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ABSTRACT
Characteristic problem areas experienced in the past are considered
here, as well as some of the challenges that must be confronted in
trying to achieve greater trustworthiness in computer systems and
networks and in the overall environments in which they must oper-
ate. Some system development recommendations for the future are
also discussed.
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1. INTRODUCTION
In the context of this paper,trustworthinessmeans simply that

something is worthy of being trusted to satisfy its specified require-
ments, typically relating to overall information system properties
such as security, reliability, human safety, and survivability in the
presence of a wide range of adversities, subject to some sort of as-
surance measures. In this context,securitycan be broadly thought
of as encompassing everything that promotes the prevention, detec-
tion, and remediation of deleterious system behavior (for example,
including actions of people, information technology, and physical
environments).

Trustworthiness is relevant throughout system life cycles, from
conception to requirements to detailed architectural designs to im-
plementation, and then continuing into use, operation, maintenance,
and recycling through revisions as appropriate. Trustworthiness
is very difficult to achieve unless it is systematically integrated
throughout the development cycle.

We begin with a few high-level remarks that might help moti-
vate some of the problems that arise in designing, developing, op-
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erating, maintaining, and using complex highly distributed systems
and networks — and especially those with extensive requirements
for trustworthiness.

• “The future isn’t what it used to be.”1 It is becoming ever
more difficult to keep up with critical needs for trustwor-
thy applications in the face of increasing system and network
security vulnerabilities, increasing development complexity,
multiple fault modes, sophisticated threats from insiders and
outsiders, ubiquitously increasing societal dependence on in-
formation technology, increased dependence on the roles of
administrators and users, and increasing costs and disrup-
tions associated with the resulting risks. All these factors —
and more — tend to exacerbate the problems of developing
trustworthy intensively computer-based enterprises.

• “We need to go back to the future.” Past research and devel-
opment efforts present many important lessons for the future,
although many of those lessons are either forgotten or never
learned. Thus, it is useful to reconsider how we arrived at
the present state of the art, and extrapolate on what might be
needed in the future. We consider here both short-term and
long-term approaches, and outline some of the hard problems
that must be more systematically addressed.

• “Progress is always slower than you’d think.” Proactive sys-
tem development is often shunned, but has enormous poten-
tial payoffs. Mistakes of the past are frequently repeated,
many of which could be easily surmounted — for example,
using approaches such as evolvable system architectures, de-
velopment that facilitates pervasive and predictable subsys-
tem composability, intelligent interface design, sound system
embeddings of strong cryptography, sound analysis tools,
and up-front attention to assured trustworthiness.

2. PRINCIPLED SYSTEMS
For many years, the security community has been evolving var-

ious principles for the development of trustworthy systems, such
as [14] and the Saltzer-Schroeder principles [28], both of which
grew out of the Multics development.

An extended approach to principled development [16] also pro-
vides some analysis of how these principles and others can affect
trustworthiness and assurance of systems as a whole. Several as-
pects of such an approach are highlighted here, notably the princi-
ple of least privilege; minimization of the extent to which portions
of a system or network must be trusted, thereby limiting what is
1I first heard this almost-Yogi-Berra-like statement in 1969 in a
keynote address by Arthur Clarke, who lamented that it was be-
coming ever more difficult to write good science fiction.



vulnerable to accidents and misuse; modular abstraction with en-
capsulation and complete mediation; and thorough nonbypassable
auditing, In addition, various principles under the rubric of good
software engineering practice can add significantly to assured trust-
worthiness, which — in addition to the aforementioned properties
relating to security, reliability, safety, and survivability — can also
encompass other concepts such as predictable composability, as-
sured interoperability, and real-time performance.

Multics was perhaps the most principled of system developments.
It broke some important new ground with hardware-software sup-
port for virtual memory, segmentation, paging, protection domains,
stacks in which anything outside of the current stack frame was
nonexecutable and nonaddressable, hierarchical directories, access
control lists, dynamic linking, the use of a stark subset of PL/I that
naturally prevented certain flaws, and so on. However, most in-
structive may have been its development discipline [5, 6].

Other principled efforts from the 1960s and 1970s include the
T.H.E. system and its use of a deadlock-avoiding hierarchical lock-
ing strategy described by Dijkstra [7], and a seminal series of pa-
pers by Parnas (e.g., [20]). The 1977 Robinson–Levitt paper [22]
on hierarchical formal specifications introduced the concept of for-
mal mappings between different layers of functional specifications
that represent abstract implementations of each layer as a function
of the lower layers, as the foundation for the design of the Provably
Secure Operating System (PSOS) [8, 17, 18].

The desire for multilevel security (MLS) prompted considerable
research and development in the 1970s and 1980s, although those
efforts did not bear much fruit with respect to commercially avail-
able MLS systems with strong assurance. Various efforts that were
countercultural at the time (e.g., Rushby-Randell [27] and Proctor-
Neumann [21]) are gaining new currency with respect to the con-
cept of Multiple Independent Levels of Security (MILS) within the
Secure Global Information Grid.

In addition, there is renewed interest in Rushby’s 1981 notion of
a separation kernel [26] and also in virtual machine monitors (such
as VMware and Xen), which have a basic need for disciplined but
limited interpartition communications [3].

Principles that are generally acceptedin principle are often not
widely usedin practice. There are several possible explanations
for this. For example, principles are not absolute; they are also not
independent, and may sometimes interfere with one another; and
their effective use requires appropriate educational stimuli, expe-
riential feedback, acquired discipline, and (above all) foresight —
which often runs counter to short-term motives such as profits and
marketplace.

To illustrate the relevance of principled developments, we con-
sider some particularly problematic real-world uses of computers
and communications in the next two sections.

3. NETWORK DISRUPTIONS
Past networking difficulties offer lessons that need to be assim-

ilated by researchers and system developers. This section revisits
some old and new history relating to widespread network outages
and other extreme network behavior. The earlier history may be of
particular interest to younger researchers and developers who were
not active in the olden days.

Various examples of widespread propagation effects are illus-
trative of some of the complexities arising in networked systems.
Of particular interest are two cases in which total network failure
modes resulted from local faults — namely the 1980 ARPANET
collapse and the 1990 AT&T long-distance collapse — as well as
numerous instances of domino-like propagating power outages.

• The 1980 ARPANET collapse: As a result of unchecked bits
dropped in the highest-priority status messages in the mem-
ory of one ARPANET router (a so-called Interface Message
Processor) and a garbage-collection algorithm that could sub-
sequently not eliminate any nonrecent status messages, a mem-
ory overflow occurred in every node in the network. It took 4
hours to diagnose the unprecedented failure mode, telephone
the administrator of every node and request that it be shut
down manually, and finally, upon confirmation that all nodes
had been shut down, manually initiate restarting every node.
(See [24].)

• The 1990 AT&T long-lines collapse: An untested upgrade to
the fault-tolerant recovery software had been installed in 114
ESS Number 4 telephone switches. (The C program con-
tained abreak statement within anif clause nested within
a switch clause.) On 15 January 1990, one node crashed,
and auto-recovered. However, as a result of the flaw, all
the immediate neighbor nodes crashed, followed by iterated
crashes of every node in the network repeatedly for some-
thing approaching half a day. Completing long-distance tele-
phone calls became almost impossible. (See the ACM Risks
Forum, vol 9, number 61, andTelephony,22 January 1990,
p. 11.)

In both of these cases, the developers of the networking technol-
ogy seemed to have believed that network-wide outages could not
possibly result from single-point failure modes.

Computer-controlled electrical-power networks have also been
implicated in numerous widespread propagating power outages,
evidently with somea priori disbelief on the part of developers
and operators that widespread outages could result. (References
for these and other cases noted below can be found in [13], with
some of the older cases documented in [15].)

• Northeast U.S. blackout, November 1965: a threshold was
exceeded that had been set too low, resulting in a 13-hour
outage that affected New York, Pennsylvania, Vermont, Con-
necticut and Massachusetts.

• Lower New York State blackout, July 1977: recovery took in
excess of 26 hours.

• Parts of ten Western U.S. states blacked out, October 1984:
a faulty computer reading (the actual power loss was off by
a factor of two) caused a chain reaction, although the trig-
gering loss was reportedly an insignificant routine event that
was supposed to have been handled seamlessly.

• Western U.S., July 1996: a heat-wave expanded power lines,
which came in contact with a tree. Resulting power outages
propagated over at least 12 states.

• Western U.S./Canada/Baja California (Mexico), August 1996:
a summer heat-wave triggered cascading power outages, re-
sulting in air-traffic slowdowns and many collateral prob-
lems.

• Northeast U.S., August 2003: a software race condition and
an alarm-system failure caused a computer crash and widespread
power outages; recovery took almost
2 days.

• Circuit breakers tripped in Maryland, in Queens, New York,
and in Philadelphia on 25 May 2006, shutting down Amtrak,
NJ Transit, and MARC trains in the morning rush-hour for
the day. Five trains were stuck in tunnels.



• Queens, New York, July 2006: century-old wiring failed over
a wide local region; the outage lasted a week.

What is perhaps most alarming about this list of outages is that
such cases continue to occur. In some cases, this happens despite
efforts to take remedial measures; in other cases, such measures are
not even taken. Again, we often hear that a particular propagating
outage is impossible because of the system design. Then, after it
happens, we are typically told that the system or software or algo-
rithms have been changed to prevent the problem from ever hap-
pening again. And then something similar happens again. Clearly,
more proactive efforts are needed to analyze systems for potential
widespread fault modes and ensuing risks, and to take appropri-
ate timely actions. Of course, similar conclusions apply to proac-
tive defenses against environmental disasters, as in the case of tidal
waves, global warming, and anticipation of hurricanes (which was
lacking in New Orleans before Katrina).

Leslie Lamport has remarked that a distributed system is a sys-
tem in which you have to trust components whose existence is com-
pletely unknown to you. In the present context, distributed con-
trol of distributed systems with distributed sensors and distributed
actuators is typically more vulnerable to propagated outages and
other perverse failure modes such as deadlocks and other unrecog-
nized hidden interdependencies (particularly on components that
are untrustworthy and perhaps even hidden), race conditions and
other timing quirks, coordinated denial-of-service attacks, and so
on. Achieving reliability, fault tolerance, and system survivability
in highly distributed systems is problematic; both formal analyses
and system testing are highly desirable, but also potentially more
complex than in nondistributed systems.

Furthermore, security, reliability, and system survivability are
closely linked. A system is not likely to be secure if it is unre-
liable; similarly, a system is not likely to be reliable if it is not
secure. A system is not likely to be survivable in the face of natu-
ral, accidental, and malicious adversities if it is not secure, reliable,
fault tolerant, people tolerant, usable, and easily administered, with
sufficient performance even under crises.

To illustrate this point, although the ARPANET outage and the
AT&T long-lines collapse were triggered spontaneously by mech-
anisms that required no human intervention, each could have been
equally well caused by (possibly remote) human activity, either in-
tentionally (by anyone who knew about the fault mode) or acciden-
tally. In the ARPANET case, the insertion of two bogus network
status messages could have created the same effect as the dropped
bits. In the AT&T case, inadvertent action by maintenance person-
nel or intruders on one telephone switch could have initiated the
same sequence of propagating crashes. (There is some reason to
suspect that this might actually have happened.) Similar reason-
ing also applies to the distribution of electrical power, where the
control systems are heavily dependent on computer systems, with
considerable functionality accessible from the Internet. Thus, se-
curity, reliability, and survivability need to be considered together
rather than separately.

Any discussion of network disruptions must of course mention
viruses, worms, propagating Trojan horses, and other forms of dis-
tributed malware. It is worth revisiting the 1988 Internet Worm [23,
29], which exploited four different system weaknesses — a buffer
overflow in thefinger daemon, systems configured with overly
permissive.rhosts access, thesendmail debug option, and
dictionary attacks on encrypted password files; however, it ran amok
because of an overly aggressive algorithm for keeping the worm
alive. Preventing malware might be aided by a system environment
that provides a combination of sound computer system architec-
tures with confined execution environments or virtual machines,

rigorously controlled interactions among partitions (e.g., [3]), care-
fully configured fine-grained access control policies (e.g., [9]), good
software engineering practice with safe uses of sensible program-
ming languages and static analysis tools for software. With these
and other approaches, the challenge of preventing exploitations of
malware and security flaws such as buffer overflows could be much
less problematic than it is today. (See [1, 10, 19, 31] for taxonomies
of security flaws.)

With respect to confining the propagation of undesirable behav-
ior in networks and distributed systems, the principles of security
and good software development could contribute considerably. For
example, the principle of least privilege suggests the development
of architectures that enforce confined-domain or virtual-machine
process isolation, with intercomponent interfaces and network pro-
tocols that are well defined, carefully controlled, and carefully an-
alyzed. The principle of complete mediation suggests an archi-
tecture in which only a subset of the system needs to be highly
trustworthy, and in which the integrity of that subset cannot be cir-
cumvented.

4. COMPUTERIZED ELECTIONS
The problems of trying to ensure the fairness, accuracy, and over-

all integrity of elections necessitate many requirements that span
the entire election process. Various end-to-end requirements are
needed to address system integrity, reliability, and survivability,
vote integrity, overall accountability and oversight, nonsubvertible
audit trails, impartial resolution of disputes, and uncompromised
voter privacy (to identify just a few requirements). Simultaneously
satisfying both vote integrity and voter privacy requires special care
in design and implementation of operational procedures and rele-
vant computer systems.

Since the mid-1980s, various efforts have been made to increase
the automation of the voting process, particularly with the wider
use of computer-based systems. (See Mercuri’s doctoral thesis [11]
for an extensive set of requirements casting the computer system re-
quirements into the framework of the Common Criteria.) However,
the need for trustworthy computing is only part of the problem.
Trustworthiness is required throughout the end-to-end process.

Ideally, the total-process combination of computer system archi-
tectures and operational procedures should seekstrength in depth,
to prevent isolated failures or single-point attacks from compromis-
ing the end results. Unfortunately, the entire election process today
representsweakness in depth:every step is a potential weak link
— from registration to voter authentication to vote casting, vote
counting, and transmission of the partial and final results (perhaps
even via the Internet or wireless communications, perhaps unen-
crypted or weakly protected, and subject to denial-of-service at-
tacks). Indeed, each stage in the voting process represents potential
vulnerabilities that can be compromised in many ways — for exam-
ple, accidentally or intentionally, detectably or undetectably, tech-
nologically or procedurally. The potential risks of faults, errors,
failures, and misuse encompass human, environmental, and tech-
nological causes. Each step must be safeguarded from the outset
with extensive cross-checks, and should be noncompromisibly au-
dited. These requirements become especially important whenever
election results are contested.

In today’s all-electronic paperless voting machines, there is ef-
fectively no independent confirmation that the vote that is cast is
the same as the vote that is counted, and that the results remain
unchanged throughout. Furthermore, there is no independent audit
trail that would enable an irrefutable recount. Today’s unauditable
proprietary touch-screen systems (e.g., [25]) are typically evaluated
under a proprietary process that is commissioned by the vendors,



relative to voluntary standards that are inherently weak. The result
is fundamentally unconvincing from the perspective of trustworthi-
ness.

One potential remedy for having to trust today’s unauditable pro-
prietary all-electronic voting systems is to add an independent voter-
verified paper trail that is the vote of record [11], as some vendors
are now attempting to do. However, this introduces further com-
plexities, and appears to be only a palliative addition to an already
overly expensive PC-based solution when compared with less ex-
pensive paper-based alternatives that are much less dependent on
untrustworthiness of computer systems, such as optical scan tech-
nologies (but which of course have their own potential risks).

Of great potential interest to security researchers are possible
voting systems and associated procedures that are designed, imple-
mented, and rigorously evaluated openly to be demonstrably able
to satisfy stringent end-to-end requirements. One very promising
direction involves cryptographic approaches (e.g., [2, 4, 12]) that
could be formally verified. Of course, a fundamental challenge
for the cryptography community is to provide convincing evidence
that the resulting total systems (that is, not just the cryptography in
isolation) are demonstrably resistant to internal tampering, external
manipulation, and undetected system errors, including compromise
from any underlying operating systems (which do not even have
to be considered under today’s voluntary evaluation guidelines) or
from compiler subversions (such as in [30]). Such evidence would
need to be convincing to independent cryptographers, system secu-
rity experts, and — to a considerable extent — the general public.

Although the problem of adding up a bunch of votes might in-
tuitively seem easy, the complexity of the overall election process
is considerable, particularly in operational practice. With respect
to computerized elections, serious observance of the principles of
Section 2 could (in principle) provide dramatic improvements in to-
day’s voting technology, but would need to be applied end-to-end
to detect, prevent, and recover from software-hardware failures and
power outages, as well as surreptitious manipulations and other un-
expected irregularities in human procedures throughout the election
process.

Of particular relevance here is the principle of least privilege. As
an extension of that principle, what is needed are system architec-
tures, network protocols, and operational procedures that minimize
the areas of vulnerability, for reasons similar to those in Section 3,
but with rather different threat models. Also needed are indepen-
dent cross-checks that can ensure the integrity of the process de-
spite accidental failures and intentional manipulations. In addition,
the principle of pervasive nonbypassable auditing is critical, with
nonalterable audit trails and oversight sufficient to enable incontro-
vertible reconstruction of all votes as cast.

5. CONCLUSIONS
If we take the principled advice of Section 2 and the examples of

Section 3 and Section 4 seriously, several benefits can result.

• The development process could be dramatically improved.
Principled system developments and selective uses of formal
methods are increasingly needed. Greater up-front empha-
sis on requirements, sound architectures, and good software
engineering practice can result in fewer cost overruns, fewer

delivery delays, easier system operation, and much less need
for recurring patch management. Systems should be designed
to be predictably composable out of evaluated subsystems,
with correspondingly predictable properties.

• Many characteristic system vulnerabilities can be system-
atically avoided or at least considerably diminished, espe-
cially in newly developed systems, but also through judicious
use of well-conceived static analysis tools applied to existing
systems.

• Although there are always many difficulties that arise in try-
ing to retrofit wisdom into legacy systems, many of the prin-
ciples can also be applied to incremental evolutions — for
example, incorporating an architecturally sound combination
of old and new subsystems, or attempting rather humbly to
encapsulate or otherwise mask the weaknesses of older sys-
tems (albeit with somewhat lowered expectations of trust-
worthiness).

Trustworthiness (especially with respect to overall security, re-
liability, system survivability, and human safety) is inherently a
weak-link phenomenon. In poorly designed systems, one flaw may
be enough to result in compromise. Simplistic solutions are likely
to be untrustworthy. Merely patching a few of the more obvious
flaws is not likely to be very successful. Therefore, considerable
pessimism should accompany any efforts to make silk purses out
of sows’ ears. However, trying to minimize what must be trust-
worthy, avoiding violations of the principle of least privilege, and
wisely applying some of the other principles can help significantly.

This paper addresses just the tip of a huge iceberg that is lurking
in our path. It should not be surprising. Its message is clearly not
novel (for example, see [14, 28]), but nevertheless still fundamental
and still underappreciated. In addition, more of the less visible
portions of the iceberg are examined in [16], along with how to
attain predictable composability of trustworthy systems with some
meaningful measures of assurance.

The increasing complexity of modern systems, the critical de-
pendence on computer-communication technology, and the ever
greater need for trustworthiness make it imperative that we reflect
on mistakes of the past and attempt to avoid them in the future.
The road to disciplined system development is clearly paved with
good intentions, and the suggested course is riddled with practi-
cal pitfalls. However, designing and implementing systems with
trustworthiness as an integral fundamental goal is a very important
challenge, and is well worth pursuing vigorously in research and
development practice.
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