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of large classes of attacks. It relies on 
trustworthy models of the architec-
tural abstraction—the hardware/soft-
ware interface—and those too have 
advanced recently, in work by the au-
thors and others.1,6

Looking Behind  
the Hardware Curtain
It has recently become clear that this is 
not enough, in several ways. First, pro-

S
PECTRE,11 MELTDOWN,13 FORE-

SHADOW, 18,21 Rowhammer,9 
Spoiler,9—suddenly it seems 
as if there is a new and un-
ending stream of vulner-

abilities in processors. Previous niche 
concepts such as speculative execution 
and cache timing side-channels have 
taken center stage. Across the whole 
hardware/software system, new vulner-
abilities such as insufficiently protect-
ed memory access from untrustworthy 
PCIe or Thunderbolt USB-C periph-
erals,15 malicious Wi-Fi firmware,4 or 
alleged hardware implants14 are also 
starting to emerge.

We may be facing a crisis in systems 
design. What might we do about it? 
Here, we consider whether existing ap-
proaches are adequate, and where sub-
stantial new work is needed.

Prove, Don’t Patch
Many existing commercial operating 
systems have extensive vulnerabili-
ties. The MITRE repository of com-
mon software security vulnerabilities 
(CVEs: http://cve.mitre.org) currently 
has over 110,000 open enumerated 
vulnerabilities that have been report-
ed (excluding ones that have been re-
solved, and totally ignoring countless 
other vulnerabilities that have never 
been reported); the list is growing at 
a rate of approximately 50 new vulner-
abilities each day. Patches cannot pos-
sibly keep up with the weaknesses. In 
addition, patching silicon takes years 
and potentially costs billions of dol-

lars, which clearly tilts the balance 
firmly in favor of the attacker.

Recent advances such as the seL4 
microkernel,10 the CertiKOS virtual-
machine hierarchy,8 and the Comp-
Cert verified compiler12 have signifi-
cantly contributed to the state of the 
art in formally proven correctness of 
operating-system kernels. This tech-
nology is not yet widespread, but it of-
fers the potential to prove the absence 
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puters. Many components have unin-
tended computational power, which 
can be perverted—from the x86 page-
fault handler2 to DMA controllers.16 
This presents a challenge to under-
standing where all the computation is 
happening, such as what is software 
rather than hardware.

Toward Robustly Engineered 
Trustworthy Systems
Total-system approaches to security 
defenses are important (see, for ex-
ample, Bellovin3). A further lesson 
from physical-layer attacks is why 
such attacks are not more of a threat 
today—due to further layers of pro-
tection. It is not enough to extract 
the cryptographic key from a banking 
card using laser fault injection; the at-
tacker must also use it to steal money. 
At this point the bank’s system-level 
defenses apply, such as transaction 
limits and fraud detection. If the key 
relates only to one account, the payoff 
involves only money held by that cus-
tomer, not all other customers. Ap-
plication-level compartmentalization 
limits the reward, and thus makes the 
attack economically nonviable.

Another approach is to ensure that 
richer contextual information is avail-
able that allows the hardware to under-
stand and enforce security properties. 
The authors are on a team designing, 
developing, and formally analyzing 
the CHERI hardware instruction-set 
architecture,20 as well as CHERI oper-
ating system and application security. 
The CHERI ISA can enable hardware to 
enforce pointer provenance, arbitrarily 
fine-grained access controls to virtual 
memory and to abstract system ob-
jects, as well as both coarse- and fine-
grained compartmentalization. To-
gether, these can provide enforceable 
separation and controlled sharing, al-
lowing trustworthy and untrustworthy 
software (including unmodified legacy 
code) to coexist securely. Since the 
hardware has awareness of software 
constructs such as pointers and com-
partments, it can protect them, and we 
can reason about the protection guar-
antees—for example, formally proving 
the architectural abstraction enforces 
specific security properties. We believe 
this CHERI system architecture has 
significant potential to provide unprec-
edented total-system trustworthiness, 

cessor hardware (typically subject to 
extensive verification) has long been as-
sumed to provide a solid foundation for 
software, but increasingly suffers from 
its own vulnerabilities. Second, increas-
ing complexity and the way systems are 
composed of many hardware/software 
pieces, from many vendors, means one 
cannot think just in terms of a single-
processor architecture. We need to take 
a holistic view that acknowledges the 
complexities of this landscape. Third, 
and most seriously, these new attacks 
involved phenomena that cut across the 
traditional architectural abstractions, 
which have intentionally only described 
the envelopes of allowed functional be-
havior of hardware implementations, 
to allow implementation variation in 
performance. That flexibility has been 
essential to hardware performance in-
creases—but the attacks involve subtle 
information flows via performance 
properties. They expose the hidden con-
sequences of some of the microarchi-
tectural innovations that have given us 
ever-faster sequential computation in 
the last decades, as caching and predic-
tion leads to side-channels.

Hardware Vulnerabilities
Ideally, security must be built from the 
ground up. How can we solve the prob-
lem by building the foundations of se-
cure hardware?

For years, hardware security to many 
people has meant focusing on the 
physical layers. Power/electromagnetic 
side-channels and fault injection are 
common techniques for extracting 
cryptographic secrets by manipulating 
the physical implementation of a chip. 
These are not without effectiveness, 
but it is notable that the new spate of 
attacks represents entirely different, 
and more potent, attack vectors.

One lesson from the physical-layer 
security community is that implemen-
tation is critical. Hardware definition 
languages (HDLs) are compiled down to 
connections between library logic cells. 
The logic cells are then placed and rout-
ed and the chip layer designs produced. 
One tiny slip—at any level from archi-
tecture to HDL source and compiler, to 
cell transistor definitions, routing, pow-
er, thermals, electromagnetics, dopant 
concentrations and crystal lattices—
can cause a potentially exploitable mal-
function. Unlike the binary code of mal-

ware, there is no way to observe many 
of these physical properties. As a result, 
systems are more vulnerable to both de-
sign mistakes and supply-chain attacks.

As the recent attacks demonstrate, 
side-channels are becoming more 
powerful than expected. Traditional 
physical-layer side-channels are a sig-
nals-from-noise problem. If you record 
enough traces of the power usage, with 
powerful enough signal processing, 
you can extract secrets. Architectural 
side-channels have more bandwidth 
and better signal-to-noise ratios, leak-
ing much more data more reliably.

If we take a systems-oriented view, 
what can we say about the problem? 
First of all, the whole is often worse 
than the sum of its parts. Systems are 
composed of disparate components, 
often sourced from different vendors, 
and often granting much greater access 
to resources than needed to fulfill their 
purpose; this can be a boon for attack-
ers. For example, in Google Project Ze-
ro’s attack on the Broadcom Wi-Fi chip 
inside iPhones,4 the attackers jumped 
from bad Wi-Fi packets to installing 
malicious code on the Wi-Fi chip, and 
then to compromising iOS on the ap-
plication processor. Their ability to use 
the Wi-Fi chip as a springboard mul-
tiplied their efficacy. It is surprisingly 
difficult to reason about the behavior of 
such compositions of components.5 At-
tackers may create new side-channels 
through unexpected connections—for 
example, a memory DIMM that can 
send network packets via a shared I2C 
bus with an Ethernet controller.17

Hardware engineers often talk 
about ‘parasitic’ resistance or capaci-
tance—components that were not put 
there by the designer but were created 
by the physical implementation, often 
unhelpfully sucking away signals or 
power. Today we have parasitic com-
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including addressing some of the side-
channel attacks that were unknown at 
the time of its conception.19

Such architectural guarantees enable 
more secure implementation of currently 
insecure languages (such as C/C++) and 
can put demonstrably secure operat-
ing-system kernels on a more secure 
foundation. Similar approaches may 
apply in other domains, for example 
between vulnerable components 
across a system-on-chip.

Engineering such systems requires 
a more holistic view, with a tighter in-
terplay between hardware, operating 
systems and applications. In particu-
lar, designers need to understand more 
of what takes place in layers above or 
below their field of expertise. Better 
architectural models enable more ro-
bust verification of security proper-
ties, and amortizing verification costs 
across projects helps defenders but 
not attackers. Such verification must 
be inclusive, testing all the aspects of 
a system including the boundaries of 
implementation-defined behavior. 

Better verification can defend us 
against new vulnerabilities present in 
the abstractions it is based upon, but 
not against those that involve phenom-
ena that are not modeled. An open 
question is whether there is an abstrac-
tion between an architectural specifi-
cation and a full hardware implemen-
tation that allows us to fully reason 
about potential leakage, without being 
so complex as to being intractable.

Conclusion
Traditional models—in which design-
ers have free reign within tightly con-
strained layers—are no longer fit for 
purpose. Hardware/software system 
security architects need better aware-
ness of what comes above and below 
them, to be able to reason about what 
happens at other levels of abstraction, 
and to understand the effects of com-
position. Managing overall complex-
ity must fully capture information that 
might be relevant for security analysis, 
especially for entirely new classes of 
vulnerabilities. The defensive battle 
has only just begun. 
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Pellentesque in augue. Integer 
laoreet nisl nec ipsum. Ut massa 
orci molestie quis, blandit et 
cursus et lorem. Donec congue 
massa quis metus. 

DONEC EU MAGNA
Nunc aliquet ante eget lectus. 
Vestibulum scelerisque 
dignissim nisi. Phasellus id elit 
suspendisse aliquet. Aenean 
semper, magna quis interdum 
sagittis, arcu odio tincidunt 
lacus, non tristique diam arcu 
sed nibh. Vestibulum non eros 
vitae dolor dignissim volutpat. 

Suspendisse elementum, 
felis vel hendrerit congue, 
neque urna consectetuer nisl, ac 
vehicula nisi leo id arcu.
Aenean aliquam. Sed suscipit. 
Quisque semper justo sed 
leo. Aenean porta, diam non 
pellentesque pulvinar, ipsum 
orci ultrices dui, in elementum 
velit mauris sit amet dolor. 

PELLENTESQUE ERAT 
Vitae dui semper fermentum. 
Fusce pede mauris, rutrum 
at, ullamcorper porta, ultrices 
ac, felis. Integer nunc enim, 
bibendum quis, ullamcorper 
nec, dictum sed, lorem. Morbi 
lacinia felis vitae massa. 
Nam tortor magna posuere, 
adipiscing ac, tincidunt eu, 
lectus. Nulla tortor nisi, sodales 
non, luctus non, posuere at, 
ante. Suspendisse adipiscing 
sem mollis mi. Duis lobortis 
commodo orci.

ODIO SED TORTOR 
Interdum mollis. Maecenas 
lobortis, tellus sed mollis 
nonummy, sapien ante aliquet 
tellus, et sagittis lacus dolor 
eu sem. Quisque ut turpis nec 
risus molestie scelerisque. Nulla 
placerat. Curabitur sollicitudin 
quam ut risus. 

Mauris aliquet, felis 
imperdiet adipiscing imperdiet, 
purus dolor sollicitudin 
felis, vel convallis ligula 
lorem scelerisque lorem. 


