
using redundancy, decoupling, moni-
toring for failures, fault-tolerant or fail-
safe designs, and other methods. Hu-
man errors are handled by training and
compliance with specified procedures.

The problem with this solution is it
does not consider accidents that occur
when the components (either physical
or functional) work as intended (that
is, satisfy their requirements), which
is the most common type of accident
when software is involved.

Introducing software into the con-
trol of safety-critical systems changed
the world of engineering, allowing the
creation of complex systems not previ-
ously possible. At the same time, it cre-
ated grave difficulties in certifying and
assuring the safety of such systems.
Before the introduction of software
into the control of potentially danger-

S
OF TWA RE IS UBIQUITOUS in
safety-critical systems and
the size of the software can
be enormous—tens of mil-
lions of lines of code is not

unusual today. How can the safety of
such systems be assured? While gov-
ernment certification is only required
for a few systems (such as aircraft,
nuclear power plants, and some types
of medical devices), other commer-
cial products are potentially subject
to lawsuits and other liability issues
that force companies to have an effec-
tive strategy for dealing with safety. At
the extreme, highly publicized acci-
dents can lead to a company going out
of business. Some military systems,
which are often out of the public eye,
can have potentially catastrophic con-
sequences if they go wrong.

Almost all current approaches to
certifying critical systems or assuring
the safety of such systems were created
when our engineered products were
electromechanical. Meanwhile, enor-
mously complex software has been
introduced into these safety-critical
systems with relatively few significant
changes to the way systems are certi-
fied or assured. Software-related acci-
dents in every industry are occurring in
exactly the ways assurance approaches
determined were implausible or im-
possible or in ways that were over-
looked entirely during certification
and safety assessment. Creating effec-
tive approaches will require changes in
the way software is engineered today.

Limitations of Current
Certification Approaches
Current standards for certifying safety
still largely rely on failure-based and
component-based methods (Func-
tional Hazard Analysis (FHA), Fault
Tree Analysis (FTA), Failure Modes
and Effects Analysis (FMEA), and so
forth) developed at least 40–60 years
ago, when engineered systems were
primarily comprised of hardware. An
assumption was made that accidents
were caused by component failures.
That assumption was reasonable at the
time and led to the idea that high com-
ponent reliability could assure safety to
an acceptable level.

If accidents are assumed to result
from failures or human errors, then
the standard solution is to design high
reliability into products, perhaps by

Inside Risks
Certification of
Safety-Critical Systems
Seeking new approaches toward ensuring
the safety of software-intensive systems.

DOI:10.1145/3615860 Nancy G. Leveson and John P. Thomas

22 COMMUNICATIONS OF THE ACM | OCTOBER 2023 | VOL. 66 | NO. 10

O
opinion

I
M

A
G

E
 B

Y
 M

I
N

D
T

E
S

T

prevent the most important software
problems in complex systems today:
flawed requirements. Software can and
has operated in unsafe ways despite ex-
hibiting 100% reliability with respect to
satisfying its specified requirements.

In fact, many, if not most, software-
related accidents have occurred when
the software operated exactly as it was
designed and specified to operate, that
is, the software successfully imple-
mented the requirements given to the
software engineers. In these cases, the
requirements were flawed.

A few standards deal with software
by requiring generic activities such as
“identify errors” with no guidance on
how this can be accomplished or what
is considered good enough. They end
up with essentially useless generic
checklists, such as “are the require-
ments complete?” or “are the require-
ments traceable?” with no way to look
any deeper.

Formal methods will not solve the
problem, although it is often posited
they will. While formal methods can
potentially show the consistency of soft-
ware with its requirements, there exists
no formal model of engineered systems
(particularly one using discrete math)
and the humans who operate them that
can be used in this mathematical exer-
cise. Simply showing the consistency of
requirements with code does not solve
the most important problems.

Tony Hoare recognized this limita-
tion in a presentation at a workshop in
1996 just before his retirement, stat-
ing: “Ten years ago, researchers into
formal methods (and I was the most
mistaken among them) predicted that
the programming world would em-
brace with gratitude every assistance
promised by formalisation to solve the
problems of reliability that arise when
programs get large and more safety-
critical. Programs have now gotten very
large and very critical—well beyond the
scale which can be comfortably tackled
by formal methods. There have been
many problems and failures, but these
have nearly always been attributable to
inadequate analysis of requirements
or inadequate management control. It
has turned out that the world just does
not suffer significantly from the kind
of problem that our research was origi-
nally intended to solve.”1

Continuing to teach students that

ous systems, safety was never an issue
for software: It is a pure abstraction
and does not explode, catch on fire,
or otherwise directly harm humans.
It did, however, have the ability to im-
pact critical processes when it started
to be used in the monitoring or control
of critical systems in the late 1970s,
and such use has increased exponen-
tially today. Software undermined the
assumptions underlying the current
standard system certification and as-
surance approaches.

Certification of such systems is usu-
ally based on the concept of risk. Risk is
calculated traditionally by combining
the likelihood of a failure combined
with the severity of the result. Analy-
sis methods were created to calculate
likelihood in engineered systems by
combining individual component fail-
ures. If the resulting risk figures are not
deemed to be acceptable, more redun-
dancy, monitoring, and so forth is built
into the design until acceptable risk
calculations result. But how does one
determine the probability of software
behaving in an unsafe way?

There is also the problem of the hu-
man operators of these systems. Before
software control, human operators were
performing relatively simple tasks, such
as reading gauges and pushing buttons
activating physical controls (such as
brakes). Their reliability at performing
these simple tasks was assumed to be
measurable and predictable. Whether
this assumption is true is a matter for
debate but irrelevant today as such
activities are now being taken over by
computers. Humans are performing
the much more cognitively complex
tasks of supervising and monitoring the
computers, an activity for which, like
software, there is no way to evaluate the
likelihood of an error.

An additional problem arose with
the introduction of software in the
control of these systems. Underlying
the risk calculations are assumptions
about the independence of the system
components. Software in these sys-
tems couples the components in com-
plex and unexpected ways that violate
the basic independence assumptions
behind the calculations. Also, new,
more complex types of human opera-
tor errors (such as mode confusion)
can be caused by the design of soft-
ware, which made the problem of risk

assessment essentially intractable, al-
though people still try to do it and sys-
tems are certified using this approach.

Some Non-Solutions
As software was added to complex
systems, attempts were made to re-
use the same certification approaches
and solutions that had been used on
electromechanical and human sys-
tem components. However, the same
protective design techniques (such
as redundancy) are of limited use for
software and probabilistic approach-
es do not apply.

Why are these not a solution to the
software system safety problem? A pre-
vious Communications Inside Risks col-
umn discussed what will not work.2 To
briefly summarize: testing and after-
the-fact verification; formal methods;
reuse of application software; and so
on, cannot provide the level of assur-
ance required for safety in complex
systems. In addition, software is begin-
ning to be so large and complex itself
that after-the-fact assurance is no lon-
ger feasible. Applying standard hard-
ware design techniques such as re-
dundancy, fault-tolerance, and others
turned out to be much more difficult
for software than for hardware.

Attempts have been made to solve
the problem by improving the way soft-
ware is developed. The most common
has been to require increased “devel-
opment rigor” such as ensuring the
source code complies with program-
ming standards, the software archi-
tecture is verifiable, and verifying that
software meets requirements. Con-
cepts such as level of rigor (LOR), de-
sign assurance levels (DAL), and safety
integrity level (SIL) were created.

The problem is that simply in-
creasing development rigor does not

Introducing software
into the control
of safety critical
systems changed the
world of engineering.

OCTOBER 2023 | VOL. 66 | NO. 10 | COMMUNICATIONS OF THE ACM 23

opinion

O

only less safe, but more costly. New,
more powerful techniques are needed
for the planning stages of development
(both at the system and software level)
as well as new approaches for managing
large, long-lived, critical projects. The
cost and schedule overruns common
today in such systems is not sustainable
over the long term. It simply encourages
the skipping or watering down of criti-
cal steps to prevent such occurrences.

New approaches to identifying
system safety requirements. Writing
requirements down in a formal lan-
guage may support efforts to verify
that software meets a set of formal
requirements, but it does nothing to
address the single largest contributor
to software-related accidents—flawed
requirements. In fact, formal require-
ments specification languages may
degrade it by making the requirements
more difficult to review, validate, and
identify underlying assumptions. In ad-
dition, communication with interdis-
ciplinary experts, who may recognize
critical problems of which software
specialists are unaware, is inhibited by
using formal specification languages.
We need rigorous specification lan-
guages that are understandable and
reviewable by experts of various types.
How can requirements specifications
be derived from and easily traced to the
hazard analysis methods used to iden-
tify hazardous system behavior?

System and software engineering
methods to design in safety from the
beginning. Safety cannot be argued in
or assured after the fact, and we need
to stop promoting or relying on such
approaches. Complex systems must be
designed to be safe from the very be-
ginning of development.

Many certification and engineering
processes wait until after design and
implementation to perform validation.
While early engineering decisions can
have the largest impact on safety, they
are difficult or impossible to change
late in the development process. Per-
forming validation after design and
implementation not only drives enor-
mous rework costs, but it also creates
strong incentives during validation
to find minor patches that can be ar-
gued to be “safe enough” instead of the
strongest, most effective solutions that
may require more rework because they
were discovered late during validation.

formal methods are the solution to ev-
ery problem is not going to solve the
most important problems related to
safety. The field of computer science
and software engineering needs to ex-
pand what are considered to be aca-
demically acceptable solutions to com-
plex problems.

Faced with the dilemma of assuring
the safety of software control, a few en-
gineers have tried to use the same haz-
ard analysis techniques developed to
identify critical hardware failures but
to apply them to software. The prob-
lem they ran into was that these tech-
niques assume that accidents occur
only because of “failures”—including
functional failures—and that these
failures can be assigned probabilities.
Those assumptions do not apply for
software (or humans).

The fundamental flaw in the current
approach is that adding software con-
trol in engineered systems changes the
nature and cause of accidents beyond
the concept of simple failures. As stat-
ed earlier, the software or other com-
ponents may be operating exactly as
intended and specified, but the speci-
fied requirements may be flawed and
lead to an accident. Therefore, the tra-
ditional failure-based hazard analysis
techniques do not apply and entirely
new ones are needed.3

What Are Some Potential Solutions?
Old approaches to creating and assur-
ing safety-critical software do not scale
to today’s complex systems. Something
new is needed. What that might be
needs to be the focus of new research,
but after working on safety-critical sys-
tems for decades, we have some ideas
about promising directions to pur-
sue. Progress will require new ideas in
many areas.

More emphasis on the up-front de-
velopment effort. Much more effort is
needed in the early stages of complex
systems and the software contained in
them. While skipping or deferring the
planning steps such as concept devel-
opment, requirements specification,
and documentation practices may be
appropriate for short-lived, non-critical,
and relatively small software, they in-
troduce enormous vulnerabilities when
used in large, complex safety-critical
systems and can result in more rework
in the long run. The result may be not

Peer-reviewed
Resources for

Engaging Students

EngageCSEdu
provides faculty-

contributed,
peer-reviewed

course materials
(Open Educational

Resources) for
all levels of

introductory
computer science

instruction.

engage-csedu.org

24 COMMUNICATIONS OF THE ACM | OCTOBER 2023 | VOL. 66 | NO. 10

opinion

We need better ways to identify up
front the behavioral safety require-
ments and constraints for the system
as a whole and then to allocate them
to the system components. If some of
those components are implemented
by AI, how will it be assured that the
AI software implements its safety re-
quirements? How can system and
software architectures be created that
will assist in ensuring that the safety
requirements are satisfied? Are there
architectural design techniques that
allow ensuring that the architecture,
if implemented correctly, will enforce
the safety-related requirements?

Another part of the answer to design-
ing safety into a system lies in develop-
ing rigorous specification languages
that are understandable and review-
able by all the system experts. Model-
Based System Engineering (MBSE)
could be part of the solution, but only
if multiple modeling languages are de-
veloped and used. A model necessar-
ily involves ignoring some aspects of
a design. The currently most popular
MBSE modeling language cannot be
used for sophisticated and powerful
hazard analysis because it omits some
of the most important characteristics
and relationships that affect safety.

New software design approaches.
Simplicity is important for software as
is sophisticated documentation and
engineering support tools. Rube Gold-
berg inspired designs are not appropri-
ate for systems with hundreds of mil-
lions of lines of software. While we have
always recognized the importance of
coupling and cohesion in software de-
signs, much more powerful design and
analysis techniques are needed than
just these. Programming in the small is
becoming less and less relevant as so-
phisticated code-generation tools are
created. What other types of software
design approaches may be more use-
ful at the “programming in the large”
level? Is object oriented design appro-
priate for large-scale control software?
Might a new “control-oriented design”
approach be better? In general, should
all designs use the same method, or are
different design methods needed for
software in different types of systems?

Integrating human factors into sys-
tem and software development. The
role of human operators is changing
from direct control to monitoring the

operation of computers that control
the system components. At the same
time, the complexity of our systems
is overwhelming the capability of hu-
mans to operate them. While total au-
tonomy is a reasonable goal for many
relatively simple systems, taking hu-
man ingenuity, problem solving, flex-
ibility, and adaptability out of our
complex systems will lead to disaster.
The design of application software is
further contributing to the problems
by confusing operators and leading
to fatal mistakes—even when the soft-
ware operates exactly as designed (no
failures). Rather than simply trying to
eliminate humans or blaming them
for the accidents that result from
flawed software, software and system
engineers must be trained in sophisti-
cated human factors and work closely
with experts in the design of the total
system, not just the design of the soft-
ware components. New modeling and
analysis techniques are needed to sup-
port this integrated design and analy-
sis. The new techniques will need to
consider complex interactions, such
as software-induced human error, and
the techniques must be applicable
during early development before the
software is designed and before simu-
lators have been created for testing.
The techniques will need to be usable
by a diverse, interdisciplinary team of
experts, not only by software experts
who are fluent in a particular formal
requirements language.

New, more powerful hazard analysis
methods. Because traditional failure-
based hazard analysis methods do not
apply to software, new more sophisti-

cated hazard analysis is needed. These
new analysis approaches must involve
more than just identifying failures.3
The way we analyze and assure safety
needs to reflect the state of engineer-
ing today, not that of 50 years ago. We
have created a hazard analysis tech-
nique (called STPA) based on a new
assumption that losses result from
unsafe control over system and com-
ponent behavior rather than simply
component failures.4 The rapid and
extensive adoption of STPA by industry
and development of standards demon-
strates the need for newer and more
powerful hazard analysis methods that
include hardware, software, operators,
management, etc. How can STPA be
improved or extended? Can new and
improved modeling and analysis tech-
niques based on our theory of control
or a different underlying theory be cre-
ated? Are there other, even better, gen-
eral approaches to creating more pow-
erful hazard analysis techniques?

New, interdisciplinary system en-
gineering techniques: We need inter-
disciplinary development methods to
create safe systems. We cannot effec-
tively solve these complex problems
through decomposition—with human
factors experts analyzing one small
part (the operational procedures and
interfaces), software experts analyz-
ing one small part (the software), and
other engineers handling the rest.
Working separately on different parts
of the system, these groups all use
their own methods and models. Even
if they wanted to communicate, they
can’t do it effectively because they are
all using different languages and tools.
This is not a viable long-term approach
to system engineering for the complex
systems of today and the future. We
need methods that enable multiple
disciplines to collaborate effectively to-
gether on the whole system.

New certification approaches: The
certification approaches devised be-
fore software became ubiquitous need
to be changed. Small tweaks that es-
sentially treat software as the same as
hardware will not work. How should
the software-intensive systems of
the future be certified? How can and
should safety be assured without us-
ing the probabilistic approaches of the
past that are no longer feasible?

Improved management of change.

Simply increasing
development rigor
does not prevent
the most important
software problems
in complex systems
today: flawed
requirements.

OCTOBER 2023 | VOL. 66 | NO. 10 | COMMUNICATIONS OF THE ACM 25

opinion

approaches to creating, assuring, and
certifying software-intensive systems
are needed.

Safety is a system engineering prob-
lem, not a software engineering one.
But the system engineering solutions
cannot be created or implemented
without the participation of software
engineers: that is, software/hardware/
human factors engineers working to-
gether rather than in silos. Perhaps we
should not be training individuals to
separately fill these roles.

The solution to the problem is
likely to involve changes to standard
software engineering approaches and
definitely changes to education and
training. New models and analysis
methods, new architectural and de-
sign approaches, and more up-front
work before generating software
rather than depending on post-con-
struction validation will be required.
We need to design safety into systems
from the very beginning of develop-
ment, not depend on post-design
assurance. This will require that
software engineering become a true
subdiscipline of system engineering
and not just a glorified name for gen-
erating code. Software engineers will
need to work hand-in-hand with sys-
tem engineers and human factors en-
gineers to create acceptably safe and
secure systems comprising software,
hardware, and humans. This goal will
require enormous changes in educa-
tion and practice, which presents new
and important challenges for software
engineering research.

References
1. Hoare, C.A.R. Unification of theories: A challenge

for computing science. In Proceedings of the 11th
Workshop on Specification of Abstract Data Types
Joint with the 8th COMPASS Workshop on Recent
Trends in Data Type Specification, Springer-Verlag,
(1996), 49–57.

2. Leveson, N. Are you sure your software will not kill
anyone? Commun. ACM 63, 2 (Feb. 2020).

3. Leveson, N. Engineering a Safer World. MIT Press,
2012.

4. Leveson, N. and Thomas, J. STPA Handbook; https://
bit.ly/3QRRggH

Nancy G. Leveson (leveson@mit.edu) is Jerome C.
Hunsaker Professor in Aeronautics and Astronautics
in the Engineering Systems Laboratory at the
Massachusetts Institute of Technology, Cambridge, MA,
USA.

John P. Thomas (jthomase4@mit.edu) is a co-director
of the Engineering Systems Lab and Executive Director
of the Safety and Cybersecurity Research group at the
Massachusetts Institute of Technology, Cambridge, MA,
USA.

Copyright held by authors.

Almost all accidents occur after some
type of change. At the same time,
systems and their environments
change continually during operation.
These changes may be planned or
unplanned. Planned changes are the
most easily handled. Management
of change procedures are common-
ly found in industry. But even if the
change is planned (for example, an
upgrade or new version of the system),
changes in software that contains
tens of millions of lines of code raises
the problem of how to assure that the
change has not introduced potentially
dangerous behavior in some indirect
way? One part of the solution is the
identification (and recording) of de-
sign rationale and assumptions about
the system and its environment. Dif-
ferent design and development tech-
niques will be needed for sustainabil-
ity of critical software.

Unplanned changes are even more
difficult to handle, for example un-
anticipated changes in the hardware,
human behavior, or the environment.
Systems often migrate toward states
of higher risk during use. Leading in-
dicators are needed to identify when
a change in the system or its environ-
ment that could be critical has oc-
curred. In addition, improved methods
for making such changes are required.
Traceability is part of the answer, where
the hazards and design solutions iden-
tified early in the system development
can be traced to the parts of the code
that are affected and vice versa.

Conclusion
After-the-fact assurance and certifi-
cation is no longer practical or even
feasible for the large, complex, criti-
cal systems being created today. New

Many certification
and engineering
processes wait until
after design and
implementation to
perform validation.

Career & Job Center

The #1 Career Destination
to Find Computing Jobs.

Connecting you with
top industry employers.

Check out these new features
to help you � nd your next
computing job.

Access to new and exclusive
career resources, articles,
job searching tips and tools.

Gain insights and detailed
data on the computing
industry, including salary,
job outlook, ‘day in the
life’ videos, education, and
more with our new Career
Insights.

Receive the latest jobs
delivered straight to your
inbox with new exclusive
Job Flash™ emails.

Get a free resume review
from an expert writer listing
your strengths, weaknesses,
and suggestions to give you
the best chance of landing
an interview.

Receive an alert every time
a job becomes available
that matches your personal
pro� le, skills, interests, and
preferred location(s).

Visit https://jobs.acm.org/

ACM-PrintAd-2.25 x 9.5.indd 1ACM-PrintAd-2.25 x 9.5.indd 1 22/07/2021 10:25 PM22/07/2021 10:25 PM

26 COMMUNICATIONS OF THE ACM | OCTOBER 2023 | VOL. 66 | NO. 10

opinion

