
c
r

e
d

i
t

 t
k

1 communications of the acm | JUne 2013 | vol. 56 | no. 6

V
viewpoints

Inside Risks
Learning from the Past to
Face the Risks of Today
Achieving high-quality safety-critical software requires
much more than just rigorous development processes.

doi:10.1145/2461256.2461270	 Nancy G. Leveson

Strict Government Oversight
and Learning from the Past
The Shuttle software project benefited
from what NASA had learned from ear-
lier spacecraft. Gemini (1965–1966)
was the first U.S. manned spacecraft to
have a computer onboard. At the time,
computer programming was consid-
ered an almost incidental activity. Ex-
perts wrote the software in low-level,
machine-specific assembly languages.
Fortran was considered too inefficient

A
s so ft wa re takes over
more and more func-
tions in our increasingly
complex and potentially
dangerous systems, our

software engineering problems are go-
ing to increase. The number of failures
of large system projects we have been
experiencing, particularly government
systems, for example,1–4 is not going to
be acceptable. We need to learn from
the failures and—even more impor-
tant—from the successes of the past.

I recently contributed a chapter on
software for a forthcoming book on the
legacy of the Space Shuttle. A mythol-
ogy has arisen about the Shuttle soft-
ware with claims being made about it
being “perfect software” and “bug free”
or having “zero defects,” all of which
are untrue. But the overblown claims
should not take away from the remark-
able achievement by those at NASA
and its major contractors (Rockwell,
IBM, Rocketdyne, Lockheed Martin,
and Draper Labs) and smaller compa-
nies such as Intermetrics (later Ares),
who put their hearts into a feat that re-
quired overcoming what were tremen-
dous technical challenges at that time.
They did it using discipline, profes-
sionalism, and top-flight management
and engineering skills and practices
too often missing from today’s safety-
critical software projects. Much can
be learned from this effort that is still
applicable to the task of engineering
complex software today. This column
summarizes some of these lessons.

There can always be differing ex-
planations for success (or failure) and
varying emphasis can be placed on
the relative importance of the factors
involved. Personal biases and expe-
riences are difficult to remove from
such an evaluation. But most observers
agree that the process and the culture
were important factors in the success
of the Space Shuttle software as well as
the strong oversight, involvement, and
control by NASA.

V
viewpoints

viewpoints

June 2013 | vol. 56 | no. 6 | communications of the acm 2

V
viewpoints

˲˲ Requirements must be clearly de-
fined and carefully managed before
coding begins and as changes are
needed. The dynamic nature of re-
quirements for spacecraft should not
be used as an excuse for poor quality.

˲˲ Good development plans should
be created and followed.

˲˲ Experienced personnel should be
assigned to a project early, rather than
using the start of a project for training
inexperienced personnel.

˲˲ Software should not be declared
complete in order to meet schedules,
requiring users to work around errors.
Instead, quality should be the primary
consideration.

NASA also learned three general
and critical lessons: that increased at-
tention to software would be necessary
in future manned space programs;
software needs the same type of dis-
ciplined and rigorous processes used
in other engineering disciplines; and
quality must be built in from the begin-
ning—quality cannot be added after
the software is written.

Using these lessons learned, the
software development for Skylab fol-
lowed strict engineering principles,
which were starting to be created at that
time in order to change software devel-
opment from a craft to an engineering
discipline. The Skylab program dem-
onstrated that careful management of
software development, including strict
control of changes, extensive and pre-
planned verification activities, and the
use of adequate development tools, re-
sults in high-quality software with high
reliability.

Slowly and carefully NASA learned
how to develop more complex software
for spacecraft. The increasing suc-
cess was not due simply to individu-
als learning from their mistakes, but
the organization itself identifying the
problems and ensuring the success-
ful solutions derived from them were
implemented and improved in later
projects. Basically, NASA engaged in
successful organizational learning.

To ensure these lessons would be
applied in the Shuttle software and they
would not have to relearn the same les-
sons from scratch for each spacecraft
project, NASA maintained direct con-
trol of the Shuttle software rather than
ceding control to the Shuttle hardware
contractor. The hardware and software

for use on real-time systems: The Gem-
ini software development was largely
haphazard, undocumented, and highly
idiosyncratic.7

Computers had little memory at
the time and squeezing the desired
functions into the available memory
became a difficult exercise and placed
limits on what could be accomplished.
The programmers also discovered that
parts of the software were unchanged
from mission to mission. To deal with
these challenges, the designers intro-
duced modularization of the code by
loading only the functions required
at that point in time. Another lesson
learned was the need for software spec-
ifications and simulation programs to
validate the guidance equations.

Despite the challenges and the low
level of software technology at the
time, the Gemini software proved to
be highly reliable and useful. NASA
realized, however, that the handcraft-
ed, low-level machine code of Gemini
would not scale to the complexity of
later spacecraft. The problem of how to
generate reliable and safe software had
to be solved.

NASA used the lessons learned from
the Gemini project about modularity,
specification, verification, and simu-
lation in producing the more complex
Apollo software. In turn, many of the
lessons learned from Apollo were the
basis for the successful procedures
used on the Shuttle.

Computers had little memory at the
time and fitting necessary functions
into the Apollo computer memory re-
sulted in the abandonment of some
features and functions and resulted
in the use of tricky programming tech-
niques to save others. The complexity
of the resulting code led to difficulty in
debugging and verification and there-
fore to delays. When it appeared that
the software would be late, more peo-
ple were added to the software devel-
opment process, which simply slowed
down the project even more. This ba-
sic principle that adding more people
to a late project makes it even later is
well known now, but it was part of the
learning process at that time. Configu-
ration control software was also late,
leading to delays in supporting dis-
crepancy reporting.

Another critical mistake, still made
too often today, was to take shortcuts

in testing when the project started to
fall behind schedule. The 1967 Apollo
launchpad fire gave everyone time to
catch up and fix the software, as later
the Challenger and Columbia acci-
dents would for the Shuttle software.
The time delay allowed for significant
improvements in the software and in
the process. Without it, the results may
not have been as good.

To reduce communication prob-
lems and control the development
process, NASA created a set of control
boards that managed all onboard soft-
ware changes for Apollo. NASA also cre-
ated a set of reviews for specific points
in the development process, now fa-
miliar for many government or large
company projects today. The review
and acceptance process provided for
consistent evaluation of the software
and controlled changes, which helped
to ensure high reliability and inserted
much-needed discipline into the soft-
ware development process. This con-
trol board and review structure became
much more extensive for the Shuttle.

In the process of constructing
and delivering the Apollo software,
both NASA and the MIT Instrumenta-
tion Lab (which created the software)
learned a lot about the principles of
software engineering for real-time sys-
tems and gained important experience
in managing a large real-time software
project. These lessons were applied to
the Shuttle. One of the most important
lessons was that software is more dif-
ficult to develop than hardware. As a
result:

˲˲ Software documentation is crucial.
˲˲ Verification must be thorough and

proceed through a sequence of steps
without skipping any or being rushed
to try to save time.

One of the most
important lessons
was that software
is more difficult
to develop than
hardware.

3 communications of the acm | JUne 2013 | vol. 56 | no. 6

viewpoints

lishing a requirements analysis group
to provide a systems engineering in-
terface between the requirements
definition and software implementa-
tion worlds. The latter identified re-
quirements and design trade-offs and
communicated the implications of the
trade-offs to both worlds. This strat-
egy was effective in accommodating
changing requirements without signif-
icant cost or schedule impacts.

All requested changes were sub-
mitted to the NASA Shuttle Avionics
Software Control Board (SASCB). The
SASCB ranked the changes based on
program benefits including safety up-
grades, performance enhancements,
and cost savings. A subset of potential
changes were approved for require-
ments development and placed on the
candidate change list. Candidates on
the list were evaluated to identify any
major issues, risks, and impacts and
then detailed size and effort estimates
were created.

Once the change was approved
and baselined, implementation was
controlled through the configuration
management system, which identi-
fied: the approval status of the change;
the affected requirements functions;
the code modules to be changed; and
the builds (for example, operational
increment and flight) for which the
changed code was scheduled. Chang-
es were made to the design documen-
tation and the code as well as to other
maintenance documentation used to
aid traceability.

Detailed design specifications were
developed only after the requirements
specifications. Today in software devel-
opment (and even touted as desirable
by software researchers), design speci-
fications are too often substituted for
true requirements specifications or the
two are mixed, making requirements
analysis and management during de-
velopment and over the life of the sys-
tem extremely difficult.

When coding finally did begin,
top-down development was the norm,
using stubs and frequent builds to en-
sure interfaces were correctly defined
and implemented first, rather than
finding interface problems late in de-
velopment during system testing. No
programmer changed the code without
changing the specification so the spec-
ifications and code always matched.

contracts were separated, with the
software contractors directly account-
able to NASA management. NASA had
learned how important software was to
the success of the entire program and
closely managed the contractors and
their development methods.

NASA worked very closely with the
contractors and even constructed their
own software development “factory”
(the Software Production Facility) and
test facility (SAIL) at NASA Houston,
thus ensuring the highest standards
and processes available at the time
were used and that every change to
human-rated flight software during
the long life of the Shuttle was imple-
mented with the same professional at-
tention to detail.

The level of participation and con-
trol exercised by NASA is unusual for
most government projects today, in-
cluding many current NASA projects,
where privatizing is common. Com-
mercial projects often use outsourcing
and subcontracting without careful
and detailed oversight of the process.

A Software Development Process
that Promoted High Quality
Based on their experiences and learn-
ing from past projects, a sophisticated
software development process was
created for the Shuttle. This develop-
ment process was a major factor in the
software success. Especially important
was careful planning before any code
was written, including detailed re-
quirements specification; continuous
learning and process improvement; a
disciplined top-down structured de-
velopment approach; extensive record
keeping and documentation; extensive
and realistic testing and code reviews;
and detailed standards.

Extensive Planning and Specifica-
tion. The Shuttle was one of the first
spacecraft (and vehicles in general) to
use a fly-by-wire flight control system,
which created quality and reliability
challenges. In response, NASA and its
contractors developed a disciplined
and structured development process.
Increased emphasis was placed on
the front end of development, includ-
ing requirements definition, system
design, standards definition, and top-
down development.

An important feature of this process
was extensive planning before starting

to code: NASA controlled the require-
ments, and NASA and its contractors
agreed in great detail on exactly what
the code must do, how it should do it,
and under what conditions before any
code was produced. That commitment
was recorded. Using those require-
ments documents, extremely detailed
design documents were produced
before a line of code was produced.
Nothing was changed in the specifica-
tions (requirements or design) with-
out agreement and understanding by
everyone involved.

A common excuse used today for
not writing requirements first is that
the requirements are “unknown” or
may change. In fact, in these cases, it
is even more important to put major
effort into upfront requirements analy-
sis and specification. The software re-
quirements for the Shuttle were con-
tinually evolving and changing, even
after the system became operational
and throughout its 30-year lifetime.
NASA and its contractors made over
2,000 requirements changes between
1975 and the first flight in 1981. After
the first flight, requirements changes
continued. The number of changes
proposed and implemented required
a strict process to be used or chaos
would have resulted.

The strategy used to meet the chal-
lenge of changing requirements had
several components: rigorously main-
tained requirements documents, us-
ing a small group to create the software
architecture and interfaces and then
ensuring their ideas and theirs alone
were implemented (called “maintain-
ing conceptual integrity”), and estab-

Basically,
NASA engaged
in successful
organizational
learning.

viewpoints

June 2013 | vol. 56 | no. 6 | communications of the acm 4

Calendar
of Events
volutpat ornare arcu
Donec sit amet neque nec odio
pharetra semper. Suspendisse
dictum ligula eu diam.
Pellentesque convallis porttitor
eros. Nunc placerat accumsan
ante. Etiam scelerisque nisl
non ligula. Quisque vitae lacus.
Pellentesque in augue. Integer
laoreet nisl nec ipsum. Ut massa
orci molestie quis, blandit et
cursus et lorem. Donec congue
massa quis metus.

Donec eu magna
Nunc aliquet ante eget lectus.
Vestibulum scelerisque
dignissim nisi. Phasellus id elit
suspendisse aliquet. Aenean
semper, magna quis interdum
sagittis, arcu odio tincidunt
lacus, non tristique diam arcu
sed nibh. Vestibulum non eros
vitae dolor dignissim volutpat.

Suspendisse elementum,
felis vel hendrerit congue,
neque urna consectetuer nisl, ac
vehicula nisi leo id arcu.
Aenean aliquam. Sed suscipit.
Quisque semper justo sed
leo. Aenean porta, diam non
pellentesque pulvinar, ipsum
orci ultrices dui, in elementum
velit mauris sit amet dolor.

Pellentesque erat
Vitae dui semper fermentum.
Fusce pede mauris, rutrum
at, ullamcorper porta, ultrices
ac, felis. Integer nunc enim,
bibendum quis, ullamcorper
nec, dictum sed, lorem. Morbi
lacinia felis vitae massa.
Nam tortor magna posuere,
adipiscing ac, tincidunt eu,
lectus. Nulla tortor nisi, sodales
non, luctus non, posuere at,
ante. Suspendisse adipiscing
sem mollis mi. Duis lobortis
commodo orci.

odio sed tortor
Interdum mollis. Maecenas
lobortis, tellus sed mollis
nonummy, sapien ante aliquet
tellus, et sagittis lacus dolor
eu sem. Quisque ut turpis nec
risus molestie scelerisque. Nulla
placerat. Curabitur sollicitudin
quam ut risus.

Mauris aliquet, felis
imperdiet adipiscing imperdiet,
purus dolor sollicitudin felis,
vel convallis ligula lorem
scelerisque lorem. Nunc
pellentesque. Cras nec lacus.
Aenean suscipit sem.

Due to the size, the complexity, the
still-evolving nature of the require-
ments, and the need for software to help
develop and test the Shuttle hardware,
NASA and IBM created the software us-
ing incremental releases. Each release
contained a basic set of capabilities
and provided the structure for adding
additional functions in later releases.
These incremental releases were care-
fully planned to ensure later additions
could be successfully integrated with-
out requiring extensive changes. These
planning and specification practices
made maintaining software for over 30
years possible without introducing er-
rors when changes were necessary.

Continuous Improvement. Contin-
uous improvement was another criti-
cal feature of the software process. One
of the guiding principles of the Shuttle
software development was if a mistake
was found, you should not just fix the
mistake but must also fix whatever per-
mitted the mistake in the first place.
The process that followed the identi-
fication of any software error was: fix
the error; identify the root cause of the
fault; eliminate the process deficiency
that let the fault be introduced and not
detected earlier; and analyze the rest of
the software for other, similar faults.

The goal was not to blame people
for mistakes but instead to blame the
process. The development process
was a team effort; no one person was
ever solely responsible for writing or
inspecting the code. Thus there was
accountability, but accountability was
assigned to the group as a whole.

Carefully Defined Communication
Channels. Such a large project and its
long-term nature created communi-
cation problems. In response to the
communication and coordination
problems during Apollo development,
NASA had created a control board
structure, which was extended for the
Shuttle. Membership on the review
boards included representatives from
all affected project areas, which en-
hanced communication among func-
tional organizations and provided a
mechanism to achieve strict configura-
tion control. Changes to approved con-
figuration baselines, which resulted
from design changes, requirements
change requests, and discrepancy re-
ports, were coordinated through the
appropriate boards and ultimately ap-

proved by NASA. Audits to verify consis-
tency between approved baselines and
reported baselines were performed
weekly by the project office. In addi-
tion, the review checkpoints, occurring
at critical times in development, that
had been created for Apollo were again
used and expanded.

Testing and Code Reviews. A final
important feature of the development
process with respect to achieving high
quality involved extensive testing and
code reviews: Emphasis was placed
on early error detection, starting with
requirements. Extensive developer
and verifier code reviews in a moder-
ated environment were used. It is now
widely recognized that human code
reviews are a highly effective way to de-
tect errors in software, and they appear
to have been very effective in this envi-
ronment too.

A Professional Software
Development Culture
Culture matters. There was a strong
sense of camaraderie and a feeling
that what they were doing was impor-
tant. Many of the software developers
worked on the project for a long time,
sometimes their whole career. They
knew the astronauts, many of whom
were their personal friends and neigh-
bors. These factors led to a culture that
was quality focused and believed in
zero defects.

The Shuttle software development
job entailed regular 8 a.m. to 5 p.m.
hours, where late nights were an excep-
tion. The atmosphere and the people
were very professional and of the high-
est caliber. Words that have been used
to describe them include businesslike,
orderly, detail-oriented, and methodi-
cal. Smith and Cusumano note they
produced “grownup software and the
way they do it is by being grown-ups.”6

The culture was intolerant of “ego-
driven hotshots”: “In the Shuttle’s cul-
ture, there are no superstar program-
mers. The whole approach to developing
software is intentionally designed not
to rely on any particular person.”6 The
cowboy culture that flourishes in some
software development companies today
was discouraged.

The culture was also intolerant of
creativity with respect to individual
coding styles. People were encour-
aged to channel their creativity into

5 communications of the acm | JUne 2013 | vol. 56 | no. 6

viewpoints

ware and some did lead to not fully
achieving mission objectives, at least
by using the software: Because the or-
bital functions of the Shuttle software
were not fully autonomous, astronauts
or Mission Control could usually step
in and manually recover from the few
software problems that did occur. This
too is a major lesson that should be
learned by those rushing to make to-
tally autonomous systems today.

The few errors in the flight software
should not detract from the excellent
processes used for the Shuttle software
development. When errors were found,
they were usually traced to temporary
lapses in the rigorous processes or to
periods of lowered morale. One take-
away is that there is more to achiev-
ing high quality than simply rigorous
processes (as promoted by Taylorists
in the guise of such process-heavy con-
cepts as CMM and CMMI). The culture
of the development environment may
be just as important or maybe more so.

Beyond the lessons learned that
have been noted so far, some general
conclusions can be drawn from the
Shuttle experience to provide guidance
for the future. One is that high-quality
software is possible but requires a de-
sire to do so and an investment of
time and resources. Software quality is
often given lip service in many indus-
tries, where frequently speed and cost
are the major factors considered, qual-
ity simply needs to be “good enough,”
and frequent corrective updates are
the norm.

Software engineering seems to
be moving in the opposite direction
from the process used for the Shuttle
software development, with require-
ments and careful pre-planning rel-
egated to a less important position

than starting to code. Strangely, in
many cases, a requirements speci-
fication is seen as something that is
generated after the software design is
complete or at least after coding has
started. Why has it been so difficult
for software engineering to adopt the
disciplined practices of the other en-
gineering fields? There are still many
software development projects that
depend on cowboy programmers and
“heroism” and less than professional
engineering environments.

Ironically, many of the factors that
led to success in the Shuttle software
were related to limitations of com-
puter hardware in that era, including
limitations in memory that prevent-
ed today’s common “requirements
creep” and uncontrolled growth in
functionality as well as requiring
careful functional decomposition of
the system requirements in order to
break it into small pieces that could
be loaded only when needed. Without
these physical limitations that im-
pose discipline on the development
process, we need to determine how to
impose discipline on ourselves and
today’s safety-critical projects.	

References
1.	 Broache, A. IRS trudges on with aging computers.

CNET News (Apr. 12, 2007); http://news.cnet.
com/2100-1028_3-6175657.html.

2.	 Eggan, D. and Witte, G. The FBI’s upgrade that
wasn’t. The Washington Post (Aug. 18, 2006);
http://www.washingtonpost.com/wp-dyn/content/
article/2006/08/17/AR2006081701485.html.

3.	 Johnson, K. Denver airport saw the future. It didn’t
work. New York Times, (Aug. 27, 2005); http://
www.nytimes.com/2005/08/27/national/27denver.
html?pagewanted=all&_r=0.

4.	 Lewyn, M. Flying in place: The FAA’s air control fiasco.
Business Week (Apr. 26, 1993), 87, 90.

5.	 Post-Challenger Evaluation of Space Shuttle Risk
Assessment and Management. Aeronautics and
Space Engineering Board, National Research Council,
January 1988.

6.	 Smith, S.A. and Cusumano, M.A. Beyond the Software
Factory: A Comparison of Classic and PC Software
Developers. Massachusetts Institute of Technology,
Sloan School WP#3607=93\BPS, (Sept. 1, 1993).

7.	 Tomayko, J. Computers in Spaceflight: The NASA
Experience. NASA Contractor Report CR-182505,
1988.

Nancy G. Leveson (leveson@mit.edu) is Professor of
Aeronautics and Astronautics and also Professor of
Engineering Systems at Massachusetts Institute of
Technology, Cambridge, MA.

This column has been derived from the chapter “Software
and the Challenge of Flight Control” of the book Space
Shuttle Legacy: How We Did It/What We Learned, R.
Launius, J. Craig, and J. Krige, Eds., 2013. The complete
chapter can be downloaded from http://sunnyday.mit.edu/
STAMP-publications.html.

Copyright held by author.

improving the process, not violating
strict coding standards. In the few oc-
casions when the standards were vio-
lated, resulting in an error in the flight
software, they relearned the fallacy of
waiving standards for small short-term
savings in implementation time, code
space, or computer performance.

A larger number of women were
involved in the Shuttle software engi-
neering than is common in the soft-
ware development world today. Many
of these women were senior managers
or senior technical staff. Smith and Cu-
sumano6 suggest the stability and pro-
fessionalism may have been particu-
larly appealing to women.

The challenging work, cooperative
environment, and enjoyable working
conditions encouraged people to stay
with the Shuttle software project. As
those experts passed on their knowl-
edge, they established a culture of
quality and cooperation that persisted
throughout the program and the de-
cades of Shuttle operations and soft-
ware maintenance activities.

Limitations of the Process
No development process is perfect and
the Shuttle software is no exception.
Various external reviews identified
gaps in the process that needed to be
filled. One was that the verification and
validation inspections by developers
did not pay enough attention to off-
nominal cases.

A second deficiency identified was a
lack of system safety focus by the soft-
ware developers and limited interac-
tions with system safety engineering.
System-level hazards were not traced
to the software requirements, compo-
nents, or functions.

A final identified weakness related
to system engineering. The NRC com-
mittee studying Shuttle safety after the
Challenger accident recommended
that NASA implement better top-down,
system engineering analysis, including
system safety analysis.7

Conclusion
The Shuttle software was not perfect,
although it was better than most soft-
ware today. Errors occurred in flight or
were found in software that had flown.
None of these software errors led to the
loss of the Shuttle, although some al-
most led to the loss of expensive hard-

Software engineering
seems to be moving in
the opposite direction
from the process
used for the Shuttle
software development.

