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integrity; guaranteed real-time perfor-
mance; forensics-worthy accountabil-
ity, high-integrity evidence, and sound 
real-time and retrospective analysis; 
defenses against a wide ranges of phys-
ical, electronic, and other adversities; 
and coverage of numerous potential 
risks. Ideally, requirements should be 
very carefully specified at various archi-
tectural layers, preferably formally as 
much as possible in newly developed 
systems, and especially in particularly 
vulnerable components. Although this 
is usually not applicable to legacy sys-
tems, it is stated here as a farsighted 
goal for future developments.

C
OMMUNICATIONS’  INSIDE RISKS 

columns have long stressed 
the importance of total-
system awareness of riskful 
situations, some of which 

may be very difficult to identify in ad-
vance. Specifically, the desired prop-
erties of the total system should be 
specified as requirements. Those de-
sired properties are called emergent 
properties, because they often can-
not be derived solely from lower-layer 
component properties, and appear 
only with respect to the total system. 
Unfortunately, additional behavior 
of the total system may arise—which 
either defeats the ability to satisfy the 
desired properties, or demonstrates 
that the set of required properties was 
improperly specified.

In this column, I consider some 
cases in which total-system analysis is 
of vital importance, but generally very 
difficult to achieve with adequate as-
surance. Relevant failures may result 
from one event or even a combination 
of problems in hardware, software, 
networks, operational environments, 
and of course actions by administra-
tors, users, and misusers. All of the in-
teractions among these entities need 
to be considered, evaluated, and if 
potentially deleterious, controlled by 
whatever means available. The prob-
lem to be confronted here is trying to 
analyze an entire system as a compo-
sition of its components, rather than 
just considering its components indi-
vidually. In many cases, system failures 

tend to arise within the interactions 
and interdependencies among these 
components, depending on whether 
a system was designed modularly to 
minimize disruptive dependencies, 
with each module carefully specified.

Addressing this problem is a daunt-
ing endeavor, even for seasoned devel-
opers of critical systems. Whether ex-
plicitly defined or implicit, total-system 
requirements may be highly interdisci-
plinary, including stringent life-critical 
requirements for human safety; system 
survivability with reliability, robust-
ness, resilience, recovery, and fault tol-
erance; many aspects of security and 
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V Total-system architectures that 
must satisfy high-assurance require-
ments for trustworthiness may neces-
sarily encompass much of what is de-
scribed here. However, when executed 
on untrustworthy hardware and un-
trustworthy networks, the behavior of 
operating systems and application soft-
ware should be considered with suspi-
cion, as it suggests desirable emergent 
properties of the total system may have 
been compromised, or could easily be 
(resulting in adverse behavior).

An almost self-evident conclu-
sion is that total-system trustworthi-
ness with respect to realistic require-
ments under realistic assumptions is 
a very long-term goal that can never 
be completely achieved with any re-
alistic sense of assurance. However, 
many efforts in that direction would 
be extremely valuable in attempting 
to withstand many adversities that 
are uncovered today. Several efforts 
currently under way are noted in this 
column, and seem to be small steps 
in that direction for new systems, 
although as previously mentioned, 
much less applicable to existing lega-
cy systems. However, the enormity of 
the entire challenge should not dis-
courage us from making structural 
improvements that could help over-
come today’s shortsightedness.

Hierarchical Layering 
and Formal Methods
Hierarchically layered designs have 
considerable potential, but today 
are found mostly in well-designed 
operating systems and layered net-
working protocols. The concept has 
often been rejected because of erro-
neous nested efficiency arguments 
that can be overcome through good 
design practice. Formal specifica-
tion languages and formal analysis of 
software and hardware have become 
much more widely applied in recent 
years. Formal specifications can also 
exist for system requirements, high-
level system architectures, hardware 
ISAs, and actual hardware. Here are 
just a few early examples (many others 
are omitted for brevity).

 ˲ Dijkstra’s THE system4 provided 
a conceptual proof that a carefully 
layered hierarchical locking strategy 
could never cause a deadlock between 
layers—although a deadlock within a 

single layer was discovered years later).
 ˲ David Parnas’s seminal work on 

encapsulated abstraction presented 
advanced design considerations in the 
early 1970s. It has become a vital part 
of structured developments.11

 ˲ The SRI Hierarchical Development 
Methodology,13 which was the basis for 
PSOS9 (in which seven layers of hard-
ware abstractions and nine layers of 
system software were formally speci-
fied in a non-executable language, so 
that proofs could have been sewn to-
gether for each layer based on their 
lower ones. PSOS made extensive use 
of Parnas’s work. (Many other method-
ologies are also used more widely, but 
mostly with less rigor.)

 ˲ Virgil Gligor5 spearheaded some 
contemporaneous efforts to formal-
ize higher-layer policy issues in 1998. 
The Clark-Wilson paper2 extended the 
notion of security requirements into 
an informal representation of generic 
application-integrity principles.

 ˲ More recently, seL47,8 and CertiKOS6 
provide significant advances in software 
hypervisors (the latter internally layered 
approximately similar to HDM).

 ˲ The new CHERI-Arm Morello 
hardware instruction-set architecture 
with multiple operating systems14 in-
cludes proofs10 the ISA satisfies sev-
eral critical hardware trustworthiness 
properties. Hardware Morello chips 
and system-on-chip boards are cur-
rently being made available for experi-
mental use by Arm Ltd. That effort is 
only one step toward trustworthy hard-
ware; CHERI-RISC-V is also specified. 
As with all other hardware, the consis-
tency of the actual Morello hardware 
with its ISA specification remains un-
resolved—that is, the hardware must 
do exactly what is specified and noth-
ing else (for example, no supply-chain 

Addressing this 
problem is a daunting 
endeavor, even for 
seasoned developers 
of critical systems.
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cryptographic implementations and 
their applications is especially worri-
some, particularly when embedded 
in hardware or operating systems that 
can themselves be compromised.

 ˲ Real-time systems. The design of 
real-time systems with guaranteed 
performance and fail-safe/fail-soft/fail-
secure requirements must anticipate a 
much wider range of faults and failure 
modes than laptops. The same is true 
of some analog-digital and mixed-sig-
nal cyberphysical systems. Again, low-
level failures can compromise the abil-
ity to satisfy those requirements, as can 
simple application-specific code.

 ˲ Election integrity. Previous Inside 
Risks columns on election integrity 
have stressed that every part of the 
election process is a potential weak 
link. Existing commercial systems are 
seriously flawed, and many of the over-
all systemic weaknesses are external to 
computer systems and can make the 
technology more or less irrelevant if 
the results have been compromised.

 ˲ Quantum computing. In the future, 
quantum computing and its integra-
tion into networking with convention-
al computing are likely to be fraught 
with unanticipated problems. Also, 
the necessary error-correcting coding 
required in quantum computers may 
miscorrect results whenever the errors 
exceed the limits of the coding system. 
Thus, the choice of the coding system 
to fit the actual range of hardware fail-
ures becomes critical.

compromises such as added Trojan 
horses resulting from inserted analog 
circuitry15). In addition, Nirav Dave’s 
Ph.D. thesis3 extended the Bluespec 
executable specification language 
(BluespecSystem Verilog BSV) to BSL, 
which could enable an extended com-
pilation into both hardware (the lower 
layers) and software (the upper layers).

A long-term goal for the future 
would be to have hierarchical proofs 
(from the hardware up through hyper-
visors, operating systems, and applica-
tion code) to prove that specified to-
tal-system requirements (with stated 
assumptions) could be satisfied with 
some desired measure of assurance. 
There are still many potential pitfalls 
(incomplete requirements and specifi-
cations, inadequate development and 
assurance tools, sloppy programming, 
unreliable systems, malicious attacks, 
and so forth). However, assurance is 
necessary for each step along the way 
to this goal, as well as better analyses 
of entire systems. Unfortunately, that 
approach is not applicable to most leg-
acy hardware-software systems, which 
suggests the long-term approach must 
be injected early into future technol-
ogy developments.

Perhaps as an indication that more 
R&D is needed, DARPA is currently 
planning a new program called PROV-
ERS: Pipelined Reasoning of Verifiers 
Enabling Robust Systems for extend-
ing formal methods to work at the 
scale of real systems.

Illustrative Applications
Several relevant application areas in 
which the compromise of total-system 
attributes may be of great concern are 
considered here. In each case, there are 
difficulties in analyzing the relevant 
components, but also their embeddings 
into total systems; proving anything 
convincingly could be very difficult—if 
not generally impossible. Furthermore, 
even if a particular component could 
somehow be shown to be logically sound 
by itself (which often seems not to be the 
case), its compliant total-system behav-
ior may be compromised by exploita-
tion of hardware and operating system 
flaws that can undermine its integrity, 
or by poor application programs.

 ˲ Cryptography. Cryptography is 
sometimes thought of as a panacea. 
However, overreliance on the very best 
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threats that remain uncovered.
 ˲ Address myriad other problems 

proactively throughout.

Conclusion
Significant progress is being made with 
some of the steps toward the desired 
long-term goal of total-system trust-
worthiness. Of course, all of this is still 
nowhere near enough, considering all 
the extrinsic problems we face. Howev-
er, the goal is nevertheless worth pur-
suing for new critical systems—to the 
extent it is realistic. This suggests we 
must begin now to recognize the rel-
evance of the overall long-term goal. 
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 ˲ Multilevel security. One of the 
most demanding areas of trustworthy 
computing and communications in-
volves being able to concurrently deal 
with different levels of critical security 
(for example, top secret to unclassi-
fied). With very few exceptions, most 
of the efforts in the 1970s and 1980s 
assumed implementing the required 
separation in a software kernel would 
be good enough. Unfortunately, the 
available hardware was (and still is) 
inadequate. Notable exceptions to 
the software-only approach included 
Butler Lampson’s BCC-500 computer 
(Berkeley Computing Corp.) in the late 
1960s, the hardware-software MLS ret-
rofit for Multics in the early 1970s, and 
PSOS (which sought to ensure MLS as 
a strongly typed hardware capability 
extension) in the mid-1970s.

 ˲ Artificial intelligence. The trust-
worthiness of systems based on deep 
learning, neural networks, and many 
other aspects of what is generally re-
ferred to as artificial intelligence is 
typically difficult to prove or otherwise 
evaluate, for all possible circumstanc-
es. Also, AI elements that require self-
adaptation or training may have not 
been programmed or trained properly 
for their intended use; also, algorithms 
and training data may be intentionally 
or inadvertently biased. Certainly, a 
trained neural network can do no bet-
ter than the data it is fed. In generally, 
the use of AI would seem very risky in 
life-critical and other systems with 
stringent requirements—especially 
where deterministic or demonstrably 
sound results would be essential (see 
for example, Parnas12,a). Nevertheless, 
AI is very popular, and is finding many 
diverse useful applications.

These examples expose just tips of 
multiple icebergs, but are intended to 
be suggestive of the difficulties that 
must be overcome.

In each of these cases, there is also 
a desirability of having some indepen-
dent sanity checks ensure the total-
system results are correct—or at least 
within realistic bounds—with respect 
to the stated requirements. An anal-
ogy in formal theorem proving is to use 
trustworthy proof checkers to check the 

a This article refers to many additional refer-
ences that deserve to be included here, such as 
Parnas’s remarkably prescient early papers.

proofs, although that still assumes the 
underlying assumptions and the proof 
checkers are correct and unbiased.

What Is Needed?
The desiderata were established many 
years ago, but are still not used widely 
in practice. A grossly oversimplified set 
might include something like this:

 ˲ Consider established principles 
for total-system development and 
trustworthiness, and invoke those that 
are most relevant.

 ˲ Establish well-defined total-sys-
tem requirements against which evalu-
ations can be made, and specify them 
formally where possible.

 ˲ Establish well-defined system ar-
chitectures, hierarchically defining 
accessible interfaces at each major 
interface, from hardware to operating 
systems and applications (for example, 
Robinson-Levitt,13 which was applied 
to conceptual hardware and software 
in PSOS, and to the Ford Aerospace 
KSOS1 MLS kernel in software.

 ˲ Use formal specifications and for-
mal methods by which formal analy-
sis is possible, particularly in systems 
with particularly critical require-
ments. Analysis might include depen-
dency analysis (seeking dependence 
only on less-trustworthy entities, and 
avoiding circular dependences that 
might cause deadlocks), and proofs 
of essential properties. Hierarchical 
proofs from the ground up are theo-
retically supported,13 but still lurk-
ing in the future if they were to span 
hardware, operating systems, applica-
tions, and total-system requirements 
as much as possible—leaving out-of-
scope assumptions clearly stated via 
itemization of unaddressed or miss-
ing requirements, and enumerating 

There is also a 
desirability of having 
some independent 
sanity checks ensure 
the total-system 
results are correct.


