
using redundancy, decoupling, moni-
toring for failures, fault-tolerant or fail-
safe designs, and other methods. Hu-
man errors are handled by training and 
compliance with specified procedures.

The problem with this solution is it 
does not consider accidents that occur 
when the components (either physical 
or functional) work as intended (that 
is, satisfy their requirements), which 
is the most common type of accident 
when software is involved.

Introducing software into the con-
trol of safety-critical systems changed 
the world of engineering, allowing the 
creation of complex systems not previ-
ously possible. At the same time, it cre-
ated grave difficulties in certifying and 
assuring the safety of such systems. 
Before the introduction of software 
into the control of potentially danger-

S
OF TWA RE  IS  UBIQUITOUS in 
safety-critical systems and 
the size of the software can 
be enormous—tens of mil-
lions of lines of code is not 

unusual today. How can the safety of 
such systems be assured? While gov-
ernment certification is only required 
for a few systems (such as aircraft, 
nuclear power plants, and some types 
of medical devices), other commer-
cial products are potentially subject 
to lawsuits and other liability issues 
that force companies to have an effec-
tive strategy for dealing with safety. At 
the extreme, highly publicized acci-
dents can lead to a company going out 
of business. Some military systems, 
which are often out of the public eye, 
can have potentially catastrophic con-
sequences if they go wrong.

Almost all current approaches to 
certifying critical systems or assuring 
the safety of such systems were created 
when our engineered products were 
electromechanical. Meanwhile, enor-
mously complex software has been 
introduced into these safety-critical 
systems with relatively few significant 
changes to the way systems are certi-
fied or assured. Software-related acci-
dents in every industry are occurring in 
exactly the ways assurance approaches 
determined were implausible or im-
possible or in ways that were over-
looked entirely during certification 
and safety assessment. Creating effec-
tive approaches will require changes in 
the way software is engineered today.

Limitations of Current 
Certification Approaches
Current standards for certifying safety 
still largely rely on failure-based and 
component-based methods (Func-
tional Hazard Analysis (FHA), Fault 
Tree Analysis (FTA), Failure Modes 
and Effects Analysis (FMEA), and so 
forth) developed at least 40–60 years 
ago, when engineered systems were 
primarily comprised of hardware. An 
assumption was made that accidents 
were caused by component failures. 
That assumption was reasonable at the 
time and led to the idea that high com-
ponent reliability could assure safety to 
an acceptable level.

If accidents are assumed to result 
from failures or human errors, then 
the standard solution is to design high 
reliability into products, perhaps by 
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Seeking new approaches toward ensuring 
the safety of software-intensive systems.
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prevent the most important software 
problems in complex systems today: 
flawed requirements. Software can and 
has operated in unsafe ways despite ex-
hibiting 100% reliability with respect to 
satisfying its specified requirements. 

In fact, many, if not most, software-
related accidents have occurred when 
the software operated exactly as it was 
designed and specified to operate, that 
is, the software successfully imple-
mented the requirements given to the 
software engineers. In these cases, the 
requirements were flawed.

A few standards deal with software 
by requiring generic activities such as 
“identify errors” with no guidance on 
how this can be accomplished or what 
is considered good enough. They end 
up with essentially useless generic 
checklists, such as “are the require-
ments complete?” or “are the require-
ments traceable?” with no way to look 
any deeper.

Formal methods will not solve the 
problem, although it is often posited 
they will. While formal methods can 
potentially show the consistency of soft-
ware with its requirements, there exists 
no formal model of engineered systems 
(particularly one using discrete math) 
and the humans who operate them that 
can be used in this mathematical exer-
cise. Simply showing the consistency of 
requirements with code does not solve 
the most important problems. 

Tony Hoare recognized this limita-
tion in a presentation at a workshop in 
1996 just before his retirement, stat-
ing: “Ten years ago, researchers into 
formal methods (and I was the most 
mistaken among them) predicted that 
the programming world would em-
brace with gratitude every assistance 
promised by formalisation to solve the 
problems of reliability that arise when 
programs get large and more safety-
critical. Programs have now gotten very 
large and very critical—well beyond the 
scale which can be comfortably tackled 
by formal methods. There have been 
many problems and failures, but these 
have nearly always been attributable to 
inadequate analysis of requirements 
or inadequate management control. It 
has turned out that the world just does 
not suffer significantly from the kind 
of problem that our research was origi-
nally intended to solve.”1

Continuing to teach students that 

ous systems, safety was never an issue 
for software: It is a pure abstraction 
and does not explode, catch on fire, 
or otherwise directly harm humans. 
It did, however, have the ability to im-
pact critical processes when it started 
to be used in the monitoring or control 
of critical systems in the late 1970s, 
and such use has increased exponen-
tially today. Software undermined the 
assumptions underlying the current 
standard system certification and as-
surance approaches.

Certification of such systems is usu-
ally based on the concept of risk. Risk is 
calculated traditionally by combining 
the likelihood of a failure combined 
with the severity of the result. Analy-
sis methods were created to calculate 
likelihood in engineered systems by 
combining individual component fail-
ures. If the resulting risk figures are not 
deemed to be acceptable, more redun-
dancy, monitoring, and so forth is built 
into the design until acceptable risk 
calculations result. But how does one 
determine the probability of software 
behaving in an unsafe way?

There is also the problem of the hu-
man operators of these systems. Before 
software control, human operators were 
performing relatively simple tasks, such 
as reading gauges and pushing buttons 
activating physical controls (such as 
brakes). Their reliability at performing 
these simple tasks was assumed to be 
measurable and predictable. Whether 
this assumption is true is a matter for 
debate but irrelevant today as such 
activities are now being taken over by 
computers. Humans are performing 
the much more cognitively complex 
tasks of supervising and monitoring the 
computers, an activity for which, like 
software, there is no way to evaluate the 
likelihood of an error.

An additional problem arose with 
the introduction of software in the 
control of these systems. Underlying 
the risk calculations are assumptions 
about the independence of the system 
components. Software in these sys-
tems couples the components in com-
plex and unexpected ways that violate 
the basic independence assumptions 
behind the calculations. Also, new, 
more complex types of human opera-
tor errors (such as mode confusion) 
can be caused by the design of soft-
ware, which made the problem of risk 

assessment essentially intractable, al-
though people still try to do it and sys-
tems are certified using this approach.

Some Non-Solutions
As software was added to complex 
systems, attempts were made to re-
use the same certification approaches 
and solutions that had been used on 
electromechanical and human sys-
tem components. However, the same 
protective design techniques (such 
as redundancy) are of limited use for 
software and probabilistic approach-
es do not apply.

Why are these not a solution to the 
software system safety problem? A pre-
vious Communications Inside Risks col-
umn discussed what will not work.2 To 
briefly summarize: testing and after-
the-fact verification; formal methods; 
reuse of application software; and so 
on, cannot provide the level of assur-
ance required for safety in complex 
systems. In addition, software is begin-
ning to be so large and complex itself 
that after-the-fact assurance is no lon-
ger feasible. Applying standard hard-
ware design techniques such as re-
dundancy, fault-tolerance, and others 
turned out to be much more difficult 
for software than for hardware.

Attempts have been made to solve 
the problem by improving the way soft-
ware is developed. The most common 
has been to require increased “devel-
opment rigor” such as ensuring the 
source code complies with program-
ming standards, the software archi-
tecture is verifiable, and verifying that 
software meets requirements. Con-
cepts such as level of rigor (LOR), de-
sign assurance levels (DAL), and safety 
integrity level (SIL) were created.

The problem is that simply in-
creasing development rigor does not 

Introducing software 
into the control 
of safety critical 
systems changed the 
world of engineering.
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only less safe, but more costly. New, 
more powerful techniques are needed 
for the planning stages of development 
(both at the system and software level) 
as well as new approaches for managing 
large, long-lived, critical projects. The 
cost and schedule overruns common 
today in such systems is not sustainable 
over the long term. It simply encourages 
the skipping or watering down of criti-
cal steps to prevent such occurrences.

New approaches to identifying 
system safety requirements. Writing 
requirements down in a formal lan-
guage may support efforts to verify 
that software meets a set of formal 
requirements, but it does nothing to 
address the single largest contributor 
to software-related accidents—flawed 
requirements. In fact, formal require-
ments specification languages may 
degrade it by making the requirements 
more difficult to review, validate, and 
identify underlying assumptions. In ad-
dition, communication with interdis-
ciplinary experts, who may recognize 
critical problems of which software 
specialists are unaware, is inhibited by 
using formal specification languages. 
We need rigorous specification lan-
guages that are understandable and 
reviewable by experts of various types. 
How can requirements specifications 
be derived from and easily traced to the 
hazard analysis methods used to iden-
tify hazardous system behavior?

System and software engineering 
methods to design in safety from the 
beginning. Safety cannot be argued in 
or assured after the fact, and we need 
to stop promoting or relying on such 
approaches. Complex systems must be 
designed to be safe from the very be-
ginning of development.

Many certification and engineering 
processes wait until after design and 
implementation to perform validation. 
While early engineering decisions can 
have the largest impact on safety, they 
are difficult or impossible to change 
late in the development process. Per-
forming validation after design and 
implementation not only drives enor-
mous rework costs, but it also creates 
strong incentives during validation 
to find minor patches that can be ar-
gued to be “safe enough” instead of the 
strongest, most effective solutions that 
may require more rework because they 
were discovered late during validation.

formal methods are the solution to ev-
ery problem is not going to solve the 
most important problems related to 
safety. The field of computer science 
and software engineering needs to ex-
pand what are considered to be aca-
demically acceptable solutions to com-
plex problems.

Faced with the dilemma of assuring 
the safety of software control, a few en-
gineers have tried to use the same haz-
ard analysis techniques developed to 
identify critical hardware failures but 
to apply them to software. The prob-
lem they ran into was that these tech-
niques assume that accidents occur 
only because of “failures”—including 
functional failures—and that these 
failures can be assigned probabilities. 
Those assumptions do not apply for 
software (or humans).

The fundamental flaw in the current 
approach is that adding software con-
trol in engineered systems changes the 
nature and cause of accidents beyond 
the concept of simple failures. As stat-
ed earlier, the software or other com-
ponents may be operating exactly as 
intended and specified, but the speci-
fied requirements may be flawed and 
lead to an accident. Therefore, the tra-
ditional failure-based hazard analysis 
techniques do not apply and entirely 
new ones are needed.3

What Are Some Potential Solutions?
Old approaches to creating and assur-
ing safety-critical software do not scale 
to today’s complex systems. Something 
new is needed. What that might be 
needs to be the focus of new research, 
but after working on safety-critical sys-
tems for decades, we have some ideas 
about promising directions to pur-
sue. Progress will require new ideas in 
many areas.

More emphasis on the up-front de-
velopment effort. Much more effort is 
needed in the early stages of complex 
systems and the software contained in 
them. While skipping or deferring the 
planning steps such as concept devel-
opment, requirements specification, 
and documentation practices may be 
appropriate for short-lived, non-critical, 
and relatively small software, they in-
troduce enormous vulnerabilities when 
used in large, complex safety-critical 
systems and can result in more rework 
in the long run. The result may be not 
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We need better ways to identify up 
front the behavioral safety require-
ments and constraints for the system 
as a whole and then to allocate them 
to the system components. If some of 
those components are implemented 
by AI, how will it be assured that the 
AI software implements its safety re-
quirements? How can system and 
software architectures be created that 
will assist in ensuring that the safety 
requirements are satisfied? Are there 
architectural design techniques that 
allow ensuring that the architecture, 
if implemented correctly, will enforce 
the safety-related requirements?

Another part of the answer to design-
ing safety into a system lies in develop-
ing rigorous specification languages 
that are understandable and review-
able by all the system experts. Model-
Based System Engineering (MBSE) 
could be part of the solution, but only 
if multiple modeling languages are de-
veloped and used. A model necessar-
ily involves ignoring some aspects of 
a design. The currently most popular 
MBSE modeling language cannot be 
used for sophisticated and powerful 
hazard analysis because it omits some 
of the most important characteristics 
and relationships that affect safety.

New software design approaches. 
Simplicity is important for software as 
is sophisticated documentation and 
engineering support tools. Rube Gold-
berg inspired designs are not appropri-
ate for systems with hundreds of mil-
lions of lines of software. While we have 
always recognized the importance of 
coupling and cohesion in software de-
signs, much more powerful design and 
analysis techniques are needed than 
just these. Programming in the small is 
becoming less and less relevant as so-
phisticated code-generation tools are 
created. What other types of software 
design approaches may be more use-
ful at the “programming in the large” 
level? Is object oriented design appro-
priate for large-scale control software? 
Might a new “control-oriented design” 
approach be better? In general, should 
all designs use the same method, or are 
different design methods needed for 
software in different types of systems?

Integrating human factors into sys-
tem and software development. The 
role of human operators is changing 
from direct control to monitoring the 

operation of computers that control 
the system components. At the same 
time, the complexity of our systems 
is overwhelming the capability of hu-
mans to operate them. While total au-
tonomy is a reasonable goal for many 
relatively simple systems, taking hu-
man ingenuity, problem solving, flex-
ibility, and adaptability out of our 
complex systems will lead to disaster. 
The design of application software is 
further contributing to the problems 
by confusing operators and leading 
to fatal mistakes—even when the soft-
ware operates exactly as designed (no 
failures). Rather than simply trying to 
eliminate humans or blaming them 
for the accidents that result from 
flawed software, software and system 
engineers must be trained in sophisti-
cated human factors and work closely 
with experts in the design of the total 
system, not just the design of the soft-
ware components. New modeling and 
analysis techniques are needed to sup-
port this integrated design and analy-
sis. The new techniques will need to 
consider complex interactions, such 
as software-induced human error, and 
the techniques must be applicable 
during early development before the 
software is designed and before simu-
lators have been created for testing. 
The techniques will need to be usable 
by a diverse, interdisciplinary team of 
experts, not only by software experts 
who are fluent in a particular formal 
requirements language.

New, more powerful hazard analysis 
methods. Because traditional failure-
based hazard analysis methods do not 
apply to software, new more sophisti-

cated hazard analysis is needed. These 
new analysis approaches must involve 
more than just identifying failures.3 
The way we analyze and assure safety 
needs to reflect the state of engineer-
ing today, not that of 50 years ago. We 
have created a hazard analysis tech-
nique (called STPA) based on a new 
assumption that losses result from 
unsafe control over system and com-
ponent behavior rather than simply 
component failures.4 The rapid and 
extensive adoption of STPA by industry 
and development of standards demon-
strates the need for newer and more 
powerful hazard analysis methods that 
include hardware, software, operators, 
management, etc. How can STPA be 
improved or extended? Can new and 
improved modeling and analysis tech-
niques based on our theory of control 
or a different underlying theory be cre-
ated? Are there other, even better, gen-
eral approaches to creating more pow-
erful hazard analysis techniques?

New, interdisciplinary system en-
gineering techniques: We need inter-
disciplinary development methods to 
create safe systems. We cannot effec-
tively solve these complex problems 
through decomposition—with human 
factors experts analyzing one small 
part (the operational procedures and 
interfaces), software experts analyz-
ing one small part (the software), and 
other engineers handling the rest. 
Working separately on different parts 
of the system, these groups all use 
their own methods and models. Even 
if they wanted to communicate, they 
can’t do it effectively because they are 
all using different languages and tools. 
This is not a viable long-term approach 
to system engineering for the complex 
systems of today and the future. We 
need methods that enable multiple 
disciplines to collaborate effectively to-
gether on the whole system.

New certification approaches: The 
certification approaches devised be-
fore software became ubiquitous need 
to be changed. Small tweaks that es-
sentially treat software as the same as 
hardware will not work. How should 
the software-intensive systems of 
the future be certified? How can and 
should safety be assured without us-
ing the probabilistic approaches of the 
past that are no longer feasible?

Improved management of change. 

Simply increasing 
development rigor 
does not prevent 
the most important 
software problems 
in complex systems 
today: flawed 
requirements.
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approaches to creating, assuring, and 
certifying software-intensive systems 
are needed.

Safety is a system engineering prob-
lem, not a software engineering one. 
But the system engineering solutions 
cannot be created or implemented 
without the participation of software 
engineers: that is, software/hardware/
human factors engineers working to-
gether rather than in silos. Perhaps we 
should not be training individuals to 
separately fill these roles.

The solution to the problem is 
likely to involve changes to standard 
software engineering approaches and 
definitely changes to education and 
training. New models and analysis 
methods, new architectural and de-
sign approaches, and more up-front 
work before generating software 
rather than depending on post-con-
struction validation will be required. 
We need to design safety into systems 
from the very beginning of develop-
ment, not depend on post-design 
assurance. This will require that 
software engineering become a true 
subdiscipline of system engineering 
and not just a glorified name for gen-
erating code. Software engineers will 
need to work hand-in-hand with sys-
tem engineers and human factors en-
gineers to create acceptably safe and 
secure systems comprising software, 
hardware, and humans. This goal will 
require enormous changes in educa-
tion and practice, which presents new 
and important challenges for software 
engineering research. 
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Almost all accidents occur after some 
type of change. At the same time, 
systems and their environments 
change continually during operation. 
These changes may be planned or 
unplanned. Planned changes are the 
most easily handled. Management 
of change procedures are common-
ly found in industry. But even if the 
change is planned (for example, an 
upgrade or new version of the system), 
changes in software that contains 
tens of millions of lines of code raises 
the problem of how to assure that the 
change has not introduced potentially 
dangerous behavior in some indirect 
way? One part of the solution is the 
identification (and recording) of de-
sign rationale and assumptions about 
the system and its environment. Dif-
ferent design and development tech-
niques will be needed for sustainabil-
ity of critical software.

Unplanned changes are even more 
difficult to handle, for example un-
anticipated changes in the hardware, 
human behavior, or the environment. 
Systems often migrate toward states 
of higher risk during use. Leading in-
dicators are needed to identify when 
a change in the system or its environ-
ment that could be critical has oc-
curred. In addition, improved methods 
for making such changes are required. 
Traceability is part of the answer, where 
the hazards and design solutions iden-
tified early in the system development 
can be traced to the parts of the code 
that are affected and vice versa.

Conclusion
After-the-fact assurance and certifi-
cation is no longer practical or even 
feasible for the large, complex, criti-
cal systems being created today. New 

Many certification 
and engineering 
processes wait until 
after design and 
implementation to 
perform validation.

Career & Job Center

The #1 Career Destination 
to Find Computing Jobs.

Connecting you with 
top industry employers.

Check out these new features 
to help you � nd your next 
computing job.

Access to new and exclusive 
career resources, articles, 
job searching tips and tools.

Gain insights and detailed 
data on the computing 
industry, including salary, 
job outlook, ‘day in the 
life’ videos, education, and 
more with our new Career 
Insights.

Receive the latest jobs 
delivered straight to your 
inbox with new exclusive 
Job Flash™ emails.

Get a free resume review 
from an expert writer listing 
your strengths, weaknesses, 
and suggestions to give you 
the best chance of landing 
an interview.

Receive an alert every time 
a job becomes available 
that matches your personal 
pro� le, skills, interests, and 
preferred location(s).

Visit https://jobs.acm.org/

ACM-PrintAd-2.25 x 9.5.indd   1ACM-PrintAd-2.25 x 9.5.indd   1 22/07/2021   10:25 PM22/07/2021   10:25 PM

26    COMMUNICATIONS OF THE ACM   |   OCTOBER 2023  |   VOL.  66  |   NO.  10

opinion


