
30 COMMUNICATIONS OF THE ACM | JUNE 2022 | VOL. 65 | NO. 6

V
viewpoints

I
M

A
G

E
 F

R
O

M
 S

H
U

T
T

E
R

S
T

O
C

K
.C

O
M

integrity; guaranteed real-time perfor-
mance; forensics-worthy accountabil-
ity, high-integrity evidence, and sound
real-time and retrospective analysis;
defenses against a wide ranges of phys-
ical, electronic, and other adversities;
and coverage of numerous potential
risks. Ideally, requirements should be
very carefully specified at various archi-
tectural layers, preferably formally as
much as possible in newly developed
systems, and especially in particularly
vulnerable components. Although this
is usually not applicable to legacy sys-
tems, it is stated here as a farsighted
goal for future developments.

C
OMMUNICATIONS’ INSIDE RISKS

columns have long stressed
the importance of total-
system awareness of riskful
situations, some of which

may be very difficult to identify in ad-
vance. Specifically, the desired prop-
erties of the total system should be
specified as requirements. Those de-
sired properties are called emergent
properties, because they often can-
not be derived solely from lower-layer
component properties, and appear
only with respect to the total system.
Unfortunately, additional behavior
of the total system may arise—which
either defeats the ability to satisfy the
desired properties, or demonstrates
that the set of required properties was
improperly specified.

In this column, I consider some
cases in which total-system analysis is
of vital importance, but generally very
difficult to achieve with adequate as-
surance. Relevant failures may result
from one event or even a combination
of problems in hardware, software,
networks, operational environments,
and of course actions by administra-
tors, users, and misusers. All of the in-
teractions among these entities need
to be considered, evaluated, and if
potentially deleterious, controlled by
whatever means available. The prob-
lem to be confronted here is trying to
analyze an entire system as a compo-
sition of its components, rather than
just considering its components indi-
vidually. In many cases, system failures

tend to arise within the interactions
and interdependencies among these
components, depending on whether
a system was designed modularly to
minimize disruptive dependencies,
with each module carefully specified.

Addressing this problem is a daunt-
ing endeavor, even for seasoned devel-
opers of critical systems. Whether ex-
plicitly defined or implicit, total-system
requirements may be highly interdisci-
plinary, including stringent life-critical
requirements for human safety; system
survivability with reliability, robust-
ness, resilience, recovery, and fault tol-
erance; many aspects of security and

Inside Risks
Toward Total-System
Trustworthiness
Considering how to achieve the long-term goal
to systemically reduce risks.

DOI:10.1145/3532631 Peter G. Neumann

JUNE 2022 | VOL. 65 | NO. 6 | COMMUNICATIONS OF THE ACM 31

viewpoints

V Total-system architectures that
must satisfy high-assurance require-
ments for trustworthiness may neces-
sarily encompass much of what is de-
scribed here. However, when executed
on untrustworthy hardware and un-
trustworthy networks, the behavior of
operating systems and application soft-
ware should be considered with suspi-
cion, as it suggests desirable emergent
properties of the total system may have
been compromised, or could easily be
(resulting in adverse behavior).

An almost self-evident conclu-
sion is that total-system trustworthi-
ness with respect to realistic require-
ments under realistic assumptions is
a very long-term goal that can never
be completely achieved with any re-
alistic sense of assurance. However,
many efforts in that direction would
be extremely valuable in attempting
to withstand many adversities that
are uncovered today. Several efforts
currently under way are noted in this
column, and seem to be small steps
in that direction for new systems,
although as previously mentioned,
much less applicable to existing lega-
cy systems. However, the enormity of
the entire challenge should not dis-
courage us from making structural
improvements that could help over-
come today’s shortsightedness.

Hierarchical Layering
and Formal Methods
Hierarchically layered designs have
considerable potential, but today
are found mostly in well-designed
operating systems and layered net-
working protocols. The concept has
often been rejected because of erro-
neous nested efficiency arguments
that can be overcome through good
design practice. Formal specifica-
tion languages and formal analysis of
software and hardware have become
much more widely applied in recent
years. Formal specifications can also
exist for system requirements, high-
level system architectures, hardware
ISAs, and actual hardware. Here are
just a few early examples (many others
are omitted for brevity).

 ˲ Dijkstra’s THE system4 provided
a conceptual proof that a carefully
layered hierarchical locking strategy
could never cause a deadlock between
layers—although a deadlock within a

single layer was discovered years later).
 ˲ David Parnas’s seminal work on

encapsulated abstraction presented
advanced design considerations in the
early 1970s. It has become a vital part
of structured developments.11

 ˲ The SRI Hierarchical Development
Methodology,13 which was the basis for
PSOS9 (in which seven layers of hard-
ware abstractions and nine layers of
system software were formally speci-
fied in a non-executable language, so
that proofs could have been sewn to-
gether for each layer based on their
lower ones. PSOS made extensive use
of Parnas’s work. (Many other method-
ologies are also used more widely, but
mostly with less rigor.)

 ˲ Virgil Gligor5 spearheaded some
contemporaneous efforts to formal-
ize higher-layer policy issues in 1998.
The Clark-Wilson paper2 extended the
notion of security requirements into
an informal representation of generic
application-integrity principles.

 ˲ More recently, seL47,8 and CertiKOS6
provide significant advances in software
hypervisors (the latter internally layered
approximately similar to HDM).

 ˲ The new CHERI-Arm Morello
hardware instruction-set architecture
with multiple operating systems14 in-
cludes proofs10 the ISA satisfies sev-
eral critical hardware trustworthiness
properties. Hardware Morello chips
and system-on-chip boards are cur-
rently being made available for experi-
mental use by Arm Ltd. That effort is
only one step toward trustworthy hard-
ware; CHERI-RISC-V is also specified.
As with all other hardware, the consis-
tency of the actual Morello hardware
with its ISA specification remains un-
resolved—that is, the hardware must
do exactly what is specified and noth-
ing else (for example, no supply-chain

Addressing this
problem is a daunting
endeavor, even for
seasoned developers
of critical systems.

CNM /
AD TK

32 COMMUNICATIONS OF THE ACM | JUNE 2022 | VOL. 65 | NO. 6

viewpoints

cryptographic implementations and
their applications is especially worri-
some, particularly when embedded
in hardware or operating systems that
can themselves be compromised.

 ˲ Real-time systems. The design of
real-time systems with guaranteed
performance and fail-safe/fail-soft/fail-
secure requirements must anticipate a
much wider range of faults and failure
modes than laptops. The same is true
of some analog-digital and mixed-sig-
nal cyberphysical systems. Again, low-
level failures can compromise the abil-
ity to satisfy those requirements, as can
simple application-specific code.

 ˲ Election integrity. Previous Inside
Risks columns on election integrity
have stressed that every part of the
election process is a potential weak
link. Existing commercial systems are
seriously flawed, and many of the over-
all systemic weaknesses are external to
computer systems and can make the
technology more or less irrelevant if
the results have been compromised.

 ˲ Quantum computing. In the future,
quantum computing and its integra-
tion into networking with convention-
al computing are likely to be fraught
with unanticipated problems. Also,
the necessary error-correcting coding
required in quantum computers may
miscorrect results whenever the errors
exceed the limits of the coding system.
Thus, the choice of the coding system
to fit the actual range of hardware fail-
ures becomes critical.

compromises such as added Trojan
horses resulting from inserted analog
circuitry15). In addition, Nirav Dave’s
Ph.D. thesis3 extended the Bluespec
executable specification language
(BluespecSystem Verilog BSV) to BSL,
which could enable an extended com-
pilation into both hardware (the lower
layers) and software (the upper layers).

A long-term goal for the future
would be to have hierarchical proofs
(from the hardware up through hyper-
visors, operating systems, and applica-
tion code) to prove that specified to-
tal-system requirements (with stated
assumptions) could be satisfied with
some desired measure of assurance.
There are still many potential pitfalls
(incomplete requirements and specifi-
cations, inadequate development and
assurance tools, sloppy programming,
unreliable systems, malicious attacks,
and so forth). However, assurance is
necessary for each step along the way
to this goal, as well as better analyses
of entire systems. Unfortunately, that
approach is not applicable to most leg-
acy hardware-software systems, which
suggests the long-term approach must
be injected early into future technol-
ogy developments.

Perhaps as an indication that more
R&D is needed, DARPA is currently
planning a new program called PROV-
ERS: Pipelined Reasoning of Verifiers
Enabling Robust Systems for extend-
ing formal methods to work at the
scale of real systems.

Illustrative Applications
Several relevant application areas in
which the compromise of total-system
attributes may be of great concern are
considered here. In each case, there are
difficulties in analyzing the relevant
components, but also their embeddings
into total systems; proving anything
convincingly could be very difficult—if
not generally impossible. Furthermore,
even if a particular component could
somehow be shown to be logically sound
by itself (which often seems not to be the
case), its compliant total-system behav-
ior may be compromised by exploita-
tion of hardware and operating system
flaws that can undermine its integrity,
or by poor application programs.

 ˲ Cryptography. Cryptography is
sometimes thought of as a panacea.
However, overreliance on the very best

AD TK

The enormity
of the entire
challenge should not
discourage us
from making
structural
improvements
that could help
overcome today’s
shortsightedness.

JUNE 2022 | VOL. 65 | NO. 6 | COMMUNICATIONS OF THE ACM 33

viewpoints

threats that remain uncovered.
 ˲ Address myriad other problems

proactively throughout.

Conclusion
Significant progress is being made with
some of the steps toward the desired
long-term goal of total-system trust-
worthiness. Of course, all of this is still
nowhere near enough, considering all
the extrinsic problems we face. Howev-
er, the goal is nevertheless worth pur-
suing for new critical systems—to the
extent it is realistic. This suggests we
must begin now to recognize the rel-
evance of the overall long-term goal.

References
1. Berson, T.A. and Barksdale, G.L., Jr. KSOS:

Development Methodology for a Secure Operating
System, National Computer Conference, AFIPS
Conference Proceedings 48 (1979), 365–371.

2. Clark, D. and Wilson, D.R. A comparison of commercial
and military computer security policies. In
Proceedings of the 1987 Symposium on Security and
Privacy. IEEE Computer Society, Oakland, CA (Apr.
1987), 184–194.

3. Dave, N. A Unified Model for Hardware/Software Co-
design, MIT Ph.D. thesis. 2011.

4. Dijkstra, E.W. The structure of the THE multipro-
gramming system. Commun. ACM 11, 5 (May 1968),
341–346.

5. Gligor, V.D. and Gavrila, S.I. Application-oriented
security policies and their composition. In Proceedings
of the 1998 Workshop on Security Paradigms,
Cambridge, England, 1998.

6. Gu, R. et al. CertiKOS: An extensible architecture
for building certified concurrent OS kernels. In
Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI’16). (Nov.
2016), 653–669.

7. Heiser, G., Klein, G., and Andronick, J. seL4 in
Australia: From research to real-world trustworthy
systems. Commun. ACM 63, 4 (Apr. 2020), 72–75.

8. Klein, G. et al. Comprehensive formal verification of
an OS microkernel. ACM Transactions on Computer
Systems 32, 1 (Feb. 2014).

9. Neumann, P.G. et al. A Provably Secure Operating
System: The System, Its Applications, and Proofs.
SRI International. 1980.

10. Neumann, P.G. Fundamental trustworthiness
principles in CHERI. In A. Shrobe, D. Shrier, and A.
Pentland, Eds. New Solutions for Cybersecurity. MIT
Press/Connection Science (Jan. 2018); https://bit.
ly/3kgxyt6

11. Nienhuis, K. et al. Rigorous engineering for hardware
security: Formal modeling and proof in the CHERI
design and implementation process. In Proceedings
of the 36th IEEE Symposium on Security and Privacy,
May 2020.

12. Parnas, D.L., Clements, P.C., and Weiss, D.M. The
modular structure of complex systems. IEEE
Transactions on Software Engineering SE-11, 3 (Mar.
1985), 259–266.

13. Parnas, D.L. The real risks of artificial intelligence.
Commun. ACM (Oct. 2017).

14. Robinson, L. and Levitt, K.N. Proof techniques for
hierarchically structured programs. Commun. ACM 20,
4 (Apr. 1977), 271–283.

15. Watson, R.N.M. et al. Cambridge-SRI CHERI-ARM
Morello and CHERI-RISC-V; https://www.cl.cam.
ac.uk/research/security/ctsrd/cheri/

16. Yang et al. A2: Analog malicious hardware. In
Proceedings of the 2016 IEEE Symposium on Security
and Privacy. IEEE Computer Society.

Peter G. Neumann (neumann@csl.sri.com) is Chief
Scientist of the SRI International Computer Science
Lab, and has moderated the ACM Risks Forum since its
beginning in 1985.

Copyright held by author.

 ˲ Multilevel security. One of the
most demanding areas of trustworthy
computing and communications in-
volves being able to concurrently deal
with different levels of critical security
(for example, top secret to unclassi-
fied). With very few exceptions, most
of the efforts in the 1970s and 1980s
assumed implementing the required
separation in a software kernel would
be good enough. Unfortunately, the
available hardware was (and still is)
inadequate. Notable exceptions to
the software-only approach included
Butler Lampson’s BCC-500 computer
(Berkeley Computing Corp.) in the late
1960s, the hardware-software MLS ret-
rofit for Multics in the early 1970s, and
PSOS (which sought to ensure MLS as
a strongly typed hardware capability
extension) in the mid-1970s.

 ˲ Artificial intelligence. The trust-
worthiness of systems based on deep
learning, neural networks, and many
other aspects of what is generally re-
ferred to as artificial intelligence is
typically difficult to prove or otherwise
evaluate, for all possible circumstanc-
es. Also, AI elements that require self-
adaptation or training may have not
been programmed or trained properly
for their intended use; also, algorithms
and training data may be intentionally
or inadvertently biased. Certainly, a
trained neural network can do no bet-
ter than the data it is fed. In generally,
the use of AI would seem very risky in
life-critical and other systems with
stringent requirements—especially
where deterministic or demonstrably
sound results would be essential (see
for example, Parnas12,a). Nevertheless,
AI is very popular, and is finding many
diverse useful applications.

These examples expose just tips of
multiple icebergs, but are intended to
be suggestive of the difficulties that
must be overcome.

In each of these cases, there is also
a desirability of having some indepen-
dent sanity checks ensure the total-
system results are correct—or at least
within realistic bounds—with respect
to the stated requirements. An anal-
ogy in formal theorem proving is to use
trustworthy proof checkers to check the

a This article refers to many additional refer-
ences that deserve to be included here, such as
Parnas’s remarkably prescient early papers.

proofs, although that still assumes the
underlying assumptions and the proof
checkers are correct and unbiased.

What Is Needed?
The desiderata were established many
years ago, but are still not used widely
in practice. A grossly oversimplified set
might include something like this:

 ˲ Consider established principles
for total-system development and
trustworthiness, and invoke those that
are most relevant.

 ˲ Establish well-defined total-sys-
tem requirements against which evalu-
ations can be made, and specify them
formally where possible.

 ˲ Establish well-defined system ar-
chitectures, hierarchically defining
accessible interfaces at each major
interface, from hardware to operating
systems and applications (for example,
Robinson-Levitt,13 which was applied
to conceptual hardware and software
in PSOS, and to the Ford Aerospace
KSOS1 MLS kernel in software.

 ˲ Use formal specifications and for-
mal methods by which formal analy-
sis is possible, particularly in systems
with particularly critical require-
ments. Analysis might include depen-
dency analysis (seeking dependence
only on less-trustworthy entities, and
avoiding circular dependences that
might cause deadlocks), and proofs
of essential properties. Hierarchical
proofs from the ground up are theo-
retically supported,13 but still lurk-
ing in the future if they were to span
hardware, operating systems, applica-
tions, and total-system requirements
as much as possible—leaving out-of-
scope assumptions clearly stated via
itemization of unaddressed or miss-
ing requirements, and enumerating

There is also a
desirability of having
some independent
sanity checks ensure
the total-system
results are correct.

