
JUNE 2019 | VOL. 62 | NO. 6 | COMMUNICATIONS OF THE ACM 26

V
viewpoints

C
O

L
L

A
G

E
 B

Y
 A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

,
U

S
I

N
G

 S
H

U
T

T
E

R
S

T
O

C
K

of large classes of attacks. It relies on
trustworthy models of the architec-
tural abstraction—the hardware/soft-
ware interface—and those too have
advanced recently, in work by the au-
thors and others.1,6

Looking Behind
the Hardware Curtain
It has recently become clear that this is
not enough, in several ways. First, pro-

S
PECTRE,11 MELTDOWN,13 FORE-

SHADOW, 18,21 Rowhammer,9
Spoiler,9—suddenly it seems
as if there is a new and un-
ending stream of vulner-

abilities in processors. Previous niche
concepts such as speculative execution
and cache timing side-channels have
taken center stage. Across the whole
hardware/software system, new vulner-
abilities such as insufficiently protect-
ed memory access from untrustworthy
PCIe or Thunderbolt USB-C periph-
erals,15 malicious Wi-Fi firmware,4 or
alleged hardware implants14 are also
starting to emerge.

We may be facing a crisis in systems
design. What might we do about it?
Here, we consider whether existing ap-
proaches are adequate, and where sub-
stantial new work is needed.

Prove, Don’t Patch
Many existing commercial operating
systems have extensive vulnerabili-
ties. The MITRE repository of com-
mon software security vulnerabilities
(CVEs: http://cve.mitre.org) currently
has over 110,000 open enumerated
vulnerabilities that have been report-
ed (excluding ones that have been re-
solved, and totally ignoring countless
other vulnerabilities that have never
been reported); the list is growing at
a rate of approximately 50 new vulner-
abilities each day. Patches cannot pos-
sibly keep up with the weaknesses. In
addition, patching silicon takes years
and potentially costs billions of dol-

lars, which clearly tilts the balance
firmly in favor of the attacker.

Recent advances such as the seL4
microkernel,10 the CertiKOS virtual-
machine hierarchy,8 and the Comp-
Cert verified compiler12 have signifi-
cantly contributed to the state of the
art in formally proven correctness of
operating-system kernels. This tech-
nology is not yet widespread, but it of-
fers the potential to prove the absence

Inside Risks
Through Computer
Architecture, Darkly
Total-system hardware and microarchitectural
issues are becoming increasingly critical.

DOI:10.1145/3325284 A.T. Markettos, R.N.M. Watson, S.W. Moore, P. Sewell, and P.G. Neumann

http://dx.doi.org/10.1145/3325284

27 COMMUNICATIONS OF THE ACM | JUNE 2019 | VOL. 62 | NO. 6

viewpoints

puters. Many components have unin-
tended computational power, which
can be perverted—from the x86 page-
fault handler2 to DMA controllers.16
This presents a challenge to under-
standing where all the computation is
happening, such as what is software
rather than hardware.

Toward Robustly Engineered
Trustworthy Systems
Total-system approaches to security
defenses are important (see, for ex-
ample, Bellovin3). A further lesson
from physical-layer attacks is why
such attacks are not more of a threat
today—due to further layers of pro-
tection. It is not enough to extract
the cryptographic key from a banking
card using laser fault injection; the at-
tacker must also use it to steal money.
At this point the bank’s system-level
defenses apply, such as transaction
limits and fraud detection. If the key
relates only to one account, the payoff
involves only money held by that cus-
tomer, not all other customers. Ap-
plication-level compartmentalization
limits the reward, and thus makes the
attack economically nonviable.

Another approach is to ensure that
richer contextual information is avail-
able that allows the hardware to under-
stand and enforce security properties.
The authors are on a team designing,
developing, and formally analyzing
the CHERI hardware instruction-set
architecture,20 as well as CHERI oper-
ating system and application security.
The CHERI ISA can enable hardware to
enforce pointer provenance, arbitrarily
fine-grained access controls to virtual
memory and to abstract system ob-
jects, as well as both coarse- and fine-
grained compartmentalization. To-
gether, these can provide enforceable
separation and controlled sharing, al-
lowing trustworthy and untrustworthy
software (including unmodified legacy
code) to coexist securely. Since the
hardware has awareness of software
constructs such as pointers and com-
partments, it can protect them, and we
can reason about the protection guar-
antees—for example, formally proving
the architectural abstraction enforces
specific security properties. We believe
this CHERI system architecture has
significant potential to provide unprec-
edented total-system trustworthiness,

cessor hardware (typically subject to
extensive verification) has long been as-
sumed to provide a solid foundation for
software, but increasingly suffers from
its own vulnerabilities. Second, increas-
ing complexity and the way systems are
composed of many hardware/software
pieces, from many vendors, means one
cannot think just in terms of a single-
processor architecture. We need to take
a holistic view that acknowledges the
complexities of this landscape. Third,
and most seriously, these new attacks
involved phenomena that cut across the
traditional architectural abstractions,
which have intentionally only described
the envelopes of allowed functional be-
havior of hardware implementations,
to allow implementation variation in
performance. That flexibility has been
essential to hardware performance in-
creases—but the attacks involve subtle
information flows via performance
properties. They expose the hidden con-
sequences of some of the microarchi-
tectural innovations that have given us
ever-faster sequential computation in
the last decades, as caching and predic-
tion leads to side-channels.

Hardware Vulnerabilities
Ideally, security must be built from the
ground up. How can we solve the prob-
lem by building the foundations of se-
cure hardware?

For years, hardware security to many
people has meant focusing on the
physical layers. Power/electromagnetic
side-channels and fault injection are
common techniques for extracting
cryptographic secrets by manipulating
the physical implementation of a chip.
These are not without effectiveness,
but it is notable that the new spate of
attacks represents entirely different,
and more potent, attack vectors.

One lesson from the physical-layer
security community is that implemen-
tation is critical. Hardware definition
languages (HDLs) are compiled down to
connections between library logic cells.
The logic cells are then placed and rout-
ed and the chip layer designs produced.
One tiny slip—at any level from archi-
tecture to HDL source and compiler, to
cell transistor definitions, routing, pow-
er, thermals, electromagnetics, dopant
concentrations and crystal lattices—
can cause a potentially exploitable mal-
function. Unlike the binary code of mal-

ware, there is no way to observe many
of these physical properties. As a result,
systems are more vulnerable to both de-
sign mistakes and supply-chain attacks.

As the recent attacks demonstrate,
side-channels are becoming more
powerful than expected. Traditional
physical-layer side-channels are a sig-
nals-from-noise problem. If you record
enough traces of the power usage, with
powerful enough signal processing,
you can extract secrets. Architectural
side-channels have more bandwidth
and better signal-to-noise ratios, leak-
ing much more data more reliably.

If we take a systems-oriented view,
what can we say about the problem?
First of all, the whole is often worse
than the sum of its parts. Systems are
composed of disparate components,
often sourced from different vendors,
and often granting much greater access
to resources than needed to fulfill their
purpose; this can be a boon for attack-
ers. For example, in Google Project Ze-
ro’s attack on the Broadcom Wi-Fi chip
inside iPhones,4 the attackers jumped
from bad Wi-Fi packets to installing
malicious code on the Wi-Fi chip, and
then to compromising iOS on the ap-
plication processor. Their ability to use
the Wi-Fi chip as a springboard mul-
tiplied their efficacy. It is surprisingly
difficult to reason about the behavior of
such compositions of components.5 At-
tackers may create new side-channels
through unexpected connections—for
example, a memory DIMM that can
send network packets via a shared I2C
bus with an Ethernet controller.17

Hardware engineers often talk
about ‘parasitic’ resistance or capaci-
tance—components that were not put
there by the designer but were created
by the physical implementation, often
unhelpfully sucking away signals or
power. Today we have parasitic com-

Designers need
to understand more
of what takes place
in layers above
or below their field
of expertise.

JUNE 2019 | VOL. 62 | NO. 6 | COMMUNICATIONS OF THE ACM 28

viewpoints

including addressing some of the side-
channel attacks that were unknown at
the time of its conception.19

Such architectural guarantees enable
more secure implementation of currently
insecure languages (such as C/C++) and
can put demonstrably secure operat-
ing-system kernels on a more secure
foundation. Similar approaches may
apply in other domains, for example
between vulnerable components
across a system-on-chip.

Engineering such systems requires
a more holistic view, with a tighter in-
terplay between hardware, operating
systems and applications. In particu-
lar, designers need to understand more
of what takes place in layers above or
below their field of expertise. Better
architectural models enable more ro-
bust verification of security proper-
ties, and amortizing verification costs
across projects helps defenders but
not attackers. Such verification must
be inclusive, testing all the aspects of
a system including the boundaries of
implementation-defined behavior.

Better verification can defend us
against new vulnerabilities present in
the abstractions it is based upon, but
not against those that involve phenom-
ena that are not modeled. An open
question is whether there is an abstrac-
tion between an architectural specifi-
cation and a full hardware implemen-
tation that allows us to fully reason
about potential leakage, without being
so complex as to being intractable.

Conclusion
Traditional models—in which design-
ers have free reign within tightly con-
strained layers—are no longer fit for
purpose. Hardware/software system
security architects need better aware-
ness of what comes above and below
them, to be able to reason about what
happens at other levels of abstraction,
and to understand the effects of com-
position. Managing overall complex-
ity must fully capture information that
might be relevant for security analysis,
especially for entirely new classes of
vulnerabilities. The defensive battle
has only just begun.

References
1. Armstrong, A. et al. ISA Semantics for ARMv8-A,

RISC-V, and CHERI-MIPS. In Proceedings of the
Principles of Programming Languages Conference
(POPL) 2019.

2. Bangert, J. et al. The page-fault weird machine:
Lessons in instruction-less computation. In
Proceedings of the USENIX Workshop on Offensive
Technologies (WOOT), 2013.

3. Bellovin, S.M. and Neumann, P.G. The big picture: A
systems-oriented view of trustworthiness. Commun.
ACM 61, 11 (Nov. 2018), 24–26.

4. Beniamini, G. Over The Air: Exploiting Broadcom’s Wi-Fi
Stack; https://bit.ly/2oA6GJL

5. Gerber, S. et al. Not your parents’ physical address
space. In Proceedings of the Hot Topics in Operating
Systems Conference (HotOS-XV) 2015.

6. Goel, S., Hunt, W.A. Jr., and Kaufmann, M. Engineering
a formal, executable x86 ISA simulator for software
verification. Provably Correct Systems (ProCoS), 2017.

7. Google Project Zero, 2018; https://bit.
ly/2CAQzTMGu, R. et al. CertiKOS: An Extensible
Architecture for Building Certified Concurrent OS
Kernels. OSDI 2016, 653–669; See also https://bit.
ly/2Uzj9sI for ongoing work.

8. Islam, S. et al. SPOILER: Speculative Load Hazards
Boost Rowhammer and Cache Attacks, arXiv e-prints
(Mar. 1, 2019); https://bit.ly/2TxWdhk

9. Klein, G. et al. Comprehensive formal verification of an
OS microkernel. ACM Trans. Computer Systems 2014;
See also https://bit.ly/2UPKgEY for ongoing work.

10. Kocher, P. et al. Spectre attacks: Exploiting
speculative execution. ArXiv e-prints (Jan. 2018);
https://bit.ly/2lUpJLk

11. Leroy, X. A formally verified compiler back-end. Journal
of Automated Reasoning 43, 4 (2009), 363–446.

12. Lipp, M. et al. Meltdown, 2018; https://bit.ly/2E6myYl
13. Markettos, A.T. Making sense of the Supermicro

motherboard attack; https://bit.ly/2PqOnld
14. Markettos, A.T. et al. Thunderclap: Exploring

vulnerabilities in operating system IOMMU protection
via DMA from untrustworthy peripherals. In
Proceedings of the Network and Distributed Systems
Security Symposium (NDSS), (Feb. 2019).

15. Rushanan, M. and Checkoway, S. Run-DMA. In
Proceedings of the WOOT 2015 Conference. (2015).

16. Sutherland, G. Secrets of the motherboard ([sh*t]
my chipset says). In Proceedings of the 44CON 2017,
(Sept. 2017).

17. Van Bulck, J. et al. Foreshadow: Extracting the keys
to the Intel SGX kingdom with transient out-of-order
execution. USENIX Security (Aug. 15–17, 2018);
https://bit.ly/2DusEDT

18. Watson, R.N.M. et al. Capability Hardware Enhanced
RISC Instructions (CHERI): Notes on the Meltdown
and Spectre Attacks. Technical Report UCAM-
CL-TR-916, University of Cambridge, Computer
Laboratory (Feb. 2018); https://bit.ly/2DuVDrr

19. Watson, R.N.M. et al. Capability Hardware Enhanced
RISC Instructions (CHERI): CHERI Instruction-set
Architecture, Version 7, Technical Report UCAM-
CL-TR-927, University of Cambridge, Computer
Laboratory (Apr. 2019); https://bit.ly/2XzPgKU

20. Weisse, O. et al. Foreshadow-NG: Breaking the virtual
memory abstraction with transient out-of-order
execution (Aug. 2018); https://bit.ly/2VZLD0h

A. Theodore Markettos (theo.markettos@cl.cam.ac.uk)
is a Senior Research Associate in the Department of
Computer Science and Technology at the University of
Cambridge, U.K.

Robert N.M. Watson (robert.watson@cl.cam.ac.uk) is a
Senior Lecturer in the Department of Computer Science
and Technology at the University of Cambridge, U.K.

Simon W. Moore (simon.moore@cl.cam.ac.uk) is
Professor of Computer Engineering in the Department of
Computer Science and Technology at the University of
Cambridge, U.K.

Peter Sewell (Peter.Sewell@cl.cam.ac.uk) is Professor of
Computer Science in the Department of Computer Science
and Technology at the University of Cambridge, U.K.

Peter G. Neumann (neumann@csl.sri.com) is Chief
Scientist of the SRI International Computer Science Lab,
and moderator of the ACM Risks Forum.

Copyright held by authors.

Calendar
of Events
VOLUTPAT ORNARE ARCU

Donec sit amet
neque nec odio
pharetra
semper.
Suspendisse
dictum ligula
eu diam.

Pellentesque convallis porttitor
eros. Nunc placerat accumsan
ante. Etiam scelerisque nisl non
ligula. Quisque vitae lacus.
Pellentesque in augue. Integer
laoreet nisl nec ipsum. Ut massa
orci molestie quis, blandit et
cursus et lorem. Donec congue
massa quis metus.

DONEC EU MAGNA
Nunc aliquet ante eget lectus.
Vestibulum scelerisque
dignissim nisi. Phasellus id elit
suspendisse aliquet. Aenean
semper, magna quis interdum
sagittis, arcu odio tincidunt
lacus, non tristique diam arcu
sed nibh. Vestibulum non eros
vitae dolor dignissim volutpat.

Suspendisse elementum,
felis vel hendrerit congue,
neque urna consectetuer nisl, ac
vehicula nisi leo id arcu.
Aenean aliquam. Sed suscipit.
Quisque semper justo sed
leo. Aenean porta, diam non
pellentesque pulvinar, ipsum
orci ultrices dui, in elementum
velit mauris sit amet dolor.

PELLENTESQUE ERAT
Vitae dui semper fermentum.
Fusce pede mauris, rutrum
at, ullamcorper porta, ultrices
ac, felis. Integer nunc enim,
bibendum quis, ullamcorper
nec, dictum sed, lorem. Morbi
lacinia felis vitae massa.
Nam tortor magna posuere,
adipiscing ac, tincidunt eu,
lectus. Nulla tortor nisi, sodales
non, luctus non, posuere at,
ante. Suspendisse adipiscing
sem mollis mi. Duis lobortis
commodo orci.

ODIO SED TORTOR
Interdum mollis. Maecenas
lobortis, tellus sed mollis
nonummy, sapien ante aliquet
tellus, et sagittis lacus dolor
eu sem. Quisque ut turpis nec
risus molestie scelerisque. Nulla
placerat. Curabitur sollicitudin
quam ut risus.

Mauris aliquet, felis
imperdiet adipiscing imperdiet,
purus dolor sollicitudin
felis, vel convallis ligula
lorem scelerisque lorem.

