real double-edged sword, with many berafiisrisks, and with many problems
that result from trying to optimize costs and productivity beth in the short term and in the
long term (e.g., as suggested by the last paragraph of 8eti®). It is seemingly particularly
cost-advantageous where cheaper labor can be effectivglpged without adverse consequences
— for example, for software development, hardware fabiocatoperations and administration,
maintenance, documentation, business process work, &aed labor-intensive services (such as
call centers). However, there are many hidden costs; incdeséral recent studies suggest that the
case for overall cost savings is much less clear-cut. Furtbiee, other considerations may also be
important, such as the ability to innovate compatibly, gnééed workforce development, planning,
coordination, intellectual property, security, and pcyaThese tend to be less tangible and less
easily represented in cost metrics.

From the perspective of a would-be controlling enterpnge consider two orthogonal dimen-
sions that relate to the extent ofitsourcingand offshoring. Outsourcing typically involves con-
tracts, subcontracts, or other forms of agreements for ywerkormed by entities outside of the
immediate controlling enterprise. Offshoring involvesrdegree of work performed by nondo-
mestic organizational entities such as foreign subsisaforeign companies, or foreign individ-
uals. Thus, we can have widely varying degrees of both outgayand offshoring, with a wide
range of hybrid strategies. The situation is simplified HBreonsidering four basic cases:

132 CHAPTER 7. PRACTICAL CONSIDERATIONS

e DI: Domestic in-house control (wholly internal)
e DO: Domestic outsourcing (on-shore outsourcing)
e FI. Foreign subsidiaries (e.g., wholly owned; in-house offsig)

e FO: Foreign outsourcing (offshore outsourcing)

Table 7.1 outlines some of the issues that arise in each g floeir cases. The left half of the table
representsn-house top-level control (1), and the right half represesttme degree @utsourcing
(O). The upper half of the table represents whallymestic efforts (D), and the lower half involves
some degree dforeign offshoring (F).

The pros and cons summarized in the table are intended tajgestive of concerns that should
be raised before engaging in outsourcing and/or offshoratyer than being dichotomous black-
and-white alternatives. Indeed, the pros and cons for aldlcants other than the upper left tend to
vary depending on the degree of outsourcing and/or offagpas well as such factors as relative
physical locations, ease of communications, languagédbarstandard-of-living differentials, job
marketplaces, government regulation, and so on. Even tperdeft quadrant has variations that
depend on management strength, centralization versugdistd control, employee abilities, and
So on.

Several conclusions are suggested by the table.

e When considering outsourcing and/or offshoring of any ralynin-house, hands-on, or
up-front activities (and especially those that requireselattention and possible substan-
tive changes during development or subsequent use andtiem))ibeware of situations in
which requirements, business models, and managementaalamscompletely defined and
inadequately specified.

e Beware of security and privacy problems resulting fromudf$ng, including Trojan horses,
system integrity, accountability, and so on. Many of thesdems typically remain hidden
until much later.

e Beware of situations in which contractor or subcontraciscigline would be essential but
difficult to ensure.

e Beware of weak links in chains of command. These are paatilyutiskful in outsourced
and/or offshored efforts.

e Disciplined development and all of the other concepts dised in this report remain vital
irrespective of which quadrant of the table applies. Eacadgant has its own particular
pitfalls.

e Serious attention needs to be devoted to better managefresksoassociated with outsourc-
ing and offshoring. For example, see [369], which also exasia broad range of problems
associated with defense acquisitions (which are themsealgerious source of risks).

7.10. MANAGEMENT PRACTICE

Table 7.1: Pros and Cons of Outsourcing

DI: Domestic In-House Control

DO: Domestic Outsourcing

Pros:
Closer access to business knowlec
Tighter reins on intellectual propert
Tighter control of employees and
development efforts

Pros:

ideesource balancing
yPotential cost savings,

particularly for labor
Offloading less desirable jobs

Cons:

U.S. education often inadequate
for system engineering, security,
reliability, and trustworthiness
Bad Government records

in managing developments

(Large corporations are sometimes

not much better!)

D

Cons:

Loss of business sense

Increased burden on contracting
Potential loss of control

Bad records in managing

contracted procurements

Possible hidden offshore subcontracts
(as in the ATC Y2K remediation)
Greater security/privacy concerns

Fl: Foreign Subsidiaries

FO: Foreign (Offshore) Outsourcing

Pros:

Potential cost savings (esp. labor)
In-house control largely retained
Resource/labor balancing

Choices exist for well-educated
and disciplined labor.

Up-front emphasis on requirement
specs can increase product quality

Pros:

Potential cost savings (esp. labor),
at least in the short term
Resource/labor balancing

Potential pockets of good education
and disciplined labor in some cases

sUp-front emphasis on requirements/

specs can increase product quality.

Cons:

Some loss of direct control

More difficult to change
requirements/specs/code/operatio
More risks of Trojan horses
Possible language problems
Hidden long-term costs

Domestic job losses

Loss of GNP and tax revenues
Foreign laws generally apply,

in addition to domestic laws.
Potential political risks

Privacy problems and other risks
Risks of hidden subcontracts
Some intellectual property concern

Cons:
Considerable loss of direct control
Even more difficult to change

nsequirements/specs/code/operations

Greater risks of Trojan horses
Possibly severer language problems
Possibly more hidden long-term costs
Domestic job losses

Loss of GNP and tax revenues
Foreign laws may cause conflicts with
domestic laws.

Greater potential political risks

More privacy problems and other risks
Further loss of control of subcontracts

sintellectual property control degradatior

Hidden indirecteds{th-party) outsourcing

133

134 CHAPTER 7. PRACTICAL CONSIDERATIONS

7.11 A Forward-Looking Retrospective

Pandora’s cat is out of the barn, and the genie won'’t go badkécloset.
Peter G. Neumann

In the same way in which the quote at the beginning of Secti®ean be parameterized to apply
to many narrow would-be “solutions” for complex problemise tabove polymorphic Pandoran
multiply-mixed metaphor can be variously applied to crgpaphy, export controls, viruses, spam,
terrorism, outsourcing, and many other issues.

Over the past forty years, many important research and dgwednt results have been specif-
ically aimed at achieving trustworthy systems and netwotkewever, from the perspective of
applications and enterprises in need of high trustwordsnéose results have mostly not been
finding their way into commercial developments. Reasonsrgiariously include increased de-
velopment costs, longer delays in development, extremegldity of adding significant levels of
assurance, lack of customer interest, and so on. Perhapsrewe important are factors such as
the inadequacy of educational curricula and training paogy that minimize or ignore altogether
such issues as highly principled system engineering artérsydevelopment, software engineer-
ing, system architecture, security, reliability, safetyrvivability, formal methods, and so on. A
lack of knowledge and experience among educators fostensilarslack in their students, and is
particularly riskful when also found among managers, @wting agents, legislators, and system
developers. Perhaps the most important challenge raiséddseport is finding ways of bringing
the concepts discussed here realistically and practiggathymainstream developments.

A strong sense of history is not inconsequential, partityia understanding how badly com-
puter software development has slid down a slippery slopgydvom perspicuity. Much of the
work done in the 1960s to 1980s still has great relevanceytadthough that work is largely
ignored by commercial developments and by quite a few copbeany researchers.

e Christopher Strachey’s Axiom on Prognostication:“It is impossible to foresee the conse-
guences of being clever.” As a consequence, it is very diffioudentify the great technolo-
gies of the future and pursue them aggressively ahead oftime.

e Myth. There is a popular myth to the effect that if a particular testbgy fails to make it
in the real world for more than a decade or two, then it is pbbpaot worth remembering:
“Let others advocate it.”

e History. Success in picking great technologies of the future requak®iding the research
and development “square wheels” of the past. Ignoranceegidist invites repeating the same
mistakes over and over. Awareness of past innovations asdmes learned therefrom can be
very productive. Reflection on much of the work from thoseadiss can provide considerable
insight as to pervasive obstacles experienced today andheymight be avoided.

Hence, we conclude that awareness of much of the work domeih360s to 1980s related to
trustworthiness is potentially useful today.

Voltaire’s famous quotation (seictionaire Philosophique: Art Dramatiqye“Le mieux est
'ennemi du bien.” is customarily translated as “The besihésenemy of the good.” (However, the
French language usesieuxfor both of the corresponding English wordsstandbetter, thus,

7.11. A FORWARD-LOOKING RETROSPECTIVE 135

in a choice between just two alternatives, a correct Endtishslation might be “The better is
the enemy of the good.”) This quotation is often popularkedias a justification for avoiding
attempts to create trustworthy systems. However, thabreag seems to represent another nasty
slippery slope. Whenever what is acceptedresely goodis in reality not good enoughthe
situation may be untenable. Realistically speaking, thst tve can do is seldom ever close to
the theoretical best. Perfect security and perfect rdiiglaire inherently unattainable in the real
world, although they can occasionally be postulated in tistract under very tightly constrained
environments in which all possible threats can be completelmerated and prevented (which
is almost always unrealistic), or else simply assumed o@xadtence (as in supposedly perfect
cryptographic solutions that are implemented on top of aseaare operating system, through
which the integrity of those solutions can be completely poomised from below). Thus, we
come full circle back to the definition of trustworthinesstive abstract at the beginning of this
report. In critical applications, the generally acceptgddd” may well be nowhere good enough,
and “better” is certainly not the enemy. In this case of sisaghted thinking, we quote Walt
Kelley’'s Pogo: “We have met the enemy, and he is us.”

The need for Information Assurance in the Global Infornmatigrid (GIG) (noted at the end
of Section 7.1) — for example, see [52] — provides a fasanmgagxample of an environment
with a very large collection of critical needs, and extreyrifficult challenges for the long-term
development of an enormous extensively interoperablévtnrghy network environment that far
transcends today’s Internet. Considerable effort remt@irflesh out the GIG requirements and
architectural concepts. The principled and disciplinegrapch of this report would seem to be
highly relevant to the GIG effort.

Chapter 8

Recommendations for the Future

The future isn’t what it used to bérthur Clarke

8.1 Introduction

In this chapter, we consider some potentially importarasfer future research, development, and
system operation, with direct relevance to CHAT S-like gffpto DoD more broadly, and to various
information-system communities at large. The recommeodstconcern the critical needs for
high-assurance trustworthy systems, networks, and lolisé&dl application environments that can
be substantially more secure, more reliable, and moreabia than those that are commercially
available today or that are likely to become available infireseeable future (given the present
trajectories).

One of the biggest challenges results from the reality thatltest R&D efforts have been
very slow to find their way into commercial practice and intoguction systems. Unfortunately,
corporate demands for short-term profits seem to have spftegress in trustworthiness, in favor
of rush-to-market featuritis. Furthermore, governmememtives for commercial development
have been of limited help, although research funding has be&ry important contributor to the
potential state of the art. We need to find ways to improveuh&irtunate history.

8.2 General R&D Recommendations

The whole of science is nothing more than the refinement ofase thinking. Albert
Einstein,ldeas and Opiniongage 290

This section provides a collection of broad recommendatfonfuture R&D applicable to the
development, operation, maintenance, and evolution sfirorthy systems and networks, relating
to composability, assurance, system architectures, aoftengineering practice, and metrics. It
also addresses the use of formal methods applicable tansysted network architectures intended
to satisfy critical security requirements. These reconalaéions take an overall system approach,
and typically have both short-term and long-term manitesta. Each recommendation would
benefit considerably from observance of the previous chapte

136

8.2. GENERAL R&D RECOMMENDATIONS 137

e Principle-based system development and assurancé&lany of the principles outlined in
Chapter 2 can contribute significantly to better systemsrateorks, with greatly enhanced
assurance. Although the Saltzer—Schroeder and relatedigdgas (including GASSP, Sec-
tion 2.3.4) are not primarily oriented toward assuranceiy fladicious use can contribute sig-
nificantly to fewer flaws and more trustworthy systems. Webpect to future government-
funded R&D efforts and to commercial developments, it isvibat those efforts reflect a
more conscientious and pervasive awareness of thesepesciPrincipled software engi-
neering needs to become more pervasively a part of reseatcdevelopment. (This also
suggests an urgent need for incorporating principled systevelopment into mainstream
educational curricula, as discussed in the last bulletad @f Section 8.5.)

e Pervasively Integrated Assurance (PIA)As noted in Section 6.2, it is clearly desirable in
the pursuit of trustworthy systems and networks that a wahge of formal and informal
assurance-related techniques become an integral par dktrelopment cycle, and also are
persistently invoked during operation, maintenance, adtration, and long-term evolution
— wherever beneficially applicable.

e Requirements. Serious effort is needed to establish canonical sets of osaige require-
ments for useful attributes. Requirement composabiliputdhbe nonconflicting wherevever
possible, and explicitly identified where conflicting — foraenple, mutually exclusive or
otherwise interfering requirements. The requirementsystems, subsystems, and networks
should be subsettable and parameterizable, allowing tbepe used for different types of
applications, encompassing what is essential for secueliability, survivability, real-time
performance, static and dynamic configuration control,smdn.

e Properties, interrelationships, composability, and deleerious effects thereof. More em-
phasis should be devoted rather pervasively to carefufipidg and assuring important prop-
erties (including, but by no means overly focused on, MLS nghrelevant) of subsystems,
systems, and networks (including distributed and netwebggstems, systems of systems, and
so on). Interrelations between security and other typesagasties (such as fault tolerance,
real-time performance, and emergency overrides) are giyenore difficult to handle, but
should also be represented. A system cannot be adequatstwarthy if its reliability is
in doubt; it also cannot be adequately trustworthy if itsusig properties can be compro-
mised by malfunctions or misuse by insiders and outsidersdeedmustbe operationally
compromisible under certain real-time emergencies sutbsapasswords or crypto keys, or
emergency recovery without any assurance. FurthermoreresMormal methods are used,
they should be composable and interoperable — for examplne sense that techniques
for module specification, network protocols, and cryptoudtidoe able to be mixed together
compatibly. Greatly improved formal understanding of casipon of subsystems is re-
quired, including compositions of horizontal abstractioas well as vertical abstractions —
and especially the vertical abstractions provided by thstivorthiness enhancement mecha-
nisms of Section 3.5. Increased understanding is also s&gewith respect to the ways in
which subsystem properties can be preserved or transfouméer composition, involving
both horizontal abstraction and vertical abstraction.

e Assumptions. More emphasis should be placed on making explicit all of ttievise un-

138

CHAPTER 8. RECOMMENDATIONS FOR THE FUTURE

stated assumptions, functional dependencies, and pyagpegrendencies underlying any sys-
tem — and especially any of those to be formally specified aradyaed. Assumptions of
proper human behavior are typically much more important tisausually recognized, and
should be factored into the analysis of any critical systenthat the dependencies on that
assumed behavior can show up as part of the reasoning pr&eskarly, environmental as-
sumptions should be made explicit, and factored into aedarlytic approaches so that the
external risks can also become explicitly manifest. Furtiege, just as Byzantine techniques
can be used to withstand the misbehavior of arbitrarilytfacbmponents, so is it desirable
to use such techniques advantageously to overcome undlésinean and system behaviors.
For example, multikey crypto [102, 236] and error-cornegtcoding capable of detecting and
perhaps correcting human errors could be useful in thisdega noted in Section 3.5.

Criteria. The TCSEC/ITSEC/CTCPEC/Common Criteria efforts repreasaful iterations
in what is still going to be a long process of attempting tateeapply, and enforce realistic
and more easily applied trustworthiness criteria. Any $etiteria is likely to be incomplete.

It is also likely to be difficult to interpret, and possiblyeny explicit and restrictive. Nev-
ertheless, detailed parameterizable Common Criterigeption profiles, evaluation criteria,
and representative carefully documented successful&waihs are urgently needed that more
thoroughly address distributed systems and networks.

System architectural concepts.More emphasis should be placed on system architectural
concepts such those included in the Enlightened Architec@ancept of Section 4.3, such as
the minimization of the need for trustworthiness and theTthested Servers and Controlled
Interface (TS&CI) systems noted there for both multilevedl aingle-level security appli-
cations. Attempts to get developers of secure computeesysto produce commercially
viable TCSEC Orange-Book B2, B3, and Al equivalent systeave lalmost always been
rather dismal. Adoption of the TS&CI approach could haveesaveffects: it could permit
the rapid development of multilevel-secure system congdessing off-the-shelf single-level
end-user systems; it could greatly increase the abilityottfigure systems to suit particular
application needs; it could provide some real incentivesie development of minimal (for
example, starkly subsetted) special-purpose serverathatighly trustworthy, particularly
for multilevel security, survivability, and other critica&equirements; it could simplify system
evaluations; and it could simplify system and network etioluover time. This approach
could also be very useful in developing conventional sidglel systems with dependence
on demonstrably trustworthy network servers, file servamg, authentication servers, some-
what independent of the specifics of the particular end-siggtiems, vendors, operating sys-
tems, and application software. Overall, the TS&CI apphoaould increase the ease with
which heterogeneous system complexes can be produced. l\eeltbat such an approach
can simplify demonstrations of assurance, including foramalyses. We also believe that,
by removing some of the most stringent trustworthinessirements from end-user systems,
the analysis will indeed be less intricate when all sectmetgvant factors are considered —
for single-level security as well as multilevel securityowkver, perhaps the biggest benefits
would be the ability to obtain heterogeneous distributestesys with much greater overall
trustworthiness, including multilevel-secure operatmgironments that could be assembled
as configurations of off-the-shelf commercially availasilegle-level end-user systems and a

8.2. GENERAL R&D RECOMMENDATIONS 139

few extremely trustworthy servers, some of which could bdtileuel secure as needed.

Hardware architectural issues are also relevant. Althaag$ting processor architectures
do include some mechanisms for increased system secuigty feore than two processor
states, and coprocessors), those facilities are seldothimgeass-market operating systems.
It seems obvious that those operating systems are not deamgandreasing hardware mech-
anisms for security. However, that does not mean that relsearhardware should not be
pursued. Indeed, there are many hardware directions thht be useful, such as domain sup-
port, type-based addressing, certain aspects of cayabéged addressing, dynamic check-
ing, greater error detection and correction, parallelisrd pipelining that do not add new
security vulnerabilities, and special-purpose copramesge.g., for cryptography, multilevel
security, type-based addressing as in the Secure Comptdirgpration LOCK architecture,
and highly trustworthy servers).

e Trustworthy networking. The networking area desperately needs coherent effoetecel
to trustworthy networking, including (for example) impexnetwork protocols, trustworthy
embeddings of cryptography into systems or special-p@pasdware, trustworthy router
survivability in the face of attacks and accidental outagesl network management that
integrates security management, network misuse detecimerational controllability, and
automated or semiautomated responses to detected netvegldarities.

e Programming languages and compiler technologyMost existing programming languages
and compilers in widespread common use are typically dangdoecause of the ease with
which security flaws can arise, or because they are inhgrefficult to use wisely, or both.
Although we certainly do not recommend the creation of yeitla@r committee-generated
language (as was the case for Ada, although under unusumtdty constraints), or contin-
ued extensions on languages that were not explicitly cdefatethe writing of trustworthy
software (e.g., C and its offspring), much has been learbedtahow to define relatively
sound languages (e.g., Euclid, Modula 3, ML, and to somengxdt@va — especially in the
context of the Java Virtual Machine environment). Perhagstailed assessment would be
worth pursuing of what kind of a programming language mightly enhance trustworthiness
while simultaneously permitting relative ease of prograngn

e Automated and semiautomated recovery in systems and netwks. Clearly, it is desir-
able to design systems whose architecture is inherentistaes to crashes and other events
that require manual intervention for recovery. Howevechstesistance is not always achiev-
able. In the most difficult cases, huge operational benefiglavresult from autonomous
systems and networks with capabilities for self-diagngsself-healing, self-reprotecting,
self-reconfiguring, and self-optimizing — without the ing&ve hands-on intervention that is
required today. However, this should require much gredtenton to anticipating all possi-
ble emergency situations and their responses.

e Operations, system administration, and maintenance. An enormous burden is placed
today on system administrators, critical-system opesatbevelopment managers, and other
information technology professionals. Some of that burckembe reduced by better system
trustworthiness, by sensible human interfaces that arerd¢asuse, robust, and user-tolerant,

140 CHAPTER 8. RECOMMENDATIONS FOR THE FUTURE

and by the ability to handle automated self-recovery (abémprevious bullet). On the other
hand, if systems become largely autonomous, and if significéewer administrators are
required, then there will be risks that most of the remaisiygtem administrators will be less
prepared to deal with the most unusual events — because thepthave had experience in
coping with such emergencies. Thus, a desire for systerhedipaire less skilled administra-
tion under routine adverse circumstances may lead to sgdteahare less easy to administer
when something does go wrong. Overall, the human interfssiges deserve much greater
emphasis in research and development than hitherto, imgweell-designed command-line
interfaces that avoid many of the pitfalls of GUIs.

e Tools. More emphasis is needed on the realistic usability of ad baeadl as formally based
methods, together with their supporting tools. There araeyn@otentially useful require-
ments languages and specification languages, and sugptwtiis. However, further effort
is needed to incorporate them into better human-enginetreglopment environments into
which the mechanizations of formal methods have been dbréfitegrated, and in which
the human interfaces to the tools have been driven by senaital realistic ease-of-use re-
guirements. Different formalisms must interrelate, sd thia possible to reason in the large
about system and network properties such as operatingisg&teurity, crypto encapsulation,
crypto strength, and network reliability. For developdresal-time systems, incorporation of
temporal logics or other approaches to representing iealissues would also be desirable
(although less accessible to conventional programmers).

e Well-documented worked examples.Readable and easily understood tutorial documents
such as [62, 330] are essential for those who are able to usalfanethods environments.
Carefully worked and well-documented examples of priredpteal system developments
with high assurance would be extremely helpful, includingse developments with serious
use of formal methods. Benefits would accrue not only to tveldpers of those systems, but
also to other people who could subsequently emulate s"otdsselopments and analyses.

e Testbeds.Architectural frameworks need to be developed that can@uifipe establishment
of networked system testbeds for exploring new system quacdemonstrate the effective-
ness of various approaches for developing highly evolvhblerogeneous systems, enable
experimentation, and provide detailed studies of the iuglaherits of alternative architec-
tures — including examining many of the recommendationsrerated in this report. For
example, it could be very illuminating to have such a testbgatobe the strengths and limita-
tions of IPSEC and IP Version 6. Such testbeds could alsodfaldsr experiments regarding
the effectiveness of various strategies for establishimbeanforcing various privacy policies,
including those related to database management and ottaitgerelated applications. Of
course, there is a caveat that must be kept in mind: testlmebieatbed demos generally do
not fully flex the things that can go wrong. Consequentlyrehie a real risk of attributing to
them more than should reasonably be implied.

8.3. SOME SPECIFIC RECOMMENDATIONS 141

8.3 Some Specific Recommendations

The issues discussed in Section 6.2 and the general recaatieers of Section 8.2 suggest var-
ious opportunities for the future. Each typically has bdibrs-term and long-term implications,
although some require greater vision and farsight thanrethEhe typical myopia of short-term
efforts almost always seems to hinder long-term evolvgbidis discussed in Section 7.1. Incre-
mental attempts to make relatively small changes to systeatsare already poorly designed are
less likely to converge acceptably in the long term.

We suggest in this report that considerable gains can be\aghiby taking a fresh view of
secure-system architectures, while also applying formethods selectively — particularly up
front, where the potential payoffs are thought to be gréatéée also suggest that the choices
of methodologies, formal methods, and languages are imppribut somewhat less so than the
architectures and the emphasis on up-front uses of commse sknowledge, experience, and
even formal methods, if appropriate. However, there i$stiich worthwhile long-term research
to be done, particularly where it can reduce the risks ofesgstievelopments (which include
cost overruns, schedule slippages, and in some casesjedtfailure) and increase the overall
chances of success.

e Principled prototypes and illustrative worked examples.There is a great need for exam-
ples of real systems for which there are explicit criticajugements, sound architectures,
well-developed software, and sensible metrics for asserand determination of the success
of the effort, all of which need to be carefully documentetiisineed is particularly impor-
tant for systems in which high assurance has been soughigihtbe use of formal methods
as an integral part of system development (rather than gfrpost-hocanalyses). These
examples should be realistic, carefully elaborated, antbtighly documented. Where for-
mal methods are used, they should observe the concept adidhezly Integrated Assurance
(PIA) noted in Section 8.2, applied up front as well as thitoug the development process,
although incrementally it is of course wise to begin withlgsas of requirements and spec-
ifications. Some of the more far-reaching examples shouldraidy extend to hierarchical
mappings among different layers and explicit represesmatof properties at different layers
and explicit representations of the dependencies on layers.

An ambitious system might involve a stem-to-stern speciboeand analysis of a distributed
system, encompassing all of the necessary assumptionednfthstructure and end-user
systems, including all relevant properties of the opegasiystems, servers, crypto encapsula-
tions, and people involved in operations (including peaplthe key-management loop and
key-escrow retrievals). However, such an effort shouldb®attempted all at once; rather,
it should use an incremental approach whereby the piecesmarge separately and then be
combined. (Some readers may be annoyed at our frequentaneaftiormal methods and
their potential benefits. Formal methods are clearly noefaryone. However, for certain
highly critical system developments, they can be extrera##gctive when used wisely.)

Here are examples of a few potential problem areas and wmrildpproaches for which
specific R&D efforts might be particularly valuable.

— A very complicated environment. Apply some of this report to the Global Information

142

CHAPTER 8. RECOMMENDATIONS FOR THE FUTURE

Grid. The vision of DoD’s GIG (noted at the end of Section Feresents an enormous
challenge that would lend itself to the overall recommeiaaiatof this report. That vision
cries out for a detailed and comprehensive set of short-#eriong-term requirements
(with appropriate transition strategy), the establishihoéra viable evolvable heteroge-
neous enlightened architecture that can accommodatetatbsé requirements including
a mix of MLS, MILS, and MSL subnetworks (with a detailed sté@y for the refinement
of the architectural concept), a highly principled devehgmt strategy, and a completely
integrated approach to the assurance that is required fervagively multilevel-secure
highly trustworthy survivable networked system of syste(®er background, see [261].)

A much more controlled distributed environment. Develop a trustworthy networked
distributed operating system environment that provideseseell-defined but nontrivial
aspects of security, reliability, survivability, ease pioation, and autonomous recovery,
taking advantage of but transcending past research subh Bsdital Distributed System
Security Architecture [128], SDSI/SPKI [112, 315], suaility [133, 259, 261], and
many other stepping stones.

A separation kernel. Develop a reusable interoperable Rushby-style separiatiorel
with an appropriate interface, together with some appboatthat depend on it, complete
with all privileged exceptions, demonstrating clearly hitn technology can be applied,
how the higher-layer properties depend on the kernel ptigseand how formal analysis
can be effectively carried out for more than just the kernel.

Enlightened MLS/MSL/MILS architectures. Elaborate on one or more of the architec-
ture families defined in [259], including the Proctor—-Neunmarusted-server/controlled-
interface (TS&CI) approach noted in Section 4.3, and devplototypes for those that
appear to have the greatest potential — for single-levetenments as well as multilevel-
secure applications. Despite all the shortcomings of theSMiforts in the previous
decades, the existence of some practical distributed amebrieed multilevel-secure en-
vironments would be extraordinarily useful.

A sound cryptographic embedding. Perform a thorough modeling and analysis of a
cryptographic encapsulation (in hardware and/or in sa#yva— including making ex-
plicit all assumptions on which the confidentiality and griey of the crypto-based se-
curity depend, and all reasoning based on those assumptions

A robust messaging systemExtend the effort begun in [181], in several possible di-
rections: (1) refining the existing representation of théSBll security policy or one of
its successors in the Defense Messaging System area; (Rjrerg the consistency of
the detailed design with those requirements; and (3) plyssitempting some reasoning
about the implementation, but not necessarily code-ctargiyg proofs. Specification of
the security requirements is clearly a valuable activityowidver, there appears to be
good potential for getting further mileage out of the effalteady begun. An effort to
track ongoing changes in the requirements, design, ancemmsattation could also be
valuable.

— Common Criteria elaborations. Establish some meaningful Common Criteria profiles

encompassing security, reliability, survivability, anither critical requirements in a pa-
rameterizable way that would be applicable to many systeraldpments.

8.3. SOME SPECIFIC RECOMMENDATIONS 143

e Model checking. Model checking has considerable potential. Efforts sp=adlfi oriented
to applying model checking to security are desirable. Qérexamination of the relative
benefits and areas of applicability is needed, as well astgtterstanding of the limitations.

e Integration of model checking. A somewhat longer-term but still near-term goal involves
incorporating model-checking tools compatibly into eixigtanalysis tools, as was done in
the Berkeley subcontract summarized in Appendix A.

e Integration of various approaches. The integration of methodologies, specification lan-
guages, formal methods, and their corresponding tools#tgva common framework would
be of considerable value to system developers desiringadausal methods pervasively.

e Modularization and interoperability of different tools. At present, various tools for formal
methods operate in their own environments, but do not ipemate with others. It would be
very useful to have modularized components of these taothat could interoperate across
institutional boundaries.

e Reasoning about requirements. However, it is clearly desirable to have well-defined re-
guirements that can be precisely stated and whose corwistan be analyzed. Some formal
reasoning would be particularly desirable where critiegluirements are involved, especially
if the requirements are modular and can be reused in othégxdsn (For development efforts
that begin with ill-defined and poorly stated requiremetitsre is relatively little hope for
applying analytic techniques.)

e Reasoning about designs, specifications, and interface¥Vhen nontrivial specifications
are part of the development process prior to implementatimse specifications should ad-
vantageously be such that they are amenable to analysis -exénple, for being syntac-
tically well formed, locally consistent with requirementsaving consistent interfaces and
being interoperable across multiple specifications, atichately consistent with overall sys-
tem requirements. Formal or semiformal specifications aasignificantly toward this end.
Properties of interfaces (Chapter 5) and the function#tigy they represent (Chapter 4) are
both accessible to such analysis.

e Reasoning about compositionsSignificant effort should be devoted to a generalized theory
of compositions and the property transformations they ¢eduThis work should encom-
pass system and network configurations generally, thecom@ections involved in TS&CI
architectures, the interposition of trusted gatewaysyoeking, and the necessary criteria to
facilitate evaluation of modular systems, and reasonirauibbmergent properties. For ex-
ample, it is highly desirable that analytic tools be devebbthat can determine the extent to
which a set of modules can be composed without deleteridestef as noted in Sections 6.2
and 7.7.2.

e Reasoning about implementationsWe are by no means opposed to proofs that an imple-
mentation is consistent with its specifications, despitbezacomments about the relatively
bigger apparent payoffs resulting from up-front uses ofmar methods. Some emphasis
should be placed on carrying out a formal-methods apprdaahextends into the code or
microcode, especially if those code proofs can be formalgted to the specifications and

144 CHAPTER 8. RECOMMENDATIONS FOR THE FUTURE

shown to cover the critical requirements under carefullgcdied assumptions. However,
research should also be carried out to explore other appesao reasoning about imple-
mentations that fall short of full code proofs. For examjiesshould be possible to reason
about program changes and configuration control over im@htations without having to

reason about the programs themselves. (A precedent foexiss with respect to reasoning
about designs in work begun by Moriconi [246], to provideaniework for reasoning about
design changes, although that effort has spawned many ecgatradvances.) As in the cor-
responding near-term efforts, we recommend that reseacpl@ with intimate knowledge

of the formal methods and the tools be heavily involved thgetvith systems experts and
programmers.

e Reasoning about evaluationsBased on reasoning about requirements, specifications, com
positions, and implementations noted above, it is alsoralele to reason about the evalua-
tions of subsystems and systems, and how the evaluatiord cumpose. Also of enormous
potential value would be reasoning about the effects of gaauthat might occur throughout
the development cycle. Past efforts to attack this probleneHallen far short of what is
needed to avoid the pitfalls of upgrades and evolutionaanghbs.

In those efforts, an appropriate mix of experienced is revemded — such as systems, devel-
opment, formal methods, and analysis tools.

8.4 Architectures with Perspicuous Interfaces

Section 5.4.5 lists several gaps in existing analysis tgctes and tools. Each of those gaps sug-
gests various research and development areas in which céwiqees and significant enhance-
ments of existing techniques could advantageously be pdrsieveloped, and explored experi-
mentally, with the goal of achieving analysis aids that cgmificantly improve the understand-
ability of interfaces and system behavior.

Fundamentally, a combination of techniques is essentiahmpassing better system architec-
tures, better use of good software engineering practideerbshoices of programming languages,
better analysis techniques for identifying deficient pexgipy, a willingness to iterate through the
development cycle to improve perspicuity, and greateriplise throughout development and op-
eration. Here are a few specific suggestions.

¢ Integral interface design. Provide a wider perspective of understanding that encosesas
and interrelates system and network architecture, saoétatasign and implementation, and
operational characteristics.

e Flaw avoidance.Avoid characteristic design flaws and software bugs, thn@gombination
of architecture, software engineering, programming lagguchoice, enforceable constraints
on programming style, design for interface perspicuitistanalysis, and dynamic interpre-
tation of anomalies.

e Dependency analysisProvide detailed analyses of the dependencies amongatiffdesign
entities, different source-code modules, and differeatbcode components, as well as the
potential impact of those dependencies on perspicuityrggcreliability, and so on.

8.5. OTHER RECOMMENDATIONS 145

e Concurrency analysis. Provide detailed analyses of concurrency-related flawdahdes
and how to cope with them. (Consider the Edinburgh Concayr®vorkbench.)

e Pervasive analysisintegrate various approaches throughout the developryeletand oper-
ation, including analysis approaches that integrate sysiehitecture, system development
methodologies, requirements, specifications, programranguage syntax and semantics,
object code characteristics, and operational considerstiThis is a far-sighted and difficult
item.

e Privacy policies. Provide detailed privacy policy specifications relatindhtawv interface in-
formation should be made available. Ideally, what is neadedframework within which
specific policies can easily be specified, understood, apteimented — through a combina-
tion of dynamic analysis and constructive enforcement.

8.5 Other Recommendations

The recommendations of the previous sections focus priynamiresearch and development with
potential impact on the development, operation, and maamtee of trustworthy systems and net-
works. Some other issues with less R&D content could alsatreraely effective.

e Comparative studies. Comparative studies are needed to explore the explicitfliernieat
can result from the serious application of this report tdesysand network development. In
particular, substantive evidence regarding the efficaayookistent use of principles, Perva-
sively Integrated Assurance, and formal methods througéyatem developments would be
very valuable. Similar studies are also desirable to determvhethepost-hoaises of formal
methods have any real value — that is, where modeling angsisare carried out after a
system development is well under way or even completed. elsieslies probably cannot be
statistically meaningful, because of the many variableslired and the continual production
pressures during development, but nevertheless someexiierlearning is needed relating
to the efficacy of using formal methods in large and realsggtems. The relative merits and
disadvantages of open-box software (under varying licenarrangements) also need to be
objectively documented [122]. (Protests by certain clesearce developers that open-source
paradigms will destroy the world as we know it seem somewbhatioflated.)

e Operations, system administration, and maintenance. As noted above, the burden on
operational staff and management is becoming overwhelmingddition to architectural
approaches such as autonomous component systems thateagbe these problems, much
greater awareness of the vulnerabilities, threats, akd i$salso necessary on the part of the
involved personnel. For example, as a consequence of tlmusdurden on an inadequate
number of system administrators, there is a widespread meweto outsource operational
support. This represents a significant potential threalysbesn trustworthiness in critical
systems, and its would-be cost-effectiveness needs tolaedeal by the security risks. (See
Section 7.10.2.)

e General awarenessThe educational issues relating to university studentsavaavould-be
system developers are noted above. But there is a much ok for increased awareness

146 CHAPTER 8. RECOMMENDATIONS FOR THE FUTURE

outside of the information technology profession — for ep#non the part of legislators
and their staffers, law enforcement and judicial officersntBgon brass and other military
personnel, government officials across the board, and thdemputer user communities
overall.

e Education, academic research, experience, and trainingAlthough education is not an
R&D goal on its own, it has far-reaching implications forgtworthy systems development.
In particular, R&D results need to play an important placeeiaching and training. More
emphasis should be placed on the education of students dnstiy employees to help them
appreciate the potential practical utility of principledvélopment (including formal meth-
ods) applied to real systems, as well as their theoretiGaltygfor example, see [121]). For
this to be successful, teachers must have a better unddirgjaof the fundamental issues
of software engineering concepts and of discrete mathematid logic, and those topics
must permeate the instruction and training. Much greatghasis is also needed in training
system administrators, irrespective of the extent to whitfonomous systems and networks
might become a reality. Also needed is a much better undetistg of some of the research
directions noted here, in motivating graduate studentatdvwursuing more relevant PhD
thesis topics.

The unfortunate lack of a more ubiquitous systems perspertieducational curricula rep-
resents a fundamental problem in education and trainingaayraniversities. Undergraduate
and graduate computer science and computer engineerigppne desperately need to have
requirements engineering, system and network architeocgaod software engineering prac-
tices, security, reliability, survivability, and othedaged concepts pervasively integrated into
course curricula.

Computer-science curricula are for the most part sorelyobtduch with the needs of de-
velopers of critical systems and complex applicationsgRnmming and formal methods are
generally taught in the small, which implies that studeatsltto develop very little system
sense. Good software engineering (as opposed to overlyflisimpanaceas) is rarely em-
phasized — especially from any rigorous basis — and seems tmbsidered more or less
irrelevant in favor of a predilection toward programmingtire small. (There are of course
some exceptions.) Security, reliability, survivabilibyman safety, and other critical-system
issues seem to be widely underrepresented. Unfortundbeypractical needs of system
developers seem to be the tail trying to wag the dog. Our usitees must embody more
diversities (or even multiversities), teaching much méentjust C, Unix, Windows, HTML,
and XML. The situation in industry is generally not much bethan in universities, the result
being that complex systems and networks are often poorlgeieed and poorly developed
by people with steadily narrowing rather than broadeningpeiences. A greater appreciation
of the need for system perspectives should permeate ednctall levels.

Allin all, the existence of systems and networks that aretniahtly more trustworthy — through
sound architectures, better development practice, ared affproaches discussed in this report —
would greatly simplify the vicissitudes of system operatand administration. By reducing the
labor-intensive efforts required today, we could theret®atly improve the overall trustworthiness
of our operational systems and networks.

8.5. OTHER RECOMMENDATIONS 147

A very useful recent assessment of future research direc{id39] has been compiled for
DARPA by Fred Schneider on behalf of Jay Lala, as a set of yigehotated slides. It provides
a complementary view to that presented here, although #rerénot surprisingly) many areas of
overlap. In particular, it outlines several approacheststness: runtime diversity (as opposed
to computational monocultures), scalable redundancye@alty asynchronous), self-stabilization,
and natural inherent robustness (as is found in variousgichl metaphors).

Chapter 9

Conclusions

The merit of virtue is consolidated in actio@icero

9.1 Summary of This Report

This report addresses the main elements of the DARPA CHAD8rpam — composable high-
assurance trustworthy systems — with emphasis on providighdamental basis for new and
ongoing developments having stringent requirements tmtworthiness. We believe that signif-
icant benefits can result by emphasizing the importance efuticious use of principles, the
fundamental need for inherently composable architectasethe basis for development, and the
underlying need for a highly principled development precé¥e believe that principled develop-
ment can also contribute to improved operation, maintegaened long-term evolution. However,
these benefits depend largely on the education, trainirtgegperience of its practitioners, and on
a continuing flow of relevant research and development ghstiitably motivated by well-defined
and realistic requirements.

9.2 Summary of R&D Recommendations

If the road to hell is paved with good intentions, then by dyathe road to heaven must
be paved with bad intentions. However, the road to good Bystevelopment and good
management practice is evidently infinitely precariousymaiter which route is taken.

PGN

Chapter 8 summarizes some of the potentially far-reachieasafor future R&D, at a relatively
high layer of abstraction. Of these recommendations, thet mmportant are perhaps the following.

e Principled research and development. Research and development efforts should be en-
couraged if not required to declare the principles to whidytaspire to adhere, should honor
those principles where practicable, and provide metricdetermine the degree of success.
This recommendation should be reflected in future procunésne

148

9.3. RISKS 149

e Parameterizable reusable requirementsWe need to develop parameterizable sets of com-
posable requirements for systems with critical trustwiaghs, whereby specific sets of re-
guirements can be explicitly tailored for any particulastgyn within a wide range of realistic
system and network developments.

e Parameterizable reusable composable componentdased on the worthiest of research
concepts and architectures, we must establish a colleofigmincipled composable inter-
operable distributed subsystems out of which trustworiisgesns and networks can be pre-
dictably and readily developed, and we must carefully doentinany potential adverse inter-
actions that may result from less-than-seamless compnsitirfhese components should also
include well-designed, easy-to-use, efficient applicatiand user-interface subsystems, so
that entire systems can be readily established.

e Parameterizable reusable distributed and networked archiectures. We need to establish
families of composable architectures that can provide émorks for a wide range of sys-
tems, and that can be effectively adapted to specific seeqjafrements — including not just
aspects of trustworthiness, but also maintainability)\eiaility, and heterogeneous interop-
erability among systems, networks, and applications (foenpst a few). Several potential
architectural approaches are noted in the first major bullSection 8.3.

e Perspicuous interfaces.Further work is needed to enhance the design and implenmmntat
of system and network architectures that pervasively mtegperspicuous interfaces into
system architectures, as discussed in Chapter 5.

e Automated and formally based analytic tools.Tools for static and dynamic analysis need
to be integrated systemically into development and opmratipractices, not just to identify
security flaws but also to identify potential limitationslmeakdowns in intended composi-
tions.

e Pervasively Integrated Assurance (PIA)As noted in Sections 6.1 and 8.2, ideally, a com-
prehensively wide range of formal and informal assurandlertigues must be an integral part
of the development cycle and persistently invoked duringrapon, maintenance, adminis-
tration, and long-term evolution. The results of assuramadyses should be used to leverage
the entire development process and subsequent systentierolu

e Existence proofs of the efficacy of principled approachesAs noted in Section 8.2, well-
documented highly principled development successes warikktremely valuable — along
with detailed analysis of some major failures (for examplaborating on some of the cases
considered in [260] and [267]).

9.3 RIisks

“The essence of risk management lies in maximizing the ardese we have some
control over the outcome while minimizing the areas in whighhave absolutely no
control over the outcome and the linkage between effect andecis hidden from us”
Peter L. Bernstein [38], p. 197

150 CHAPTER 9. CONCLUSIONS

There are many risks that need to be considered. Some riskstainsic in the develop-
ment process, while others arise during operation and asration. Some relate to technology,
whereas many others arise as a result of human action ordnaahd even environmental causes
in some cases. Some involve risks of systems that fail to dat titey are expected to do, whereas
others involve risks that arise because an entirely uneggéehavior has occurred that transcends
the normal expectations.

The Bernstein book quoted above is slanted largely towartspective of financial risk man-
agement, but an understanding of the nearly millenniung-kuistorical evolution that it presents
is also quite appropriate in the context of trustworthy egst and networks. Indeed, that quote
echoes our view of the importance of carefully stated colmgmsive requirements, sound architec-
tures, principled developments, and disciplined openatas strong approaches to avoiding risks
that can be avoided, and to better managing those that cannot

Neumann’s bookComputer-Related Risk&60], provides a complementary view of the origins
of those risks and some constructive ways on how to combat.théarious articles in the ACM
Risks Forum, thdEEE Spectrumand theCommunications of the ACIvhonthly Inside Risks
columns have documented selected failures and a few sescek®wever, Henry Petroski has
often remarked that we seldom learn much from what appeag subcesses, and that we have a
better opportunity to learn from our mistakes — if we are wdlto do so. This report attempts to
do exactly that — learn from past mistakes and dig more deepbyapproaches that can reduce
the risks related to trustworthiness in critical systent mgtworks.

9.4 Concluding Remarks

Hindsight is useful only when it improves our foresigifilliam Safire The New York
Times,6 June 2002)

There are many lessons to be learned from our past attemptsfiont the obstacles to de-
veloping and consistently operating systems with strihgeguirements for trustworthiness. This
report is yet another step in that direction, in the hopesitlstime for constructive action.

We began Chapter 1 of this report quoting Ovid:

We essay a difficult task; but there is no merit save in diffiasks.
We began Chapter 4 on principled architectures quotingnhlve
Virtue is praised, but is left to starve.
We began Chapter 9 quoting Cicero:
The merit of virtue is consolidated in action.

Each of these three two-millennium-old quotes is still extely apt today.

With regard to Ovid, the design, development, operatiod,raaintenance of trustworthy sys-
tems and networks represent some incredibly difficult tals&a/ever, we really must more assid-
uously confront those tasks, rather urgently. Today’s cencally available systems, subsystems,
and applications fall significantly short — for example,hwviespect to trustworthiness, predictable

9.4. CONCLUDING REMARKS 151

composability and facile interoperability, assurancegaaf maintenance and operation, and long-
term evolvability.

With regard to Juvenal, it is easy to pay lip service to viasiprinciples and good development
methodologies, but those principles are seldom observealséy in today’s system and network
developments.

With regard to Cicero, we recognize that it is extremely @maing to practice what we preach
here. For example, incompatibility problems with legacgteyns tend to make exceedingly diffi-
cult the kind of cultural revolution that is likely to be nesary to achieve trustworthy systems in
the future. However, it is our sincere hope that this repdithelp consolidate some of its readers
into action toward much more disciplined and principledigiesind development of composable
trustworthy systems and networks, with nontrivial measwfeassurance. The alternatives of not
doing so are likely to resemble something conceptually @gghting the decline and fall of the
Roman Empire.

The U.S. DoDGlobal Information Grid (GIG), (discussed briefly at the end of Section 7.1)
is a work in progress that illustrates the importance okfghted thinking, principles, predictable
composability, and a viable system-network architectamecept. As noted earlier, the planning
and development necessary to attain the desired requiteralso strongly suggest the need for
long-term vision, nonlocal optimization, and whole-systperspectives (see Sections 7.1, 7.2,
and 7.3, respectively). Considering the very considerdiflieulties in achieving high-assurance
trustworthiness over the past four decades, and the disrid noted in this report, the challenges
of finally overcoming the lurking hurdles in the next 16 years indeed daunting. As noted at the
end of Section 7.1, the content of this report is fundamentalich efforts as the GIG.

Once again, we reiterate a mantra that implicitly and explicuns through this report: In at-
tempting to deal with complex requirements and complexatpmral environmentshere are no
easy answersThose who put their faith in supposedly simple solutionsaimplex problems are
doomed to be disappointed, and — worse yet — are likely taasly disrupt the lives of others
as well. If the principles discussed here are judiciouslgliad with a pervasive sense of disci-
pline, systems and networks can be developed, administenedoperated that are significantly
more robust and secure than today’s commercial proprietass-market software and large-scale
custom applications. Perhaps most important, complexitstrine addressed through architectures
that are composed of well-understood components whoseattens are well understood, and
also through compositions that demonstrably do not com@®mtnustworthiness in the presence
of certain untrustworthy components. The approachesetffberein are particularly relevant to
developers of open-source software, although they ardlgdgumportant to mass-market develop-
ments. Those approaches may seem to be difficult to folloisddective application of whatever
may be appropriate for given developments should be coreside

In concluding this report on how we might develop systemsraetdiorks that are practical and
realistically more trustworthy, the author recognized tiehas given his readers a considerable
amount of seemingly repetitive evangelizing. Althoughrsatguments by many authors seem to
have fallen on deaf ears in the past, hope springs eternsid@&s the risks of not taking this report
to heart are greater now than they ever have been.

Acknowledgments

| am especially grateful to Doug Maughan, who sponsored tHHATS program and was its Pro-
gram Manager for the first two years of our project (when he ataBARPA). His vision and
determination made the CHATS program possible, and hisratsgn and encouragement have
been instrumental in this project. In addition, Lee Badgésq at DARPA) provided the impetus
for the work on perspicuous interfaces on which Chapter ased.

| enormously appreciate various suggestions from membkemio project advisory group
(Blaine Burnham, Fernando Corbat6 (Corby), Drew Dean r@ebinolt, Virgil Gligor, Jim Horn-
ing, Cliff Jones, Brian Randell, John Rushby, Jerry Saltami Saydjari, Olin Sibert, David Wag-
ner) and other individuals whose comments have been vepjutéirectly or indirectly in guiding
the progress of this report.

In particular, Drew Dean suggested several examples ofictsiithin and among the prin-
ciples, and exposed me to Extreme Programming; we had majoirapdiscussions on compos-
ability, architecture, and other subjects. He was instntadgn our joint work on perspicuous
interfaces (Chapter 5). Virgil Gligor early on reminded nfeseveral important papers of his on
composability; his contributions to the seedling effortvasible interfaces for Lee Badger strongly
resonated with that of Drew Dean and me. Virgil also gendyatentributed the material on which
Appendix B is based.

Sami Saydjari offered numerous valuable comments duriadjitst year of the project. Blaine
Burnham drew my attention to the documents on composalfiitity the 1992 time frame noted
in the bulleted item on other past research on compositideiction 3.4. Jim Horning offered
wonderful suggestions based on his long experience — iimgjutie quote from Butler Lampson
at the beginning of Section 2.3, and profound thoughts orp@n&, which | gladly incorporated.
Eugene Miya offered the quote from Gordon Bell at the begigmif Section 3.7. Tom Van Vleck
expressed various doubts as to the efficacy of the objeetimd paradigm. Many years of inter-
actions with Brian Randell have resulted in our pursuingilsintesearch directions; his insights
have influenced this report both directly and indirectlynmgadetailed comments from Fred Cohen
on an early draft of the composability chapter gave me ceanalde food for thought.

| am delighted with the results of the subcontract to the Brsity of California at Berkeley and
thankful to David Wagner for his excellent leadership, taHzhen for carrying out most of the
work, and to Drew Dean for his vital participation in thatetf The material in Appendix A sum-
marizes the results of the Berkeley subcontract, plus samleer work by Hao Chen conducted
during the summer of 2003 at SRI and subsequently at Berka&gyropriately, Chen’s work uses
an approach to static analysis of would-be robust prograasitself contributes significantly to
the composability of the analysis tool components.

152

Appendix A

Formally Based Static Analysis (Hao Chen)

Formally Based Static Analysis for Detecting Flaws

This appendix summarizes the results of the first-year ptgjbcontract to the University of
California at Berkeley and some subsequent related wotkjinating in the thesis work of Hao
Chen.

A.1 Goals of the Berkeley Subcontract

The one-year CHATS project subcontract task involved atdleom potentially high-payoff ap-
proach, with static analysis capable of detecting funddateharacteristic common security vul-
nerabilities in source code. The approach combines modelseovulnerabilities with model
checking related to the source code. The approach is iotaaily open-ended, with linearly in-
creasing complexity of composability as various new viwdbdity types are accommodated. The
team for this task includes Professor David Wagner and hidugate student Hao Chen in the Com-
puter Science Department at the University of Californi8eatkeley, with participation of Drew
Dean at SRI and supervision of Peter Neumann.

A.2 Results of the Berkeley Subcontract

One of the things that makes computer security challengiigat there are many unwritten rules
of prudent programming: “Don’t do X when running with rootypleges.” “Always call Z after
any call to Y.” And so on. These issues contribute to the peexa of implementation errors in
security-critical systems.

In this project, our goal was to help reduce the incidencemdiementation vulnerabilities in
open source software by developing an automated tool to whem programmers violate these
implicit rules of thumb. We have done so. Our hypothesis Wwas new ideas in software model
checking could prove very helpful in this problem, and owe@ch goal was to experimentally
assess the utility of our methods. Our studies give stromdpece in favor of the benefits of this
style of automated vulnerability detection and avoidafides project was undeniably a high-risk,

153

154 APPENDIX A. FORMALLY BASED STATIC ANALYSIS (HAO CHEN)

high-payoff, novel combination of theory and practice, imat feel that it has already been very
successful.

In this appendix, we give some details on our progress duhagear. We have also written
research papers [77, 78] on our work, which provide furtieehnical details. Here we give a
high-level overview of our results and experimental metiiogy.

First, we developed a general platform for automaticalgnsing C source code and verifying
whether it follows these rules. We developed new technigo@sed on model checking of push-
down automata, for this problem, and we built a prototypelemgntation of our algorithms. Our
tool, called MOPS, supports compile-time checking of la@yprograms against temporal safety
properties. Please note that the latter two sentences tsag#icant amount of investment and
implementation work to achieve this goal, but as we will @ gext, it has paid off nicely.

Next, we selected several examples of implicit rules of deifee coding. Several of our rules
studied proper usage of the privilege management API in Urarmely, thesetuid() -like calls,
and several rules associated with this API. The specificeduiels selected were as follows:

1. Programs that drop privilege should do so correctly: Téleguld callsetgid() before
setuid() . Moreover, they should avoid the Linux capability bug: tlegyould be aware
that, on some older versions of Linux, teetuid() -like calls may fail to drop privilege in
certain special situations.

2. Programmers should avoid situations whesetid() -like call may fail. Such situations
are dangerous, because these failure modes are often mpizaely tested.

3. Programmers should avoid so-called “tractorbeamirgcis’. In a tractorbeaming attack,
unexpected interactions between signal handsstgmp()/longjmp() , and Unix uid’s
can create security vulnerabilities. To avoid this, progmgers should ensure that every call
to longjmp() will be done in exactly the same security context as the pliagecall to
setimp() , no matter what intervening code path may be followed betviee two.

4. When writing a setuid program, one should avoid makingaasyimptions about the environ-
ment inherited from the parent process. In particular, fdsadiptors O, 1, and 2 are usually
bound to an input/output device (e.g., the user’s terminatormal operation, but for setuid
programs, there is no guarantee that the parent procesabidié by this convention. If this
fact is overlooked, there is a specific class of vulneraedithat can ensue: for instance, if
a setuid program callgpen("/etc/passwd”, O_RDWR) and then callgrintf() to
display some output to the user, it may be possible for arkstao corrupt the password
file by calling thesetuid program with file descriptor 1 closed, so that thygen() call
binds the password file W 1 and theprintf() unintentionally writes to the password
file rather than to the screen.

This is by no means an exhaustive list. Rather, the rulesdiabove were selected to be rep-
resentative, of interest to open-source practitionerd theoretically challenging to automatically
check.

Then, we devoted effort to experimentally assessing theep@ivour technique. We chose
several large, security-critical programs of interesth® dpen source community as a target for
our analysis. In several cases, we were able to find oldeloversf these programs that contained

A.2. RESULTS OF THE BERKELEY SUBCONTRACT 155

security vulnerabilities arising from violations of theaae rules. The selected programs include
wu-ftpd, sendmail, andOpenSSH We set out to apply our tool to check the above rules to
these programs.

We started by codifying the above rules in a form understaleday our modelchecker, MOPS.
We described them as finite state automata on the traces pfdlgeam. Along the way, we dis-
covered that we needed to solve an unanticipated reseaatibraye: What are the exact semantics
of the Unixsetuid() -like system calls? We realized that these semantics ar@leanpoorly
documented, and yet critical to our effort. To reason abbatgrivileges an application might
acquire, we must be able to predict how these system callaffgkt the application’s state. We
spent some time working on this problem, because it doeseent $0 have been addressed before.

We also developed new techniques for automatically coatstigi a formal model of the op-
erating system’s semantics with respect to skeéuid() -like system calls. In particular, our
algorithm extracts a finite-state automaton (FSA) modehefrelevant part of the OS. This FSA
enables us to answer questions like “If a process ealigid(100) while its effectiveuserid
is root, how will this affect its userids?” and “For a procéssuch-and-such a state, cae-
teuid(0) ever fail?”.

Our new techniques, and the FSA models they produce, aralusefeveral ways. First, they
form one of the foundations of our tool for static analysisapplications. Because we have an
accurate model of both the application and the operatingesyswe can now predict how the
application will behave when run on that operating systeeco8d, they enable us to document
precisely the semantics of the setuid API on various opagaystems, which we expect will help
open-source programmers as they develop new applicatidhsd, they enable us to pinpoint
potential portability issues: we have constructed FSA rsfte Linux, Solaris, and FreeBSD,
and each difference in the respective FSAs indicates ntaigerbehavior of the setuid API that
application programmers should be aware of.

Our paper [78] on constructing formal models of the opepsipstem also documents several
subtle pitfalls associated with privilege management. Weeet that this work will help develop-
ers of open-source applications and maintainers of oparesmperating systems to improve the
quality and security of their software.

With this research challenge tackled, we were now able todmcules (1) to (4) in a form
readable by MOPS, and we used MOPS to check whether the afptis we selected follow
the rules. MOPS found several (previously known) securitiynerabilities in these programs, as
follows:

e MOPS found security holes in earlier versions of sendmaitdndmail 8.10.1, MOPS found
an instance of the Linux capabilities bug.dandmail 8.12.0, MOPS found that sendmail
can fail to drop privilege in group IDs properly, due to a aitbn of rule 1).

e We used MOPS to verify that OpenSSH 2.5.2 properly usesaghad() -like system calls
in the sense that no uid-setting system call can fail.

e MOPS found a tractorbeaming bug in wu-ftpd version 2.4 b@tarhis in fact was a source
of a security hole in this older version wfu-ftpd , and was later fixed. MOPS also con-
firmed that the latest version @fu-ftpd correctly obeys our rule regardirsgtuid(),
longjmp() , and signal handlers.

156 APPENDIX A. FORMALLY BASED STATIC ANALYSIS (HAO CHEN)

e Experiments are still under way with respect to rule (4) vbafound security bugs in several
programs, includindgpgin andcrontab on Linux.

In each case, MOPS ran efficiently, taking at most a minutevortb scan the source code.
Since each of these application programs is of nontriviad,ghis is a very positive result.

This experimental evidence indicates that MOPS is a powssél for finding security bugs,
for verifying their absence, and for ensuring that variotiagiples of good coding practice are
observed. We have publicly released the MOPS tool under Bieli@ense at
http://www.cs.berkeley.edu/"daw/mops/. Our currenttqygpe includes the compiler front end,
the modelchecker, and a primitive user interface. Howevershould warn that there are several
known limitations: the current release does not includexeansive database of rules to check;
also, the user interface is rather primitive, and intendedarily for the expert programmer rather
than for the novice. We hope to address these limitationsariuture.

Along the way, we developed several theoretical and algwiit techniques that may be of
general interest. First, we extended known modelcheckgayighms to allow backtracking: when
the modelchecker finds a violation of the rule, our algoritdfows finding an explicit path where
the rule is violated, to help the programmer understand &klee went wrong.

Second, we developed a compaction algorithm for speedingagelchecking. Our observa-
tion is that, if we focus on any one rule, most of the programmsigally irrelevant to the rule. Our
compaction algorithm prunes away irrelevant parts of tlig@m — our experience is that com-
paction reduces the size of the program by a factor of 50x@x 50 and this makes modelchecking
run much more efficiently.

Our compaction algorithm gives MOPS very good scalabilityperties. In principle, the time
complexity of pushdown modelchecking scales as the cubleeo$ize of the program (expressed
as a pushdown automaton) and the square of the size of thi@xplieessed as a finite state automa-
ton). However, in practice, the running time is much bettantthis would indicate, because our
compaction eliminates all irrelevant states of the progrdfith compaction, the running time now
depends only on the cube of the size of the relevant parteqginbgram, and as argued above, this
is generally a very small figure.

As aresult, MOPS is expected to scale well to very large anogt We have already shown that
it runs very fast on fairly large programs (on programs wiit0®0 lines of code or so, modelcheck-
ing runs faster than parsing). Moreover, MOPS enables progrers to verify global properties on
the entire system, even though each programmer may knowaudyinformation about one part
of the system. Thus, our approach is very friendly to contposof large systems from smaller
modules.

In summary, we have developed, implemented, and validaedechniques for improving the
quality of security-critical software. Our tool is freelyailable. This points the way to improve-
ments in security for a broad array of open-source apptinati

The relevant papers are “Setuid Demystified” [78], by Hao r¢He2avid Wagner, and Drew
Dean:
http://www.cs.berkeley.edu/"daw/papers/setuid-ugEhps. and “MOPS: An Infrastructure for
Examining Security Properties of Software” [77], by Hao €laed David Wagner:
http://www.cs.berkeley.edu/"daw/papers/draft-mogs.p

A.3. RECENT RESULTS 157

A.3 Recent Results

Subsequent to the first-year subcontract, Hao Chen coutittuerork on MOPS and its applica-
tions for his Berkeley doctoral dissertation. MOPS acqiiits first external user, the Extremely
Reliable Operating System (EROS) project at Johns Hopkimgdusity [351]. The EROS project
has already uncovered multiple, previously unknown coeimgrs by using MOPS to analyze the
EROS kernel. Based on user feedback, we are working on tuhasgerformance of the tool.
Work has focused on some minor modifications to key datatstres to reduce memory pressure
on the garbage collector (MOPS is implemented in Java). Alsmeunt of work produces a very
large payback: our initial tests indicate a 300%-400% spegmovement over the earlier ver-
sion. This improvement has recently been completed, andshigped to Johns Hopkins. These
results enhance MOPS'’s already impressive scalabilitafalyzing real-world software such as
Sendmail and OpenSSH.

Hao Chen spent the summer of 2003 at SRI, funded by SRI prafET9, under Contract
N00014-02-1-0109 from the Office of Naval Research. Bugdin the prior work on modeling the
setuid family of system calls in Unix-like operating systerthe above-mentioned programs were
examined for security problems relating to uid handlingyaantrating on global properties of the
programs. The concentration on global properties was chioséwo reasons: (1) Local properties
can easily be checked with less sophisticated tools. Why avily with a sledgehammer? (2)
Global properties, being more difficult to check, for botmfans and machines, have had poorer
tool support, so the probability of interesting discovelig higher. The experience gained using
MOPS to check more properties of more software also uncdvareas in which MOPS needed
further improvement.

In addition to the above mentioned improvements in MOPS, Elaen applied MOPS to study
selected security properties of widely used open sourdevard. The programs studied included
BIND, Sendmail, Postfix, Apache, and OpenSSH. To demorestinatpower and utility of MOPS,
these programs were model checked for each of five propgfaieproper dropping of privileges,
(b) secure creation ahroot jails (c) avoidance of file system race conditions, (d) avoiditacks
on standard error file descriptors, and (e) secure creatitamporary files.

Hao Chen’s work at SRI during the summer 2003, under the gailaf Drew Dean, resulted
in the discovery of several hitherto undetected securitpl@ms in these programs, as well as the
identification of other flaws that had been previously disred elsewhere. The results of this
application of MOPS to real programs are summarized in [75].

This work provides key capabilities for progress in infotioa assurance. It provides a princi-
pled foundation for analyzing the behavior of programs tasetraces of system calls, or, for that
matter, any functions of interest. This approach to progaaalysis can directly take advantage of
research in both model checking and static analysis to beenare precise over time, something
that is not directly true of ad-hoc approaches to analyzimg@ams for security vulnerabilities.
Future improvements to underlying technology, in additiemore engineering improvements to
MOPS, should allow MOPS to scale from today’s ability to HentbOKLOC comfortably (sub-
stantially more than competing tools), to IMLOC. Such duititst will be necessary for DARPA
to provide an assured future for the network-centric watégh

Hao Chen'’s doctoral thesis [74] is now finished and availaBlso, a recent paper by Hao Chen

158 APPENDIX A. FORMALLY BASED STATIC ANALYSIS (HAO CHEN)

and Jonathan Shapiro [76] describes their experiencemgM©OPS on EROS. In addition, a group
of students in Professor Wagner’s group ran MOPS on all 888ggges in RedHat Linux 9 and
found many security bugs and weaknesses, being descrilaedew paper.

A.4 Integration of Static Checking into EMERALD

It is useful to contemplate how the software developmentthefBerkeley effort could subse-
guently be integrated into an anomaly and misuse detegtgiam® such as provided by the EMER-
ALD framework and its successor technologies. Severagudifit approaches are potentially of
interest:

e Apply the static analysis techniques and tools to the EMEBALodules to determine EMER-
ALD’s compliance with the existing and subsequently enmeggChen-Wagner formal mod-
els.

e Establish new models to be specifically suitable to analysise EMERALD software, and
apply them to EMERALD.

e Develop a means for automatically coupling the vulnergbitiodels with EMERALD rule
bases, or otherwise incorporating the results of the aealygo EMERALD.

e Develop a coherent environment that encompasses statityaadic checking and real-time
analysis.

Appendix B

System Modularity (Virgil Gligor)

Basis for the Visibility and Control of System
Structural and Correctness Properties

This appendix is based on material written by Virgil D. Gligmder DARPA Contract number
MDA 972-03-P-0012 through VDG Inc, 6009 Brookside Drive,e@f Chase, MD. 20815, tele-
phone 1-301-657-1959, fax 1-301-657-9021, in connectibtimkee Badger’s Visibly Controllable
Computing initiative at DARPA. Gligor’s original text apaeed as the appendix to an unpublished
report, “Perspicuous Interfaces”, written by Peter Neum@&rew Dean, and Virgil Gligor, as part
of a seedling study for Lee Badger; it is adapted as an appéndhis report with the permission
of Virgil Gligor, with the explicit intent of increasing itavailability to the R&D and academic
communities. The earlier work of David Parnas on module dgamsition [281] and on module
dependence [283] (e.g., the various forms ofukesrelation) is particularly relevant here.

B.1 Introduction

The study of Visibly Controllable Computing has the goalsexfucing systems complexity and
applying automated reasoning and learning techniquestiesystems that can not only explain
their current state but also adapt to new environments by

(1) Connecting their self-knowledge to knowledge of exédnvironment entities and con-
straints.

(2) Warning users if new mission demands cannot be satisfied.

(3) Exploring alternative configurations and reconfiguriodit changing needs.

In general, by establishing the visibility of a system’sistural and correctness properties we
mean the identification of a system’s components and thiatioaships, and the reasoning about
properties like the correctness, fault tolerance, andperdnce. A first step toward this goal is that
of investigating system modularity. This step is necesffakpowledge of system structure and
state need to be gained and if systems need to reconfiguiteeeftytto satisfy changing mission
requirements. Of particular interest is the investigatbproperties that help (1) reconfigure sys-
tems by module replacement, and (2) establish causal toesscdependencies among modules

159

160 APPENDIX B. SYSTEM MODULARITY (VIRGIL GLIGOR)

(e.g., correctness of module interface A implies correxgrad module interface B) in addition to
structural visibility and reconfigurability. Of additiohenterest is the investigation of the prop-
erties that help reuse extant modules for different missidfinally, of significant interest is the
identification of a set o§imple, practicatools for establishing and verifying system modularity.

Software systems that employ modular design, and use dsii@etion and information hiding
to achieve layering [179] offer the following advantages:

(a) Allow an incremental, divide-and-conquer approacheasoning about correctness and
other important system properties (e.g., fault tolerapegiormance).

(b) Support replacement independence of system compobasesl on well-defined interfaces
and uniform reference (i.e., references to modules needharige when the modules change).

(c) Provide an intuitive packaging of system component wise of navigation through the
system, layer by layer, module by module.

(d) Allow an incremental, divide-and-conquer approach ytstam development, with many
individuals per development team possible.

(e) Enable the reuse of software modules in different envirents.

Note that Clark [81], and later Atkins [22], suggest thaElagg may sometimes be a potentially
undesirable form of system structuring because it can legubor performance. Also, Nelson
suggests the use of protocol “delayering” (i.e., combirpngtocol layers) to achieve an efficient
remote procedure call mechanism [251]. Thus, while lageisna generally useful technique for
system structuring, the extent of system layering dependspecific criteria, such as correctness,
fault tolerance, and performance. Lampson [199] argudglhieaeuse of software modules is and
will remain an unrealistic goal, in practice.

Early uses of layered abstraction include Multics [91, 927]qwith rings of protection, layer-
ing of system survivability and recovery, and directoryrarehies), Dijkstra’s THE system [106]
(with layers of object locking), and SRI's Provably Secumge@ting System [120, 268, 269]. The
PSOS hardware-software architecture provided numergesdaf abstraction for different types
of objects, and distinguished between objects and thee tgpnagers. The architecture explic-
itly contradicts the above-mentioned Clark and Atkinsroléhat layering inherently leads to poor
performance. For example, the PSOS layering enabled useegs operations (layer 12) to ex-
ecute as single capability hardware instructions (layewvi®never appropriate dynamic linkage
of symbolically named objects had been previously estaddls (The bottom 7 layers were con-
ceived to be implemented directly in hardware, althoughtrelware could also encompass all or
part of higher layers as well.) Thus, repeated layers ofeeistterpretation are not necessarily a
consequence of layered abstraction, given a suitabletacthie. (Also, see Section 3.4 for further
background on PSOS relevant to composability.)

B.2 Modularity

In this section we define the term “module,” illustrate systeéecomposition into modules, and
present several correctness dependencies among modhéefollbwing key notions are required
to define and implement modular systems:

e Module and module synonyms

e Interface versus implementation

B.2. MODULARITY 161

e Replacement independence

¢ Reusability

¢ “Contains” relation

e Module hierarchy

e “Uses” relation

e Correctness dependency among modules

B.2.1 A Definition of “Module” for a Software System

In general, a module is a system component (part, unit, imgjldlock). Synonyms for “module”
include “system,” “platform,” “layer,” “subsystem,” “subodule,” “service,” and “(abstract) type
manager.” A software module is part of a software system asdtre following six properties:

P1. Role. A module has a well-defined unique purpose or role (respditgilzontract) that
describes its effect as a relation among inputs, outputsretained state.

P2. Set of Related Functions.A module contains all and only the functions (procedures,
subroutines) necessary to satisfy its role. Each functias \well-defined inputs, outputs, and
effects.

P3. Well-Defined Interface.A module has an interface (external specification) thatistmef
the public (visible) items that the module exports:

e declarations of its public functions (i.e., those invoeatstbm outside the module) and their
formal parameters;

e definitions of its exported types and exported manifest zons;

e declarations of global variables associated with the medul

e declarations of its signaled exceptions and handled exoept

e definition of the necessary resources and privileges;

e rules (discipline, restrictions) for using the above pahlnctions, types, constants, and global
variables.

P4. Implementation. A module has an implementation (internal design) that tebaiw its
interface is satisfied. It should be possible to understaediriterface (and role) of a module
without understanding its implementation.

P5. Replacement Independence A module implementation can be replaced without also
replacing any other module implementation in the system.

P6. Reusability. A module implementation can be reused in different softvegstems with
little or no added code.

The role of a module describes its effects or behavior ontgpthe effects of a module can be
reflected in the values of outputs, the state of the modulideostate of the system. With software,
for example, the state of the module or system can be repgeskby a set of variables (e.g., simple
variables, structures). A well-defined role should haveaatsnd clear description, preferably one
sentence. A module should have a simple name that reflectdetsTypically, module roles are
system unique; no two modules in a system have the same whtiu@lication of role). However,
the system may intentionally duplicate modules to achigkierssystem goals (e.g., performance,
reliability).

For a module function to be well-defined, its inputs and otg@nd effects should be well-
defined. The name of a function should reflect its purpose.ctiams should, but need not, be

162 APPENDIX B. SYSTEM MODULARITY (VIRGIL GLIGOR)

named. In software, for example, some functions are exghimdine for performance reasons;
also, the programming language may not have a way to exprdseiexpansion of named func-
tions. Continuing the software example, the inputs andutstpf a function can be formal param-
eters or informal (global, environment) parameters oryestrresponse) messages. It should be
simple to distinguish the public from the private functidiisany) in a module. It is desirable, but
not necessary, that the functions of a module be nonredtrfdaction redundancy is undesirable
but at the discretion of the designer of the system or modRégiarding the all and only nature of
a module’s functions, certain functions typically have anptementary twin: get-set, read-write,
lock-unlock, do-undo, reserve-unreserve, allocateldeate, and so on.

A module interface is well-defined if it contains all and onhe module assumptions that a
module user needs to know. The discipline of an interfacanyf may explain a legal order in
which to use the public functions. For software, a well-dafiinterface contains declarations of
exported (public) functions, data, types, manifest carstaxceptions raised, exceptions handled,
exception handlers, and, the associated restrictionssoipdine [387]. It may be inappropriate or
impossible to capture certain programming restrictiordiseipline within programming language
constructs, in which case they should be provided in astsuat&pecification or commentary. Note
that a module interface includes variables that are glab#lat module.

A module implementation contains module-constructionaggions and programming details
that a module user should not have to know; for example, aflezsource use, algorithms em-
ployed.

The typical notion of replacement independence for a modulleat, if the module breaks or
no longer functions correctly, then if a new module with tlaeng interface is available, we can
replace the original module with the new one without repigcany other modules. However,
in software systems, the notion of replacement indeperedkas a somewhat different meaning.
While replacement independence is implied by “informatieeing,” [281, 59] and information
hiding disallows global variables, replacement indepecdealoes not necessarily rule out the use
of global variables in modules provided that the globalatalies are explicitly defined in the mod-
ule’s interface, and that the dependencies among the n®dsleg those global variables are
known.

The typical notion of module reuse requires that a moduleldegéneral in its purpose or
role, so that it is useful to users other than the few peopléiwvg on the same project; (2) fully
specified, so that others can use it; (3) tested, so that glezgyectations of quality are met; and
(4) stable, in the sense that the module’s behavior remaiokanged for the lifetime of the user
system [199]. Other related properties of module reugghbiiclude simplicity of interface (i.e.,
foreign users should understand the module’s interfacke Ntite effort), and customization (i.e.,
foreign users should be able to tailor module use by usingiapgarameters or special-purpose
programming language [199].

B.2.2 System Decomposition into Modules

The decomposition of any system into modules relies on twermmodule relations, namely, (1)
the “contains” relation, and (2) the “uses” relation. Theslations imply certain correctness de-
pendencies among modules that are fundamental to the dgfimermodule structure of a system.

B.2. MODULARITY 163

B.2.3 The “Contains” Relation

Internally, a module may (but need not) contain compondmtrgdules. If it is necessary or desir-
able to identify a set of component parts of a module as sublasgdthen that set of submodules
partitions (i.e., is collectively exhaustive and mutuakclusive) the parent module. The decision
asto

when to stop partitioning a system into modules is genetalsed on designer discretion and
economics — when it is no longer necessary nor desirableoacimally to identify and to package
and to replace that subpart. Other than this, no generatlyped criterion exists for when to stop
partitioning a software system into additional modules.

Applied system-wide, the “contains” relation yields a migchierarchy (i.e., tree). Nodes of the
tree represent modules; arc (A, B) means that module A direontains submodule B. The root
of the tree, the whole system, is the 0-th level of the treee §ystem itself should be considered
as the 0-th level module. The (n+1)-th level consists of thiégdoen (direct submodules) of the
n-th level. Modules with no submodules are called leaf mesluWe can define a part hierarchy
system as modular if the system itself, and recursively eddls subparts that we identify as
should-be-modules, satisfies the definition of module.

EXAMPLE. The UNIX kernel is a software module; the systemisabmpose its set of related
functions. The manual pages for the system calls descréeoth, set of functions, and interface
of the kernel. Figure B.1 shows an example of the “contaiakition, the major subsystems of the
Unix kernel.

EXAMPLE. Figure B.2 shows another example of the “contairedation, a decomposition of
the File Subsystem of the Secure XENIX kernel [115] into a miedierarchy. In Figure B.2,
ACL means Access Control List. The darkened boxes identiéyfiles of source code in this
design. The Superblock Service manages the attributes lef sytem as a whole object. In this
decomposition, the Mount Service is part of Flat File Sexaad not part of Directory (pathname)
Service. The Mount Service maintains a short associatsbifidi substituting one (device, i-node
number) pair, a “file handle,” for another. The mounted handpresents a file system, and the
mounted-on handle represents a directory. The Mount S2knows nothing about directories
and pathnames; it knows about pairs of file handles.

B.2.4 The “Uses” Relation

In software, if a module uses another module, then the usioguie imports (all or part of) the
interface of the used module to obtain needed declaratiotglefinitions. We define the “uses”
relation between functions and modules as follows. Fundiaises function B if and only if (a) A
invokes B and uses results or side effects of that invocatiwh(b) there must be a correct version
of B present for A to work (run, operate) correctly. A functioses a module if and only if it uses
at least one function from that module. A module uses anatiogtule if and only if at least one
function uses that module. The “uses” relation is well-dedinFrom the “uses” relation we can
draw a directed graph for a given level, where the nodes ane-$eavel modules, and arc (A, B)
means that module A uses module B. Also, we can draw a “useghgsf the leaf modules.
EXAMPLE. Figures 3, 4, and 5 show an example of an intrasubaysuses” graph for the
File Subsystem of the Secure XENIX kernel. They shows a gssjon of versions of a “uses”

164 APPENDIX B. SYSTEM MODULARITY (VIRGIL GLIGOR)

graph. Version 0 (Figure B.3) shows the entire subsystenrsie 1 (Figure B.3) shows all
File Subsystem system calls in one box to simplify the pe&tand shows how this layer uses
all three top level services of the File Subsystem. The lines the Flat File Service to the
ACL Service (and back) show a “circular dependency” betwi#entwo; each uses the other.
Version 2 (Figure B.4) replaces the Flat File Service withtitree component services. Version
3 (Figure B.5) shows another level of detail of the “uses’pira(Note the circular dependencies
in Figure B.5. For approaches that help eliminate such dégesies see the PSOS abstraction
hierarchy [120, 268, 269] and [179]. PSOS inherently rerdamgch circular dependencies as a
fundamental part of the architectural abstraction hiénaic

B.2.5 Correctness Dependencies Among System Modules

Correctness dependencies between modules are basic tibohegoevaluating, and simplifying
the connectivity of modules, and thus basic to system retstring and evolution. For modules P
and Q, P depends on Q, or P has a correctness dependency oftlg @rrectness of P depends
on the correctness of Q”), if and only if there must be a carueesion of Q present for P to
work correctly. Based on earlier work by Parnas, Janson §44, 179] identify several types of
correctness dependencies, which were later combinedhetéotlowing three classes by Snider
and Hays [358]: service, data, and environmental depeieenc

Service Dependency:“P invokes a service in Q and uses results or side effectsatfgér-
vice. The service may be invoked through a function call,sags, or signal (e.g., a semaphore
operation), or through hardware, such as via a trap.” [358]

It is important to point out that not all invocations are seevdependencies. “Note that if P
transfers control or sends a message to Q and neither expegain control, nor counts on
observing consequences or results from its interaction @itthen P does not depend on Q. It is
said simply to notify Q of an event (without caring about wiatloes once it is notified)” [179].
In layered systems, certain upcalls [81] that provide aglwicnotifications can be viewed as not
violating the downcall-only layering discipline if such eglls do not correspond to correctness
dependencies.

Data Dependency:“P shares a data structure with Q and relies upon Q to maititaimtegrity
of that structure.” [358]

Modules that are either readers or writers of shared datardkepn other modules that are
writers of the same shared data. Thus, shared data withplewtiriter modules produce mutual
dependencies and increase module connectivity.

Environmental Dependency:“P does not directly invoke Q and does not share a data steuctu
with Q but nevertheless depends upon Q’s correct functghjB58]

“One example is the dependency of most of the system on teeupt handling subsystem.
Although this is not generally called directly from the keknmuch of the kernel depends on its
correct operation (e.g., properly restoring processade stethe end of an interrupt service routine)
in order for the kernel to fulfill its specifications. ... Ingmtice, we did not find that environmental
dependencies presented many structural problems.” [358]

Service dependencies are more desirable than data depexlpacause service dependencies
are explicit; if all dependencies are service dependenities the system call graph (the graph of
what invokes what), which is usually explicit and easy to poibe, represents all dependencies. By

B.3. MODULE PACKAGING 165

introducing information-hiding modules [281, 286, 59]dhghout a system, where system data is
partitioned among modules and accessed only via functidsrgsitine, procedure) calls, each data
dependency can be converted into a service dependency.

B.2.6 Using Dependencies for Structural Analysis of Softwa Systems

For structural analysis, it is desirable to represent ctmess dependencies between system mod-
ules with the “contains” and the “uses” relations (and gs&dphAs seen above the “contains”
relation among modules is unambiguously defined by symtactalysis. In contrast, the “uses”
relations can be defined in three possible ways: (1) as reyptieg all correctness dependencies;
or (2) as representing only service and data dependenci€3) as representing only service de-
pendencies.

Fundamentally, there is no difference between service ata dependencies since both are
correctness dependencies. Further, data dependenci¢archshould) be converted to service
dependencies if we drive the structure toward desirablarmmétion hiding. To simplify system
structure, we need to minimize correctness dependencikslaminate all circular dependencies.
To do this, we first minimize data dependencies, becausecth@yibute to circular dependencies,
then we remove other circular dependencies. The resultegsarable goal is that of eliminating
global variables and acyclic structure, and minimizingghadinality of the “uses” relation. If this
“uses” relation represents all system correctness deperefeand if its graph is cycle-free, then
showing correctness of the system parts in a bottom-up @tiderreverse of a topological sort of
the “uses” graph) leads to correctness of the system.

In practice, it is not necessarily possible, nor desira®®, [to eliminate all structural imperfec-
tion (i.e., all globals, some cyclic structure). Cycleddem of the “uses” graph is not a precondi-
tion of system correctness; we can scrutinize each cyclecaise-by-case basis to understand and
explain correctness, rather than removing cycles by rkithgnsystem structure or by duplicating
certain code (e.g., by “sandwiching”). Also, explicit fuion calls may not represent all correct-
ness dependencies. Implicit correctness dependencied) mclude shared memory and sharing
through globals and timing dependencies, may or may notdiggmatical.

B.3 Module Packaging

A module is separable from the whole and packageable. Wmglissh between “module” and
“package”; a module is a logical container of a system paheneas a package is a physical
container of a system part. If there is not a strong reasohdaontrary, each module should
have a separate package. The modules of a system should lfesnére., obvious) from the
packaging. For a software system, the module interface adta implementation should be in
separate packages, or there should be a well-defined redsomnoi

EXAMPLE: Packaging the Secure Xenix(TM) Kernel

To make the nature of each function in the Secure XENIX kenm&le conspicuous, one can
add the following adjectives before function names:

SYSTEMCALL,

PUBLIC, and

166 APPENDIX B. SYSTEM MODULARITY (VIRGIL GLIGOR)

PRIVATE.

Also, to make more explicit the modules of the Secure Xeri&('kernel, one can add a
subsystem-identifying prefix to each module name, for exanfp.dir.c would indicate that the
directory manager is part of the File Subsystem (“fs”). Artway to make more explicit the
modules of a kernel is to represent each major module (orystdrs) as a subdirectory. For ex-
ample, the modules of the Secure Xenix(TM) kernel can be gel as subdirectories of the
directory kernel/, as follows:

e kernel/conf Configuration Subsystem

e kernel/dd Device Drivers (part of /O Subsystem)

e kernel/fp Floating Point Support

e kernel/file File Subsystem

e kernel/i Interfaces (.i files) to Kernel Modules

e kernel/init Initialization Subsystem

e kernel/io Low-Level I/O Support (part of I/O Subsystem)

e kernel/ipc IPC Subsystem

e kernel/memory Memory (Management) Subsystem

e kernel/misc Miscellaneous Functions Subsystem

e kernel/process Process Subsystem

e kernel/syscall System Call (Processing) Subsystem

e kernel/security Security Subsystem

Examples of Modularity and System Packaging Defects

The definition of a module of Section B.2.1 allows us to dededain measures of modularity,
or of modularity defects. Most modularity defects arisarironrestricted use of global variables.
This makes both the understanding of system structure wiffi883] and module replacement
dependent on other modules.

B.4 Visibility of System Structure Using Modules

System modular structure also becomes visible by examiffinghe design abstractions used
within would-be modules, (2) the hiding of information (i.data) within the would-be modules,
and (3) the use of the would-be modules within systems layers

B.4.1 Design Abstractions within Modules

Data abstraction, together with the use of other designadigins, such as functional and control
abstractions, significantly enhances the ability to idgrdi system’s modules and to structure a
system into sets of (ordered) layers. As a result, the Vitsilof system properties and their formal
analysis become possible.

For illustration, we differentiate sic forms of abstractithat are typically implemented by a
system’s modules:

e functional abstraction,

e data abstraction,

B.4. VISIBILITY OF SYSTEM STRUCTURE USING MODULES 167

e control abstraction,

e synchronization abstraction,

e interface abstraction, and

e implementation abstraction.

A module implements &unctional abstractiorif the output of the module is a pure mapping of
the input to the module. That is, the module maintains n@sfelte module always produces the
same output, if given identical input. The primary secred fifnctional abstraction is the algorithm
used to compute the mapping.

A data abstractions “a description of a set of objects that applies equallyl welany one
of them. Each object is an instance of the abstraction” (¢fttdh and Parnas [59]). A module
implements a data abstraction if it hides properties of &ermal data structure. The interface of a
data abstraction module can export a transparent type qrague type. A transparent type allows
visibility (reading) of its internal fields, whereas an opadype does not. A transparent type is
typically represented as a dereferenceable pointer tadjfeeip whereas an opaque type is typically
represented by a “handle” on the object, a nondereferereéabinter” like a row number in a
private table or a “capability.”

A module implements &ontrol abstractionif it hides the order in which events occur. The
primary secret of a control abstraction is the order in wiaelnts occur and the algorithms used
to determine the order (e.g., scheduling algorithms).

A module implements aynchronization abstractiafhit encapsulates all synchronization prim-
itives necessary for its concurrent execution [164]. Theary role of the module as a synchro-
nization abstraction is to hide the details of these priragi(e.g., mutual exclusion, conditional
wait, signals) from the module user and to restrict the sadpmrrectness proofs to the module
definition (to the largest possible extent).

A module implements amterface abstractiorif, by [59], it “represents more than one inter-
face; it consists of the assumptions that are included iofdhe interfaces that it represents.” An
operating system may contain an X-interface table, whech eaw is an interface (e.g., pointers
to public functions) to a type X interface. As examples, tiperating system may have an I/O
device-interface table, a communication protocol-ir#egftable, and a filesystem-interface table.

A module includes ammplementation abstractioffi it represents the implementation of more
than one module. For example, if an operating system cantamumber of similarly structured
tables with similar public functions, then it may be possitd represent all such tables with one
implementation schema (or abstract program).

In [179], Janson defines the concept of “type extension” asrafthy of data abstractions. The
idea is to build abstract data types atop one another by dgfihe operations of a higher-level type
in terms of the operations of lower-level types.

B.4.2 Information Hiding as a Design Abstraction for Modules

Information hiding [59, 281] is a software decompositiomezion. Britton and Parnas in [59] give
the following description of information hiding.

“According to this principle, system details that are likéb change independently should be
the secrets of separate modules; the only assumptionshibaitisappear in the interfaces between
modules are those that are considered unlikely to changeryHlata structure is private to one

168 APPENDIX B. SYSTEM MODULARITY (VIRGIL GLIGOR)

module; it may be directly accessed by one or more progrartisnathe module but not by pro-
grams outside the module. Any other [external] program thquires information stored in a
module’s data structures must obtain it by calling modutgpams [public functions].” ...

“Three ways to describe a module structure based on infesmdiding are (1) by the roles
played by the individual modules in the overall system ofpena (2) by the secrets associated
with each module; and (3) by the facilities [public functsdprovided by each module. ...”

“For some modules we find it useful to distinguish betweenimary secret, which is hidden
information that was specified to the software designer,asdcondary secret, which refers to
implementation decisions made by the designer when implangethe module designed to hide
the primary secret.”

In general, each module should hide an independent systsigrddecision. If a table (with
related data) is involved, for example, a table manager meadediates all access to that table and
it hides the representation of that table. The module seemet the facts about the module that
are not included in its interface — that is, the assumptibas¢lient programs are not allowed to
make about the module. The correctness of other modulesmatidepend on these facts.

Note that a system entirely based on “information hidingélisays modular.

B.4.3 Layering as a Design Abstraction Using Modules

A layer is a module. We say that a system is layered if the “ugesgph of its leaf modules is a
linear order (a reflexive, transitive, and asymmetric refgt (If the layer is actually a collection
of modules, then the linear order is on the layer rather thrathe individual modules, although a
lattice ordering could be used instead.)

Pictorially, we represent a layered system with horizostapes or bands, with one stripe per
layer. Also, we typically show only the transitive reducti@.e., remove all transitively implied
arcs) of the “uses” graph. “Traditionally, a layer is thoughas providing services to the layer
above, or the user layer. The user has some mechanism fdingviine layer, such a procedure
call. The layer performs the service for its user and thamrnst In other words, service invocation
occurs from the top down.” [81] We define layering as a systeatsiring (organizing) principle in
which system modules are partitioned into groups such tieglitses” graph of the system module
groups (the layers) is a linear order (although it could &lsoviewed as a partial order, e.g., in
the form of a lattice). Classical layering permits only deals, not upcalls. Some experience
suggests that upcalls can be valuable (as long as secuditytgrity are not violated).

“In classical layering, a lower layer performs a servicehwiit much knowledge of the way in
which that service is being used by the layers above. Exeessntamination of the lower layers
with knowledge about upper layers is considered inappabgrbecause it can create the upward
dependency which layering is attempting to eliminate. t.is lour experience, both with Swift
and in other upcall experiments that we have done, that titieyab upcall in order to ask advice
permits a substantial simplification in the internal alfums implemented by each layer.” [81]

We understand the phrase layers of abstraction as just gtpaston where the hierarchy is a
layering.

Two popular types of layering in an operating system arecgbtiechanism layering and hardware-
independent / hardware-dependent (HI/HD) layering — aldted device-independent / device-
dependent (DI/DD). This was a fundamental part of the Msliinput-output system architecture.

B.5. MEASURES OF MODULARITY AND MODULE PACKAGING 169

Also, see [358]. The idea of policy/mechanism layering & tltesign decisions about system poli-
cies (or mechanisms) should tend to reside in higher (ordpilagers. The rationale for HI/HD
layering, with the HI layer above the HD layer, is to localimachine dependent modules to sim-
plify porting. In practice, these two layering criteria magt be compatible, since “some design
decisions which one would be tempted to label as policigerahan mechanisms can be machine
dependent” [358].

B.5 Measures of Modularity and Module Packaging

The goal of identifying simple and practical tools for esigtiing and verifying modularity prop-
erties requires that we defisenple and practicaineasures for modularity. Below we define four
classes of such measures, namely, for (1) replacement depes, (2) global variables, (3) mod-
ule reusability, and (4) component packaging. While wedwelithat these classes are important
for modularity assessments, the specific examples of mesasue provided only for illustrative
purposes. Other specific measures may be equally acceptazeh class.

B.5.1 Replacement Dependence Measures

One way to define a modularity defect is by replacement degrere] a violation of our property
P5 of a module. We define two replacement dependence meé&sloas

Measure M1. We define modularity measure M1 on an “almost-moduotg$atisfying proper-
ties P1-P4 but not P5 of the module definition of Section B.Ras the number of files that must
be edited to replace the implementation of moduldess one (the minimum).

Measure M2. We define modularity measure M2 on an “almost-moduheds the number of
lines of source code, not in the “primary” implementatior filhat must be edited to replace the
implementation of modulen.

B.5.2 Global Variable Measures

Although global variables can be useful for system perferceathey should be avoided whenever
they can produce replacement dependence and extra-madetoess dependencies not repre-
sented by explicit service dependencies. It is temptingcidnsequential, to argue that correctness
should be determined only from explicit service dependenand thus from module interfaces,
and not from data dependencies, and to conclude that allgishould be eliminated.

We have defined two software modules as data dependent ilia@g a common global vari-
able. A data dependency can sometimes be harmless, or sHeyoto understand, and sometimes
it is harmful, or unsafe or difficult to understand [383]. Wancdefine a hierarchy of module
dependency (coupling) from very safe to very unsafe witHdHewing types of variables:

(a) local to a function,

(b) formal of a function,

(c) global (but private) to one module,

(d) global with one writer module (and many reader modules),

(e) global with a few writer modules (and many reader modudesl a well-defined use disci-
pline,

170 APPENDIX B. SYSTEM MODULARITY (VIRGIL GLIGOR)

(f) global with many writer modules (and many reader modudesl a well-defined use disci-
pline, and

(9) global with many writer modules (and many reader modudesl an ill-defined (or unde-
fined) use discipline.

Both types of global variables (a) and (b) are safe, whileohal variable of type (g) is unsafe.
In general, (a) is safer than (b), which in turn is safer than &nd so on, and (g) is the most
unsafe. In general, module independence is valuable be@mgscan understand (thus, replace,
fix, evolve) the module by understanding only its interfand a/hat it uses. On the other hand,
a module dependency is undesirable when one cannot unmrghais, replace, fix, evolve) a
module without understanding the implementations of othedules. In this sense, a module
including global variables of type (d) is easier to undeardtéthan a module including a global
variable of type (e); a module including global variabledygfe (e) is easier to understand than
one including a global variable of type (f); a module inchgliglobal variables of type (g) is
virtually impossible to understand. By “use discipline” wean “correctness rule.”

If a global variable can and should be converted to eithecal lof one module, or a formal of
one or more public functions, or a local of a public functithen this new scope is generally better
than its old scope as a global. In general, use of formals ett@tprogramming discipline than
use of informals (globals, environment variables). As @@son, it makes the function parameters
more explicit; this makes the functions simpler to underdtaand simpler to evolve (e.g., as a
remote procedure call). As another reason, for recursiesofiformals is a less error prone pro-
gramming discipline than use of informals; care must bertagesave current informal parameters
before a recursive call and to restore them after the call.

Measure M3. We define measure M3 on an “almost-moduleas the number of globals that
it writes that are also written by other modules or almostuies.

B.5.3 Module Reusability Measures

Another way to define a modularity defect is as a reuse impedlipor a violation of our property
P6 of a module. The major technical source of module-reugedments is the violation of
compatibility[134] between a module’s interface and its new environménse. Whenever this
impediment materializes, we say that the module cannatbeposedvithin its environment of
use. In particular, we are interested in the amount of extver¢ct) code that has to be written and
the amount of administrative effort that has to be expandeemove interface incompatibility. We
define four measures of reuse impediments below. These msasan also be viewed as simple
estimates of ability to compose modules.

For all the measures below we assume the module being reassfies properties P1-P5 but
not P6 of the module definition in Section B.2.1.1.

Measure M4. We define modularity measure M4 on an “almost-reusable” rieoniuas the
number of exception handlers that must be written to covethal exceptions signaled by the
reused module.

Measure M5. We define modularity measure M5 on an “almost-reusable” reonuas the
number of resource allocation and deallocation instrastithat must be written to enable the
execution of the reused module, less two (the minimum).

Measure M6. We define modularity measure M6 on an “almost-reusable” rieoniuas the

B.6. COST ESTIMATES FOR MODULAR DESIGN 171

number of lines of code that must be written to satisfy the mb@dvocation discipline (i.e., type
matching and coercion, if necessary, setting constantglabdl variables) to enable the execution
of the reused module, less than the number of formal parasi@te minimum).

Measure M7. We define modularity measure M6 on an “almost-reusable” rieoniuas the
number of permissions/system privileges that must be gdatiatenable the execution of the reused
module, less one (the minimum required to invoke the module)

Clearly, zero extra code or administrative effort is bestdlb measures, but a small number
(e.g., one to three) of extra programs and administratieete$ acceptable, provided that this is a
one-time requirement.

B.5.4 Component-Packaging Measures

Component-packaging defects can also be evaluated usiagumes of how closely the module
package reflects the module definition. Since packagingtis moodularity property by our defi-
nition, packaging-defect measures are not necessarilylaoty measures. However, packaging-
defect measures are useful in evaluating visibility of sgststructures by standard tools (e.qg.,
browsers). The examples of packaging-defect measuresdpobbelow are only for illustrative
purposes. Other measures may be equally acceptable.

Measure M8: Assume that a leaf module has one implementation file andrdeegace file.
We define packaging measure M8 to be the number of files (e,gassuming C) over which the
implementation of a leaf module is spread, plus the numbéfesf over which the interface of a
leaf module is spread, then subtracting two (the minimum).

M8 is a measure of packaging defects with granularity of afijeecount. For a modulen with
exactly one implementation file and exactly one interfage M8(m)= 0. In general, for system
s, and measure M, M(s) is the summation of M(m) for each leaf uleuh.

Measure M9: We define packaging measure M9 as similar to Measure M8 eltapt/e count
the number of lines of source code (SLOC) not in “the primangplementation file plus not in
“the primary” interface file.

As a class of approximate measures of modularity, additipaekaging defect measures can
be defined.

B.6 Cost Estimates for Modular Design

Different system designers may argue over the specific cbstdferent features of modular de-
sign, but few would disagree with the following “less expgaghan” (<) and “included in” K<)
orders:

“Just Code It;” < Module with Properties P1-P4 Replacement Independence (R5Reusabil-
ity (P6); and

“Just Code It << Module with Properties P1-P4 < Replacement Independence (R5X
Reusability (P6)

In fact, the first seven modularity measures presented albasteate the different types of com-
plexity involved in modular design and provide intuitiorr the above cost and feature-inclusion
ordering. Specific cost figures for modularity are hard to edyy, as insufficient experience is

172 APPENDIX B. SYSTEM MODULARITY (VIRGIL GLIGOR)

available with systems designs where modularity is an itgnbdrequirement. However, based on
(1) experience with Secure Xenix(tm) [115] (aka TrustediX@m)), the only Unix(tm) system to
achieve a security level where modularity was required, TESEC level B2), and (2) experience
reported by Lampson [199], we can estimate the relativesagsihg a “Just Code It” (JCI) unit of
modularity currency.

Lampson estimates the costs for a “good module for your sy'stad “reusable component.”
We approximate a “good module for your system” with modwgsroperties P1-P4 and “reusable
component” with property P6. Using these estimates andgpnoximation, we obtain the follow-
ing cost ranges:

Cost of Module with Properties P1-P4 (i.e., “good moduleyfour system”)= 0.5 JCI - 2 JC]
depending on how many of the properties P1 — P4 are desiréddarlucky you are” [199]) and

Cost of Module Reusability (P& 3 JCI - 5 JCI

For the purposes of this study, it seems important to be abdstimate the cost of the module
“replacement independence” property (P5). The cost anggriesented above allows us to inter-
polate the cost estimate for this property. Since

Module with Properties P1-P4 Replacement Independence (R5Reusability (P6)
the above estimates suggest that

Cost of a Module’s Replacement Independence P3)JCI - 3 JCI

However, is our approximation of a “good module for your syst with module properties P1
— P4 valid? We attempt to validate this approximation usiost @stimates of Secure Xenix(tm),
where modularity properties P1-P4 were satisfied. The 8eXanix(tm) estimates can be split
roughly as follows:1/3 design cost (including modularity properties P1 - P4, bufleding that
of testing and documentation required for PB)3 assurance cost (including testing to the level
required for P6), and/3 documentation (including everything that a user and aruetal might
want for level B2, and hence including documentation resglifior P6). These estimates suggest
the following approximate relationships:

Cost of Module with Properties P1-P4 0.33 of Cost of Module with Properties P1-P6
Hence, using the above cost estimates, we obtain:

Cost of a Module with Properties P1 - P41 JCI - 1.67 JC]
which is consistent with Lampson’s estimate that

“good module for your system= 0.5 JCI - 2 JCI

We stress that the above estimates of modularity costseayerough. However, they appear
to be consistent with each other for modularity propertiés P4. Further, the requirements of
property P6 seem to be consistent with modularity requirgsnef TCSEC level B2-B3. Hence
these cost estimates could be further validated using elesmpsystems rated at those levels.

B.7 Tools for Modular Decomposition and Evaluation

A variety oftools (e.g., algorithms, methods, programs) for modular systeaochposition have
been proposed during the past dozen years. The motivatidhdaevelopment of these tools has
been driven primarily by the need to improve the understaiitlaand maintainability of legacy
software, and to a lesser extent to enable module reugaldi@w of these tools were motivated
directly by concerns of module replacement independendeanectness, and consequently few

B.7. TOOLS FOR MODULAR DECOMPOSITION AND EVALUATION 173

support formal dependency analyses among identified msedule

In general, most tools for modularization can be divided imto broad classes, namely those
based on (1¢lusteringfunctions and data structures based on different modyleniteria, and (2)
concept analysis an application of a lattice-theoretical notion to groupiiactions and function
attributes (e.g., access to global variables, formal patara and types returned). The primary
difference between the two classes is that approaches ysbe fformer use metrics of function
cohesion and coupling directly whereas those used by ttex laly mostly on semantic grouping
of functions that share a set of attributes. Both approalhes advantages and disadvantages. For
example, although clustering is based on well-defined eeefwhich overlap but are not necessar-
ily identical with M1-M7 above) and always produces modwdiuctures, it does not necessarily
provide a semantic characterization of the modules pratiace often reveals only few module-
design characteristics. In contrast, concept analyspslatiaracterize the modules recovered from
source code semantically, but does not always lead to adsihtifiable modules (e.g., nonover-
lapping and groupings of program entities covering all fiores of a program). Neither approach
is designed to characterize correctness dependenciegyamumules (e.g., systems analysis) and
neither is intended to address the properties of systenanaot by modular composition (e.g.,
systems synthesis). We note that metrics M1-M7 suggestaceatould be applied equally well to
the modular structures produced by either approach. Indkenbe of this appendix, we provide
representative examples of tools developed for modulanglysis using each approach.

B.7.1 Modularity Analysis Tools Based on Clustering

The first class of clustering tools is that developed for thentification ofabstract types and
objectsand their modules in source code written in a non-objearded language, such as
The modular structure produced by these tools is partid @epresents only the use of data ab-
stractions in source code. Other modularity structuresif@stnin the use of other abstractions
(e.g., functional, control, synchronization) are not &ded. All tools of this class recognize
abstract-object instances by clustering functions the¢s& function-global variables, formal pa-
rameters, returned [211] or received [65]. Relations antbegdentified components (e.g., call
and type relations [65], relations of procedures to intefie&ds of structures [384]) are used to
build dominance trees or graphs, and dominance analysiseid 10 hierarchically organize the
abstract type/object modules into subsystems [132]. Acaigiroblem that appears with this class
of tools is that of “coincidental links,” which is caused bsopedures that implement more than
one function, and “spurious links,” which is caused by fumas that access data structures imple-
menting more than one object type. Both types of links leddrger-than-desirable clusterings of
functions.

A second class of clustering tools is that based on meashigiginternal cohesion and low
external coupling (e.g., few inter-module global varia@d@d functions). Tools of this class define
cohesion principles and derive metrics based on thoseipl#sc For example, the measure of
“similarity” among procedures defined for the ARCH tool [346derived from the “information
hiding” principle and used to extract modules with intercahesion and low external coupling.
Further, genetic algorithms have been used by other toajs @UNCH [217]) to produce hier-
archical clustering of modules identified using cohesiod eoupling metrics [216]. Clustering
techniques have also been used to group module intercamneatto “tube edges” between mul-

174 APPENDIX B. SYSTEM MODULARITY (VIRGIL GLIGOR)
tiple modules that form subsystems [215].

B.7.2 Modularity Analysis Tools based on Concept Analysis

The notion of concept analysis is defined in lattice theorjolews. Let X be a set of objects,
or anextenf andY a set of attributes, or aimtent and R a binary relation between objects and
attributes. Aconceptis the maximal collection of objects sharing common attelsu Formally,

a concept is the pair of setsX,Y) such thatX = 7(Y) andY = o(X), wherecs andr are
anti-monotoneand extensivanappings ink (i.e., they form aGalois connectiopn A mapping,
say, o is said to be anti-monotone X; C X, = o¢(X3) C o(X;). Mappingso, T are said to
be extensive ifX C 7(0(X)) andY C o(7(Y")). Further, a conceptXy, Y;,) is asubconcepof
concept(Xy, Y1), if Xo C X; or, equivalentlyy; C Y;. The subconcept relation forms a partial
order over the set of concepts leading to the notiotoofcept (Galois) latticeonce an appropriate
top and bottom are defined. A fundamental theorem of conedfitds relates subconcepts and
superconcepts and allows the least common superconcesebioh concepts to be computed by
intersecting the intents and finding the common objectsefésulting intersection.

Concept lattices have been used in tools that identify adsfin software-configuration infor-
mation (e.g., as in the RECS tool [356]). During the past halbzen years, they have been used
to analyze modularity structures of programs written ingpaonming languages that do not sup-
port a syntactic notion of a module (e.g., Fortran, Cobol[2DB, 353]. More recently, they have
also been used to identify hierarchical relationships apugisses in object-oriented programming
[136, 137, 357].

The use of concept analysis in identifying modular struesusf source code requires (1) the
selection of an object set (i.e., function set) and attelsédt (i.e., function characteristics such
as a function’s access to global variables, formal paramegturned, types, and so on); (2) the
construction of the concept lattice, and (3) the definitibmancept partitions and subpartitions
as nonoverlapping groupings of program entities (thatuections and attributes). Note that if
concept partitions are used to represent modules, theyleustmplete; that is, they must cover
the entire object (i.e., function) set [353]. The notion nbpartitions was introduced to remove
the completeness restriction that sometimes leads to reaaye@rlaps caused by artificial module
enlargements (to cover the function set) [366].

Concept analysis applied to modularity analysis has tharadge of flexible determination of
modules. That is, if the proposed modularization is too §ir@ned, moving up the (sub)partition
lattice allows a coarser granularity of modules to be fou@@nversely, if the proposed modu-
larization is too coarse, additional attributes can be dddadentify finer-granularity modules.
Similar flexibility in clustering can be achieved in a moremg@ex manner, namely, by adding and
removing metrics to the set used by clustering analysis.cEunanalysis also has the advantage
that the resulting modularity has a fairly precise semasttaracterization.

B.8 Virgil Gligor's Acknowledgments

Much of my understanding of “modularity” is based on jointnwavith Matthew S. Hecht on
defining practical requirements for modular structuringfaisted Computing Bases in the late

B.8. VIRGIL GLIGOR'S ACKNOWLEDGMENTS 175

1980s. Figures 1-5 were generated by the Secure Xenix nragiidaudy led by Matthew. Virgil
D. Gligor

176 APPENDIX B. SYSTEM MODULARITY (VIRGIL GLIGOR)

Secore Xenix Kernel

defines the hardware conligoratien and

Conlliguralion Subsysiem tutable paratmeters of the systera
i we i controls the initialization of the other
Inilializalion Subsysiem subsystetits at systers Boot tie
dispmiches systerm calls o the
Sysiem Call Subsysiem sLmicies sy

apprropriate rmodoles

ehcapsukates acoess control,

Secu "“-J" 5 “hgyglem privikege manageraent, ahd
aoditing raechanisiis and pobic s

Miahages Processes, phocessors, systen
clocks, sighals, hardware intertopts, traps

Process Subsysiem

filahages rocess address spade,

Memory Subsysiem shared text sepraents, physical reraory,
propran kading ahd sWalpbng

tiatages Lhde vices, interropts, buller cache,
Lo Suhsyslem and termvinal kine disci plines

File Su slem taanages Rk systems, Rkes and l.nl.res
& h’S}' & directoties, and ACLs

ffiatages Mesmpe Juenes, sefaphores,
rC S“hsﬂ'"mm and shared rowe ey segnme nts

cottaihs rddobkes not
incloded it the other
subsyste i, e,
PAENFOY -TO- ITEIROTY COpy
Figure 1. Example of the “Conlains™ Relalion:

major Subsysiems of the Secure Xenix Kernel

Noie: File Subsysiem is decomposed in Figure 2

* ¥ v vy ¥ ¥ ¥ v v ¥

Miscellaneous Funclions Subsysiem

Figure B.1: Example of th€ontainsRelation

B.8. VIRGIL GLIGOR'S ACKNOWLEDGMENTS

File Subsystem

|

177

Flat File Service Directory Service ACL Service
Superblock | | File Mount Directory| |Directory ACL ACL
sService Service| | Service | |System Manager System Manager

Calls Calls
chiir aclereat
chot aclopen
chinp
knk adqmmm,
unbink:

‘ -

Superblock | | Superblock | |File inode File
System Calls | | Module System | | Table Table
Calls Module r
ACOEE S
s]w:tﬂ.:“m chmod mlnod
syne chown open
nmant o dehk
T &E
ustat creat Tead
dup stat
Tl umark
fziat wine
iocil wrile ¥
Superblock Disk Space | |i-number inode Block File
Manager Manager Manager Tahle Map Tahle
Manager | | Manager r
Lodking

Figure 2. Example of the “Contains” Relation and Module Hierarchy:
decomposition of File Suhsystem
Note: a darkened hox shows a file of source code

Figure B.2: Example of th€ontainsRelation and Module Hierarchy

178 APPENDIX B. SYSTEM MODULARITY (VIRGIL GLIGOR)

Yersion 0t ¢
Fik Subsysiem
Version 1: il
File Subsysiem Sysiem Calk

ACL Service

Direciory Service

¥
Flal Fike Service

Figure 3. Example of Refining the “Uses™ Relation { Versions 0,1)
within the File Subsysiem of Secure Xenix Kernel
Naote: arrows denole the uses relalionships.

Figure B.3: Example of Refining tHdsesRelation 1

B.8. VIRGIL GLIGOR'S ACKNOWLEDGMENTS

Yersion 2:

'

File Subsysiem Sysiem Calk

—

Direclory Service

\

N

File Service
|

/ ACL Service
-

Mounl Service

b

Superblock Service

Figure 4. Example of Refining 1he “Uses™” Relation {Version 2)
wilhin the File Subsysiem of Secure Xenix Kernel

Nole: arrows denole the “uses™ relalionships.

Figure B.4: Example of Refining tHdsesRelation 2

179

180 APPENDIX B. SYSTEM MODULARITY (VIRGIL GLIGOR)

Yersion 3: ¢

File Subsysiem Sysiem Calks

T

AL Servige

Direclory Service

lock

Fike

Mounl Service

| o e

Superblock Service

Figure 5. Example of Refining 1he “Uses™” Relation {Version 3)
wilhin the File Subsysiem of Secure Xenix Kernel
Note: arrows denole the uses relalionships.

Figure B.5: Example of Refining tHdsesRelation 3

Bibliography

[1] M. Abadi, A. Banerjee, N. Heintze, and J.G. Riecke. A coatculus of dependency. In
POPL 99, Proceedings of the 26th SIGPLAN-SIGACT Symposiuiidrinciples of Pro-
gramming Languagegages 147-160, San Antonio, Texas, January 20-22 1999.

[2] M. Abadi and A.D. Gordon. A calculus for cryptographicopocols: The Spi calculus.
Technical report, Digital Equipment Corporation, SRC Resk Report 149, Palo Alto,
California, January 1998.

[3] M. Abadi and L. Lamport. Composing specifications. In JA& Bakker, W.-P. de Roever,
and G. Rozenberg, editor§tepwise Refinement of Distributed Systems: Models, For-
malisms, Correctnespages 1-41, REX Workshop, Mook, The Netherlands, May-June
1989. Springer-Verlag, Berlin, Lecture Notes in ComputeieBce, vol. 230.

[4] M. Abadi and R. Needham. Prudent engineering practicergptographic protocols. Tech-
nical report, Digital Equipment Corporation, SRC Resedelport, Palo Alto, California,
June 1994,

[5] R.P. Abbott et al. Security analysis and enhancementsmiputer operating systems. Tech-
nical report, National Bureau of Standards, 1974. OrderiNg13558-74.

[6] H. Abelson, R. Anderson, S.M. Bellovin, J. Benaloh, MaBé, W. Diffie, J. Gilmore, P.G.
Neumann, R.L. Rivest, J.l. Schiller, and B. Schneier. Thesrbf key recovery, key escrow,
and trusted third-party encryptiohttp://www.cdt.org/crypto/risks98/June 1998. This is
a reissue of the May 27, 1997 report, with a new preface etiatyavhat happened in the
intervening year.

[7] M.D. Abrams and M.V. Joyce. Composition of trusted ITt®yas. Technical report, MITRE,
September 1992. Draft.

[8] N. Abramson and F.F. Kuo (editors.Computer-Communication NetworkBrentice-Hall,
1971.

[9] J. Adamek. Foundations of Coding: Theory and Applications of Errorstaating Codes
with an Introduction to Cryptography and Information ThgoWiley-Interscience, 1991.

[10] M. Adler. Tradeoffs in probabilistic packet marking fip traceback. IrfProceedings of the
Thirty-fourth Annual ACM Symposium on Theory of Compuytiages 407—-418, 2002.

181

182 BIBLIOGRAPHY

[11] P.E. Agre and M. Rotenberg, editorsechnology and Privacy: The New LandscapdT
Press, Cambridge, Massachusetts, 1997.

[12] J.H. An, Y. Dodis, and T. Rabin. On the security of joilgrsature and encryption. lAd-
vances in Cryptology, EUROCRYPT 2002, Amsterdam, The f&etts, Springer-Verlag,
Berlin, Lecture Notes in Computer Scieppages 83—-107, May 2002.

[13] R. Anderson and M. Kuhn. Tamper resistance — a cautionate. InProceedings of the
Second Usenix Workshop on Electronic Commereges 1-11. USENIX, November 1996.

[14] R.J. AndersonSecurity Engineering: A guide to Building Dependable Distted Systems
John Wiley and Sons, New York, 2001.

[15] T. Anderson and J.C. Knight. A framework for softwaralfdolerance in real-time systems.
IEEE Transactions on Software EngineeriigE-9(3):355-364, May 1983.

[16] T. Anderson and P.A. Led-ault-Tolerance: Principles and Practic®rentice-Hall Interna-
tional, Englewood Cliffs, New Jersey, 1981.

[17] A.W. Appel and D.B. MacQueen. Standard ML of New Jersdy.Programming Lan-
guage Implementation and Logic Programming, Lecture NateSomputer Science vol.
528 pages 1-26, Berlin, 1991. Springer-Verlag.

[18] W.A. Arbaugh, D.J. Farber, and J.M. Smith. A secure alhble bootstrap architecture.
In Proceedings of the 1997 Symposium on Security and Privaayes 65-71, Oakland,
California, May 1997. IEEE Computer Society.

[19] W.A. Arbaugh, A.D. Keromytis, D.J. Farber, and J.M. @miAutomated recovery in a se-
cure bootstrap process. Roceedings of the 1998 Network and Distributed Systenr®gcu
SymposiumSan Diego, California, March 1998. Internet Society.

[20] K. Ashcraft and D. Engler. Detecting lots of securitylé®m using system-specific static
analysis. InProceedings of the 2002 Symposium on Security and Priyeges 143-159,
Oakland, California, May 2002. IEEE Computer Society.

[21] D. Asonov and R. Agrawal. Keyboard acoustic emanatioimsProceedings of the 2004
Symposium on Security and Privagages 3—-11, Oakland, California, May 2003. IEEE
Computer Society.

[22] M.S. Atkins. Experiments in SR with different upcallggram structuresACM Transactions
on Computer Systemg(4):365-392, November 1988.

[23] Numerous authors. Automated software engineeringdisp section). ERCIM News
(58):12-51, July 2004.

[24] A. Avizienis and J-C. Laprie. Dependable computingor concepts to design diversity.
Proceedings of the IEEE4(5):629-638, May 1986.

[25] A. Avizienis and J. C. Laprie, editorsDependable Computing for Critical Applications
volume 4 ofDependable Computing and Fault-Tolerant Syste®asmta Barbara, California,
August 1989. Springer-Verlag, Vienna, Austria.

BIBLIOGRAPHY 183

[26] A. Avizienis, J.-C. Laprie, B. Randell, and C. LandweBasic concepts and taxonomy of
dependable and secure computitlgEE Transactions on Dependable and Secure Comput-
ing, 1(1):11-33, January-March 2004.

[27] M. Backes and B. Pfitzmann. A cryptographically soundusity proof of the Needham-
Schroeder-Lowe public-key protocol. #8rd Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FSTT®®B)mbai, India, December 2003.

[28] M. Backes, B. Pfitzmann, and M. Waidner. A universallyngmsable cryptographic li-
brary with nested operations. Tenth ACM Conference on Computer and Communications
Security Washington, D.C., October 2003. ACM.

[29] P. Baran. Reliable digital communications systemagasinreliable network repeater nodes.
Technical Report P-1995, The RAND Corporaton, May 27 1960.

[30] J. BarnesHigh Integrity Software: The SPARK Approach to Safety aruity. Addison-
Wesley, Reading, Massachusetts, 2003. reviewed in RISK&12

[31] L. Bass, P. Clements, and R. Kazma&uoftware Architecture in PracticeAddison-Wesley,
Reading, Massachusetts, 1998.

[32] L. Bauer, A.W. Appel, and E.W. Felten. Mechanisms fartige modular programming in
Java.Software—Practice and Experien@8:461-480, 2003.

[33] K. Beck. Extreme Programming Explained: Embrace Changeldison-Wesley, Reading,
Massachusetts, 1999. (http://www.extremeprogrammigy.o

[34] R. Bejtlich. The Tao of Network Security MonitoringAddison-Wesley, Reading, Mas-
sachusetts, 2004.

[35] D.E. Bell and L.J. La Padula. Secure computer systemifieghexposition and Multics
interpretation. Technical Report ESD-TR-75-306, The ®li@orporation, Bedford, Mas-
sachusetts, March 1976.

[36] L.A. Benzinger, G.W. Dinolt, and M.G. Yatabe. Combiginomponents and policies. In
Proceedings of the Computer Security Foundations Workstib@d. Guttman, editarJune
1994.

[37] L.A. Benzinger, G.W. Dinolt, and M.G. Yatabe. Final cep A distributed system multiple
security policy model. Technical report, Loral Western Blepment Laboratories, report
WDL-TRO00777, San Jose, California, October 1994.

[38] P.L. Bernstein Against the Gods: The Remarkable Story of Rkhn Wiley & Sons, New
York, 1996.

[39] T.A. Berson and G.L. Barksdale Jr. KSOS: Developmerthom@ology for a secure operating
system. IfNational Computer Conferencpages 365-371. AFIPS Conference Proceedings,
1979. \Vol. 48.

184 BIBLIOGRAPHY

[40] T.A. Berson, R.J. Feiertag, and R.K. Bauer. Procepsoidomain guard architecture. In
Proceedings of the 1983 IEEE Symposium on Security and &siyege 120, Oakland,
California, April 1983. IEEE Computer Society. (Abstraciy)).

[41] W.R. Bevier. Kit and the short stacklournal of Automated Reasoning(4):519-30, De-
cember 1989.

[42] W.R. Bevier, W.A. Hunt, Jr., J S. Moore, and W.D. Youngn Approach to systems verifi-
cation. Journal of Automated Reasonirgf4):411-428, December 1989.

[43] K.J. Biba. Integrity considerations for secure congpigystems. Technical Report MTR
3153, The Mitre Corporation, Bedford, Massachusetts, 18¥5. Also available from
USAF Electronic Systems Division, Bedford, MassachusetssESD-TR-76-372, April
1977.

[44] R. Bisbey Il, J. Carlstedt, and D. Chase. Data dependanalysis. Technical Report
ISI/SR-76-45, USC Information Sciences Institute (IShafna Del Rey, California, Febru-
ary 1976.

[45] R. Bisbey Il and D. Hollingworth. Protection analysiroject final report. Technical report,
USC Information Sciences Institute (ISI), Marina Del Regjif®rnia, 1978.

[46] R. Bisbey Il, G. Popek, and J. Carlstedt. Protectioomrin operating systems: Inconsis-
tency of a single data value over time. Technical ReportSRi75-4, USC Information
Sciences Institute (ISI), Marina Del Rey, California, Dexteer 1975.

[47] M. Bishop.Computer Security: Art and Scienckddison-Wesley, Reading, Massachusetts,
2002.

[48] M. Bishop. Introduction to Computer SecurityAddison-Wesley, Reading, Massachusetts,
2004.

[49] B. Blanc. GATeL: Automatic test generation from Lusttescriptions. ERCIM News
(58):29-30, July 2004.

[50] M. Blume and A.W. Appel. Hierarchical modularitACM Transactions on Programming
Languages and Systen24(4):813-847, 1999.

[51] C. Blundo, A. De Santis, G. Di Crescenzo, A.G. Gaggial &h Vaccaro. Multi-secret
sharing schemes. dvances in Cryptology: Proceedings of CRYPTO '94 (Y.Gni2el,
editor), pages 150-163. Springer-Verlag, Berlin, LCNS 839, 1994.

[52] Defense Science Board. Protecting the homeland, wliimTechnical report, Defense
Science Board Task Force on Defensive Information Opera600 Summer Study, March
2001.

[53] W.E. Boebert and R.Y. Kain. A practical alternative tierarchical integrity policies. In
Proceedings of the Eighth DoD/NBS Computer Security liveeConferenceGaithersburg,
Maryland, 1-3 October 1985.

BIBLIOGRAPHY 185

[54] D. Boneh, R.A. DeMillo, and R.J. Lipton. On the importanof checking cryptographic
protocols for faultsJournal of Cryptology14(2):101-119, 1997.

[55] P. Boudra, Jr. Minutes of the meetings of the system asition working group, volume
1. Technical report, National Security Agency, Informatigystems Security Organization,
Office of Infosec Systems Engineering, S9 Technical Rep®2,8.ibrary No. S-239, 646,
October 1992. For Official Use Only.

[56] P. Boudra, Jr. Report on rules of system compositioimdiyles of secure system design.
Technical report, National Security Agency, Informatiopst@ms Security Organization,
Office of Infosec Systems Engineering, |19 Technical Repeé#8,1Library No. S-240, 330,
March 1993. For Official Use Only.

[57] R.S. Boyer, B. Elspas, and K.N. Levitt. SELECT: A fornsgistem for testing and debugging
programs by symbolic execution. Proc. Int. Conf. Reliable Softwar@ages 234-244.
IEEE, IEEE, April 1975.

[58] R.S. Boyer and J S. Mooréd Computational LogicAcademic Press, New York, 1979.

[59] K.H. Britton and D.L. Parnas. A-7e software module guidechnical report, NRL Memo-
randum Report 4702, Naval Research Laboratory, Washingt@h, December 1981.

[60] J.E. Brunelle and D.E. Eckhardt, Jr. Fault-tolerarftvgare: An experiment with the SIFT
operating system. IRroceedings of the Fifth AIAA Computers in Aerospace Cenfay
pages 355—-360, October 1985.

[61] M. Burrows, M. Abadi, and R. Needham. A logic of autheation. ACM Transactions on
Computer System8(1):18-36, February 1990.

[62] R.W. Butler. An elementary tutorial on formal specifica and verification using PVS.
Technical report, NASA Langley Research Center, Hamptingjia, June 1993.

[63] R.W. Butler, D.L. Palumbo, and S.C. Johnson. Applicatof a clock synchronization val-
idation methodology to the SIFT computer system.Digest of Papers, FTCS 1pages
194-199, Ann Arbor, Michigan, June 1985. IEEE Computer &yci

[64] Canadian Systems Security Centre, Communicationarigd&stablishment, Government
of CanadaCanadian Trusted Computer Product Evaluation Critefeecember 1990. Final
Draft, version 2.0.

[65] G. Canfora, A. Cimitile, M. Munro, and C. Taylor. Exttatg abstract data types from
C programs: A case study. IRroceedings of the International Conference on Software
Maintenancepages 200-209, September 1993.

[66] R.A. Carlson and T.F. Lunt. The trusted domain machieecure communication device
for security guard applications. IRroceedings of the 1986 Symposium on Security and
Privacy, pages 182-186, Oakland, California, April 1986. IEEE CatepSociety.

186 BIBLIOGRAPHY

[67] J. Carlstedt. Protection errors in operating systevasidation of critical conditions. Tech-
nical Report ISI/SR-76-5, USC Information Sciences Ing#t(1SI), Marina Del Rey, Cali-
fornia, May 1976.

[68] J. Carlstedt, R. Bisbey I, and G. Popek. Pattern-de@grotection evaluation. Technical
Report ISI/SR-75-31, USC Information Sciences Institid)(Marina Del Rey, California,
June 1975.

[69] A. Chander, D. Dean, and J.C. Mitchell. A state-transitmodel of trust management. In
Proceedings of the 14th IEEE Computer Security Foundatfémkshoppages 27-43, Cape
Breton, Nova Scotia, Canada, June 2001. IEEE Computertgd@ehnical Committee on
Security and Privacy.

[70] A. Chander, D. Dean, and J.C. Mitchell. Deconstructigt management. IRroceedings
of the 2002 Workshop on Issues in the Theory of Se¢idstland, Oregon, January 2002.
IFIP Working Group 1.7.

[71] A. Chander, D. Dean, and J.C. Mitchell. A distributedtniassurance reference monitor.
In Proceedings of the Seventh Information Security Conferéecture Notes in Computer
Science vol. 322%pages 231-244, Berlin, September 2004. Springer-Verlag.

[72] A. Chander, D. Dean, and J.C. Mitchell. Reconstructingt managementJournal of
Computer Securityl2(1):131-164, January 2004.

[73] D. Chaum. Secret-ballot receipts: True voter-verigaddections.|[EEE Security and Pri-
vacy, 2(1):38-47, January-February 2004.

[74] H. Chen. Lightweight Model Checking for Improving Software SegqurRhD thesis, Uni-
versity of California, Berkeley, 2004. http://www.cs.asis.edu/"hchen/paper/phddis.ps.

[75] H. Chen, D. Dean, and D. Wagner. Model checking one amillines of code. IfProceedings
of the Symposium on Network and Distributed System Secpaigyes 171-185, San Diego,
California, February 2004. Internet Society.

[76] H. Chen and J. Shapiro. Using build-integrated stdtenking to preserve correctness invari-
ants. InProceedings of the Eleventh ACM Conference on Computer anth@inications
Security (CCS)Washington, D.C., November 2004.

[77] H. Chen and D. Wagner. MOPS: An infrastructure for exaing security properties of soft-
ware. InNinth ACM Conference on Computer and Communications SgcWashington,
D.C., November 2002. ACM.

[78] H. Chen, D. Wagner, and D. Dean. Setuid demystifiedPrioceedings of the 11th USENIX
Security 2002pages 171-190, San Francisco, California, August 200ENJS.

[79] B.V. Chess. Improving computer security using extehgtic checking. IiProceedings
of the 2002 Symposium on Security and Privg@ages 160-173, Oakland, California, May
2002. IEEE Computer Society.

BIBLIOGRAPHY 187

[80] W.R. Cheswick, S.M. Bellovin, and A.D. RubiRirewalls and Internet Security: Repelling
the Wily Hacker, Second EditioAddison-Wesley, Reading, Massachusetts, 2003.

[81] D.D. Clark. The structuring of systems using upcal@@perating Systems Revigpages
171-180, 1985.

[82] D.D. Clark and D.R. Wilson. A comparison of commercialamilitary computer security
policies. InProceedings of the 1987 Symposium on Security and Prjyeges 184-194,
Oakland, California, April 1987. IEEE Computer Society.

[83] D.D. Clark et al. Computers at Risk: Safe Computing in the Information.Aljational
Research Council, National Academy Press, 2101 Constit#tve., Washington, D.C., 5
December 1990. Final report of the System Security StudyrGitiee.

[84] F.J. Corbatd. On building systems that will fail (19%0ring Award Lecture, with a fol-
lowing interview by Karen Frenkel)Communications of the ACN84(9):72-90, September
1991.

[85] F.J. Corbat6, J. Saltzer, and C.T. Clingen. MultickeTirst seven years. IRroceedings
of the Spring Joint Computer Confereneelume 40, Montvale, New Jersey, 1972. AFIPS
Press.

[86] P.J. Courtois, F. Heymans, and D.L. Parnas. Concuoemitrol with readers and writers.
Communications of the ACM4(10):667—-668, October 1971.

[87] F. Cristian. Understanding fault-tolerant distriedtsystemsCommunications of the ACM
34(2):56-78, February 1991.

[88] I. Crnkovic and M. Larsson. Classification of qualitytrddutes for predictability in
component-based systems.Wworkshop on Architecting Dependable Systems (DSN WADS
2004) Florence, Italy, June 2004. http://www.cs.kent.ac.vdes/conf/2004/wads/DSN-
WADS2004/indexProgDSN2004.html.

[89] M. Curtin. Developing Trust: Online Security and Privacppress, Berkeley, California,
and Springer-Verlag, Berlin, 2002.

[90] M. Cusumano, A. MacCormack, C.F. Kemerer, and W. Crindaglobal survey of soft-
ware development practices. Technical report, MIT SloamoStof Management, Cam-
bridge, Massachusetts, June 2003.

[91] R.C. Daley and J.B. Dennis. Virtual memory, procesaasd, sharing in MulticsCommuni-
cations of the ACM11(5), May 1968.

[92] R.C. Daley and P.G. Neumann. A general-purpose fileesysbr secondary storage. In
AFIPS Conference Proceedings, Fall Joint Computer Confegepages 213—-229. Spartan
Books, November 1965.

[93] A. Datta, R. Kusters, J.C. Mitchell, A. Ramanathandav Shmatikov. Unifying
equivalence-based definitions of protocol security.Ploceedings of the ACM SIGPLAN
and IFIP WG 1.7 Fourth Workshop on Issues in the Theory of@gc@akland, California,
April 2004. IEEE Computer Society.

188 BIBLIOGRAPHY

[94] W.-P. de Roever, F. de Boer, U. Hanneman, J. Hooman,khhach, M. Poel, and J. Zwiers.
Concurrency Verification: Introduction to CompositionaldaNoncompositional Methods
Cambridge University Press, New York, NY, 2001. CambridgacTs in Theoretical Com-
puter Science no. 54.

[95] D. Dean. Formal Aspects of Mobile Code Security?hD thesis, Computer Science De-
partment, Princeton University, January 1999. (http:Mwes.princeton.edu/sip/pub/ddean-
dissertation.php3).

[96] D. Dean. The impact of programming language theory anmater security. IfProceed-
ings of the Mathematical Foundations of Programming SermarfMFPS) New Orleans,
Louisiana, March 2002. Slides at http://www.csl.sri.coedymann/ddean-MFPS02.ppt.

[97] D. Dean, M. Franklin, and A. Stubblefield. An algebrajpeoach to ip tracebackACM
Transactions on Information and System Secuf(g):119-137, May 2002.

[98] D. Dean and D. Wagner. Intrusion detection via statialgsis. InProceedings of the

2001 Symposium on Security and Priva©gkland, California, May 2001. IEEE Computer
Society.

[99] G. Denker and J. Millen. CAPSL integrated protocol eomiment. INDARPA Information
Survivability Conference (DISCEX 200@grges 207—-221. IEEE Computer Society, 2000.

[100] D.E. Denning, S.G. Akl, M. Heckman, T.F. Lunt, M. Morgggern, P.G. Neumann, and R.R.
Schell. Views for multilevel database securiyEE Transactions on Software Engineerjing
13(2), February 1987.

[101] D.E. Denning, P.G. Neumann, and Donn B. Parker. Sesipécts of computer security. In
Proceedings of the 10th National Computer Security ConfegeSeptember 1987.

[102] Y. Desmedt, Y. Frankel, and M. Yung. Multi-receiveuti-sender network security: Effi-
cient authenticated multicast/feedback Pimceedings of IEEE INFOCOMEEE, 1992.

[103] Y. Deswarte, L. Blain, and J.-C. Fabre. Intrusion tatece in distributed computing systems.
In Proceedings of the 1991 Symposium on Research in Secudiraracy, pages 110-121,
Oakland, California, April 1991. IEEE Computer Society.

[104] W. Diffie and S. LandauPrivacy on the Line: The Politics of Wiretapping and Encrgpt
MIT Press, 1998.

[105] E.W. Dijkstra. Co-operating sequential processesPrbgramming Languages, F. Genuys
(editor), pages 43-112. Academic Press, 1968.

[106] E.W. Dijkstra. The structure of the THE multiprogranmg system Communications of the
ACM, 11(5), May 1968.

[107] E.W. Dijkstra.A Discipline of ProgrammingPrentice-Hall, Englewood Cliffs, New Jersey,
1976.

BIBLIOGRAPHY 189

[108] G.W. Dinolt and J.C. Williams. A Graph-Theoretic Fartation of Multilevel Secure Dis-
tributed Systems: An overview. 1987 IEEE Symposium on Security and Privgmgges
99-103, 1730 Massachusetts Avenue, N.W., Washington, ZD@36-1903, April 1987. The
Computer Society of the IEEE, IEEE Computer Society Press.

[109] B.L. DiVito and L.W. Roberts. Using formal methods tesést in the requirements analysis
of the space shuttle GPS change request. Technical Rep&&ANFontractor Report 4652,
NASA Langley Research Center, Hampton, Virginia, Augu€6L9

[110] S. Dolev.Self-StabilizationMIT Press, Cambridge, Massachusetts, 2000.

[111] B. Dutertre, V. Crettaz, and V. Stavridou. Intrusitmberant enclaves. IRroceedings of the
2002 Symposium on Security and Privaggiges 216—224, Oakland, California, May 2002.
IEEE Computer Society.

[112] C.M. Ellison et al. SPKI certificate theory. Technicaport, Internet Engineering Task
Force, September 1999. http://www.ietf.org/rfc/rfc2698.

[113] D.R. Engler. The Exokernel Operating System Archidez. Technical report, Ph.D. Thesis,
M.I.T., Cambridge, Massachusetts, October 1998.

[114] D.R. Engler, M.F. Kaashoek, and J. O'Toole Jr. Exoké&rAn operating system architec-
ture for application-level resource manageme@perating Systems Revie@0:251-266,
December 1995. Proceedings of the Fifteenth Symposium enaflipg Systems Principles
(SOSP '95).

[115] V.D. Gligor et al. Design and implementation of Secenix[TM]. In Proceedings of the
2004 Symposium on Security and Priva©gkland, California, April 1986. IEEE Computer
Society. also iIHEEE Transactions on Software Engineeringl. SE-13, 2, February 1987,
208-221.

[116] European Communities Commissidnformation Technology Security Evaluation Criteria
(ITSEC), Provisional Harmonised Criteria (of France, Gemy, the Netherlands, and the
United Kingdom) June 1991. Version 1.2. Available from the Office for Offidraiblica-
tions of the European Communities, L-2985 Luxembourg, i@71-91-502-EN-C. Also
available from U.K. CLEF, CESG Room 2/0805, Fiddlers Greané, Cheltenham U.K.
GLOS GL52 5AJ, or GSA/GISA, Am Nippenkreuz 19, D 5300 Bonn 2y1Bany.

[117] R.S. Fabry. Capability-based addressi@dgmmunications of the ACM7(7):403—-412, July
1974.

[118] A.W. Faughn. Interoperability: Is it achievable? faial report, Harvard University PIRP
report, 2001.

[119] R.J. Feiertag, K.N. Levitt, and L. Robinson. Provingltitevel security of a system design.
In Proceedings of the Sixth ACM Symposium on Operating Sygtegiftes pages 57—-65,
November 1977.

190 BIBLIOGRAPHY

[120] R.J. Feiertag and P.G. Neumann. The foundations obeaBly Secure Operating System
(PSOS). InProceedings of the National Computer Conferengages 329-334. AFIPS
Press, 1979. http://www.csl.sri.com/neumann/psos.pdf.

[121] W.H.J. Feijen, A.J.M. van Gasteren, D. Gries, and &rijieditorsBeauty is our Business,
A Birthday Salute to Edsger W. Dijkstr&pringer-Verlag, Berlin, 11 May 1990.

[122] J. Feller, B. Fitzgerald, S.A. Hissam, and K.R. Lakha&udlitors. Perspectives on Free and
Open Source SoftwardIT Press, Cambridge, Massachusetts, 2005.

[123] T. Fine, J.T. Haigh, R.C. O’'Brien, and D.L. Toups. Aneoview of the LOCK FTLS.
Technical report, Honeywell, 1988.

[124] J.-M. Fray, Y. Deswarte, and D. Powell. Intrusion talece using fine-grain fragmentation-
scattering. IrProceedings of the 1986 Symposium on Security and Priyagyes 194201,
Oakland, California, April 1986. IEEE Computer Society.

[125] C. Gacek and C. Jones. Dependability issues in opercs@oftware. Technical report,
Department of Computing Science, Dependable Interdiseipl Research Collaboration,
University of Newcastle upon Tyne, Newcastle, England,120Binal report for PA5, part
of ongoing related work.

[126] C. Gacek, T. Lawrie, and B. Arief. The many meanings pém source. Technical re-
port, Department of Computing Science, University of Nestigaupon Tyne, Newcastle,
England, August 2001. Technical Report CS-TR-737.

[127] M. Gasser.Building a Secure Computer Systevan Nostrand Reinhold Company, New
York, 1988.

[128] M. Gasser, A. Goldstein, C. Kaufman, and B. Lampsone Dhgital distributed system
security architecture. IRroceedings of the Twelfth National Computer Security Eamice
pages 305319, Baltimore, Maryland, 10-13 October 1989TRNCSC.

[129] S.L. Gerhart and L. Yelowitz. Observations of fallityiin modern programming method-
ologies.IEEE Transactions on Software EngineeriigiE-2(3):195-207, September 1976.

[130] J.T. Giffin, S. Jha, and B.P. Miller. Detecting mangueld remote call streams. Rroceed-
ings of the 11th USENIX Security 2QQ2ages 61-79, San Francisco, California, August
2002. USENIX.

[131] E. Gilbert, J. MacWilliams, and N. Sloane. Codes whilgtect deception.Bell System
Technical Journgl53(3):405-424, 1974.

[132] J.F. Girard and R. Koschke. Finding components in ealnafly of modules: A step towards
architectural understanding. Proceedings of the International Conference on Software
Maintenancepages 72-81, October 1997.

[133] V.D. Gligor. A note on the denial-of-service probleimProceedings of the 1983 Symposium
on Security and Privagypages 139-149, Oakland, California, April 1983. IEEE Catep
Society.

BIBLIOGRAPHY 191

[134] V.D. Gligor and S.I. Gavrila. Application-orienteéurity policies and their composition.
In Proceedings of the 1998 Workshop on Security Paradig@ambridge, England, 1998.

[135] V.D. Gligor, S.I. Gavrila, and D. Ferraiolo. On the fioal definition of separation-of-duty
policies and their composition. IRroceedings of the 1998 Symposium on Security and
Privacy, Oakland, California, May 1998. IEEE Computer Society.

[136] R. Godin and H. Mili. Building and maintaining analgdevel class hierarchies using Galois
lattices. InProceedings of the 8th Annual Conference on Object-OreeR@gramming
Systems, Languages and Applications (OOPSLA '93), SIGM@&ides, 28, 10pages 394—
410, 1993.

[137] R. Godin, H. Mili, G.W. Mineau, R. Missaoui, A. Arfi, an@l-T. Chau. Design of class
hierarchies based on concept (Galois) lattic8$eory and Practice of Object Systems
4(2):117-134, 1998.

[138] W. Goerigk. Compiler verification revisited. In M. Kamann, P. Maniolis, and J S. Moore,
editors, Computer Aided Reasoning: ACL2 Case Studidawer Academic Publishers,
2000. Chapter 15.

[139] J.A. Goguen and J. Meseguer. Security policies andrgganodels. InProceedings of the
1982 Symposium on Security and Privapgges 11-20, Oakland, California, April 1982.
IEEE Computer Society.

[140] J.A. Goguen and J. Meseguer. Unwinding and inferenagral. InProceedings of the 1984
Symposium on Security and Privapages 75-86, Oakland, California, April 1984. IEEE
Computer Society.

[141] B.D. Gold, R.R. Linde, and P.F. Cudney. KVM/370 in cspect. InProceedings of the
1984 Symposium on Security and Privapgiges 13-23, Oakland, California, April 1984.
IEEE Computer Society.

[142] A. Goldberg. A specification of Java loading and byteewerification. InFifth ACM
Conference on Computer and Communications Secgyrdges 49-58, San Francisco, Cali-
fornia, November 1998. ACM SIGSAC.

[143] L. Gong. A secure identity-based capability systemPrioceedings of the 1989 Symposium
on Research in Security and Privagages 56—63, Oakland, California, May 1989. IEEE
Computer Society.

[144] L. Gong. An overview of Enclaves 1.0. Technical rep&RI International, Menlo Park,
California, SRI-CSL-96-01, January 1996. (http://mwwWss.com/papers/346/).

[145] L. Gong.Inside Java(TM) 2 Platform Security: Architecture, API 2gs and Implementa-
tion. Addison-Wesley, Reading, Massachusetts, 1999.

[146] L. Gong, M. Mueller, H. Prafullchandra, and R. Schesé&soing beyond the sandbox: An
overview of the new security architecture in the Java Dgwalent Kit 1.2. InProceedings
of the USENIX Symposium on Internet Technologies and Syskéomterey, California,
December 1997.

192 BIBLIOGRAPHY

[147] L. Gong and X. Qian. The complexibility and composkypibf secure interoperation. In
Proceedings of the 1994 Symposium on Research in Secudtiraracy, pages 190-200,
Oakland, California, May 1994. IEEE Computer Society.

[148] L. Gong and R. Schemers. Implementing protection dogia the Java Development Kit
1.2. InProceedings of the Internet Society Symposium on NetwatlDsstributed System
Security San Diego, California, March 1998.

[149] G. Goth. Richard Clarke talks cybersecurity and JELL-IEEE Security and Privagy
2(3):11-15, May-June 2004.

[150] R.M. Graham. Protection in an information processitility. Communications of the ACM
11(5), May 1968.

[151] C. Gunter, S. Weeks, and A. Wright. Models and langedgedigital rights. InProceedings
of the 2001 Hawaii Intenational Conference on Systems 8giétonolulu, Hawaii, March
2001. (http://www.star-lab.com/tr/star-tr-01-04.hxml

[152] V. Guruswami and M. Sudan. List decoding algorithmsdertain contatenated codes. In
Proceedings of the Thirty-second Annual ACM Symposium enrylof Computingpages
181-190, April 2000.

[153] J.T. Haigh. Top level security properties for the LOEYstem. Technical report, Honeywell,
1988.

[154] J.T. Haigh et al. Assured service concepts and mofiledd technical report, vol. 3: Security
in distributed systems. Technical report, Secure Comguiechnology Corporation, July
1991.

[155] J.T. Haigh et al. Assured service concepts and mofietd,technical report, vol. 4: Avail-
ability in distributed MLS systems. Technical report, SecGomputing Technology Cor-
poration, July 1991.

[156] J.T. Haigh et al. Assured service concepts and mofiakd, technical report, volume 1:
Summary. Technical report, Secure Computing Technologp&@ation, July 1991.

[157] S. Haleviand H. Krawczyk. Public-key cryptographylgrassword protocols. Isfth ACM
Conference on Computer and Communications Secuysages 122-131, San Francisco,
California, November 1998. ACM SIGSAC.

[158] R.W. Hamming. Error detecting and error correctinges Bell System Technical Journal
29:147-60, 1950.

[159] R. Harper and M. Lillibridge. A type-theoretic appoteto higher-order modules with shar-
ing. In Conference Record of POPL '94: 21st ACM SIGPLAN-SIGACT Sgmm on
Principles of Programming Languaggsages 123-137, Portland, Oregon, January 1994.

[160] J. Hemenway and D. Gambel. Issues in the specificaficnraposite trustworthy systems.
In Fourth Annual Canadian Computer Security SymposiMiayy 1992.

BIBLIOGRAPHY 193

[161] J.L. Hennessy and D.A. Pattersddomputer Architecture: A Quantitative Approach, Sec-
ond Edition Morgan Kaufmann, 1996.

[162] H.M. Hinton. Composing patrtially-specified systenis.Proceedings of the 1998 Sympo-
sium on Security and Privac@akland, California, May 1998. IEEE Computer Society.

[163] S. Hissam, C.B. Weinstock, D. Plakosh, and J. Asunéitspectives on open source soft-
ware. Technical report, Carnegie-Mellon Software Engimgelnstitute, Pittsburgh, Penn-
sylvania 15213-3890, November 2001. CMU/SEI-2001-TR-019
(http://www.sei.cmu.edu/publications/pubweb.html).

[164] C.A.R. Hoare. Monitors: An operating system structgrconcept.Communications of the
ACM, 17(10), October 1974.

[165] D. Hollingworth and R. Bisbey Il. Protection errors operating systems: Alloca-
tion/deallocation residuals. Technical report, USC Infation Sciences Institute (ISI), Ma-
rina Del Rey, California, June 1976.

[166] J.J. Horning, H.C. Lauer, P.M. Melliar-Smith, and BarRlell. A program structure for error
detection and recovery. @perating Systems, Proceedings of an International Syimpgs
Notes in Computer Science,Jfages 171-187. Springer-Verlag, Berlin, 1974.

[167] D.A. Huffman. A method for the construction of minimuedundancy code®roceedings
of the IRE 40, 1952.

[168] D.A. Huffman. Canonical forms for information-lossk finite-state machinelRE Trans-
actions on Circuit Theory (special supplement) and IRE $eations on Information Theory
(special supplementCT-6 and IT-5:41-59, May 1959. A slightly revised versi@paared
in E.F. Moore, EditorSequential Machines: Selected Papeksidison-Wesley, Reading,
Massachusetts.

[169] C. Hunt. TCP/IP Network Administration, 3rd EditiorD’Reilly & Associates, Sebastopol,
California, 2002.

[170] W.A. Hunt Jr. Microprocessor design verificationJournal of Automated Reasoning
5(4):429-460, December 1989.

[171] IEEE. Standard specifications for public key cryptggry. Technical report, IEEE Stan-
dards Department, 445 Hoes Lane, P.O. Box 1331, Piscataveay,Jersey 08855-1331,
2000 and ongoing. (http://grouper.ieee.org/groups/)363

[172] International Standards OrganizationThe Common Ciriteria for Information Technol-
ogy Security Evaluation, Version 2.1, ISO 154080O/NIST/CCIB, 19 September 2000.
(http://csrc.nist.gov/cc).

[173] D. Jackson. Alloy: A lightweight object modelling radton. ACM Transactions on Software
Engineering MethodologyL 1(2):256—-290, 20.

[174] 1. Jacobson, G. Booch, and J. Rumbaugrhe Unified Software Development Process
Addison-Wesley, Reading, Massachusetts, 1999.

194 BIBLIOGRAPHY

[175] R. Jagannathan. Transparent multiprocessing inrgmepce of fail-stop faults. IIRroceed-
ings of the 3rd Workshop on Large-Grain ParallelisRittsburgh, Pennsylvania, October
1989.

[176] R. Jagannathan. Coarse-grain dataflow programmiangrofentional parallel computers. In
Advanced Topics in Dataflow Computing and Multithreadirdjté=l by L. Bic, J-L. Gaudiot,
and G. Gao) IEEE Computer Society, April 1995.

[177] R. Jagannathan and C. Dodd. GLU programmer’s guid@. vDechnical report, Computer
Science Laboratory, SRI International, Menlo Park, Catifa, November 1994. CSL Tech-
nical Report CSL-94-06.

[178] R. Jagannathan and A.A. Faustini. The GLU programntamguage. Technical report,
Computer Science Laboratory, SRI International, MenlkP@alifornia, November 1990.
CSL Technical Report CSL-90-11.

[179] P.A. Janson. Using type extension to organize vintoainory mechanism&CM Operating
Systems Review5(4):6—38, October 1981.

[180] S. Jha, O. Sheyner, and J. Wing. Two formal analysestalagraphs. IfProceedings of
the 15th IEEE Computer Security Foundations Workslpages 49—64, Cape Breton, Nova
Scotia, Canada, June 2002. IEEE Computer Society Tech@aaimittee on Security and
Privacy.

[181] D.R. Johnson, F.F. Saydjari, and J.P. Van Tassel. M88&urity policy: A formal approach.
Technical report, NSA R2SPO-TR001-95, 18 August 1995.

[182] C. Jones. Providing a formal basis for dependabildgiions. Technical report, Department
of Computing Science, Dependable Interdisciplinary Rese&@ollaboration, University of
Newcastle upon Tyne, Newcastle, England, 2002. UNU/lISTiversary Colloquium.

[183] M.F. Kaashoek and A.S. Tanenbaum. Fault toleranaegugfoup communicationACM
SIGOPS Operating Systems Revi2®(2):71-74, April 1991.

[184] R. Kailar, V.D. Gligor, and L. Gong. On the securityeaffiveness of cryptographic proto-
cols. InProceedings of the 1994 Conference on Dependable Computirigyitical Appli-
cations pages 90-101, San Diego, California, January 1994.

[185] R.Y. Kain. Computer Architecture: Software and Hardwafrentice-Hall, 1988.

[186] R.Y. Kain and C.E. Landwehr. On access checking inlb#ipabased systems. IRroceed-
ings of the 1986 IEEE Symposium on Security and Privapyil 1986.

[187] P.A. Karger and H. Kurth. Increased information floneds for high-assurance composite
evaluations. IrProceedings of the Second International Information Agsoe Workshop
(IWIA 2004) pages 129-140, Charlotte, North Carolina, May 2004. IEBEWQuter Soci-
ety.

BIBLIOGRAPHY 195

[188] P.A. Karger and R.R. Schell. Multics security evaloat Vulnerability analysis. IrPro-
ceedings of the 18th Annual Computer Security Applicatiomsference (ACSAC), Classic
Papers sectionLas Vegas, Nevada, December 2002. Originally availablé.&s Air Force
report ESD-TR-74-193, Vol. Il, Hanscomb Air Force Base, Mahusetts.

[189] P.A. Karger and R.R. Schell. Thirty years later: Lesstrom the Multics security evalua-
tion. In Proceedings of the 18th Annual Computer Security AppbeatiConference (AC-
SAC), Classic Papers sectionas Vegas, Nevada, December 2002. http://www.acsac.org/

[190] M Kaufmann, J S. Moore, and P. Manolio€omputer-Aided Reasoning: An Approach
Kluwer Academic Publishing, Norwell, Massachusetts, 2000

[191] S. Keung and L. Gong. Enclaves in Java: APIs and Impigai®ns. Technical Report SRI-
CSL-96-07, SRI International, Computer Science Laboyat8B83 Ravenswood Avenue,
Menlo Park, California 94025, July 1996.

[192] P. Kocher. Cryptanalysis of Diffie-Hellman, RSA, DS&d other systems using timing
attacks (extended abstract). Technical report, Cryppdgrd&research Inc., 607 Market St,
San Francisco, California 94105, December 7 1995.

[193] P.C. Kocher. Timing attacks on implementations offiBiHellman, RSA, DSS, and other
systems. IrSpringer-Verlag, Berlin, Lecture Notes in Computer Scggavances in Cryp-
tology, Proceedings of Crypto '9pages 104—-113, Santa Barbara, California, August 1996.

[194] T. Kohno, A. Stubblefield, A.D. Rubin, and D.S. Walladhnalysis of an electronic voting
system. InProceedings of the 2004 Symposium on Security and Privaayes 27—40,
Oakland, California, May 2004. IEEE Computer Society.

[195] H. Kopetz. Composability in the time-triggered atelsture. InProceedings of the SAE
World Congresspages 1-8, Detroit, Michigan, 2000. SAE Press.

[196] M. Kuijper and J.W. Polderman. Reed-solomon list dieg from a system-theoretic per-
spective.lEEE Transactions on Information Theg#0(2):259-271, February 2004.

[197] L. Lamport. A simple approach to specifying concutigrogram systems&ommunications
of the ACM 32(1):32—45, January 1989.

[198] L. Lamport, R. Shostak, and M. Pease. The ByzantinegésproblemACM Transactions
on Programming Languages and Syste#(8):382-401, July 1982.

[199] B.W. Lampson. Software components: Only the giantsigae. In Computer Systems:
papers for Roger Needham, K. Spark-Jones and A. Herbeitbfsjipages 113-120. Mi-
crosoft Research, Cambridge, U.K., February 2003.

[200] B.W. Lampson and H. Sturgis. Reflections on an opegatystem designCommunications
of the ACM 19(5):251-265, May 1976.

196 BIBLIOGRAPHY

[201] C.E. Landwehr, A.R. Bull, J.P. McDermott, and W.S. €h& taxonomy of computer pro-
gram security flaws, with examples. Technical report, QefateSecure Information Tech-
nology, Information Technology Division, Naval Researdibbratory, Washington, D.C.,
November 1993.

[202] J.C. Laprie, editor Dependability: A Unifying Concept for Reliable ComputingdaFault
Tolerance Springer-Verlag, 1990.

[203] E.S. Lee, P.I.P. Boulton, B.W. Thompson, and R.E. $of@&mposable trusted systems.
Technical report, Computer Systems Research Institutejelsity of Toronto, Technical
Report CSRI-272, May 1992.

[204] E.S. Lee, P.I.P. Boulton, B.W. Thomson, and R.E. Sopeomposable trusted systems.
Technical report, Computer Systems Research Instituteeldsity of Toronto, Ontario, 31
May 1992. CSRI-272.

[205] K.N. Levitt, S. Crocker, and D. Craigen, editors. VERbkp lllI: Verification workshop.
ACM SIGSOFT Software Engineering Not#8(4):1-136, August 1985.

[206] C. Lindig and G. Snelting. Assessing modular struetaf legacy code based on math-
ematical concept analysis. Rroceedings of the International Conference on Software
Engineering pages 349-359, 1997.

[207] U. Lindgvist and P.A. Porras. Detecting computer amdwork misuse through the
Production-Based Expert System Toolset (P-BEST).Pioceedings of the 1999 Sympo-
sium on Security and Privac@akland, California, May 1999. IEEE Computer Society.

[208] U. Lindgvist and P.A. Porras. eXpert-BSM: A host-bdisatrusion-detection solution for
Sun Solaris. IProceedings of the 17th Annual Computer Security AppbeatiConference
(ACSAC 2001)New Orleans, Louisiana, 10—-14 December 2001.

[209] S.B. Lipner. Non-discretionary controls for commal@pplications. IrProceedings of the
1982 Symposium on Security and Privapgges 2—-10. IEEE, 1982. Oakland, California,
26—28 April 1982.

[210] S.B. Lipner. Security and source code access: Issugsealities. InProceedings of the
2000 Symposium on Security and Privaagiges 124-125, Oakland, California, May 2000.
IEEE Computer Society.

[211] P.E Livadas and T. Johnson. A new approach to findingaibjin programs.Software
Maintenance: Research and Practj&249-260, 1994.

[212] M. Lubaszewski and B. Courtois. A reliable fail-safestem. IEEE Transactions on Com-
puters C-47(2):236—241, February 1998.

[213] T.F. Lunt, R.R. Schell, W.R. Shockley, M. Heckman, &hdVarren. A near-term design for
the SeaView multilevel database systemPceedings of the 1988 Symposium on Security
and Privacy pages 234-244, Oakland, California, April 1988. IEEE CatepSociety.

BIBLIOGRAPHY 197

[214] T.F. Lunt and R.A. Whitehurst. The SeaView formal tepédl specifications and proofs.
Final report, Computer Science Laboratory, SRI IntermatioMenlo Park, California, Jan-
uary/February 1989. Volumes 3A and 3B of “Secure Distridudata Views,” SRI Project
1143.

[215] S. Mancoridis and R.C. Holt. Recovering the structifreoftware systems using tube graph
interconnection clustering. IRroceedings of the International Conference on Software
Maintenancepages 23-32, 1996.

[216] S. Mancoridis, B.S. Mitchell, Y. Chen, and E.R. Garrsngsing automatic clustering to
produce high-level system organization of source cod®réeedings of the International
Workshop on Program Comprehensigages 42-52, 1998.

[217] S. Mancoridis, B.S. Mitchell, Y. Chen, and E.R. Gansrigunch: A clustering tool for the
recovery and maintenance of software system structurésobkeedings of the International
Conference on Software Maintenanpages 50-59, 1999.

[218] A.P. Maneki. Algebraic properties of system composiin the Loral, Ulysses and McLean
trace models. IProceedings of the 8th IEEE Computer Security Foundatioosk$tiop
Kenmare, County Kerry, Ireland, June 1995.

[219] H. Mantel. Preserving information flow properties endefinement. IiProceedings of the
2001 Symposium on Security and Privapgges 78-91, Oakland, California, May 2001.
IEEE Computer Society.

[220] H. Mantel. On the composition of secure systemsPioceedings of the 2002 Symposium
on Security and Privagypages 88-101, Oakland, California, May 2002. IEEE Compute
Society.

[221] E.J. McCauley and P.J. Drongowski. KSOS: The desiga sécure operating system. In
National Computer Conferencpages 345-353. AFIPS Conference Proceedings, 1979. Vol.
48.

[222] D. McCullough. Specifications for multi-level sedyrand a hook-up property. lIAroceed-
ings of the 1987 Symposium on Security and Privpages 161-166, Oakland, California,
April 1987. IEEE Computer Society.

[223] D. McCullough. Noninterference and composabilityseturity properties. IRroceedings
of the 1988 Symposium on Security and Privgages 177-186, Oakland, California, April
1988. IEEE Computer Society.

[224] D. McCullough. Ulysses security properties modekmyironment: The theory of security.
Technical report, Odyssey Research Associates, Ithava,Ys&k, July 1988.

[225] D. McCullough. A hookup theorem for multilevel seayrilEEE Transactions on Software
Engineering 16(6), June 1990.

[226] P. McDaniel and A. Prakash. Methods and limitationseg€urity policy reconciliation.
In Proceedings of the 2002 Symposium on Security and Privaagyes 73-87, Oakland,
California, May 2002. IEEE Computer Society.

198 BIBLIOGRAPHY

[227] G. McGraw. Will openish source really improve secyRit In Proceedings of the 2000
Symposium on Security and Privapages 128-129, Oakland, California, May 2000. IEEE
Computer Society.

[228] G. McGraw. Software securityeEE Security and Privagy2(2):80-83, March-April 2004.

[229] M.K. McKusick, K. Bostic, M.J. Karels, and J.S. Quanen. The Design and Implemen-
tation of the 4.4 BSD Operating SysteAddison-Wesley, Reading, Massachusetts, 1996.

[230] J. McLean. A general theory of composition for traces éosed under selective interleaving
functions. InProceedings of the 1994 Symposium on Research in SecudtyPavacy,
pages 79-93, Oakland, California, May 1994. IEEE Compuberedy.

[231] P.M. Melliar-Smith and L.E. Moser. Surviving netwagplartitioning. Computer 31(3):62—
68, March 1998.

[232] P.M. Melliar-Smith and R.L. Schwartz. Formal spe@tfion and verification of SIFT: A
fault-tolerant flight control systemlEEE Transactions on Computer€-31(7):616—630,
July 1982.

[233] R. Mercuri. Electronic Vote Tabulation Checks and Balances PhD the-
sis, Department of Computer Science, University of Pemnasyd, 2001.
(http://www.notablesoftware.com/evote.html).

[234] R. Mercuri. A better ballot box: New electronic votisgstems pose risks as well as solu-
tions. IEEE Spectrumpages 46-50, October 2002.

[235] R. Mercuri and P.G. Neumann. Verification for electodpalloting systems. I&secure Elec-
tronic Voting, Advances in Information Security, Volumeiuwer Academic Publishers,
Boston, Massachusetts, 2002.

[236] S. Micali. Fair public-key cryptosystems. Mkdvances in Cryptology: Proceedings of
CRYPTO '92 (E.F. Brickell, editor)pages 512-517. Springer-Verlag, Berlin, LCNS 740,
1992.

[237] J. Millen and G. Denker. CAPSL and MuCAPSLJournal of Telecommunications and
Information Technology(4):16—27, 2002.

[238] J.K. Millen. Hookup security for synchronous machinén Proceedings of the IEEE Com-
puter Security Foundations Workshop Mplages 2—-10, Franconia, New Hampshire, June
1994. IEEE Computer Society.

[239] R. Milner, M. Tofte, R. Harper, and D. MacQueemhe Definition of Standard MLMIT
Press, Cambridge, Massachusetts, 1997.

[240] J.C. Mitchell and G.D. Plotkin. Abstract types havéseantial type.ACM Transactions on
Programming Languages and Systef3(3):470-502, July 1988.

[241] E.F. Moore. Gedanken experiments on sequential mashilnAutomata Studies, Annals
of Mathematical Studies, 34, Princeton University Pre€56L pages 129-153, 1956. C.E.
Shannon and J. McCarthy, editors.

BIBLIOGRAPHY 199

[242] E.F. Moore and C.E. Shannon. Reliable circuits usess Ireliable relaysJournal of the
Franklin Institute 262:191-208, 281-297, September, October 1956.

[243] J S. Moore. A mechanically verified language impleragoh. Journal of Automated Rea-
soning 5(4):461-492, December 1989.

[244] J S. Moore. System verificatiodournal of Automated Reasonirig4):409-410, December
1989.

[245] J S. Moore, editor. System verificatiodournal of Automated Reasoning(4):409-530,
December 1989. Includes five papers by Moore, W.R. BevieA.\Munt, Jr, and W.D.
Young.

[246] M. Moriconi. A designer/verifier's assistanfEEE Transactions on Software Engineering
SE-5(4):387-401, July 1979. ReprintedArtificial Intelligence and Software Engineering
edited by C. Rich and R. Waters, Morgan Kaufmann Publishecs,1986. Also reprinted in
Tutorial on Software Maintenancedited by G. Parikh and N. Zvegintzov, IEEE Computer
Society Press, 1983.

[247] L. Moser, P.M. Melliar-Smith, and R. Schwartz. Desigrification of SIFT. Contractor
Report 4097, NASA Langley Research Center, Hampton, VMag®eptember 1987.

[248] NASA Conference Publication 237 Reer Review of a Formal Verification/Design Proof
MethodologyJuly 1983.

[249] NCSC. Department of Defense Trusted Computer System Evaluatiteri@ (TCSEC)
National Computer Security Center, December 1985. DODBZESTD, Orange Book.

[250] G.C. NeculaCompiling with ProofsPhD thesis, Computer Science Department, Carnegie-
Mellon University, 1998.

[251] B.J. Nelson. Remote procedure call. Technical refitesearch Report CSL-79-9, XEROX
Palo Alto Research Center, 3333 Coyote Hill Road, Palo Aljfornia, May 1981.

[252] P.G. Neumann. Efficient error-limiting variable-tggh codes.IRE Transactions on Infor-
mation TheoryIT-8:292-304, July 1962.

[253] P.G. Neumann. On a class of efficient error-limiting&hle-length codedRE Transactions
on Information TheorylT-8:S260-266, September 1962.

[254] P.G. Neumann. Error-limiting coding using infornaatilossless sequential machinHsEE
Transactions on Information Theqryf-10:108-115, April 1964.

[255] P.G. Neumann. The role of motherhood in the pop art stesy programming. I#Pro-
ceedings of the ACM Second Symposium on Operating Systémgpks, Princeton, New
Jersey pages 13-18. ACM, October 1969.

[256] P.G. Neumann. System design for computer network<Cdmputer-Communication Net-
works (Chapter 2)pages 29-81. Prentice-Hall, 1971. N. Abramson and F.F.(Edibors).

200 BIBLIOGRAPHY

[257] P.G. Neumann. Rainbows and arrows: How the securitgr@a address computer misuse.
In Proceedings of the Thirteenth National Computer Securagf€ence pages 414-422,
Washington, D.C., 1-4 October 1990. NIST/NCSC.

[258] P.G. Neumann. Can systems be trustworthy with so#ivimplemented crypto? Technical
report, Final Report, Project 6402, SRI International, Mdpark, California, October 1994.
For Official Use Only, NOFORN.

[259] P.G. Neumann. Architectures and formal represematfor secure systems. Technical
report, Final Report, Project 6401, SRI International, Mdpark, California, October 1995.
CSL report 96-05.

[260] P.G. Neumann.Computer-Related RisksACM Press, New York, and Addison-Wesley,
Reading, Massachusetts, 1995.

[261] P.G. Neumann. Practical architectures for surviealyistems and networks. Technical re-
port, Final Report, Phase One, Project 1688, SRI Internatjdlenlo Park, California, Jan-
uary 1999.http://www.csl.sri.com/neumann/arl-one.html , also available
in .ps and .pdf form.

[262] P.G. Neumann. Certitude and rectitudePtceedings of the 2000 International Conference
on Requirements Engineeringage 153, Schaumberg, lllinois, June 2000. IEEE Computer
Society.

[263] P.G. Neumann. The potentials of open-box source codieveloping robust systems. In
Proceedings of the NATO Conference on Commercial Off-Tiedf-®roducts in Defence
Applications: The Ruthless Pursuit of CQB3ussels, Belgium, April 2000. NATO.

[264] P.G. Neumann. Practical architectures for survieahlstems and networks. Technical
report, Final Report, Phase Two, Project 1688, SRI Intewnat, Menlo Park, California,
June 2000. (http://www.csl.sri.com/neumann/survivghiitml).

[265] P.G. Neumann. Robust nonproprietary software. Hroceedings of the 2000
Symposium on Security and Privacypages 122-123, Oakland, California, May
2000. IEEE Computer Society. (http://www.csl.sri.com/mann/ieee00.ps and
http://www.csl.sri.com/neumann/ieee00.pdf).

[266] P.G. Neumann. Achieving principled assuredly trustiy composable systems and net-
works. InProceedings of the DARPA Information Survivability Coefexe and Exhibition,
DISCEXS3, volume,dages 182-187. DARPA and IEEE Computer Society, April 2003

[267] P.G. Neumann. lllustrative risks to the public in theewf computer systems and related
technology, index to RISKS cases. Technical report, Coerp8tience Laboratory, SRI
International, Menlo Park, California, 2004. The most reéoeersion is available online in
html form for browsing at http://www.csl.sri.com/neumdtianstrative.html, and also in .ps
and .pdf form for printing in @ much denser format.

[268] P.G. Neumann, R.S. Boyer, R.J. Feiertag, K.N. Lesit L. Robinson. A Provably Secure
Operating System: The system, its applications, and prodéshnical report, Computer

BIBLIOGRAPHY 201

Science Laboratory, SRI International, Menlo Park, Catifa, May 1980. 2nd edition,
Report CSL-116.

[269] P.G. Neumann and R.J. Feiertag. PSOS revisite®rdoeedings of the 19th Annual Com-
puter Security Applications Conference (ACSAC 2003),sitdRapers sectigrpages 208—
216, Las Vegas, Nevada, December 2003. IEEE Computer 8otitp://www.acsac.org/
and http://lwww.csl.sri.com/neumann/psos03.pdf.

[270] P.G. Neumann, J. Goldberg, K.N. Levitt, and J.H. WenslA study of fault-tolerant com-
puting. Final report for ARPA, AD 766 974, Stanford Reseahastitute, Menlo Park,
California, July 1973.

[271] P.G. Neumann and D.B. Parker. A summary of computenseisechniques. IRroceedings
of the Twelfth National Computer Security Confereruages 396—-407, Baltimore, Mary-
land, 10—13 October 1989. NIST/NCSC.

[272] P.G. Neumann and P.A. Porras. Experience with EMERA&[@ate. InProceedings of
the First USENIX Workshop on Intrusion Detection and Nekadonitoring pages 73-80,
Santa Clara, California, April 1999. USENIX. http://wwwslesri.com/neumann/det99.html.

[273] P.G. Neumann, N.E. Proctor, and T.F. Lunt. Prevensiecurity misuse in distributed sys-
tems. Technical report, Computer Science Laboratory, 8Rrhational, Menlo Park, Cal-
ifornia, June 1992. Issued as Rome Laboratory report RI9ZR52, Rome Laboratory
C3AB, Griffiss AFB NY 13441-5700. For Official Use Only.

[274] P.G. Neumann and T.R.N. Rao. Error correction codedyte-organized arithmetic pro-
cessorslEEE Transactions on ComputerG-24(3):226—232, March 1975.

[275] P.G. Neumann, editor. VERkshop I: Verification Worph ACM SIGSOFT Software
Engineering Notess(3):4—47, July 1980.

[276] P.G. Neumann, editor. VERkshop II: Verification Wdnke. ACM SIGSOFT Software
Engineering Notes(3):1-63, July 1981.

[277] E.I. Organick.The Multics System: An Examination of Its Struct\@éT Press, Cambridge,
Massachusetts, 1972.

[278] S. Owre and N. Shankar. Theory interpretations in PVRchnical Report SRI-CSL-
01-01, Computer Science Laboratory, SRI Internationalnl@ePark, CA, April 2001.
http://www.csl.sri.com/owre.

[279] W. Ozier. GASSP: Generally Accepted Systems SecuRtynciples. Tech-
nical report, International Information Security Foundat June 1997.
web.mit.edu/security/www/gasspl.html.

[280] J.M. Park, E.K.P. Chong, and H.J. Siegel. Efficienttioakt packet authentication using
signature amortization. IRroceedings of the 2002 Symposium on Security and Privacy
pages 227-240, Oakland, California, May 2002. IEEE Com&eiety.

202 BIBLIOGRAPHY

[281] D.L. Parnas. On the criteria to be used in decomposistems into modulesCommunica-
tions of the ACM15(12), December 1972.

[282] D.L. Parnas. Atechnique for software module spedificawith examplesCommunications
of the ACM 15(5), May 1972.

[283] D.L. Parnas. On a “buzzword”: Hierarchical structuhe Information Processing 74 (Pro-
ceedings of the IFIP Congress 1974plume Software, pages 336—339. North-Holland,
Amsterdam, 1974.

[284] D.L. Parnas. The influence of software structure orabdity. In Proceedings of the In-
ternational Conference on Reliable Softwapages 358—-362, April 1975. Reprinted with
improvements in R. YehCurrent Trends in Programming MethodologyRrentice-Hall,
1977,111-119.

[285] D.L. Parnas. On the design and development of progeamlies. IEEE Transactions on
Software EngineerindSE-2(1):1-9, March 1976.

[286] D.L. Parnas. Designing software for ease of extenammhcontractionlEEE Transactions
on Software EngineeringE-5(2):128-138, March 1979.

[287] D.L. Parnas. Mathematical descriptions and spetifinaf software. IrProceedings of the
IFIP World Congress 1994, Volumegages 354-359. IFIP, August 1994.

[288] D.L. Parnas. Software engineering: An unconsummatadiage.Communications of the
ACM, 40(9):128, September 199Aside Risksolumn.

[289] D.L. Parnas. Computer science and software engimgekiling for divorce?Communica-
tions of the ACM41(8), August 1998Inside Riskgolumn.

[290] D.L. Parnas, P.C. Clements, and D.M. Weiss. The madifacture of complex systems.
IEEE Transactions on Software Engineerji@E-11(3):259-266, March 1985.

[291] D.L. Parnas and G. Handzel. More on specification teghes for software modules. Tech-
nical report, Fachbereich Informatik, Technische Hoch&lDarmstadt, Research Report
BS 1 75/1, Germany, April 1975.

[292] D.L. Parnas, J. Madey, and M. Iglewski. Precise doauatéeon of well-structured programs.
IEEE Transactions on Software Engineerji2§(12):948-976, December 1994.

[293] D.L. Parnas and W.R. Price. The design of the virtuaimoey aspects of a virtual machine.
In Proceedings of the ACM SIGARCH-SIGOPS Workshop on Virtoahfliter Systems
ACM, March 1973.

[294] D.L. Parnas and W.R. Price. Design of a non-randomsacegtual memory machine. In
Proceedings of the International Workshop On Protectio®perating Systempages 177—
181, August 1974.

[295] D.L. Parnas and D.L. Siewiorek. Use of the conceptarisparency in the design of hierar-
chically structured system&ommunications of the ACM8(7):401-408, July 1975.

BIBLIOGRAPHY 203

[296] D.L. Parnas, A.J. van Schouwen, and S.P. Kwan. Evaluatf safety-critical software.
Communications of the ACN33(6):636—648, June 1990.

[297] D.L. Parnas and Y. Wang. Simulating the behaviour difiigare modules by trace rewriting
systemslEEE Transactions of Software Engineerjii§(10):750-759, October 1994.

[298] D.A. Patterson and J.L. HennessyComputer Organization and Design: The Hard-
ware/Software Interface, Second Editidiorgan Kaufmann, 1997.

[299] R. Perlman.Network Layer Protocols with Byzantine Robustnd3sD thesis, MIT, Cam-
bridge, Massachusetts, 1988.

[300] H. Petersen and M. Michels. On signature schemes Wwitshold verification detecting
malicious verifiers. IrSpringer-Verlag, Berlin, Lecture Notes in Computer ScggI8ecurity
Protocols, Proceedings of 5th International Workshppges 67-77, Paris, France, April
1997.

[301] L. Peterson and D. Clark. The Internet: An experimérat tescaped from the lab. In
Computer Science: Reflections on the Field, Reflections finent-ield pages 129-133.
National Research Council, National Academy Press, 50 R¥e., Washington, D.C.
20001, 2004.

[302] W.W. Peterson and E.J. Weldon,Brror-Correcting Codes, 2nd edIT Press, Cambridge,
Massachusetts, 1972.

[303] C.P. PfleegerSecurity in ComputingPrentice-Hall, Englewood Cliffs, New Jersey, 1989.

[304] P.A. Porras and P.G. Neumann. EMERALD: Event MonitgrEnabling Responses to
Anomalous Live Disturbances. Proceedings of the Nineteenth National Computer Secu-
rity Conferencepages 353-365, Baltimore, Maryland, 22-25 October 1993TENCSC.

[305] P.A. Porras, K. Nitz, U. Lindqvist, M. Fong, and P.G.uxeann. Discerning attacker intent.
Technical report, Computer Science Laboratory, SRI latgonal, Project 10779, Menlo
Park, California, April 2003.

[306] P.A. Porras and A. Valdes. Live traffic analysis of TIPRgateways. IfProceedings of the
Symposium on Network and Distributed System Seclmigrnet Society, March 1998.

[307] N.E. Proctor. The restricted access processor: Amei@of formal verification. IrPro-
ceedings of the 1985 Symposium on Security and Prjyages 49-55, Oakland, California,
April 1985. IEEE Computer Society.

[308] N.E. Proctor and P.G. Neumann. Architectural imglmas of covert channels. IRro-
ceedings of the Fifteenth National Computer Security Genfie pages 28-43, Baltimore,
Maryland, 13—-16 October 1992. (http://www.csl.sri.coedmann/ncs92.html).

[309] B. Randell, J.-C. Laprie, H. Kopetz, and B. Littlewqaatlitors. Predictably Dependable
Computing System8asic Research Series. Springer-Verlag, Berlin, 1995.

[310] T.R.N. Rao.Error-Control Coding for Computer Systenf@rentice-Hall, Englewood Cliffs,
New Jersey, 1989.

204 BIBLIOGRAPHY

[311] V. Ratan, K. Partridge, J. Reese, and N. Leveson. Yafedlysis tools for requirements
specification. INProceedings of the Eleventh Annual Conference on Computairance,
COMPASS '96pages 149-160. IEEE Computer Society, 1996.

[312] M. Raynal. A case study of agreement problems in distad systems: Non-blocking
atomic commitment. IrProceedings of the 1997 High-Assurance Systems Engimgeerin
Workshoppages 209-214, Washington, D.C., August 1997. IEEE Coen@dciety.

[313] M. Reiter and K. Birman. How to securely replicate seeg. ACM Transactions on Pro-
gramming Languages and Systet(3):986—-1009, May 1994.

[314] J.H. Reppy. Concurrent Programming in ML Cambridge University Press, Cambridge,
U.K., 1999.

[315] R. Rivest and B. Lampson. SDSI — a simple distributezligty infrastructure. Techni-
cal report, MIT Laboratory for Computer Science, 2000. \@<2.0 is available online
(http://theory.lcs.mit.edu/"cis/sdsi.html) along witther documentation and source code.

[316] L. Robinson and K.N. Levitt. Proof techniques for faierhically structured program€om-
munications of the ACM20(4):271-283, April 1977.

[317] L. Robinson, K.N. Levitt, P.G. Neumann, and A.R. SaxeA formal methodology for the
design of operating system software. Rn Yeh (editors), Current Trends in Programming
Methodology I, Prentice-Hall, 61-11Q2977.

[318] L. Robinson, K.N. Levitt, and B.A. SilverbergTlhe HDM Handbook Computer Science
Laboratory, SRI International, Menlo Park, Californiandu979. Three Volumes.

[319] A.W. Roscoe and L. Wulf. Composing and decomposingesygs under security proper-
ties. InProceedings of the 8th IEEE Computer Security Foundatiomk$tiop Kenmare,
County Kerry, Ireland, June 1995.

[320] E. Rosen. Vulnerabilities of network control prott&cACM SIGSOFT Software Engineer-
ing Notes 6(1):6—8, January 1981.

[321] J. Rushby. Partitioning for avionics architectur&equirements, mechanisms, and assur-
ance. Technical report, NASA Langley Research Center, 1988. Contractor Report
CR-1999-209347; also issued as FAA DOT/FAA/AR-99/58.

[322] J. Rushby. Modular certification. Technical reporgnputer Science Laboratory, SRI
International, Menlo Park, California, June 2002.

[323] J.M. Rushby. A trusted computing base for embeddetesys InProceedings of the
Seventh DoD/NBS Computer Security Initiative Conferepages 294-311, Gaithersburg,
Maryland, September 1984.

[324] J.M. Rushby. Kernels for safety? In T. Anderson, edifafe and Secure Computing
Systemschapter 13, pages 210-220. Blackwell Scientific Pubbcesti 1989. Proceedings
of a Symposium held in Glasgow, October 1986.

BIBLIOGRAPHY 205

[325] J.M. Rushby. Composing trustworthy systems. Tecdnigport, Computer Science Labo-
ratory, SRI International, Menlo Park, California, July919

[326] J.M. Rushby. Formal methods and their role in digitedtems validation for airborne sys-
tems. Technical report, SRI International, Menlo ParkjfGalia, CSL-95-01, March 1995.

[327] J.M. Rushby and B. Randell. A distributed secure systiEEE Computer16(7):55-67,
July 1983.

[328] J.M. Rushby and B. Randell. A distributed secure systBechnical Report 182, Computing
Laboratory, University of Newcastle upon Tyne, May 1983.

[329] J.M. Rushby and B. Randell. A distributed secure sysfextended abstract). IRro-
ceedings of the 1983 IEEE Symposium on Security and Priyages 127-135, Oakland,
California, April 1983. IEEE Computer Society.

[330] J.M. Rushby and D.W.J. Stringer-Calvert. A less eletag tutorial for the PVS specifi-
cation and verification system. Technical report, SRI iméipnal, Menlo Park, California,
CSL-95-10, October 1995.

[331] J.M. Rushby and F. von Henke. Formal verification of itmeractive convergence clock
synchronization algorithm using EHDM. Technical Report-&$L-89-3, Computer Sci-
ence Laboratory, SRI International, Menlo Park, Califartebruary 1989. Also available
as NASA Contractor Report 4239.

[332] T.T. Russell and M. Schaefer. Toward a high B level ségwarchitecture for the IBM
ES/3090 processor resource/systems manager (PR/SNPyoteedings of the Twelfth Na-
tional Computer Security Conferengeges 184-196, Baltimore, Maryland, 10-13 October
1989. NIST/NCSC.

[333] J.H. Saltzer. Protection and the control of inforraatsharing in Multics Communications
of the ACM 17(7):388-402, July 1974.

[334] J.H. Saltzer and M.D. Schroeder. The protection afdrimfation in computer systempBro-
ceedings of the IEEE3(9):1278-1308, September 1975. (http://www.multisiarg).

[335] O.S. Saydjari, J.M. Beckman, and J.R. Leaman. LOCKmgputers securely. [h0th Na-
tional Computer Security Conference, Baltimore, Marylgmages 129-141, 21-24 Septem-
ber 1987. Reprinted in Rein Turn, editéwdvances in Computer System Secuigl. 3,
Artech House, Dedham, Massachusetts, 1988.

[336] W.L. Schiller. The design and specification of a seguernel for the PDP-11/45. Technical
Report MTR-2934, Mitre Corporation, Bedford, Massachisséflarch 1975.

[337] F.B. Schneider. Understanding protocols for Byzamitlock synchronization. Technical
Report 87-859, Department of Computer Science, Cornel&isity, Ithaca, New York,
August 1987.

206 BIBLIOGRAPHY

[338] F.B. Schneider. Open source in security: Visiting iiwarre. InProceedings of the 2000
Symposium on Security and Privapages 126-127, Oakland, California, May 2000. IEEE
Computer Society.

[339] F.B. Schneider, editor. Research to support robuseicgefense. Technical report, Study
Committee for J. Lala, DARPA, May 2000. Slides only.

[340] B. SchneierApplied Cryptography: Protocols, Algorithms, and Souraa€ in C: Second
Edition. John Wiley and Sons, New York, 1996.

[341] B. SchneierSecrets and Lies: Digital Security in a Networked Woddhn Wiley and Sons,
New York, 2000.

[342] B. Schneier and D. BanisaiThe Electronic Privacy PapersJohn Wiley and Sons, New
York, 1997.

[343] M.D. Schroeder. Cooperation of mutually suspiciaussystems in a computer utility. Tech-
nical report, Ph.D. Thesis, M.I.T., Cambridge, Massactisis8eptember 1972.

[344] M.D. Schroeder, D.D. Clark, and J.H. Saltzer. The hslkernel design project. IRro-
ceedings of the Sixth Symposium on Operating System Hegdjovember 1977. ACM
Operating Systems Review 11(5).

[345] M.D. Schroeder and J.H. Saltzer. A hardware architedior implementing protection rings.
Communications of the ACM5(3), March 1972.

[346] R.W. Schwanke. An intelligent tool for re-enginegrisoftware modularity. IProceedings
of the International Conference On Software Engineerpages 83-92, 1991.

[347] Secure Computing Technology Center. LOCK formal el specification, volumes 1-6.
Technical report, SCTC, 1988.

[348] Secure Computing Technology Center. LOCK softwargpBeification, vol. 2. Technical
report, SCTC, 1988.

[349] A. Shamir and E. Tromer. Acoustic cryptanalysis: Omsypeople and noisy machines.
preliminary proof-of-concept presentatic2004.

[350] D. Shands, E. Wu, J. Horning, and S. Weeks. Spice: Cardimpna synthesis for policies
enforcement. Technical report, MacAfee Research TechRieport 04-018, June 2004.

[351] J.S. Shapiro and N. Hardy. EROS: a principle-drivearaping system from the ground up.
IEEE Software19(1):26—33, January/February 2002.

[352] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J.MgWikutomated generation and
analysis of attack graphs. FProceedings of the 2003 Symposium on Security and Prjvacy
pages 273-284, Oakland, California, May 2003. IEEE Comyieiety.

[353] M. Siff and T. Reps. Identifying modules via concepabsis. IEEE Transactions on
Software EngineeringSE-25(6):749-768, 1999.

BIBLIOGRAPHY 207

[354] N.J.A. Sloane and F.J. MacWilliam&dhe Theory of Error-Correcting Codes, 9th reprint
North-Holland, 1998.

[355] M.A. Smith. Portals: Toward an application framewdok interoperability. Communica-
tions of the ACM47(10):93-97, October 2004.

[356] G. Snelting. Reengineering of configurations basechathematical concept analysiEEE
Transactions on Software Engineering and Methodal&¢®):146—189, 1996.

[357] G. Snelting and F. Tip. Reengineering class hierashsing concept analysis. Rioceed-
ings of the International Symposium on Foundations of Swé\Wngineering1998.

[358] G. Snider and J. Hays. The modix kernel 1889 Winter USENIX Conference Proceedings
pages 377-392, San Diego, California, February 1989.

[359] I. Sommerville. Software Engineering Addison-Wesley, Reading, Massachusetts, 2001.
Sixth Edition.

[360] D. Song, D. Zuckerman, and J.D. Tygar. Expander grdphsligital stream authentica-
tion and robust overlay networks. Rroceedings of the 2002 Symposium on Security and
Privacy, pages 258-270, Oakland, California, May 2002. IEEE Coepfibciety.

[361] SRI-CSL.HDM Verification Environment Enhancements, Interim Repartanguage Def-
inition. Computer Science Laboratory, SRI International, MenldkR@alifornia, 1983. SRI
Project No. 5727, Contract No. MDA904-83-C-0461.

[362] J. Staddon, S. Miner, M. Franklin, D. Balfanz, M. Malkiand D. Dean. Self-healing key
distribution with revocation. IfProceedings of the 2002 Symposium on Security and Pri-
vacy, pages 241-257, Oakland, California, May 2002. IEEE Compfbibciety.

[363] D.I. Sutherland. A model of information flow. Froceedings of the Ninth National Com-
puter Security Conferencpages 175-183, September 1986.

[364] K.L. Thompson. Reflections on trusting tru€ommunications of the ACN7(8):761-763,
August 1984.

[365] M. Tinto. The design and evaluation of INFOSEC systeifife&e computer security contri-
bution to the composition discussion. Technical reportjdfal Computer Security Center,
June 1992. C Technical Report 32-92.

[366] P. Tonella. Concept analysis for module restrucgridlEEE Transactions on Software
Engineering SE-27(4):351-363, 2001.

[367] I.L. Traiger, J. Gray, C.A. Galtieri, and B.G. Lindsayfransactions and consistency in
distributed database systemsCM TODS 7(3):323—-342, September 1982.

[368] Unspecified. Composability constraints of multilesyestems. Technical report, Integrated
Computer Systems, Inc., 215 South Rutgers Ave., Oak Ridg&dssee, June 1994.

208 BIBLIOGRAPHY

[369] USGAO. Defense acquisitions: Knowledge of softwarp@iers needed to manage risks.
Technical report, U.S. General Accounting Office, GAO-048,0Washington, D.C., May
2004.

[370] J. von Neumann. Probabilistic logics and the synthetreliable organisms from unreli-
able components. I1Automata Studiepages 43—-98, Princeton University, Princeton, New
Jersey, 1956.

[371] D. WagnerStatic Analysis and Computer Security: New Techniquesditw&re Assurance
PhD thesis, Division of Computer Science, University ofifdahia, Berkeley, December
2000. (http://www.cs.berkeley.edu/"daw).

[372] W.H. Ware. A retrospective of the criteria movement. Proceedings of the Eighteenth
National Information Systems Security Conferemages 582-588, Baltimore, Maryland,
10-13 October 1995. NIST/NCSC.

[373] P. Wayner.Translucent Database$lyzone Press, Baltimore, Maryland, 2002.

[374] S. Weeks. Understanding trust management systemBrolreedings of the 2001 Sympo-
sium on Security and Privacyakland, California, May 2001. IEEE Computer Society.
(http://www.star-lab.com/tr/star-tr-01-02.html).

[375] L. Weinstein. The devil you knowCommunications of the ACM6(12):144, December
2003.

[376] L. Weinstein. TRIPOLI: An Empowered E-Mail Environmte Technical report, People for
Internet Responsibility, January 2004.

[377] J.H. Wensley et al. SIFT design and analysis of a fenlirant computer for aircraft control.
Proceedings of the IEEE6(10):1240-1255, October 1978.

[378] J.H. Wensley et al. Design study of software-impletedrfault-tolerance (SIFT) com-
puter. NASA contractor report 3011, Computer Science Latooy, SRI International,
Menlo Park, California, June 1982.

[379] D.A. Wheeler.Secure Programming for Linux and Unix HOWT2003.

[380] D.A. Wheeler. Secure programmer: Minimizing prigés; taking the fangs out of bugs.
May 2004.

[381] I. White. Wrapping the COTS dilemma. Rroceedings of the NATO Conference on Com-
mercial Off-The-Shelf Products in Defence Applicationte Ruthless Pursuit of COTS
Brussels, Belgium, April 2000. NATO.

[382] G.R. Wright and W.R. Stevend.CP/IP lllustrated, Volume .2Addison-Wesley, Reading,
Massachusetts, 1995.

[383] W. Wulf and M. Shaw. Global variable considered harm&IGPLAN Notices3(2):28-34,
February 1973.

BIBLIOGRAPHY 209

[384] A. Yeh, D. Harris, and H. Reubenstein. Recoveringragstata types and object instances
from a conventional procedural language. Aroceedings of the Working Conference on
Reverse Engineeringages 227-236, 1995.

[385] W.D. Young. A mechanically verified code generatdournal of Automated Reasoning
5(4):493-518, December 1989.

[386] W.D. Young, W.E. Boebert, and R.Y. Kain. Proving a camtgy system secureScien-
tific Honeywelley 6(2):18-27, July 1985. Reprinted in Tutorial: Computed &tetwork
Security, M.D. Abrams and H.J. Podell, editors, IEEE Corep@&ociety Press, 1987, pp.
142-157.

[387] C.-F. Yu and V.D. Gligor. A formal specification and iferation method for the preven-
tion of denial of service. IfProceedings of the 1988 Symposium on Security and Privacy
pages 187-202, Oakland, California, April 1988. IEEE Cotap&ociety. Also inEEE
Transactions on Software Engineerirf@k-16, 12, June 1990, 581-592).

[388] A. Zakinthinos and E.S. Lee. The composability of noterference. IrProceedings of the
8th IEEE Computer Security Foundations Workshé@nmare, County Kerry, Ireland, June
1995.

[389] A. Zakinthinos and E.S. Lee. Composing secure systhatdhave emergent properties. In
Proceedings of the 11th IEEE Computer Security Foundatidlosgkshop pages 117-122,
Rockport, Massachusetts, June 1998.

[390] P.R. ZimmermannThe Official PGP User’'s GuideMIT Press, Cambridge, Massachusetts,
1995.

[391] L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. VOC: a skation validator for optimizing
compilers. InElectronic Notes in Theoretical Computer Scier2@02. Preliminary version
at www.cs.nyu.edu/"zuck/pubs/, final version at www.eksesi/locate/entcs.

Index

Abstraction, 14, 25, 26
excessive, 28
refinement, 34
TCP/NP, 27
Accountability, 16
Administration, 139, 145
controllability, 16
operational assurance, 128
system, 106
Airgaps, 65
Anderson, Ross, 5
exploitations of vulnerabilities, 13
Arbaugh, William, 48
Architecture, 45677
assurance, 57
autonomous, 142
centralized, 63
composable, 4, 56
conceptual approach, 60
decentralized, 63
enlightened, 70, 116, 138
heterogeneous, 63, 70, 138
homogeneous, 63
network-centric, 66
network-oriented, 6
openness paradigms, 73
practical considerations, 120
principled, 40, 57, 59
examples, 71
stark subsetting, 34, 60-62, 122
trustworthy, 57
TS&CI, 65, 66, 138, 142, 143
ARPANET
1980 collapse, 8, 32, 110
Ashcraft-Engler
static analysis, 108

Assurance, 299-113

analytic tools for, 149

code inspection, 105

composability analysis, 101

composability of, 30

correctness versus consistency, 102

debugging, 105

dependency analysis, 101

dynamic analysis, 109

enhancement, 43

in architecture, 105

in design, 106

in development, 106

in implementation, 108

in interfaces, 111

methodologies, 103

metrics for, 109

operational, 106, 128

Pervasively Integrated (PIA), 100, 101,
104, 105, 112, 137, 149

preserved by transformations, 103

principles for, 25, 104

red-teaming, 105

requirements, 104

risk mitigation, 109

role of development tools, 104

software engineering, 105

static analysis, 108, 153

testing, 105

voting systems, 111

vulnerability detection, 102

vulnerability elimination, 102

AT&T

1990 long-distance collapse, 8, 32, 110

Attacks

“man-in-the-middle”, 32, 66, 68

INDEX 211

denial-of-service, 68 fault injection, 41
prevention, 67 Bootload
prevention of, 67 trustworthy, 48, 68
traceback, 69 Burnham, Blaine, 152
spoofing, 68 Byzantine
Authentication agreement, 62
Byzantine, 46 authentication protocols, 46
cryptographic, 45, 68 digital signature, 46
in subnetworks, 67 fault tolerance, 44
inadequacy of fixed passwords, 68 faults, 44
message, 68 key escrow, 46
multicast, 46 protocols, 44
need for authorization, 18
nonbypassab|e, 16 Capabilities, 16, 64
nonspoofable, 23 and perspicuity, 93
servers, 66 modeling, 107
vulnerabilities, 23 PSOS, 46
Authorization, 16 Certification, 129
fine-grained, 68 composability, 38
need for authentication, 18 Chaum, David, 47
vulnerabilities, 23 Chen, Hao, 152, 153
Autonomous operation, 58, 123, 139, 142, 145 MOPS, 24, 108
interface design, 125 Chess, Brian
risks in administration, 140 static analysis, 108
risks of failure, 58 Cicero, 148, 150
Availability Clark—Wilson integrity model, 61
assurance, 110 Clarke, Arthur, 136
multilevel, 64 Clean-Room development, 21, 22
risks, 8, 110 CLInc stack, 103
Cohen, Fred, 152
Badger, Lee, 79 Commitment
Ballmer, Steve, 35 nonblocking, 45
Baran, Paul, 44 two-phase, 45
Bell and LaPadula Common Criteria, 21
multilevel security, 52 assurance, 120
Bell, Gordon, 54, 152 composite evaluation, 104
Bernstein, Peter L., 149 Communications
Biba, Ken optical, 57
multilevel integrity (MLI), 39, 52 wireless, 57
Bishop, Matt, 5, 11 Compatibility, 3, 33, 36
Blade computers, 70 among requirements, 32
Boebert, W.E., 100 among policies, 32
on buffer overflows, 122 in heterogeneous systems, 32

Boneh, Dan of legacy software, 49

212 INDEX

structural, 31 by adversaries, 59
Compilers Byzantine avoidance, 51

correctness of, 53 emergency, 137

dynamic checking, 48 from below, 13, 15, 53, 61

object-oriented, 48 from outside, 13, 15, 53, 61

research directions, 139 from within, 13, 15, 53, 61

risks of optimization, 40 malicious, 13

role in security, 40 of compositions, 31

static analysis, 48 of MLS, 42

static checking, 48 of security, 137

subversion of by Trojan horse, 53 of trustworthiness enhancement, 50
Complexity total, 61

and simplicity, 27 Concurrency Workbench, 145

Einstein quote, 6, 26 Configuration control, 128

interfaces masking ..., 27 analysis of changes, 144

managing ..., 26 assurance, 111

O.W. Holmes quote, 119 discipline, 25
Composability, 330-55 of networks, 23

analysis, 101 Consistency

and stark subsetting, 68 of code, 102

approaches, 35 of hardware, 102

decomposition, 33 of interface specs, 36

future challenges, 54 of software, 102

horizontal, 43, 103, 137 of specifications, 102

independence, 36 Contains relation, 163

information hiding, 37 Control

interoperability, viii centralized, 63

noncomposability, 32 decentralized, 63

obstacles to, 31-33 Copyleft, 74

of assurance measures, 30 Corbato, Fernando, 152

of certification, 38 Turing lecture, 71

of evaluations, 30 Correctness

of policies, 38 ...-preserving transformations, 40

of proofs, 38 deprecated, 102

of protocols, 39 Covert channels

predictable, viii, 41 avoidance, 65

reasoning about, 101, 127, 143, 149 storage, 10

seamless, 31 timing, 10

statelessness, 37 Cowan, Crispin

vertical, 43, 103, 137 StackGuard, 108
Composable High-Assurance Trustworthy Sys- Crnkovic, lvica, 41

tems (CHATS), vii Cross-domain mechanisms, 48

Compromise Cryptography

accidental, 13 attacks, 118

INDEX

embedding, 142

fair public-key, 46

for authentication, 45

for integrity, 45

for secrecy, 45

multikey, 138

secret-sharing, 46

threshold, 46

trustworthy embeddings, 139
CTCPEC, 21

Dean, Drew, vii, 152, 153
MOPS, 24, 108
Debuggability, 13
Decomposability, 68
Decomposition
Dijkstra, 34
horizontal, 34
Parnas, 34
temporal, 34
vertical, 34
Denials of service, 70
prevention, 67
in distributed systems, 70
role of hierarchy, 71
remediation, 70
self-induced, 53, 69
Dependability, 2
Dependence
generalized, 39
guarded, 39, 42, 43
Parnas, 34
Dependencies
among principles, 18
among specifications, 36
analysis, 101
analysis of, 39, 43
causing vulnerabilities, 24
constrained, 15, 39
explicit, 43
interlayer ... in LOCK, 40
interlayer ... in PSOS, 40
on less trustworthiness, 32
order, 24

213

reduced ... on trustworthiness, 46
timing, 24, 33
Detection
of anomalies, 128
of misuse, 128
Development
discipline, 7, 13
of trustworthy systems, 4
principles, 7
Development methodology
Clean-Room, 22
HDM, 106
USDP, 115
XP, 21
Differential power analysis, 41, 118
Digital Distributed System Security Architec-
ture (DDSA), 142
Dijkstra, Edsger W., 34, 71, 119
Discipline of programming, 119
THE system, 39, 45, 64, 71
Dinolt, George, 152
Discipline
in development, 7, 25
in methodology, 22
in Multics, 13
in XP, 21
lack of, 28
needed for open-box software, 75
of composition, 42
Distributed systems
composable trustworthiness, 139
denials of service, 70
distributed protection, 15
distributed trustworthiness, 66
Lamport’s definition, 3, 92
MLS in, 46
network oriented, 6
networked trustworthiness, 142
parameterizable, 149
reduced need for trustworthiness, 6, 14,
46, 47
risks of weak links, 47
trustworthiness, 57, 63
Diversity

214

in heterogeneous systems, 63
of design, 40

DMCA, 76

Domains
enforcement, 48
for constraining software, 70
Multics, 71
separation, 16, 71

Eiffel, 38
Einstein, Albert
science, 136
simplicity, 6, 26, 119
Electronic Switching Systems (ESSs), 58
EMERALD, 49, 72
integration of static checking, 158
Emergent properties, 2, 32, 38, 43, 84, 127
reasoning about, 143
Empowered E-Mail Environment (Tripoli), 118
Encapsulation, 14, 25, 26
vulnerabilities, 24
Enclaves, 52
Enlightened Architecture Concept, 70, 116,
138
needed for the GIG, 142
Error
correction, 43
for human errors, 138
Guruswami-Sudan, 44
Kuijper-Polderman, 44
Reed-Solomon, 44
detection, 44
for human errors, 138
Euclid, 139
Evaluations
composability of, 30
continuity despite changes, 30
Evolvability
of architectures, 120
of implementations, 120
of requirements, 120
Exokernel Operating System, 72
Extreme Programming, 21

Fault

INDEX

forecasting, 3
injection, 41
prevention, 2
removal, 2
tolerance, 2, 43
hierarchical, 43
literature, 43
Finalization
vulnerabilities, 23
Firewalls, 48, 118
Flaws
design, 22
implementation, 22
Formal
analysis, 99
of changes, 103
basis of languages, 105
basis of static checking, 108
basis of tools, 105
development, 104
mappings, 39, 52, 106
methods, 41, 102, 103, 106
for hardware, 102
potential benefits, 112
operational practice, 128
proofs, 39, 108
real-time analysis, 109
requirements, 100
specifications, 100, 106
for JVM, 48
in HDM, 39, 52
Parnas, 34
static analysis, 153
test-case generation, 109
testing, 108

Gasser, Morrie, 5
GASSP, 20, 137
Generalized
dependence, 39
Generally Accepted Systems Security Princi-
ples (GASSP), 20
Gibson, Tim, vii
GIG

INDEX 215

see Global Information Grid, 116 of SIFT layers, 71
Gilb, Tom of trustworthiness, 63
Project Management Rules, 22 Holmes, Oliver Wendell, 119
Glaser, Edward L. Horning, Jim, 152
modularity, 31 decomposition, 33
principles, 13 evolvability and requirements, 120
Gligor, Virgil, vii, 152 last gassp, 20
composability, 38 object orientation, 15
system modularity, 79459-175 partial specifications, 25
Global Information Grid (GIG), 151 patching, 125
assurance, 135 policy composition, 38
development, 142 simplicity, 22
vision, 116 HP
GLU, 25, 40 blade computers, 70
GNU system with Linux, 74
Goguen—Meseguer, 38 IBM
Gong, Li blade computers, 70
enclaves, 52 Enterprise Workload Manager, 58
GOVNET, 67 ICS: Integrated Canonizer and Solver, 107
Guarded lllustrative Risks, 8
dependence, 39, 43 Implementation
Guards, 48, 62 analysis of, 143
trusted, 118 practical considerations, 122
Guruswami-Sudan decoding, 44 Initialization
vulnerabilities, 23
Hamming, Richard, 43 Integrity
Handheld devices checks for, 45
constrained, 66 multilevel, 64
unconstrained, 66 Biba, 52
Hardware Intel
research directions, 139 LaGrande, 70
Hennessy, John L., 58 Interfaces
Hierarchical Development Methodology (HDM), assurance, 111
39, 40, 72, 106 constrained, 65
hierarchical abstractions, 107 human, 7, 8
Hierarchy assurance, 109
for correlation in misuse detection, 72 risks, 109
HDM mapping functions, 39, 52 incompatibility, 32
of abstractions, 27 perspicuous/8-98 125, 149
of directories, 71 risks, 81
of locking protocols, 39, 45, 64, 71 RISSC architectures, 66
of policies, 64 Interoperability, viii, 3, 33, 36
of PSOS layers, 27,63, 71 cross-language, 90

of SeaView, 65 impairments, 31

216

in composability, 31
of tools, 143
IP Version 6 (IPv6), 140
IPSEC, 140
ITS4, 108
ITSEC, 21

James, William
exceptions, ix
Java, 139
... Virtual Machine (JVM), 139
Jones, CIiff, 152
Juvenal, 56, 150

Kain, R.Y., 100
on architecture, 122
Kaner, Cem, 35
Karger, Paul A.
composite evaluation intercommunication,
104
Multics security evaluation, 71
Karpinski, Richard, 22
Kernel
MLS, 46
operating system ..., 16
separation, 65, 72, 142
Kocher, Paul, 41
Kurth, Helmut
composite evaluation intercommunication,
104

LaGrande, 70

Lala, Jay, 147

Lamport, Leslie
distributed systems, 3
liveness, 36
safety, 36

Lampson, Butler
capability systems, 64
cryptography, 117
reusability of components, 86
willpower, 10, 152

Larsson, Magnus, 41

Lazarus virus, 58

Least privilege, 10

INDEX

David Wheeler, 23
Legacy software
incompatibility, 35, 49, 151
Lego modularity, 35
Liveness (Lamport), 36
Locking
hierarchical, 45
LOgical Coprocessor Kernel (LOCK), 40, 70,
139
Longhorn, 70
Lynch, Nancy
protocol composability, 39

Maintainance
risks, 9
Maintenance, 139, 145
Mantel, Heiko, 38
Mapping
between layers, 39, 52, 106, 141
Maughan, Douglas, vii, 152
Medical
assurance, 109
risks, 8, 109
Mencken, H.L., 26
Mercuri, Rebecca, 47
Methodology
for development
Clean-Room, 22
HDM, 106
USDP, 115
XP, 21
Metrics, 109
Microsoft
Longhorn, 70
Mills, Harlan
Clean-Room, 21, 22
MILS
see multiple independent levels of secu-
rity, 65
MISSI
security policy, 142
Misuse
real-time detection, 49, 69
Mitchell, John, 39

INDEX

Miya, Eugene, 152
ML, 38, 139
MLA: see multilevel availability, 64
MLI: see multilevel integrity, 64
MLS: see multilevel security, 64
MLX: see multilevel survivability, 64
Modula 3, 139
Modularity, 13, 14, 25, 28, 34
and interoperability, 143
and stark subsetting, 62
as in Lego piecesa, 35
Cem Kaner quote, 35
compiler enforced, 40
excessive, 28
facilitates evaluation, 143
of requirements, 143
of tools, 143
programming-language driven, 40
Steve Ballmer quote, 35
system159-175
Ted Glaser quote, 31
with abstraction and encapsulation, 14, 25,
26, 40
Monitoring
real-time, 69
Monotonicity
compositional
stronger, 42
weak, 42
cumulative-trustworthiness, 42
nondecreasing-trustworthiness, 42
Moore, Edward F., 44
MOPS,153-156
recent results, 157
MSL
see multiple single-level security, 65
Multics, 72
architecture, 71
avoiding stack buffer overflows, 122
development, 13, 117
directory hierarchy, 71
discipline, 13
domains, 71
dynamic linking, 71

217

interfaces, 87
multilevel security retrofit, 64, 71
principles, 10, 13
ring structure, 16, 63
security evaluation, 71
virtual input-output, 25
virtual memory, 25, 71
virtual multiprogramming, 25
Multilevel availability, 64
Multilevel integrity, 64
policy, 64
Multilevel security, 64
and perspicuity, 93
Distributed Secure System (DSS), 65
noncompromisibility from above, 64
policy, 64
Proctor—-Neumann, 65
TS&CI architectures, 66, 70, 138, 142
Multilevel survivability, 64
Multiple
independent levels of security (MILS), 65
single-level security (MSL), 65
Multiprocessing
network-centric, 36, 40
virtual, 40
Mutual suspicion, 19, 48

Naming
vulnerabilities, 24
Navy Marine Corp Intranet (NMCI), 67
Needham, Roger
cryptography, 117
NetTop, 65
Network-centric
architecture, 66
Networks
alternative routing, 45
as backplanes, 66
authentication, 23
Byzantine protocols, 44
configuration management, 23
dependable, 30
firewalls, 48
guards, 48

218

heterogeneous, 63

multilevel secure, 47

packet authentication, 68
protocols, 139

reliable despite unreliable nodes, 44
subnetworks, 69

survivable, 142

testbeds, 140

trustworthy, 67, 139
trustworthy interface units, 72
virtualized multiprocessing, 36
with traceback, 69

INDEX

deferred, in Extreme Programming, 22
nonlocal, 27, 28
risks of short-sighted ..., 13, 28, 1112,4—
116
Orthogonality theorem, 36
Outsourcing
pros and consl31-132
system administration, 67, 145
Ovid, 1, 150
Owicki—Gries, 38

Parnas, David L., 34, 71

Next Generation Secure Computing Base (NGSCB),decomposition, 34, 159

70
NGSCB
see Next Generation Secure Computing
Base, 70
NMCI
see Navy Marine Corp Intranet, 67

Object-oriented paradigm, 37, 40
domain enforcement, 48
downsides, 59
in PSOS, 63, 72
Objective Caml, 38
strong typing, 37

Objective Caml, 38

Offshoring
pros and consl31-132

Openness
and perspicuity, 94
composability in, 49
Free Software Foundation, 74
licensing agreements, 74
Open Source Movement, 74
open-box software, 73, 145

OpenSSH, 153

Operations, 139, 145
analysis of changes, 128
practical considerations, 123
privacy implications, 129

Optical communications, 57

Optimization
code translation validation, 40

dependence, 159
motherhood, 116
specifications, 34
weak-link quote, 71
Patch managemerit23—-125
Patterson, David A., 58
Pavlovic, Dushko, 39
Performance, 2
acceptable degradation, 45
Perspicuity,/8-98 125
risks of bad interfaces, 81
through analysis, 93
through synthesis, 87
Pervasively Integrated Assurance (PIA), 100,
101, 104, 105, 112, 137, 145, 149
Petroski, Henry, 150
Pfleeger, Charles, 5
Plan 9, 58
Polyinstantiation, 79
Portals, 36
Practical Consideration$14—135
Predictability
for certification, 130
of assurance, ix
of composition, viii, 4, 6, 29, 56, 60
of evolvability, ix
of trustworthiness, x, 75
Principles, 3
abstraction, 14
architectural, 14
constrained dependency, 15

INDEX

encapsulation, 14

for security, 20

for system developmend;-29

for trustworthiness6—29

layered protection, 15

modularity, 14

motherhood as of 1969, 13

object orientation, 15

of secure design (NSA), 18

reduced need for trustworthiness, 14

Saltzer-Schroeder, 10, 40

separation of domains, 16

separation of duties, 15

separation of policy/mechanism, 15

separation of roles, 15

throughout R&D, 148
Privacy

in conflict with monitoring, 18

policies, 140

risks, 8
Programming languages

and composability, 35

enhancing modularity, 40

for system development, 13

for trustworthiness, 139

object-oriented, 48

research directions, 139

static checking, 48

supporting software engineering, 40
Proof-carrying code, 47, 109
Proofs

composability, 38
Propagation of errors, 110
Protocols

ARPANET routing, 45

Byzantine, 44

trustworthy, 4

Provably Secure Operating System (PSOS),

71, 106
alternative MLS hierarchy, 64
architecture, 117
composability, 37
HDM methodology, 40
hierarchy, 27, 63, 71

219

interface design, 88
object-oriented, 48
reduced need for trustworthiness, 72
types, 64, 72
Provenance, 69, 74
nonspoofable, 75
Proxies, 48

PSOS (see Provably Secure Operating Sys-

tem), 40
Purify, 25
PVS, 40
theory interpretations, 107

RaceTrack, 108
Randell, Brian, 58, 152
Distributed Secure System, 65, 72
location of checking, 24
Recovery
... Blocks, 45
...-Oriented Computing (ROC), 58
automatic, 29, 58, 123, 139
semiautomatic, 139
Redundancy
cyclic ... checks, 51
for error correction, 43
for fault tolerance, 43
for integrity, 48
for reliability, 44
not needed for resynchronization, 44
Refinement, 34
Reliability, 2
and security, 51
assurance, 110
out of unreliable components, 44
risks, 8, 110
Requirements
analysis of, 127
critical, 26
engineering, 120
for autorecovery, 123
for composition, 31
for decomposition, 33, 34
for reliability, 51
for security, 51

220

for trustworthiness, 7
formal, 100
increasing assurance, 100, 104
lack of attention to, 29
practical considerations, 120
Response
automated, 16, 53, 128, 139
real-time, 49
Reusability
of architectures, 149
of components, 149
Butler Lampson, 86
with high assurance, 3
of requirements, 149
Risk, 2
Risks, 2,7-9 149-150
reduction via assuranc&09-112116
Robinson-Levitt hierarchies, 39, 52, 103, 105
Routers
trustworthy, 139
Routing
alternative, 45
Runtime checks, 48
Rushby, John M., 152
Distributed Secure System, 65, 72
separation kernels, 65, 72, 142
Rushby—Randell, 65, 72
Ryan, Peter
self-healing example, 58

Safety
human, 64
assurance, 109
risks, 7, 109
Lamport-style, 36
Safire, William
hindsight and foresight, 150
SAL: Symbolic Analysis Laboratory, 107
Saltzer, Jerome H., 152
principles, 10
Saltzer—Schroeder principles, 10, 40, 58, 137
Sandcastles, 49
Saydjari, Sami, 152
Schaufler, Casey, 50

INDEX

Schell, Roger R.

Multics security evaluation, 71
Schneider, Fred B., 147
Schroeder, Michael D.

mutual suspicion, 19, 48

principles, 10
SDSI/SPKI, 15, 142
SeaView, 65, 72
Security, 1

and reliability, 51

by obscurity, 73-75

in distributed systems, 57, 63, 66

MLS, 46
kernels, 46
multilevel, 64
Bell and LaPadula, 52
compartments, 64
databases, 46
principles,6—29

risks, 8, 111

Trusted Computing Bases (TCBSs), 46
Self-diagnosing, 72, 139
Self-healing, 139

key distribution, 46
Self-optimizing, 139
Self-reconfiguring, 72, 139
Self-recovering, 140
Self-reprotecting, 139
Self-stabilizing, 45, 147
Self-synchronizing, 44
Separation

kernels, 65, 72, 142

of domains, 16

of duties, 15

of policy and mechanism, 15, 72

of roles, 15
setuid, 153
Shands, Deborah

SPICE, 129
Shannon, Claude, 43, 44
Sibert, Olin, 152

SIFT (see Software-Implemented Fault-Tolerant

System), 44
Simplicity, 7, 25, 27

INDEX

abstractional, 83
Einstein quote, 6, 26, 29
Horning quote, 22
Mencken quote, 26
O.W. Holmes quote, 119
Saltzer—Schroeder, 26
Single sign-on
risks of, 15, 59
slint, 108
Sneaker-net, 65
Software
black-box, 73
closed-box, 73
nonproprietary, 74
open-box, 73
proprietary, 74
Software-Implemented Fault-Tolerant System
(SIFT), 44, 67,71, 72, 106
Spam
filters, 118
Tripoli: defense against, 118
SPARK, 40
SPECiIfication and Assertion Language (SPE-
CIAL), 106
SPICE, 129
ssh, 153
StackGuard, 108
Stark subsetting, 34, 60-62, 68, 122
in real-time operating systems, 34
Strength in depth, 71
Subnetworks, 56, 69
trustworthy, 67
virtual, 67
Subsystems
composability
assurance, 57
functionality, 56
decomposability, 61
diversity among, 63
parameterizable, 149
trustworthiness
enhancement, 67
Survivability, 2
multilevel, 64

221

risks, 8
Synchronization
robust, 45
self-..., 44
vulnerabilities, 24
System
administration, 139, 145
assurance, 106, 128
composed of subsystems, viii, 56
distributed ... trustworthiness, 57, 63, 66
handheld, 66
heterogeneous, 138
wireless, 66

TCP/IP, 27
TCSEC, 21, 138
Testbeds, 140
THE system, 39, 64, 71
Thin-client
architectures, 69
user systems, 66, 75
Time-of-check to time-of-use flaws (TOCT-
TOU), 24
TOCTTOU flaws, 24
Traceback, 23, 68-70, 118
Transactions
fulfillment, 45
Tripoli: Empowered E-Mail Environment, 118
Trust, 3
layered, 63
maximal, 61
minimal, 62
partitioned, 65
Trusted (i.e., Trustworthy) Paths, 48, 68, 69
for upgrades, 125
Trusted Computer System Evaluation Criteria
(TCSEC), 21
Trusted Computing Group (TCG), 70
Trusted Xenix, 16, 79
Trustworthiness, viii, 1-3
enhancement
paradigms, 43
reliability, 49
sandcastles, 49

222

security, 49

enhancement of{2—-54 67

in distributed systems, 57, 63, 66, 142
reduced dependence, 46

layered, 63

need for discipline, 75

of “trusted paths”, 69

of bootloads, 48, 68, 69

of code distribution, 68, 69, 75

of code provenance, 75

of networks, 67

of protocols, 4

of servers, 65, 66

of subnetworks, 67

of traceback, 68

partitioned, 65

principles for,6—29

system development, 4

where needed, 75

Trustworthy Servers and Controlled Interfaces

(see TS&CI), 65
TS&CI, 65, 66, 138, 142, 143
in heterogeneous architectures, 70

TS&CI: Trustworthy Servers and Controlled

Interfaces, 65
Type
enforcement, 48
PSOS, 48
SCC, 48

UCITA, 76

Unified Modeling Language (UML), 22, 115
Unified Software Development Process (USDP),

115
Uses relation, 163

Validation vulnerabilities, 24
Van Vleck, Tom, 152
Venema, Wietse, 23
VERkshops, 107
Virtual
input-output, 25
machine, 25
machine monitors, 65

INDEX

memory, 25
multiprocessing, 25
in GLU, 25
Private Networks (VPNs), 67
Visibility, 78-98 159-175
VMWare, 65
\oltaire, 134
von Neumann, John, 44
Voting
electronic systems, 9
assurance, 47,73, 111
Chaum, 47
integrity, 111
Mercuri, 47
privacy problems, 47
security problems, 47
majority ... for enhancing reliability, 64
Vulnerabilities
security,23—-25

Wagner, David, 152, 153
buffer overflow analyzer, 108
MOPS, 24, 108
Weak-link
avoidance, 13, 71
hindering trustworthiness, 14
phenomena, 47, 71
targets, 53
Weakness in depth, 71
Web portal, 36
Web services
universal, 36
Wheeler, David A.
least privilege, 23
secure programming, 23
Wireless
communications, 57
devices, 66
networks, 153
Wrappers, 48, 62

Young, W.D., 100

